]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_buf.c
Merge branches 'for-3.10/appleir', 'for-3.10/hid-debug', 'for-3.10/hid-driver-transpo...
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133 37#include "xfs_sb.h"
ed3b4d6c 38#include "xfs_log.h"
b7963133 39#include "xfs_ag.h"
b7963133 40#include "xfs_mount.h"
0b1b213f 41#include "xfs_trace.h"
b7963133 42
7989cb8e 43static kmem_zone_t *xfs_buf_zone;
23ea4032 44
7989cb8e 45static struct workqueue_struct *xfslogd_workqueue;
1da177e4 46
ce8e922c
NS
47#ifdef XFS_BUF_LOCK_TRACKING
48# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 51#else
ce8e922c
NS
52# define XB_SET_OWNER(bp) do { } while (0)
53# define XB_CLEAR_OWNER(bp) do { } while (0)
54# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
55#endif
56
ce8e922c 57#define xb_to_gfp(flags) \
aa5c158e 58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 59
1da177e4 60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
80}
81
1da177e4 82/*
430cbeb8
DC
83 * xfs_buf_lru_add - add a buffer to the LRU.
84 *
85 * The LRU takes a new reference to the buffer so that it will only be freed
86 * once the shrinker takes the buffer off the LRU.
87 */
88STATIC void
89xfs_buf_lru_add(
90 struct xfs_buf *bp)
91{
92 struct xfs_buftarg *btp = bp->b_target;
93
94 spin_lock(&btp->bt_lru_lock);
95 if (list_empty(&bp->b_lru)) {
96 atomic_inc(&bp->b_hold);
97 list_add_tail(&bp->b_lru, &btp->bt_lru);
98 btp->bt_lru_nr++;
6fb8a90a 99 bp->b_lru_flags &= ~_XBF_LRU_DISPOSE;
430cbeb8
DC
100 }
101 spin_unlock(&btp->bt_lru_lock);
102}
103
104/*
105 * xfs_buf_lru_del - remove a buffer from the LRU
106 *
107 * The unlocked check is safe here because it only occurs when there are not
108 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
109 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 110 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 111 * bt_lru_lock.
1da177e4 112 */
430cbeb8
DC
113STATIC void
114xfs_buf_lru_del(
115 struct xfs_buf *bp)
116{
117 struct xfs_buftarg *btp = bp->b_target;
118
119 if (list_empty(&bp->b_lru))
120 return;
121
122 spin_lock(&btp->bt_lru_lock);
123 if (!list_empty(&bp->b_lru)) {
124 list_del_init(&bp->b_lru);
125 btp->bt_lru_nr--;
126 }
127 spin_unlock(&btp->bt_lru_lock);
128}
129
130/*
131 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
132 * b_lru_ref count so that the buffer is freed immediately when the buffer
133 * reference count falls to zero. If the buffer is already on the LRU, we need
134 * to remove the reference that LRU holds on the buffer.
135 *
136 * This prevents build-up of stale buffers on the LRU.
137 */
138void
139xfs_buf_stale(
140 struct xfs_buf *bp)
141{
43ff2122
CH
142 ASSERT(xfs_buf_islocked(bp));
143
430cbeb8 144 bp->b_flags |= XBF_STALE;
43ff2122
CH
145
146 /*
147 * Clear the delwri status so that a delwri queue walker will not
148 * flush this buffer to disk now that it is stale. The delwri queue has
149 * a reference to the buffer, so this is safe to do.
150 */
151 bp->b_flags &= ~_XBF_DELWRI_Q;
152
430cbeb8
DC
153 atomic_set(&(bp)->b_lru_ref, 0);
154 if (!list_empty(&bp->b_lru)) {
155 struct xfs_buftarg *btp = bp->b_target;
156
157 spin_lock(&btp->bt_lru_lock);
6fb8a90a
CM
158 if (!list_empty(&bp->b_lru) &&
159 !(bp->b_lru_flags & _XBF_LRU_DISPOSE)) {
430cbeb8
DC
160 list_del_init(&bp->b_lru);
161 btp->bt_lru_nr--;
162 atomic_dec(&bp->b_hold);
163 }
164 spin_unlock(&btp->bt_lru_lock);
165 }
166 ASSERT(atomic_read(&bp->b_hold) >= 1);
167}
1da177e4 168
3e85c868
DC
169static int
170xfs_buf_get_maps(
171 struct xfs_buf *bp,
172 int map_count)
173{
174 ASSERT(bp->b_maps == NULL);
175 bp->b_map_count = map_count;
176
177 if (map_count == 1) {
f4b42421 178 bp->b_maps = &bp->__b_map;
3e85c868
DC
179 return 0;
180 }
181
182 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
183 KM_NOFS);
184 if (!bp->b_maps)
185 return ENOMEM;
186 return 0;
187}
188
189/*
190 * Frees b_pages if it was allocated.
191 */
192static void
193xfs_buf_free_maps(
194 struct xfs_buf *bp)
195{
f4b42421 196 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
197 kmem_free(bp->b_maps);
198 bp->b_maps = NULL;
199 }
200}
201
4347b9d7 202struct xfs_buf *
3e85c868 203_xfs_buf_alloc(
4347b9d7 204 struct xfs_buftarg *target,
3e85c868
DC
205 struct xfs_buf_map *map,
206 int nmaps,
ce8e922c 207 xfs_buf_flags_t flags)
1da177e4 208{
4347b9d7 209 struct xfs_buf *bp;
3e85c868
DC
210 int error;
211 int i;
4347b9d7 212
aa5c158e 213 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
214 if (unlikely(!bp))
215 return NULL;
216
1da177e4 217 /*
12bcb3f7
DC
218 * We don't want certain flags to appear in b_flags unless they are
219 * specifically set by later operations on the buffer.
1da177e4 220 */
611c9946 221 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 222
ce8e922c 223 atomic_set(&bp->b_hold, 1);
430cbeb8 224 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 225 init_completion(&bp->b_iowait);
430cbeb8 226 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 227 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 228 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 229 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
230 XB_SET_OWNER(bp);
231 bp->b_target = target;
3e85c868 232 bp->b_flags = flags;
de1cbee4 233
1da177e4 234 /*
aa0e8833
DC
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
1da177e4
LT
237 * most cases but may be reset (e.g. XFS recovery).
238 */
3e85c868
DC
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
252 bp->b_io_length = bp->b_length;
253
ce8e922c
NS
254 atomic_set(&bp->b_pin_count, 0);
255 init_waitqueue_head(&bp->b_waiters);
256
257 XFS_STATS_INC(xb_create);
0b1b213f 258 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
259
260 return bp;
1da177e4
LT
261}
262
263/*
ce8e922c
NS
264 * Allocate a page array capable of holding a specified number
265 * of pages, and point the page buf at it.
1da177e4
LT
266 */
267STATIC int
ce8e922c
NS
268_xfs_buf_get_pages(
269 xfs_buf_t *bp,
1da177e4 270 int page_count,
ce8e922c 271 xfs_buf_flags_t flags)
1da177e4
LT
272{
273 /* Make sure that we have a page list */
ce8e922c 274 if (bp->b_pages == NULL) {
ce8e922c
NS
275 bp->b_page_count = page_count;
276 if (page_count <= XB_PAGES) {
277 bp->b_pages = bp->b_page_array;
1da177e4 278 } else {
ce8e922c 279 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 280 page_count, KM_NOFS);
ce8e922c 281 if (bp->b_pages == NULL)
1da177e4
LT
282 return -ENOMEM;
283 }
ce8e922c 284 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
285 }
286 return 0;
287}
288
289/*
ce8e922c 290 * Frees b_pages if it was allocated.
1da177e4
LT
291 */
292STATIC void
ce8e922c 293_xfs_buf_free_pages(
1da177e4
LT
294 xfs_buf_t *bp)
295{
ce8e922c 296 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 297 kmem_free(bp->b_pages);
3fc98b1a 298 bp->b_pages = NULL;
1da177e4
LT
299 }
300}
301
302/*
303 * Releases the specified buffer.
304 *
305 * The modification state of any associated pages is left unchanged.
ce8e922c 306 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
307 * hashed and refcounted buffers
308 */
309void
ce8e922c 310xfs_buf_free(
1da177e4
LT
311 xfs_buf_t *bp)
312{
0b1b213f 313 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 314
430cbeb8
DC
315 ASSERT(list_empty(&bp->b_lru));
316
0e6e847f 317 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
318 uint i;
319
73c77e2c 320 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
321 vm_unmap_ram(bp->b_addr - bp->b_offset,
322 bp->b_page_count);
1da177e4 323
948ecdb4
NS
324 for (i = 0; i < bp->b_page_count; i++) {
325 struct page *page = bp->b_pages[i];
326
0e6e847f 327 __free_page(page);
948ecdb4 328 }
0e6e847f
DC
329 } else if (bp->b_flags & _XBF_KMEM)
330 kmem_free(bp->b_addr);
3fc98b1a 331 _xfs_buf_free_pages(bp);
3e85c868 332 xfs_buf_free_maps(bp);
4347b9d7 333 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
334}
335
336/*
0e6e847f 337 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
338 */
339STATIC int
0e6e847f 340xfs_buf_allocate_memory(
1da177e4
LT
341 xfs_buf_t *bp,
342 uint flags)
343{
aa0e8833 344 size_t size;
1da177e4 345 size_t nbytes, offset;
ce8e922c 346 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 347 unsigned short page_count, i;
795cac72 348 xfs_off_t start, end;
1da177e4
LT
349 int error;
350
0e6e847f
DC
351 /*
352 * for buffers that are contained within a single page, just allocate
353 * the memory from the heap - there's no need for the complexity of
354 * page arrays to keep allocation down to order 0.
355 */
795cac72
DC
356 size = BBTOB(bp->b_length);
357 if (size < PAGE_SIZE) {
aa5c158e 358 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
359 if (!bp->b_addr) {
360 /* low memory - use alloc_page loop instead */
361 goto use_alloc_page;
362 }
363
795cac72 364 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
365 ((unsigned long)bp->b_addr & PAGE_MASK)) {
366 /* b_addr spans two pages - use alloc_page instead */
367 kmem_free(bp->b_addr);
368 bp->b_addr = NULL;
369 goto use_alloc_page;
370 }
371 bp->b_offset = offset_in_page(bp->b_addr);
372 bp->b_pages = bp->b_page_array;
373 bp->b_pages[0] = virt_to_page(bp->b_addr);
374 bp->b_page_count = 1;
611c9946 375 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
376 return 0;
377 }
378
379use_alloc_page:
f4b42421
MT
380 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
381 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 382 >> PAGE_SHIFT;
795cac72 383 page_count = end - start;
ce8e922c 384 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
385 if (unlikely(error))
386 return error;
1da177e4 387
ce8e922c 388 offset = bp->b_offset;
0e6e847f 389 bp->b_flags |= _XBF_PAGES;
1da177e4 390
ce8e922c 391 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
392 struct page *page;
393 uint retries = 0;
0e6e847f
DC
394retry:
395 page = alloc_page(gfp_mask);
1da177e4 396 if (unlikely(page == NULL)) {
ce8e922c
NS
397 if (flags & XBF_READ_AHEAD) {
398 bp->b_page_count = i;
0e6e847f
DC
399 error = ENOMEM;
400 goto out_free_pages;
1da177e4
LT
401 }
402
403 /*
404 * This could deadlock.
405 *
406 * But until all the XFS lowlevel code is revamped to
407 * handle buffer allocation failures we can't do much.
408 */
409 if (!(++retries % 100))
4f10700a
DC
410 xfs_err(NULL,
411 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 412 __func__, gfp_mask);
1da177e4 413
ce8e922c 414 XFS_STATS_INC(xb_page_retries);
8aa7e847 415 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
416 goto retry;
417 }
418
ce8e922c 419 XFS_STATS_INC(xb_page_found);
1da177e4 420
0e6e847f 421 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 422 size -= nbytes;
ce8e922c 423 bp->b_pages[i] = page;
1da177e4
LT
424 offset = 0;
425 }
0e6e847f 426 return 0;
1da177e4 427
0e6e847f
DC
428out_free_pages:
429 for (i = 0; i < bp->b_page_count; i++)
430 __free_page(bp->b_pages[i]);
1da177e4
LT
431 return error;
432}
433
434/*
25985edc 435 * Map buffer into kernel address-space if necessary.
1da177e4
LT
436 */
437STATIC int
ce8e922c 438_xfs_buf_map_pages(
1da177e4
LT
439 xfs_buf_t *bp,
440 uint flags)
441{
0e6e847f 442 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 443 if (bp->b_page_count == 1) {
0e6e847f 444 /* A single page buffer is always mappable */
ce8e922c 445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
446 } else if (flags & XBF_UNMAPPED) {
447 bp->b_addr = NULL;
448 } else {
a19fb380
DC
449 int retried = 0;
450
451 do {
452 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
453 -1, PAGE_KERNEL);
454 if (bp->b_addr)
455 break;
456 vm_unmap_aliases();
457 } while (retried++ <= 1);
458
459 if (!bp->b_addr)
1da177e4 460 return -ENOMEM;
ce8e922c 461 bp->b_addr += bp->b_offset;
1da177e4
LT
462 }
463
464 return 0;
465}
466
467/*
468 * Finding and Reading Buffers
469 */
470
471/*
ce8e922c 472 * Look up, and creates if absent, a lockable buffer for
1da177e4 473 * a given range of an inode. The buffer is returned
eabbaf11 474 * locked. No I/O is implied by this call.
1da177e4
LT
475 */
476xfs_buf_t *
ce8e922c 477_xfs_buf_find(
e70b73f8 478 struct xfs_buftarg *btp,
3e85c868
DC
479 struct xfs_buf_map *map,
480 int nmaps,
ce8e922c
NS
481 xfs_buf_flags_t flags,
482 xfs_buf_t *new_bp)
1da177e4 483{
e70b73f8 484 size_t numbytes;
74f75a0c
DC
485 struct xfs_perag *pag;
486 struct rb_node **rbp;
487 struct rb_node *parent;
488 xfs_buf_t *bp;
3e85c868 489 xfs_daddr_t blkno = map[0].bm_bn;
10616b80 490 xfs_daddr_t eofs;
3e85c868
DC
491 int numblks = 0;
492 int i;
1da177e4 493
3e85c868
DC
494 for (i = 0; i < nmaps; i++)
495 numblks += map[i].bm_len;
e70b73f8 496 numbytes = BBTOB(numblks);
1da177e4
LT
497
498 /* Check for IOs smaller than the sector size / not sector aligned */
e70b73f8 499 ASSERT(!(numbytes < (1 << btp->bt_sshift)));
de1cbee4 500 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_smask));
1da177e4 501
10616b80
DC
502 /*
503 * Corrupted block numbers can get through to here, unfortunately, so we
504 * have to check that the buffer falls within the filesystem bounds.
505 */
506 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
507 if (blkno >= eofs) {
508 /*
509 * XXX (dgc): we should really be returning EFSCORRUPTED here,
510 * but none of the higher level infrastructure supports
511 * returning a specific error on buffer lookup failures.
512 */
513 xfs_alert(btp->bt_mount,
514 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
515 __func__, blkno, eofs);
516 return NULL;
517 }
518
74f75a0c
DC
519 /* get tree root */
520 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 521 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
522
523 /* walk tree */
524 spin_lock(&pag->pag_buf_lock);
525 rbp = &pag->pag_buf_tree.rb_node;
526 parent = NULL;
527 bp = NULL;
528 while (*rbp) {
529 parent = *rbp;
530 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
531
de1cbee4 532 if (blkno < bp->b_bn)
74f75a0c 533 rbp = &(*rbp)->rb_left;
de1cbee4 534 else if (blkno > bp->b_bn)
74f75a0c
DC
535 rbp = &(*rbp)->rb_right;
536 else {
537 /*
de1cbee4 538 * found a block number match. If the range doesn't
74f75a0c
DC
539 * match, the only way this is allowed is if the buffer
540 * in the cache is stale and the transaction that made
541 * it stale has not yet committed. i.e. we are
542 * reallocating a busy extent. Skip this buffer and
543 * continue searching to the right for an exact match.
544 */
4e94b71b 545 if (bp->b_length != numblks) {
74f75a0c
DC
546 ASSERT(bp->b_flags & XBF_STALE);
547 rbp = &(*rbp)->rb_right;
548 continue;
549 }
ce8e922c 550 atomic_inc(&bp->b_hold);
1da177e4
LT
551 goto found;
552 }
553 }
554
555 /* No match found */
ce8e922c 556 if (new_bp) {
74f75a0c
DC
557 rb_link_node(&new_bp->b_rbnode, parent, rbp);
558 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
559 /* the buffer keeps the perag reference until it is freed */
560 new_bp->b_pag = pag;
561 spin_unlock(&pag->pag_buf_lock);
1da177e4 562 } else {
ce8e922c 563 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
564 spin_unlock(&pag->pag_buf_lock);
565 xfs_perag_put(pag);
1da177e4 566 }
ce8e922c 567 return new_bp;
1da177e4
LT
568
569found:
74f75a0c
DC
570 spin_unlock(&pag->pag_buf_lock);
571 xfs_perag_put(pag);
1da177e4 572
0c842ad4
CH
573 if (!xfs_buf_trylock(bp)) {
574 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
575 xfs_buf_rele(bp);
576 XFS_STATS_INC(xb_busy_locked);
577 return NULL;
1da177e4 578 }
0c842ad4
CH
579 xfs_buf_lock(bp);
580 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
581 }
582
0e6e847f
DC
583 /*
584 * if the buffer is stale, clear all the external state associated with
585 * it. We need to keep flags such as how we allocated the buffer memory
586 * intact here.
587 */
ce8e922c
NS
588 if (bp->b_flags & XBF_STALE) {
589 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 590 ASSERT(bp->b_iodone == NULL);
611c9946 591 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 592 bp->b_ops = NULL;
2f926587 593 }
0b1b213f
CH
594
595 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
596 XFS_STATS_INC(xb_get_locked);
597 return bp;
1da177e4
LT
598}
599
600/*
3815832a
DC
601 * Assembles a buffer covering the specified range. The code is optimised for
602 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
603 * more hits than misses.
1da177e4 604 */
3815832a 605struct xfs_buf *
6dde2707
DC
606xfs_buf_get_map(
607 struct xfs_buftarg *target,
608 struct xfs_buf_map *map,
609 int nmaps,
ce8e922c 610 xfs_buf_flags_t flags)
1da177e4 611{
3815832a
DC
612 struct xfs_buf *bp;
613 struct xfs_buf *new_bp;
0e6e847f 614 int error = 0;
1da177e4 615
6dde2707 616 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
617 if (likely(bp))
618 goto found;
619
6dde2707 620 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 621 if (unlikely(!new_bp))
1da177e4
LT
622 return NULL;
623
fe2429b0
DC
624 error = xfs_buf_allocate_memory(new_bp, flags);
625 if (error) {
3e85c868 626 xfs_buf_free(new_bp);
fe2429b0
DC
627 return NULL;
628 }
629
6dde2707 630 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 631 if (!bp) {
fe2429b0 632 xfs_buf_free(new_bp);
3815832a
DC
633 return NULL;
634 }
635
fe2429b0
DC
636 if (bp != new_bp)
637 xfs_buf_free(new_bp);
1da177e4 638
3815832a 639found:
611c9946 640 if (!bp->b_addr) {
ce8e922c 641 error = _xfs_buf_map_pages(bp, flags);
1da177e4 642 if (unlikely(error)) {
4f10700a
DC
643 xfs_warn(target->bt_mount,
644 "%s: failed to map pages\n", __func__);
a8acad70
DC
645 xfs_buf_relse(bp);
646 return NULL;
1da177e4
LT
647 }
648 }
649
ce8e922c 650 XFS_STATS_INC(xb_get);
0b1b213f 651 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 652 return bp;
1da177e4
LT
653}
654
5d765b97
CH
655STATIC int
656_xfs_buf_read(
657 xfs_buf_t *bp,
658 xfs_buf_flags_t flags)
659{
43ff2122 660 ASSERT(!(flags & XBF_WRITE));
f4b42421 661 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 662
43ff2122 663 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 664 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 665
0e95f19a
DC
666 xfs_buf_iorequest(bp);
667 if (flags & XBF_ASYNC)
668 return 0;
ec53d1db 669 return xfs_buf_iowait(bp);
5d765b97
CH
670}
671
1da177e4 672xfs_buf_t *
6dde2707
DC
673xfs_buf_read_map(
674 struct xfs_buftarg *target,
675 struct xfs_buf_map *map,
676 int nmaps,
c3f8fc73 677 xfs_buf_flags_t flags,
1813dd64 678 const struct xfs_buf_ops *ops)
1da177e4 679{
6dde2707 680 struct xfs_buf *bp;
ce8e922c
NS
681
682 flags |= XBF_READ;
683
6dde2707 684 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 685 if (bp) {
0b1b213f
CH
686 trace_xfs_buf_read(bp, flags, _RET_IP_);
687
ce8e922c 688 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 689 XFS_STATS_INC(xb_get_read);
1813dd64 690 bp->b_ops = ops;
5d765b97 691 _xfs_buf_read(bp, flags);
ce8e922c 692 } else if (flags & XBF_ASYNC) {
1da177e4
LT
693 /*
694 * Read ahead call which is already satisfied,
695 * drop the buffer
696 */
a8acad70
DC
697 xfs_buf_relse(bp);
698 return NULL;
1da177e4 699 } else {
1da177e4 700 /* We do not want read in the flags */
ce8e922c 701 bp->b_flags &= ~XBF_READ;
1da177e4
LT
702 }
703 }
704
ce8e922c 705 return bp;
1da177e4
LT
706}
707
1da177e4 708/*
ce8e922c
NS
709 * If we are not low on memory then do the readahead in a deadlock
710 * safe manner.
1da177e4
LT
711 */
712void
6dde2707
DC
713xfs_buf_readahead_map(
714 struct xfs_buftarg *target,
715 struct xfs_buf_map *map,
c3f8fc73 716 int nmaps,
1813dd64 717 const struct xfs_buf_ops *ops)
1da177e4 718{
0e6e847f 719 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
720 return;
721
6dde2707 722 xfs_buf_read_map(target, map, nmaps,
1813dd64 723 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
724}
725
5adc94c2
DC
726/*
727 * Read an uncached buffer from disk. Allocates and returns a locked
728 * buffer containing the disk contents or nothing.
729 */
730struct xfs_buf *
731xfs_buf_read_uncached(
5adc94c2
DC
732 struct xfs_buftarg *target,
733 xfs_daddr_t daddr,
e70b73f8 734 size_t numblks,
c3f8fc73 735 int flags,
1813dd64 736 const struct xfs_buf_ops *ops)
5adc94c2 737{
eab4e633 738 struct xfs_buf *bp;
5adc94c2 739
e70b73f8 740 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
741 if (!bp)
742 return NULL;
743
744 /* set up the buffer for a read IO */
3e85c868
DC
745 ASSERT(bp->b_map_count == 1);
746 bp->b_bn = daddr;
747 bp->b_maps[0].bm_bn = daddr;
cbb7baab 748 bp->b_flags |= XBF_READ;
1813dd64 749 bp->b_ops = ops;
5adc94c2 750
e70b73f8 751 xfsbdstrat(target->bt_mount, bp);
eab4e633 752 xfs_buf_iowait(bp);
5adc94c2 753 return bp;
1da177e4
LT
754}
755
44396476
DC
756/*
757 * Return a buffer allocated as an empty buffer and associated to external
758 * memory via xfs_buf_associate_memory() back to it's empty state.
759 */
760void
761xfs_buf_set_empty(
762 struct xfs_buf *bp,
e70b73f8 763 size_t numblks)
44396476
DC
764{
765 if (bp->b_pages)
766 _xfs_buf_free_pages(bp);
767
768 bp->b_pages = NULL;
769 bp->b_page_count = 0;
770 bp->b_addr = NULL;
4e94b71b 771 bp->b_length = numblks;
aa0e8833 772 bp->b_io_length = numblks;
3e85c868
DC
773
774 ASSERT(bp->b_map_count == 1);
44396476 775 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
776 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
777 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
778}
779
1da177e4
LT
780static inline struct page *
781mem_to_page(
782 void *addr)
783{
9e2779fa 784 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
785 return virt_to_page(addr);
786 } else {
787 return vmalloc_to_page(addr);
788 }
789}
790
791int
ce8e922c
NS
792xfs_buf_associate_memory(
793 xfs_buf_t *bp,
1da177e4
LT
794 void *mem,
795 size_t len)
796{
797 int rval;
798 int i = 0;
d1afb678
LM
799 unsigned long pageaddr;
800 unsigned long offset;
801 size_t buflen;
1da177e4
LT
802 int page_count;
803
0e6e847f 804 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 805 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
806 buflen = PAGE_ALIGN(len + offset);
807 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
808
809 /* Free any previous set of page pointers */
ce8e922c
NS
810 if (bp->b_pages)
811 _xfs_buf_free_pages(bp);
1da177e4 812
ce8e922c
NS
813 bp->b_pages = NULL;
814 bp->b_addr = mem;
1da177e4 815
aa5c158e 816 rval = _xfs_buf_get_pages(bp, page_count, 0);
1da177e4
LT
817 if (rval)
818 return rval;
819
ce8e922c 820 bp->b_offset = offset;
d1afb678
LM
821
822 for (i = 0; i < bp->b_page_count; i++) {
823 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 824 pageaddr += PAGE_SIZE;
1da177e4 825 }
1da177e4 826
aa0e8833 827 bp->b_io_length = BTOBB(len);
4e94b71b 828 bp->b_length = BTOBB(buflen);
1da177e4
LT
829
830 return 0;
831}
832
833xfs_buf_t *
686865f7
DC
834xfs_buf_get_uncached(
835 struct xfs_buftarg *target,
e70b73f8 836 size_t numblks,
686865f7 837 int flags)
1da177e4 838{
e70b73f8 839 unsigned long page_count;
1fa40b01 840 int error, i;
3e85c868
DC
841 struct xfs_buf *bp;
842 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 843
3e85c868 844 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
845 if (unlikely(bp == NULL))
846 goto fail;
1da177e4 847
e70b73f8 848 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
1fa40b01
CH
849 error = _xfs_buf_get_pages(bp, page_count, 0);
850 if (error)
1da177e4
LT
851 goto fail_free_buf;
852
1fa40b01 853 for (i = 0; i < page_count; i++) {
686865f7 854 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
855 if (!bp->b_pages[i])
856 goto fail_free_mem;
1da177e4 857 }
1fa40b01 858 bp->b_flags |= _XBF_PAGES;
1da177e4 859
611c9946 860 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 861 if (unlikely(error)) {
4f10700a
DC
862 xfs_warn(target->bt_mount,
863 "%s: failed to map pages\n", __func__);
1da177e4 864 goto fail_free_mem;
1fa40b01 865 }
1da177e4 866
686865f7 867 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 868 return bp;
1fa40b01 869
1da177e4 870 fail_free_mem:
1fa40b01
CH
871 while (--i >= 0)
872 __free_page(bp->b_pages[i]);
ca165b88 873 _xfs_buf_free_pages(bp);
1da177e4 874 fail_free_buf:
3e85c868 875 xfs_buf_free_maps(bp);
4347b9d7 876 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
877 fail:
878 return NULL;
879}
880
881/*
1da177e4
LT
882 * Increment reference count on buffer, to hold the buffer concurrently
883 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
884 * Must hold the buffer already to call this function.
885 */
886void
ce8e922c
NS
887xfs_buf_hold(
888 xfs_buf_t *bp)
1da177e4 889{
0b1b213f 890 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 891 atomic_inc(&bp->b_hold);
1da177e4
LT
892}
893
894/*
ce8e922c
NS
895 * Releases a hold on the specified buffer. If the
896 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
897 */
898void
ce8e922c
NS
899xfs_buf_rele(
900 xfs_buf_t *bp)
1da177e4 901{
74f75a0c 902 struct xfs_perag *pag = bp->b_pag;
1da177e4 903
0b1b213f 904 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 905
74f75a0c 906 if (!pag) {
430cbeb8 907 ASSERT(list_empty(&bp->b_lru));
74f75a0c 908 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
909 if (atomic_dec_and_test(&bp->b_hold))
910 xfs_buf_free(bp);
911 return;
912 }
913
74f75a0c 914 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 915
3790689f 916 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 917 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 918 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
919 atomic_read(&bp->b_lru_ref)) {
920 xfs_buf_lru_add(bp);
921 spin_unlock(&pag->pag_buf_lock);
1da177e4 922 } else {
430cbeb8 923 xfs_buf_lru_del(bp);
43ff2122 924 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
925 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
926 spin_unlock(&pag->pag_buf_lock);
927 xfs_perag_put(pag);
ce8e922c 928 xfs_buf_free(bp);
1da177e4
LT
929 }
930 }
931}
932
933
934/*
0e6e847f 935 * Lock a buffer object, if it is not already locked.
90810b9e
DC
936 *
937 * If we come across a stale, pinned, locked buffer, we know that we are
938 * being asked to lock a buffer that has been reallocated. Because it is
939 * pinned, we know that the log has not been pushed to disk and hence it
940 * will still be locked. Rather than continuing to have trylock attempts
941 * fail until someone else pushes the log, push it ourselves before
942 * returning. This means that the xfsaild will not get stuck trying
943 * to push on stale inode buffers.
1da177e4
LT
944 */
945int
0c842ad4
CH
946xfs_buf_trylock(
947 struct xfs_buf *bp)
1da177e4
LT
948{
949 int locked;
950
ce8e922c 951 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 952 if (locked)
ce8e922c 953 XB_SET_OWNER(bp);
0b1b213f 954
0c842ad4
CH
955 trace_xfs_buf_trylock(bp, _RET_IP_);
956 return locked;
1da177e4 957}
1da177e4
LT
958
959/*
0e6e847f 960 * Lock a buffer object.
ed3b4d6c
DC
961 *
962 * If we come across a stale, pinned, locked buffer, we know that we
963 * are being asked to lock a buffer that has been reallocated. Because
964 * it is pinned, we know that the log has not been pushed to disk and
965 * hence it will still be locked. Rather than sleeping until someone
966 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 967 */
ce8e922c
NS
968void
969xfs_buf_lock(
0c842ad4 970 struct xfs_buf *bp)
1da177e4 971{
0b1b213f
CH
972 trace_xfs_buf_lock(bp, _RET_IP_);
973
ed3b4d6c 974 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 975 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
976 down(&bp->b_sema);
977 XB_SET_OWNER(bp);
0b1b213f
CH
978
979 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
980}
981
1da177e4 982void
ce8e922c 983xfs_buf_unlock(
0c842ad4 984 struct xfs_buf *bp)
1da177e4 985{
ce8e922c
NS
986 XB_CLEAR_OWNER(bp);
987 up(&bp->b_sema);
0b1b213f
CH
988
989 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
990}
991
ce8e922c
NS
992STATIC void
993xfs_buf_wait_unpin(
994 xfs_buf_t *bp)
1da177e4
LT
995{
996 DECLARE_WAITQUEUE (wait, current);
997
ce8e922c 998 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
999 return;
1000
ce8e922c 1001 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1002 for (;;) {
1003 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1004 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1005 break;
7eaceacc 1006 io_schedule();
1da177e4 1007 }
ce8e922c 1008 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1009 set_current_state(TASK_RUNNING);
1010}
1011
1012/*
1013 * Buffer Utility Routines
1014 */
1015
1da177e4 1016STATIC void
ce8e922c 1017xfs_buf_iodone_work(
c4028958 1018 struct work_struct *work)
1da177e4 1019{
1813dd64 1020 struct xfs_buf *bp =
c4028958 1021 container_of(work, xfs_buf_t, b_iodone_work);
1813dd64
DC
1022 bool read = !!(bp->b_flags & XBF_READ);
1023
1024 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1025 if (read && bp->b_ops)
1026 bp->b_ops->verify_read(bp);
1da177e4 1027
80f6c29d 1028 if (bp->b_iodone)
ce8e922c
NS
1029 (*(bp->b_iodone))(bp);
1030 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1031 xfs_buf_relse(bp);
1813dd64
DC
1032 else {
1033 ASSERT(read && bp->b_ops);
1034 complete(&bp->b_iowait);
1035 }
1da177e4
LT
1036}
1037
1038void
ce8e922c 1039xfs_buf_ioend(
1813dd64
DC
1040 struct xfs_buf *bp,
1041 int schedule)
1da177e4 1042{
1813dd64
DC
1043 bool read = !!(bp->b_flags & XBF_READ);
1044
0b1b213f
CH
1045 trace_xfs_buf_iodone(bp, _RET_IP_);
1046
ce8e922c
NS
1047 if (bp->b_error == 0)
1048 bp->b_flags |= XBF_DONE;
1da177e4 1049
1813dd64 1050 if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1051 if (schedule) {
c4028958 1052 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1053 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1054 } else {
c4028958 1055 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1056 }
1057 } else {
1813dd64 1058 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
b4dd330b 1059 complete(&bp->b_iowait);
1da177e4
LT
1060 }
1061}
1062
1da177e4 1063void
ce8e922c
NS
1064xfs_buf_ioerror(
1065 xfs_buf_t *bp,
1066 int error)
1da177e4
LT
1067{
1068 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1069 bp->b_error = (unsigned short)error;
0b1b213f 1070 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1071}
1072
901796af
CH
1073void
1074xfs_buf_ioerror_alert(
1075 struct xfs_buf *bp,
1076 const char *func)
1077{
1078 xfs_alert(bp->b_target->bt_mount,
aa0e8833
DC
1079"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1080 (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
901796af
CH
1081}
1082
4e23471a
CH
1083/*
1084 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1085 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1086 * so that the proper iodone callbacks get called.
1087 */
1088STATIC int
1089xfs_bioerror(
1090 xfs_buf_t *bp)
1091{
1092#ifdef XFSERRORDEBUG
1093 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1094#endif
1095
1096 /*
1097 * No need to wait until the buffer is unpinned, we aren't flushing it.
1098 */
5a52c2a5 1099 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1100
1101 /*
1a1a3e97 1102 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1103 */
1104 XFS_BUF_UNREAD(bp);
4e23471a 1105 XFS_BUF_UNDONE(bp);
c867cb61 1106 xfs_buf_stale(bp);
4e23471a 1107
1a1a3e97 1108 xfs_buf_ioend(bp, 0);
4e23471a
CH
1109
1110 return EIO;
1111}
1112
1113/*
1114 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1115 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1116 * This is meant for userdata errors; metadata bufs come with
1117 * iodone functions attached, so that we can track down errors.
1118 */
1119STATIC int
1120xfs_bioerror_relse(
1121 struct xfs_buf *bp)
1122{
ed43233b 1123 int64_t fl = bp->b_flags;
4e23471a
CH
1124 /*
1125 * No need to wait until the buffer is unpinned.
1126 * We aren't flushing it.
1127 *
1128 * chunkhold expects B_DONE to be set, whether
1129 * we actually finish the I/O or not. We don't want to
1130 * change that interface.
1131 */
1132 XFS_BUF_UNREAD(bp);
4e23471a 1133 XFS_BUF_DONE(bp);
c867cb61 1134 xfs_buf_stale(bp);
cb669ca5 1135 bp->b_iodone = NULL;
0cadda1c 1136 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1137 /*
1138 * Mark b_error and B_ERROR _both_.
1139 * Lot's of chunkcache code assumes that.
1140 * There's no reason to mark error for
1141 * ASYNC buffers.
1142 */
5a52c2a5 1143 xfs_buf_ioerror(bp, EIO);
5fde0326 1144 complete(&bp->b_iowait);
4e23471a
CH
1145 } else {
1146 xfs_buf_relse(bp);
1147 }
1148
1149 return EIO;
1150}
1151
a2dcf5df 1152STATIC int
4e23471a
CH
1153xfs_bdstrat_cb(
1154 struct xfs_buf *bp)
1155{
ebad861b 1156 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1157 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1158 /*
1159 * Metadata write that didn't get logged but
1160 * written delayed anyway. These aren't associated
1161 * with a transaction, and can be ignored.
1162 */
1163 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1164 return xfs_bioerror_relse(bp);
1165 else
1166 return xfs_bioerror(bp);
1167 }
1168
1169 xfs_buf_iorequest(bp);
1170 return 0;
1171}
1172
a2dcf5df
CH
1173int
1174xfs_bwrite(
1175 struct xfs_buf *bp)
1176{
1177 int error;
1178
1179 ASSERT(xfs_buf_islocked(bp));
1180
1181 bp->b_flags |= XBF_WRITE;
1182 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1183
1184 xfs_bdstrat_cb(bp);
1185
1186 error = xfs_buf_iowait(bp);
1187 if (error) {
1188 xfs_force_shutdown(bp->b_target->bt_mount,
1189 SHUTDOWN_META_IO_ERROR);
1190 }
1191 return error;
1192}
1193
4e23471a
CH
1194/*
1195 * Wrapper around bdstrat so that we can stop data from going to disk in case
1196 * we are shutting down the filesystem. Typically user data goes thru this
1197 * path; one of the exceptions is the superblock.
1198 */
1199void
1200xfsbdstrat(
1201 struct xfs_mount *mp,
1202 struct xfs_buf *bp)
1203{
1204 if (XFS_FORCED_SHUTDOWN(mp)) {
1205 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1206 xfs_bioerror_relse(bp);
1207 return;
1208 }
1209
1210 xfs_buf_iorequest(bp);
1211}
1212
b8f82a4a 1213STATIC void
ce8e922c
NS
1214_xfs_buf_ioend(
1215 xfs_buf_t *bp,
1da177e4
LT
1216 int schedule)
1217{
0e6e847f 1218 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1219 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1220}
1221
782e3b3b 1222STATIC void
ce8e922c 1223xfs_buf_bio_end_io(
1da177e4 1224 struct bio *bio,
1da177e4
LT
1225 int error)
1226{
ce8e922c 1227 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1228
37eb17e6
DC
1229 /*
1230 * don't overwrite existing errors - otherwise we can lose errors on
1231 * buffers that require multiple bios to complete.
1232 */
1233 if (!bp->b_error)
1234 xfs_buf_ioerror(bp, -error);
1da177e4 1235
37eb17e6 1236 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1237 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1238
ce8e922c 1239 _xfs_buf_ioend(bp, 1);
1da177e4 1240 bio_put(bio);
1da177e4
LT
1241}
1242
3e85c868
DC
1243static void
1244xfs_buf_ioapply_map(
1245 struct xfs_buf *bp,
1246 int map,
1247 int *buf_offset,
1248 int *count,
1249 int rw)
1da177e4 1250{
3e85c868
DC
1251 int page_index;
1252 int total_nr_pages = bp->b_page_count;
1253 int nr_pages;
1254 struct bio *bio;
1255 sector_t sector = bp->b_maps[map].bm_bn;
1256 int size;
1257 int offset;
1da177e4 1258
ce8e922c 1259 total_nr_pages = bp->b_page_count;
1da177e4 1260
3e85c868
DC
1261 /* skip the pages in the buffer before the start offset */
1262 page_index = 0;
1263 offset = *buf_offset;
1264 while (offset >= PAGE_SIZE) {
1265 page_index++;
1266 offset -= PAGE_SIZE;
f538d4da
CH
1267 }
1268
3e85c868
DC
1269 /*
1270 * Limit the IO size to the length of the current vector, and update the
1271 * remaining IO count for the next time around.
1272 */
1273 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1274 *count -= size;
1275 *buf_offset += size;
34951f5c 1276
1da177e4 1277next_chunk:
ce8e922c 1278 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1279 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1280 if (nr_pages > total_nr_pages)
1281 nr_pages = total_nr_pages;
1282
1283 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1284 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1285 bio->bi_sector = sector;
ce8e922c
NS
1286 bio->bi_end_io = xfs_buf_bio_end_io;
1287 bio->bi_private = bp;
1da177e4 1288
0e6e847f 1289
3e85c868 1290 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1291 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1292
1293 if (nbytes > size)
1294 nbytes = size;
1295
3e85c868
DC
1296 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1297 offset);
ce8e922c 1298 if (rbytes < nbytes)
1da177e4
LT
1299 break;
1300
1301 offset = 0;
aa0e8833 1302 sector += BTOBB(nbytes);
1da177e4
LT
1303 size -= nbytes;
1304 total_nr_pages--;
1305 }
1306
1da177e4 1307 if (likely(bio->bi_size)) {
73c77e2c
JB
1308 if (xfs_buf_is_vmapped(bp)) {
1309 flush_kernel_vmap_range(bp->b_addr,
1310 xfs_buf_vmap_len(bp));
1311 }
1da177e4
LT
1312 submit_bio(rw, bio);
1313 if (size)
1314 goto next_chunk;
1315 } else {
37eb17e6
DC
1316 /*
1317 * This is guaranteed not to be the last io reference count
1318 * because the caller (xfs_buf_iorequest) holds a count itself.
1319 */
1320 atomic_dec(&bp->b_io_remaining);
ce8e922c 1321 xfs_buf_ioerror(bp, EIO);
ec53d1db 1322 bio_put(bio);
1da177e4 1323 }
3e85c868
DC
1324
1325}
1326
1327STATIC void
1328_xfs_buf_ioapply(
1329 struct xfs_buf *bp)
1330{
1331 struct blk_plug plug;
1332 int rw;
1333 int offset;
1334 int size;
1335 int i;
1336
e0018738
DC
1337 /*
1338 * Make sure we capture only current IO errors rather than stale errors
1339 * left over from previous use of the buffer (e.g. failed readahead).
1340 */
1341 bp->b_error = 0;
1342
3e85c868
DC
1343 if (bp->b_flags & XBF_WRITE) {
1344 if (bp->b_flags & XBF_SYNCIO)
1345 rw = WRITE_SYNC;
1346 else
1347 rw = WRITE;
1348 if (bp->b_flags & XBF_FUA)
1349 rw |= REQ_FUA;
1350 if (bp->b_flags & XBF_FLUSH)
1351 rw |= REQ_FLUSH;
1813dd64
DC
1352
1353 /*
1354 * Run the write verifier callback function if it exists. If
1355 * this function fails it will mark the buffer with an error and
1356 * the IO should not be dispatched.
1357 */
1358 if (bp->b_ops) {
1359 bp->b_ops->verify_write(bp);
1360 if (bp->b_error) {
1361 xfs_force_shutdown(bp->b_target->bt_mount,
1362 SHUTDOWN_CORRUPT_INCORE);
1363 return;
1364 }
1365 }
3e85c868
DC
1366 } else if (bp->b_flags & XBF_READ_AHEAD) {
1367 rw = READA;
1368 } else {
1369 rw = READ;
1370 }
1371
1372 /* we only use the buffer cache for meta-data */
1373 rw |= REQ_META;
1374
1375 /*
1376 * Walk all the vectors issuing IO on them. Set up the initial offset
1377 * into the buffer and the desired IO size before we start -
1378 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1379 * subsequent call.
1380 */
1381 offset = bp->b_offset;
1382 size = BBTOB(bp->b_io_length);
1383 blk_start_plug(&plug);
1384 for (i = 0; i < bp->b_map_count; i++) {
1385 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1386 if (bp->b_error)
1387 break;
1388 if (size <= 0)
1389 break; /* all done */
1390 }
1391 blk_finish_plug(&plug);
1da177e4
LT
1392}
1393
0e95f19a 1394void
ce8e922c
NS
1395xfs_buf_iorequest(
1396 xfs_buf_t *bp)
1da177e4 1397{
0b1b213f 1398 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1399
43ff2122 1400 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1401
375ec69d 1402 if (bp->b_flags & XBF_WRITE)
ce8e922c 1403 xfs_buf_wait_unpin(bp);
ce8e922c 1404 xfs_buf_hold(bp);
1da177e4
LT
1405
1406 /* Set the count to 1 initially, this will stop an I/O
1407 * completion callout which happens before we have started
ce8e922c 1408 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1409 */
ce8e922c
NS
1410 atomic_set(&bp->b_io_remaining, 1);
1411 _xfs_buf_ioapply(bp);
08023d6d 1412 _xfs_buf_ioend(bp, 1);
1da177e4 1413
ce8e922c 1414 xfs_buf_rele(bp);
1da177e4
LT
1415}
1416
1417/*
0e95f19a
DC
1418 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1419 * no I/O is pending or there is already a pending error on the buffer. It
1420 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1421 */
1422int
ce8e922c
NS
1423xfs_buf_iowait(
1424 xfs_buf_t *bp)
1da177e4 1425{
0b1b213f
CH
1426 trace_xfs_buf_iowait(bp, _RET_IP_);
1427
0e95f19a
DC
1428 if (!bp->b_error)
1429 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1430
1431 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1432 return bp->b_error;
1da177e4
LT
1433}
1434
ce8e922c
NS
1435xfs_caddr_t
1436xfs_buf_offset(
1437 xfs_buf_t *bp,
1da177e4
LT
1438 size_t offset)
1439{
1440 struct page *page;
1441
611c9946 1442 if (bp->b_addr)
62926044 1443 return bp->b_addr + offset;
1da177e4 1444
ce8e922c 1445 offset += bp->b_offset;
0e6e847f
DC
1446 page = bp->b_pages[offset >> PAGE_SHIFT];
1447 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1448}
1449
1450/*
1da177e4
LT
1451 * Move data into or out of a buffer.
1452 */
1453void
ce8e922c
NS
1454xfs_buf_iomove(
1455 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1456 size_t boff, /* starting buffer offset */
1457 size_t bsize, /* length to copy */
b9c48649 1458 void *data, /* data address */
ce8e922c 1459 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1460{
795cac72 1461 size_t bend;
1da177e4
LT
1462
1463 bend = boff + bsize;
1464 while (boff < bend) {
795cac72
DC
1465 struct page *page;
1466 int page_index, page_offset, csize;
1467
1468 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1469 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1470 page = bp->b_pages[page_index];
1471 csize = min_t(size_t, PAGE_SIZE - page_offset,
1472 BBTOB(bp->b_io_length) - boff);
1da177e4 1473
795cac72 1474 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1475
1476 switch (mode) {
ce8e922c 1477 case XBRW_ZERO:
795cac72 1478 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1479 break;
ce8e922c 1480 case XBRW_READ:
795cac72 1481 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1482 break;
ce8e922c 1483 case XBRW_WRITE:
795cac72 1484 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1485 }
1486
1487 boff += csize;
1488 data += csize;
1489 }
1490}
1491
1492/*
ce8e922c 1493 * Handling of buffer targets (buftargs).
1da177e4
LT
1494 */
1495
1496/*
430cbeb8
DC
1497 * Wait for any bufs with callbacks that have been submitted but have not yet
1498 * returned. These buffers will have an elevated hold count, so wait on those
1499 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1500 */
1501void
1502xfs_wait_buftarg(
74f75a0c 1503 struct xfs_buftarg *btp)
1da177e4 1504{
430cbeb8
DC
1505 struct xfs_buf *bp;
1506
1507restart:
1508 spin_lock(&btp->bt_lru_lock);
1509 while (!list_empty(&btp->bt_lru)) {
1510 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1511 if (atomic_read(&bp->b_hold) > 1) {
3b19034d
DC
1512 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1513 list_move_tail(&bp->b_lru, &btp->bt_lru);
430cbeb8 1514 spin_unlock(&btp->bt_lru_lock);
26af6552 1515 delay(100);
430cbeb8 1516 goto restart;
1da177e4 1517 }
430cbeb8 1518 /*
90802ed9 1519 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1520 * ignored in xfs_buf_rele().
1521 */
1522 atomic_set(&bp->b_lru_ref, 0);
1523 spin_unlock(&btp->bt_lru_lock);
1524 xfs_buf_rele(bp);
1525 spin_lock(&btp->bt_lru_lock);
1da177e4 1526 }
430cbeb8 1527 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1528}
1529
ff57ab21
DC
1530int
1531xfs_buftarg_shrink(
1532 struct shrinker *shrink,
1495f230 1533 struct shrink_control *sc)
a6867a68 1534{
ff57ab21
DC
1535 struct xfs_buftarg *btp = container_of(shrink,
1536 struct xfs_buftarg, bt_shrinker);
430cbeb8 1537 struct xfs_buf *bp;
1495f230 1538 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1539 LIST_HEAD(dispose);
1540
1541 if (!nr_to_scan)
1542 return btp->bt_lru_nr;
1543
1544 spin_lock(&btp->bt_lru_lock);
1545 while (!list_empty(&btp->bt_lru)) {
1546 if (nr_to_scan-- <= 0)
1547 break;
1548
1549 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1550
1551 /*
1552 * Decrement the b_lru_ref count unless the value is already
1553 * zero. If the value is already zero, we need to reclaim the
1554 * buffer, otherwise it gets another trip through the LRU.
1555 */
1556 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1557 list_move_tail(&bp->b_lru, &btp->bt_lru);
1558 continue;
1559 }
1560
1561 /*
1562 * remove the buffer from the LRU now to avoid needing another
1563 * lock round trip inside xfs_buf_rele().
1564 */
1565 list_move(&bp->b_lru, &dispose);
1566 btp->bt_lru_nr--;
6fb8a90a 1567 bp->b_lru_flags |= _XBF_LRU_DISPOSE;
ff57ab21 1568 }
430cbeb8
DC
1569 spin_unlock(&btp->bt_lru_lock);
1570
1571 while (!list_empty(&dispose)) {
1572 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1573 list_del_init(&bp->b_lru);
1574 xfs_buf_rele(bp);
1575 }
1576
1577 return btp->bt_lru_nr;
a6867a68
DC
1578}
1579
1da177e4
LT
1580void
1581xfs_free_buftarg(
b7963133
CH
1582 struct xfs_mount *mp,
1583 struct xfs_buftarg *btp)
1da177e4 1584{
ff57ab21
DC
1585 unregister_shrinker(&btp->bt_shrinker);
1586
b7963133
CH
1587 if (mp->m_flags & XFS_MOUNT_BARRIER)
1588 xfs_blkdev_issue_flush(btp);
a6867a68 1589
f0e2d93c 1590 kmem_free(btp);
1da177e4
LT
1591}
1592
1da177e4
LT
1593STATIC int
1594xfs_setsize_buftarg_flags(
1595 xfs_buftarg_t *btp,
1596 unsigned int blocksize,
1597 unsigned int sectorsize,
1598 int verbose)
1599{
ce8e922c
NS
1600 btp->bt_bsize = blocksize;
1601 btp->bt_sshift = ffs(sectorsize) - 1;
1602 btp->bt_smask = sectorsize - 1;
1da177e4 1603
ce8e922c 1604 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1605 char name[BDEVNAME_SIZE];
1606
1607 bdevname(btp->bt_bdev, name);
1608
4f10700a
DC
1609 xfs_warn(btp->bt_mount,
1610 "Cannot set_blocksize to %u on device %s\n",
02b102df 1611 sectorsize, name);
1da177e4
LT
1612 return EINVAL;
1613 }
1614
1da177e4
LT
1615 return 0;
1616}
1617
1618/*
ce8e922c
NS
1619 * When allocating the initial buffer target we have not yet
1620 * read in the superblock, so don't know what sized sectors
1621 * are being used is at this early stage. Play safe.
1622 */
1da177e4
LT
1623STATIC int
1624xfs_setsize_buftarg_early(
1625 xfs_buftarg_t *btp,
1626 struct block_device *bdev)
1627{
1628 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1629 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1630}
1631
1632int
1633xfs_setsize_buftarg(
1634 xfs_buftarg_t *btp,
1635 unsigned int blocksize,
1636 unsigned int sectorsize)
1637{
1638 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1639}
1640
1da177e4
LT
1641xfs_buftarg_t *
1642xfs_alloc_buftarg(
ebad861b 1643 struct xfs_mount *mp,
1da177e4 1644 struct block_device *bdev,
e2a07812
JE
1645 int external,
1646 const char *fsname)
1da177e4
LT
1647{
1648 xfs_buftarg_t *btp;
1649
1650 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1651
ebad861b 1652 btp->bt_mount = mp;
ce8e922c
NS
1653 btp->bt_dev = bdev->bd_dev;
1654 btp->bt_bdev = bdev;
0e6e847f
DC
1655 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1656 if (!btp->bt_bdi)
1657 goto error;
1658
430cbeb8
DC
1659 INIT_LIST_HEAD(&btp->bt_lru);
1660 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1661 if (xfs_setsize_buftarg_early(btp, bdev))
1662 goto error;
ff57ab21
DC
1663 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1664 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1665 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1666 return btp;
1667
1668error:
f0e2d93c 1669 kmem_free(btp);
1da177e4
LT
1670 return NULL;
1671}
1672
1da177e4 1673/*
43ff2122
CH
1674 * Add a buffer to the delayed write list.
1675 *
1676 * This queues a buffer for writeout if it hasn't already been. Note that
1677 * neither this routine nor the buffer list submission functions perform
1678 * any internal synchronization. It is expected that the lists are thread-local
1679 * to the callers.
1680 *
1681 * Returns true if we queued up the buffer, or false if it already had
1682 * been on the buffer list.
1da177e4 1683 */
43ff2122 1684bool
ce8e922c 1685xfs_buf_delwri_queue(
43ff2122
CH
1686 struct xfs_buf *bp,
1687 struct list_head *list)
1da177e4 1688{
43ff2122 1689 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1690 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1691
43ff2122
CH
1692 /*
1693 * If the buffer is already marked delwri it already is queued up
1694 * by someone else for imediate writeout. Just ignore it in that
1695 * case.
1696 */
1697 if (bp->b_flags & _XBF_DELWRI_Q) {
1698 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1699 return false;
1da177e4 1700 }
1da177e4 1701
43ff2122 1702 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1703
1704 /*
43ff2122
CH
1705 * If a buffer gets written out synchronously or marked stale while it
1706 * is on a delwri list we lazily remove it. To do this, the other party
1707 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1708 * It remains referenced and on the list. In a rare corner case it
1709 * might get readded to a delwri list after the synchronous writeout, in
1710 * which case we need just need to re-add the flag here.
d808f617 1711 */
43ff2122
CH
1712 bp->b_flags |= _XBF_DELWRI_Q;
1713 if (list_empty(&bp->b_list)) {
1714 atomic_inc(&bp->b_hold);
1715 list_add_tail(&bp->b_list, list);
585e6d88 1716 }
585e6d88 1717
43ff2122 1718 return true;
585e6d88
DC
1719}
1720
089716aa
DC
1721/*
1722 * Compare function is more complex than it needs to be because
1723 * the return value is only 32 bits and we are doing comparisons
1724 * on 64 bit values
1725 */
1726static int
1727xfs_buf_cmp(
1728 void *priv,
1729 struct list_head *a,
1730 struct list_head *b)
1731{
1732 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1733 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1734 xfs_daddr_t diff;
1735
f4b42421 1736 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1737 if (diff < 0)
1738 return -1;
1739 if (diff > 0)
1740 return 1;
1741 return 0;
1742}
1743
43ff2122
CH
1744static int
1745__xfs_buf_delwri_submit(
1746 struct list_head *buffer_list,
1747 struct list_head *io_list,
1748 bool wait)
1da177e4 1749{
43ff2122
CH
1750 struct blk_plug plug;
1751 struct xfs_buf *bp, *n;
1752 int pinned = 0;
1753
1754 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1755 if (!wait) {
1756 if (xfs_buf_ispinned(bp)) {
1757 pinned++;
1758 continue;
1759 }
1760 if (!xfs_buf_trylock(bp))
1761 continue;
1762 } else {
1763 xfs_buf_lock(bp);
1764 }
978c7b2f 1765
43ff2122
CH
1766 /*
1767 * Someone else might have written the buffer synchronously or
1768 * marked it stale in the meantime. In that case only the
1769 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1770 * reference and remove it from the list here.
1771 */
1772 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1773 list_del_init(&bp->b_list);
1774 xfs_buf_relse(bp);
1775 continue;
1776 }
c9c12971 1777
43ff2122
CH
1778 list_move_tail(&bp->b_list, io_list);
1779 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1780 }
1da177e4 1781
43ff2122 1782 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1783
43ff2122
CH
1784 blk_start_plug(&plug);
1785 list_for_each_entry_safe(bp, n, io_list, b_list) {
1786 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1787 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1788
43ff2122
CH
1789 if (!wait) {
1790 bp->b_flags |= XBF_ASYNC;
ce8e922c 1791 list_del_init(&bp->b_list);
1da177e4 1792 }
43ff2122
CH
1793 xfs_bdstrat_cb(bp);
1794 }
1795 blk_finish_plug(&plug);
1da177e4 1796
43ff2122 1797 return pinned;
1da177e4
LT
1798}
1799
1800/*
43ff2122
CH
1801 * Write out a buffer list asynchronously.
1802 *
1803 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1804 * out and not wait for I/O completion on any of the buffers. This interface
1805 * is only safely useable for callers that can track I/O completion by higher
1806 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1807 * function.
1da177e4
LT
1808 */
1809int
43ff2122
CH
1810xfs_buf_delwri_submit_nowait(
1811 struct list_head *buffer_list)
1da177e4 1812{
43ff2122
CH
1813 LIST_HEAD (io_list);
1814 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1815}
1da177e4 1816
43ff2122
CH
1817/*
1818 * Write out a buffer list synchronously.
1819 *
1820 * This will take the @buffer_list, write all buffers out and wait for I/O
1821 * completion on all of the buffers. @buffer_list is consumed by the function,
1822 * so callers must have some other way of tracking buffers if they require such
1823 * functionality.
1824 */
1825int
1826xfs_buf_delwri_submit(
1827 struct list_head *buffer_list)
1828{
1829 LIST_HEAD (io_list);
1830 int error = 0, error2;
1831 struct xfs_buf *bp;
1da177e4 1832
43ff2122 1833 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1834
43ff2122
CH
1835 /* Wait for IO to complete. */
1836 while (!list_empty(&io_list)) {
1837 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1838
089716aa 1839 list_del_init(&bp->b_list);
43ff2122
CH
1840 error2 = xfs_buf_iowait(bp);
1841 xfs_buf_relse(bp);
1842 if (!error)
1843 error = error2;
1da177e4
LT
1844 }
1845
43ff2122 1846 return error;
1da177e4
LT
1847}
1848
04d8b284 1849int __init
ce8e922c 1850xfs_buf_init(void)
1da177e4 1851{
8758280f
NS
1852 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1853 KM_ZONE_HWALIGN, NULL);
ce8e922c 1854 if (!xfs_buf_zone)
0b1b213f 1855 goto out;
04d8b284 1856
51749e47 1857 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1858 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1859 if (!xfslogd_workqueue)
04d8b284 1860 goto out_free_buf_zone;
1da177e4 1861
23ea4032 1862 return 0;
1da177e4 1863
23ea4032 1864 out_free_buf_zone:
ce8e922c 1865 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1866 out:
8758280f 1867 return -ENOMEM;
1da177e4
LT
1868}
1869
1da177e4 1870void
ce8e922c 1871xfs_buf_terminate(void)
1da177e4 1872{
04d8b284 1873 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1874 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1875}