]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_buf.c
xfs: introduce xfs_buf_submit[_wait]
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
239880ef 37#include "xfs_log_format.h"
7fd36c44 38#include "xfs_trans_resv.h"
239880ef 39#include "xfs_sb.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
239880ef 43#include "xfs_log.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
23ea4032 46
7989cb8e 47static struct workqueue_struct *xfslogd_workqueue;
1da177e4 48
ce8e922c
NS
49#ifdef XFS_BUF_LOCK_TRACKING
50# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
51# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
52# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 53#else
ce8e922c
NS
54# define XB_SET_OWNER(bp) do { } while (0)
55# define XB_CLEAR_OWNER(bp) do { } while (0)
56# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
57#endif
58
ce8e922c 59#define xb_to_gfp(flags) \
aa5c158e 60 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 61
1da177e4 62
73c77e2c
JB
63static inline int
64xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66{
67 /*
68 * Return true if the buffer is vmapped.
69 *
611c9946
DC
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 73 */
611c9946 74 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
75}
76
77static inline int
78xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80{
81 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
82}
83
430cbeb8
DC
84/*
85 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
86 * b_lru_ref count so that the buffer is freed immediately when the buffer
87 * reference count falls to zero. If the buffer is already on the LRU, we need
88 * to remove the reference that LRU holds on the buffer.
89 *
90 * This prevents build-up of stale buffers on the LRU.
91 */
92void
93xfs_buf_stale(
94 struct xfs_buf *bp)
95{
43ff2122
CH
96 ASSERT(xfs_buf_islocked(bp));
97
430cbeb8 98 bp->b_flags |= XBF_STALE;
43ff2122
CH
99
100 /*
101 * Clear the delwri status so that a delwri queue walker will not
102 * flush this buffer to disk now that it is stale. The delwri queue has
103 * a reference to the buffer, so this is safe to do.
104 */
105 bp->b_flags &= ~_XBF_DELWRI_Q;
106
a4082357
DC
107 spin_lock(&bp->b_lock);
108 atomic_set(&bp->b_lru_ref, 0);
109 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
110 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
111 atomic_dec(&bp->b_hold);
112
430cbeb8 113 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 114 spin_unlock(&bp->b_lock);
430cbeb8 115}
1da177e4 116
3e85c868
DC
117static int
118xfs_buf_get_maps(
119 struct xfs_buf *bp,
120 int map_count)
121{
122 ASSERT(bp->b_maps == NULL);
123 bp->b_map_count = map_count;
124
125 if (map_count == 1) {
f4b42421 126 bp->b_maps = &bp->__b_map;
3e85c868
DC
127 return 0;
128 }
129
130 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
131 KM_NOFS);
132 if (!bp->b_maps)
2451337d 133 return -ENOMEM;
3e85c868
DC
134 return 0;
135}
136
137/*
138 * Frees b_pages if it was allocated.
139 */
140static void
141xfs_buf_free_maps(
142 struct xfs_buf *bp)
143{
f4b42421 144 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
145 kmem_free(bp->b_maps);
146 bp->b_maps = NULL;
147 }
148}
149
4347b9d7 150struct xfs_buf *
3e85c868 151_xfs_buf_alloc(
4347b9d7 152 struct xfs_buftarg *target,
3e85c868
DC
153 struct xfs_buf_map *map,
154 int nmaps,
ce8e922c 155 xfs_buf_flags_t flags)
1da177e4 156{
4347b9d7 157 struct xfs_buf *bp;
3e85c868
DC
158 int error;
159 int i;
4347b9d7 160
aa5c158e 161 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
162 if (unlikely(!bp))
163 return NULL;
164
1da177e4 165 /*
12bcb3f7
DC
166 * We don't want certain flags to appear in b_flags unless they are
167 * specifically set by later operations on the buffer.
1da177e4 168 */
611c9946 169 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 170
ce8e922c 171 atomic_set(&bp->b_hold, 1);
430cbeb8 172 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 173 init_completion(&bp->b_iowait);
430cbeb8 174 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 175 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 176 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 177 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 178 spin_lock_init(&bp->b_lock);
ce8e922c
NS
179 XB_SET_OWNER(bp);
180 bp->b_target = target;
3e85c868 181 bp->b_flags = flags;
de1cbee4 182
1da177e4 183 /*
aa0e8833
DC
184 * Set length and io_length to the same value initially.
185 * I/O routines should use io_length, which will be the same in
1da177e4
LT
186 * most cases but may be reset (e.g. XFS recovery).
187 */
3e85c868
DC
188 error = xfs_buf_get_maps(bp, nmaps);
189 if (error) {
190 kmem_zone_free(xfs_buf_zone, bp);
191 return NULL;
192 }
193
194 bp->b_bn = map[0].bm_bn;
195 bp->b_length = 0;
196 for (i = 0; i < nmaps; i++) {
197 bp->b_maps[i].bm_bn = map[i].bm_bn;
198 bp->b_maps[i].bm_len = map[i].bm_len;
199 bp->b_length += map[i].bm_len;
200 }
201 bp->b_io_length = bp->b_length;
202
ce8e922c
NS
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
205
206 XFS_STATS_INC(xb_create);
0b1b213f 207 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
208
209 return bp;
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
87937bf8 219 int page_count)
1da177e4
LT
220{
221 /* Make sure that we have a page list */
ce8e922c 222 if (bp->b_pages == NULL) {
ce8e922c
NS
223 bp->b_page_count = page_count;
224 if (page_count <= XB_PAGES) {
225 bp->b_pages = bp->b_page_array;
1da177e4 226 } else {
ce8e922c 227 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 228 page_count, KM_NOFS);
ce8e922c 229 if (bp->b_pages == NULL)
1da177e4
LT
230 return -ENOMEM;
231 }
ce8e922c 232 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
233 }
234 return 0;
235}
236
237/*
ce8e922c 238 * Frees b_pages if it was allocated.
1da177e4
LT
239 */
240STATIC void
ce8e922c 241_xfs_buf_free_pages(
1da177e4
LT
242 xfs_buf_t *bp)
243{
ce8e922c 244 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 245 kmem_free(bp->b_pages);
3fc98b1a 246 bp->b_pages = NULL;
1da177e4
LT
247 }
248}
249
250/*
251 * Releases the specified buffer.
252 *
253 * The modification state of any associated pages is left unchanged.
b46fe825 254 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
255 * hashed and refcounted buffers
256 */
257void
ce8e922c 258xfs_buf_free(
1da177e4
LT
259 xfs_buf_t *bp)
260{
0b1b213f 261 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 262
430cbeb8
DC
263 ASSERT(list_empty(&bp->b_lru));
264
0e6e847f 265 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
266 uint i;
267
73c77e2c 268 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
1da177e4 271
948ecdb4
NS
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
0e6e847f 275 __free_page(page);
948ecdb4 276 }
0e6e847f
DC
277 } else if (bp->b_flags & _XBF_KMEM)
278 kmem_free(bp->b_addr);
3fc98b1a 279 _xfs_buf_free_pages(bp);
3e85c868 280 xfs_buf_free_maps(bp);
4347b9d7 281 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
282}
283
284/*
0e6e847f 285 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
286 */
287STATIC int
0e6e847f 288xfs_buf_allocate_memory(
1da177e4
LT
289 xfs_buf_t *bp,
290 uint flags)
291{
aa0e8833 292 size_t size;
1da177e4 293 size_t nbytes, offset;
ce8e922c 294 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 295 unsigned short page_count, i;
795cac72 296 xfs_off_t start, end;
1da177e4
LT
297 int error;
298
0e6e847f
DC
299 /*
300 * for buffers that are contained within a single page, just allocate
301 * the memory from the heap - there's no need for the complexity of
302 * page arrays to keep allocation down to order 0.
303 */
795cac72
DC
304 size = BBTOB(bp->b_length);
305 if (size < PAGE_SIZE) {
aa5c158e 306 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
307 if (!bp->b_addr) {
308 /* low memory - use alloc_page loop instead */
309 goto use_alloc_page;
310 }
311
795cac72 312 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
313 ((unsigned long)bp->b_addr & PAGE_MASK)) {
314 /* b_addr spans two pages - use alloc_page instead */
315 kmem_free(bp->b_addr);
316 bp->b_addr = NULL;
317 goto use_alloc_page;
318 }
319 bp->b_offset = offset_in_page(bp->b_addr);
320 bp->b_pages = bp->b_page_array;
321 bp->b_pages[0] = virt_to_page(bp->b_addr);
322 bp->b_page_count = 1;
611c9946 323 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
324 return 0;
325 }
326
327use_alloc_page:
f4b42421
MT
328 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
329 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 330 >> PAGE_SHIFT;
795cac72 331 page_count = end - start;
87937bf8 332 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
333 if (unlikely(error))
334 return error;
1da177e4 335
ce8e922c 336 offset = bp->b_offset;
0e6e847f 337 bp->b_flags |= _XBF_PAGES;
1da177e4 338
ce8e922c 339 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
340 struct page *page;
341 uint retries = 0;
0e6e847f
DC
342retry:
343 page = alloc_page(gfp_mask);
1da177e4 344 if (unlikely(page == NULL)) {
ce8e922c
NS
345 if (flags & XBF_READ_AHEAD) {
346 bp->b_page_count = i;
2451337d 347 error = -ENOMEM;
0e6e847f 348 goto out_free_pages;
1da177e4
LT
349 }
350
351 /*
352 * This could deadlock.
353 *
354 * But until all the XFS lowlevel code is revamped to
355 * handle buffer allocation failures we can't do much.
356 */
357 if (!(++retries % 100))
4f10700a
DC
358 xfs_err(NULL,
359 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 360 __func__, gfp_mask);
1da177e4 361
ce8e922c 362 XFS_STATS_INC(xb_page_retries);
8aa7e847 363 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
364 goto retry;
365 }
366
ce8e922c 367 XFS_STATS_INC(xb_page_found);
1da177e4 368
0e6e847f 369 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 370 size -= nbytes;
ce8e922c 371 bp->b_pages[i] = page;
1da177e4
LT
372 offset = 0;
373 }
0e6e847f 374 return 0;
1da177e4 375
0e6e847f
DC
376out_free_pages:
377 for (i = 0; i < bp->b_page_count; i++)
378 __free_page(bp->b_pages[i]);
1da177e4
LT
379 return error;
380}
381
382/*
25985edc 383 * Map buffer into kernel address-space if necessary.
1da177e4
LT
384 */
385STATIC int
ce8e922c 386_xfs_buf_map_pages(
1da177e4
LT
387 xfs_buf_t *bp,
388 uint flags)
389{
0e6e847f 390 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 391 if (bp->b_page_count == 1) {
0e6e847f 392 /* A single page buffer is always mappable */
ce8e922c 393 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
394 } else if (flags & XBF_UNMAPPED) {
395 bp->b_addr = NULL;
396 } else {
a19fb380 397 int retried = 0;
ae687e58
DC
398 unsigned noio_flag;
399
400 /*
401 * vm_map_ram() will allocate auxillary structures (e.g.
402 * pagetables) with GFP_KERNEL, yet we are likely to be under
403 * GFP_NOFS context here. Hence we need to tell memory reclaim
404 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
405 * memory reclaim re-entering the filesystem here and
406 * potentially deadlocking.
407 */
408 noio_flag = memalloc_noio_save();
a19fb380
DC
409 do {
410 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
411 -1, PAGE_KERNEL);
412 if (bp->b_addr)
413 break;
414 vm_unmap_aliases();
415 } while (retried++ <= 1);
ae687e58 416 memalloc_noio_restore(noio_flag);
a19fb380
DC
417
418 if (!bp->b_addr)
1da177e4 419 return -ENOMEM;
ce8e922c 420 bp->b_addr += bp->b_offset;
1da177e4
LT
421 }
422
423 return 0;
424}
425
426/*
427 * Finding and Reading Buffers
428 */
429
430/*
ce8e922c 431 * Look up, and creates if absent, a lockable buffer for
1da177e4 432 * a given range of an inode. The buffer is returned
eabbaf11 433 * locked. No I/O is implied by this call.
1da177e4
LT
434 */
435xfs_buf_t *
ce8e922c 436_xfs_buf_find(
e70b73f8 437 struct xfs_buftarg *btp,
3e85c868
DC
438 struct xfs_buf_map *map,
439 int nmaps,
ce8e922c
NS
440 xfs_buf_flags_t flags,
441 xfs_buf_t *new_bp)
1da177e4 442{
e70b73f8 443 size_t numbytes;
74f75a0c
DC
444 struct xfs_perag *pag;
445 struct rb_node **rbp;
446 struct rb_node *parent;
447 xfs_buf_t *bp;
3e85c868 448 xfs_daddr_t blkno = map[0].bm_bn;
10616b80 449 xfs_daddr_t eofs;
3e85c868
DC
450 int numblks = 0;
451 int i;
1da177e4 452
3e85c868
DC
453 for (i = 0; i < nmaps; i++)
454 numblks += map[i].bm_len;
e70b73f8 455 numbytes = BBTOB(numblks);
1da177e4
LT
456
457 /* Check for IOs smaller than the sector size / not sector aligned */
6da54179
ES
458 ASSERT(!(numbytes < btp->bt_meta_sectorsize));
459 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 460
10616b80
DC
461 /*
462 * Corrupted block numbers can get through to here, unfortunately, so we
463 * have to check that the buffer falls within the filesystem bounds.
464 */
465 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
466 if (blkno >= eofs) {
467 /*
2451337d 468 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
10616b80
DC
469 * but none of the higher level infrastructure supports
470 * returning a specific error on buffer lookup failures.
471 */
472 xfs_alert(btp->bt_mount,
473 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
474 __func__, blkno, eofs);
7bc0dc27 475 WARN_ON(1);
10616b80
DC
476 return NULL;
477 }
478
74f75a0c
DC
479 /* get tree root */
480 pag = xfs_perag_get(btp->bt_mount,
e70b73f8 481 xfs_daddr_to_agno(btp->bt_mount, blkno));
74f75a0c
DC
482
483 /* walk tree */
484 spin_lock(&pag->pag_buf_lock);
485 rbp = &pag->pag_buf_tree.rb_node;
486 parent = NULL;
487 bp = NULL;
488 while (*rbp) {
489 parent = *rbp;
490 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
491
de1cbee4 492 if (blkno < bp->b_bn)
74f75a0c 493 rbp = &(*rbp)->rb_left;
de1cbee4 494 else if (blkno > bp->b_bn)
74f75a0c
DC
495 rbp = &(*rbp)->rb_right;
496 else {
497 /*
de1cbee4 498 * found a block number match. If the range doesn't
74f75a0c
DC
499 * match, the only way this is allowed is if the buffer
500 * in the cache is stale and the transaction that made
501 * it stale has not yet committed. i.e. we are
502 * reallocating a busy extent. Skip this buffer and
503 * continue searching to the right for an exact match.
504 */
4e94b71b 505 if (bp->b_length != numblks) {
74f75a0c
DC
506 ASSERT(bp->b_flags & XBF_STALE);
507 rbp = &(*rbp)->rb_right;
508 continue;
509 }
ce8e922c 510 atomic_inc(&bp->b_hold);
1da177e4
LT
511 goto found;
512 }
513 }
514
515 /* No match found */
ce8e922c 516 if (new_bp) {
74f75a0c
DC
517 rb_link_node(&new_bp->b_rbnode, parent, rbp);
518 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
519 /* the buffer keeps the perag reference until it is freed */
520 new_bp->b_pag = pag;
521 spin_unlock(&pag->pag_buf_lock);
1da177e4 522 } else {
ce8e922c 523 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
524 spin_unlock(&pag->pag_buf_lock);
525 xfs_perag_put(pag);
1da177e4 526 }
ce8e922c 527 return new_bp;
1da177e4
LT
528
529found:
74f75a0c
DC
530 spin_unlock(&pag->pag_buf_lock);
531 xfs_perag_put(pag);
1da177e4 532
0c842ad4
CH
533 if (!xfs_buf_trylock(bp)) {
534 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
535 xfs_buf_rele(bp);
536 XFS_STATS_INC(xb_busy_locked);
537 return NULL;
1da177e4 538 }
0c842ad4
CH
539 xfs_buf_lock(bp);
540 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
541 }
542
0e6e847f
DC
543 /*
544 * if the buffer is stale, clear all the external state associated with
545 * it. We need to keep flags such as how we allocated the buffer memory
546 * intact here.
547 */
ce8e922c
NS
548 if (bp->b_flags & XBF_STALE) {
549 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 550 ASSERT(bp->b_iodone == NULL);
611c9946 551 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 552 bp->b_ops = NULL;
2f926587 553 }
0b1b213f
CH
554
555 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
556 XFS_STATS_INC(xb_get_locked);
557 return bp;
1da177e4
LT
558}
559
560/*
3815832a
DC
561 * Assembles a buffer covering the specified range. The code is optimised for
562 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
563 * more hits than misses.
1da177e4 564 */
3815832a 565struct xfs_buf *
6dde2707
DC
566xfs_buf_get_map(
567 struct xfs_buftarg *target,
568 struct xfs_buf_map *map,
569 int nmaps,
ce8e922c 570 xfs_buf_flags_t flags)
1da177e4 571{
3815832a
DC
572 struct xfs_buf *bp;
573 struct xfs_buf *new_bp;
0e6e847f 574 int error = 0;
1da177e4 575
6dde2707 576 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
3815832a
DC
577 if (likely(bp))
578 goto found;
579
6dde2707 580 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 581 if (unlikely(!new_bp))
1da177e4
LT
582 return NULL;
583
fe2429b0
DC
584 error = xfs_buf_allocate_memory(new_bp, flags);
585 if (error) {
3e85c868 586 xfs_buf_free(new_bp);
fe2429b0
DC
587 return NULL;
588 }
589
6dde2707 590 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
3815832a 591 if (!bp) {
fe2429b0 592 xfs_buf_free(new_bp);
3815832a
DC
593 return NULL;
594 }
595
fe2429b0
DC
596 if (bp != new_bp)
597 xfs_buf_free(new_bp);
1da177e4 598
3815832a 599found:
611c9946 600 if (!bp->b_addr) {
ce8e922c 601 error = _xfs_buf_map_pages(bp, flags);
1da177e4 602 if (unlikely(error)) {
4f10700a 603 xfs_warn(target->bt_mount,
08e96e1a 604 "%s: failed to map pagesn", __func__);
a8acad70
DC
605 xfs_buf_relse(bp);
606 return NULL;
1da177e4
LT
607 }
608 }
609
ce8e922c 610 XFS_STATS_INC(xb_get);
0b1b213f 611 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 612 return bp;
1da177e4
LT
613}
614
5d765b97
CH
615STATIC int
616_xfs_buf_read(
617 xfs_buf_t *bp,
618 xfs_buf_flags_t flags)
619{
43ff2122 620 ASSERT(!(flags & XBF_WRITE));
f4b42421 621 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 622
43ff2122 623 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 624 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 625
595bff75
DC
626 if (flags & XBF_ASYNC) {
627 xfs_buf_submit(bp);
0e95f19a 628 return 0;
595bff75
DC
629 }
630 return xfs_buf_submit_wait(bp);
5d765b97
CH
631}
632
1da177e4 633xfs_buf_t *
6dde2707
DC
634xfs_buf_read_map(
635 struct xfs_buftarg *target,
636 struct xfs_buf_map *map,
637 int nmaps,
c3f8fc73 638 xfs_buf_flags_t flags,
1813dd64 639 const struct xfs_buf_ops *ops)
1da177e4 640{
6dde2707 641 struct xfs_buf *bp;
ce8e922c
NS
642
643 flags |= XBF_READ;
644
6dde2707 645 bp = xfs_buf_get_map(target, map, nmaps, flags);
ce8e922c 646 if (bp) {
0b1b213f
CH
647 trace_xfs_buf_read(bp, flags, _RET_IP_);
648
ce8e922c 649 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 650 XFS_STATS_INC(xb_get_read);
1813dd64 651 bp->b_ops = ops;
5d765b97 652 _xfs_buf_read(bp, flags);
ce8e922c 653 } else if (flags & XBF_ASYNC) {
1da177e4
LT
654 /*
655 * Read ahead call which is already satisfied,
656 * drop the buffer
657 */
a8acad70
DC
658 xfs_buf_relse(bp);
659 return NULL;
1da177e4 660 } else {
1da177e4 661 /* We do not want read in the flags */
ce8e922c 662 bp->b_flags &= ~XBF_READ;
1da177e4
LT
663 }
664 }
665
ce8e922c 666 return bp;
1da177e4
LT
667}
668
1da177e4 669/*
ce8e922c
NS
670 * If we are not low on memory then do the readahead in a deadlock
671 * safe manner.
1da177e4
LT
672 */
673void
6dde2707
DC
674xfs_buf_readahead_map(
675 struct xfs_buftarg *target,
676 struct xfs_buf_map *map,
c3f8fc73 677 int nmaps,
1813dd64 678 const struct xfs_buf_ops *ops)
1da177e4 679{
0e6e847f 680 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
681 return;
682
6dde2707 683 xfs_buf_read_map(target, map, nmaps,
1813dd64 684 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
685}
686
5adc94c2
DC
687/*
688 * Read an uncached buffer from disk. Allocates and returns a locked
689 * buffer containing the disk contents or nothing.
690 */
691struct xfs_buf *
692xfs_buf_read_uncached(
5adc94c2
DC
693 struct xfs_buftarg *target,
694 xfs_daddr_t daddr,
e70b73f8 695 size_t numblks,
c3f8fc73 696 int flags,
1813dd64 697 const struct xfs_buf_ops *ops)
5adc94c2 698{
eab4e633 699 struct xfs_buf *bp;
5adc94c2 700
e70b73f8 701 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2
DC
702 if (!bp)
703 return NULL;
704
705 /* set up the buffer for a read IO */
3e85c868
DC
706 ASSERT(bp->b_map_count == 1);
707 bp->b_bn = daddr;
708 bp->b_maps[0].bm_bn = daddr;
cbb7baab 709 bp->b_flags |= XBF_READ;
1813dd64 710 bp->b_ops = ops;
5adc94c2 711
595bff75 712 xfs_buf_submit_wait(bp);
5adc94c2 713 return bp;
1da177e4
LT
714}
715
44396476
DC
716/*
717 * Return a buffer allocated as an empty buffer and associated to external
718 * memory via xfs_buf_associate_memory() back to it's empty state.
719 */
720void
721xfs_buf_set_empty(
722 struct xfs_buf *bp,
e70b73f8 723 size_t numblks)
44396476
DC
724{
725 if (bp->b_pages)
726 _xfs_buf_free_pages(bp);
727
728 bp->b_pages = NULL;
729 bp->b_page_count = 0;
730 bp->b_addr = NULL;
4e94b71b 731 bp->b_length = numblks;
aa0e8833 732 bp->b_io_length = numblks;
3e85c868
DC
733
734 ASSERT(bp->b_map_count == 1);
44396476 735 bp->b_bn = XFS_BUF_DADDR_NULL;
3e85c868
DC
736 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
737 bp->b_maps[0].bm_len = bp->b_length;
44396476
DC
738}
739
1da177e4
LT
740static inline struct page *
741mem_to_page(
742 void *addr)
743{
9e2779fa 744 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
745 return virt_to_page(addr);
746 } else {
747 return vmalloc_to_page(addr);
748 }
749}
750
751int
ce8e922c
NS
752xfs_buf_associate_memory(
753 xfs_buf_t *bp,
1da177e4
LT
754 void *mem,
755 size_t len)
756{
757 int rval;
758 int i = 0;
d1afb678
LM
759 unsigned long pageaddr;
760 unsigned long offset;
761 size_t buflen;
1da177e4
LT
762 int page_count;
763
0e6e847f 764 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 765 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
766 buflen = PAGE_ALIGN(len + offset);
767 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
768
769 /* Free any previous set of page pointers */
ce8e922c
NS
770 if (bp->b_pages)
771 _xfs_buf_free_pages(bp);
1da177e4 772
ce8e922c
NS
773 bp->b_pages = NULL;
774 bp->b_addr = mem;
1da177e4 775
87937bf8 776 rval = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
777 if (rval)
778 return rval;
779
ce8e922c 780 bp->b_offset = offset;
d1afb678
LM
781
782 for (i = 0; i < bp->b_page_count; i++) {
783 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 784 pageaddr += PAGE_SIZE;
1da177e4 785 }
1da177e4 786
aa0e8833 787 bp->b_io_length = BTOBB(len);
4e94b71b 788 bp->b_length = BTOBB(buflen);
1da177e4
LT
789
790 return 0;
791}
792
793xfs_buf_t *
686865f7
DC
794xfs_buf_get_uncached(
795 struct xfs_buftarg *target,
e70b73f8 796 size_t numblks,
686865f7 797 int flags)
1da177e4 798{
e70b73f8 799 unsigned long page_count;
1fa40b01 800 int error, i;
3e85c868
DC
801 struct xfs_buf *bp;
802 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 803
3e85c868 804 bp = _xfs_buf_alloc(target, &map, 1, 0);
1da177e4
LT
805 if (unlikely(bp == NULL))
806 goto fail;
1da177e4 807
e70b73f8 808 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 809 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 810 if (error)
1da177e4
LT
811 goto fail_free_buf;
812
1fa40b01 813 for (i = 0; i < page_count; i++) {
686865f7 814 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
815 if (!bp->b_pages[i])
816 goto fail_free_mem;
1da177e4 817 }
1fa40b01 818 bp->b_flags |= _XBF_PAGES;
1da177e4 819
611c9946 820 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 821 if (unlikely(error)) {
4f10700a 822 xfs_warn(target->bt_mount,
08e96e1a 823 "%s: failed to map pages", __func__);
1da177e4 824 goto fail_free_mem;
1fa40b01 825 }
1da177e4 826
686865f7 827 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 828 return bp;
1fa40b01 829
1da177e4 830 fail_free_mem:
1fa40b01
CH
831 while (--i >= 0)
832 __free_page(bp->b_pages[i]);
ca165b88 833 _xfs_buf_free_pages(bp);
1da177e4 834 fail_free_buf:
3e85c868 835 xfs_buf_free_maps(bp);
4347b9d7 836 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
837 fail:
838 return NULL;
839}
840
841/*
1da177e4
LT
842 * Increment reference count on buffer, to hold the buffer concurrently
843 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
844 * Must hold the buffer already to call this function.
845 */
846void
ce8e922c
NS
847xfs_buf_hold(
848 xfs_buf_t *bp)
1da177e4 849{
0b1b213f 850 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 851 atomic_inc(&bp->b_hold);
1da177e4
LT
852}
853
854/*
ce8e922c
NS
855 * Releases a hold on the specified buffer. If the
856 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
857 */
858void
ce8e922c
NS
859xfs_buf_rele(
860 xfs_buf_t *bp)
1da177e4 861{
74f75a0c 862 struct xfs_perag *pag = bp->b_pag;
1da177e4 863
0b1b213f 864 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 865
74f75a0c 866 if (!pag) {
430cbeb8 867 ASSERT(list_empty(&bp->b_lru));
74f75a0c 868 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
869 if (atomic_dec_and_test(&bp->b_hold))
870 xfs_buf_free(bp);
871 return;
872 }
873
74f75a0c 874 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 875
3790689f 876 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 877 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
a4082357
DC
878 spin_lock(&bp->b_lock);
879 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
880 /*
881 * If the buffer is added to the LRU take a new
882 * reference to the buffer for the LRU and clear the
883 * (now stale) dispose list state flag
884 */
885 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
886 bp->b_state &= ~XFS_BSTATE_DISPOSE;
887 atomic_inc(&bp->b_hold);
888 }
889 spin_unlock(&bp->b_lock);
430cbeb8 890 spin_unlock(&pag->pag_buf_lock);
1da177e4 891 } else {
a4082357
DC
892 /*
893 * most of the time buffers will already be removed from
894 * the LRU, so optimise that case by checking for the
895 * XFS_BSTATE_DISPOSE flag indicating the last list the
896 * buffer was on was the disposal list
897 */
898 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
899 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
900 } else {
901 ASSERT(list_empty(&bp->b_lru));
902 }
903 spin_unlock(&bp->b_lock);
904
43ff2122 905 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
906 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
907 spin_unlock(&pag->pag_buf_lock);
908 xfs_perag_put(pag);
ce8e922c 909 xfs_buf_free(bp);
1da177e4
LT
910 }
911 }
912}
913
914
915/*
0e6e847f 916 * Lock a buffer object, if it is not already locked.
90810b9e
DC
917 *
918 * If we come across a stale, pinned, locked buffer, we know that we are
919 * being asked to lock a buffer that has been reallocated. Because it is
920 * pinned, we know that the log has not been pushed to disk and hence it
921 * will still be locked. Rather than continuing to have trylock attempts
922 * fail until someone else pushes the log, push it ourselves before
923 * returning. This means that the xfsaild will not get stuck trying
924 * to push on stale inode buffers.
1da177e4
LT
925 */
926int
0c842ad4
CH
927xfs_buf_trylock(
928 struct xfs_buf *bp)
1da177e4
LT
929{
930 int locked;
931
ce8e922c 932 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 933 if (locked)
ce8e922c 934 XB_SET_OWNER(bp);
0b1b213f 935
0c842ad4
CH
936 trace_xfs_buf_trylock(bp, _RET_IP_);
937 return locked;
1da177e4 938}
1da177e4
LT
939
940/*
0e6e847f 941 * Lock a buffer object.
ed3b4d6c
DC
942 *
943 * If we come across a stale, pinned, locked buffer, we know that we
944 * are being asked to lock a buffer that has been reallocated. Because
945 * it is pinned, we know that the log has not been pushed to disk and
946 * hence it will still be locked. Rather than sleeping until someone
947 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 948 */
ce8e922c
NS
949void
950xfs_buf_lock(
0c842ad4 951 struct xfs_buf *bp)
1da177e4 952{
0b1b213f
CH
953 trace_xfs_buf_lock(bp, _RET_IP_);
954
ed3b4d6c 955 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 956 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
957 down(&bp->b_sema);
958 XB_SET_OWNER(bp);
0b1b213f
CH
959
960 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
961}
962
1da177e4 963void
ce8e922c 964xfs_buf_unlock(
0c842ad4 965 struct xfs_buf *bp)
1da177e4 966{
ce8e922c
NS
967 XB_CLEAR_OWNER(bp);
968 up(&bp->b_sema);
0b1b213f
CH
969
970 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
971}
972
ce8e922c
NS
973STATIC void
974xfs_buf_wait_unpin(
975 xfs_buf_t *bp)
1da177e4
LT
976{
977 DECLARE_WAITQUEUE (wait, current);
978
ce8e922c 979 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
980 return;
981
ce8e922c 982 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
983 for (;;) {
984 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 985 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 986 break;
7eaceacc 987 io_schedule();
1da177e4 988 }
ce8e922c 989 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
990 set_current_state(TASK_RUNNING);
991}
992
993/*
994 * Buffer Utility Routines
995 */
996
e8aaba9a
DC
997void
998xfs_buf_ioend(
999 struct xfs_buf *bp)
1da177e4 1000{
e8aaba9a
DC
1001 bool read = bp->b_flags & XBF_READ;
1002
1003 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1004
1005 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1006
61be9c52
DC
1007 /*
1008 * Pull in IO completion errors now. We are guaranteed to be running
1009 * single threaded, so we don't need the lock to read b_io_error.
1010 */
1011 if (!bp->b_error && bp->b_io_error)
1012 xfs_buf_ioerror(bp, bp->b_io_error);
1013
e8aaba9a
DC
1014 /* Only validate buffers that were read without errors */
1015 if (read && !bp->b_error && bp->b_ops) {
1016 ASSERT(!bp->b_iodone);
1813dd64 1017 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1018 }
1019
1020 if (!bp->b_error)
1021 bp->b_flags |= XBF_DONE;
1da177e4 1022
80f6c29d 1023 if (bp->b_iodone)
ce8e922c
NS
1024 (*(bp->b_iodone))(bp);
1025 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1026 xfs_buf_relse(bp);
595bff75 1027 else
1813dd64 1028 complete(&bp->b_iowait);
1da177e4
LT
1029}
1030
e8aaba9a
DC
1031static void
1032xfs_buf_ioend_work(
1033 struct work_struct *work)
1da177e4 1034{
e8aaba9a
DC
1035 struct xfs_buf *bp =
1036 container_of(work, xfs_buf_t, b_iodone_work);
0b1b213f 1037
e8aaba9a
DC
1038 xfs_buf_ioend(bp);
1039}
1da177e4 1040
e8aaba9a
DC
1041void
1042xfs_buf_ioend_async(
1043 struct xfs_buf *bp)
1044{
1045 INIT_WORK(&bp->b_iodone_work, xfs_buf_ioend_work);
1046 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4
LT
1047}
1048
1da177e4 1049void
ce8e922c
NS
1050xfs_buf_ioerror(
1051 xfs_buf_t *bp,
1052 int error)
1da177e4 1053{
2451337d
DC
1054 ASSERT(error <= 0 && error >= -1000);
1055 bp->b_error = error;
0b1b213f 1056 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1057}
1058
901796af
CH
1059void
1060xfs_buf_ioerror_alert(
1061 struct xfs_buf *bp,
1062 const char *func)
1063{
1064 xfs_alert(bp->b_target->bt_mount,
aa0e8833 1065"metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
2451337d 1066 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
901796af
CH
1067}
1068
a2dcf5df
CH
1069int
1070xfs_bwrite(
1071 struct xfs_buf *bp)
1072{
1073 int error;
1074
1075 ASSERT(xfs_buf_islocked(bp));
1076
1077 bp->b_flags |= XBF_WRITE;
27187754
DC
1078 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1079 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1080
595bff75 1081 error = xfs_buf_submit_wait(bp);
a2dcf5df
CH
1082 if (error) {
1083 xfs_force_shutdown(bp->b_target->bt_mount,
1084 SHUTDOWN_META_IO_ERROR);
1085 }
1086 return error;
1087}
1088
782e3b3b 1089STATIC void
ce8e922c 1090xfs_buf_bio_end_io(
1da177e4 1091 struct bio *bio,
1da177e4
LT
1092 int error)
1093{
ce8e922c 1094 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1095
37eb17e6
DC
1096 /*
1097 * don't overwrite existing errors - otherwise we can lose errors on
1098 * buffers that require multiple bios to complete.
1099 */
61be9c52
DC
1100 if (error) {
1101 spin_lock(&bp->b_lock);
1102 if (!bp->b_io_error)
1103 bp->b_io_error = error;
1104 spin_unlock(&bp->b_lock);
1105 }
1da177e4 1106
37eb17e6 1107 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1108 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1109
e8aaba9a
DC
1110 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1111 xfs_buf_ioend_async(bp);
1da177e4 1112 bio_put(bio);
1da177e4
LT
1113}
1114
3e85c868
DC
1115static void
1116xfs_buf_ioapply_map(
1117 struct xfs_buf *bp,
1118 int map,
1119 int *buf_offset,
1120 int *count,
1121 int rw)
1da177e4 1122{
3e85c868
DC
1123 int page_index;
1124 int total_nr_pages = bp->b_page_count;
1125 int nr_pages;
1126 struct bio *bio;
1127 sector_t sector = bp->b_maps[map].bm_bn;
1128 int size;
1129 int offset;
1da177e4 1130
ce8e922c 1131 total_nr_pages = bp->b_page_count;
1da177e4 1132
3e85c868
DC
1133 /* skip the pages in the buffer before the start offset */
1134 page_index = 0;
1135 offset = *buf_offset;
1136 while (offset >= PAGE_SIZE) {
1137 page_index++;
1138 offset -= PAGE_SIZE;
f538d4da
CH
1139 }
1140
3e85c868
DC
1141 /*
1142 * Limit the IO size to the length of the current vector, and update the
1143 * remaining IO count for the next time around.
1144 */
1145 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1146 *count -= size;
1147 *buf_offset += size;
34951f5c 1148
1da177e4 1149next_chunk:
ce8e922c 1150 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1151 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1152 if (nr_pages > total_nr_pages)
1153 nr_pages = total_nr_pages;
1154
1155 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1156 bio->bi_bdev = bp->b_target->bt_bdev;
4f024f37 1157 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1158 bio->bi_end_io = xfs_buf_bio_end_io;
1159 bio->bi_private = bp;
1da177e4 1160
0e6e847f 1161
3e85c868 1162 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1163 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1164
1165 if (nbytes > size)
1166 nbytes = size;
1167
3e85c868
DC
1168 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1169 offset);
ce8e922c 1170 if (rbytes < nbytes)
1da177e4
LT
1171 break;
1172
1173 offset = 0;
aa0e8833 1174 sector += BTOBB(nbytes);
1da177e4
LT
1175 size -= nbytes;
1176 total_nr_pages--;
1177 }
1178
4f024f37 1179 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1180 if (xfs_buf_is_vmapped(bp)) {
1181 flush_kernel_vmap_range(bp->b_addr,
1182 xfs_buf_vmap_len(bp));
1183 }
1da177e4
LT
1184 submit_bio(rw, bio);
1185 if (size)
1186 goto next_chunk;
1187 } else {
37eb17e6
DC
1188 /*
1189 * This is guaranteed not to be the last io reference count
595bff75 1190 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1191 */
1192 atomic_dec(&bp->b_io_remaining);
2451337d 1193 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1194 bio_put(bio);
1da177e4 1195 }
3e85c868
DC
1196
1197}
1198
1199STATIC void
1200_xfs_buf_ioapply(
1201 struct xfs_buf *bp)
1202{
1203 struct blk_plug plug;
1204 int rw;
1205 int offset;
1206 int size;
1207 int i;
1208
c163f9a1
DC
1209 /*
1210 * Make sure we capture only current IO errors rather than stale errors
1211 * left over from previous use of the buffer (e.g. failed readahead).
1212 */
1213 bp->b_error = 0;
1214
3e85c868
DC
1215 if (bp->b_flags & XBF_WRITE) {
1216 if (bp->b_flags & XBF_SYNCIO)
1217 rw = WRITE_SYNC;
1218 else
1219 rw = WRITE;
1220 if (bp->b_flags & XBF_FUA)
1221 rw |= REQ_FUA;
1222 if (bp->b_flags & XBF_FLUSH)
1223 rw |= REQ_FLUSH;
1813dd64
DC
1224
1225 /*
1226 * Run the write verifier callback function if it exists. If
1227 * this function fails it will mark the buffer with an error and
1228 * the IO should not be dispatched.
1229 */
1230 if (bp->b_ops) {
1231 bp->b_ops->verify_write(bp);
1232 if (bp->b_error) {
1233 xfs_force_shutdown(bp->b_target->bt_mount,
1234 SHUTDOWN_CORRUPT_INCORE);
1235 return;
1236 }
400b9d88
DC
1237 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1238 struct xfs_mount *mp = bp->b_target->bt_mount;
1239
1240 /*
1241 * non-crc filesystems don't attach verifiers during
1242 * log recovery, so don't warn for such filesystems.
1243 */
1244 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1245 xfs_warn(mp,
1246 "%s: no ops on block 0x%llx/0x%x",
1247 __func__, bp->b_bn, bp->b_length);
1248 xfs_hex_dump(bp->b_addr, 64);
1249 dump_stack();
1250 }
1813dd64 1251 }
3e85c868
DC
1252 } else if (bp->b_flags & XBF_READ_AHEAD) {
1253 rw = READA;
1254 } else {
1255 rw = READ;
1256 }
1257
1258 /* we only use the buffer cache for meta-data */
1259 rw |= REQ_META;
1260
1261 /*
1262 * Walk all the vectors issuing IO on them. Set up the initial offset
1263 * into the buffer and the desired IO size before we start -
1264 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1265 * subsequent call.
1266 */
1267 offset = bp->b_offset;
1268 size = BBTOB(bp->b_io_length);
1269 blk_start_plug(&plug);
1270 for (i = 0; i < bp->b_map_count; i++) {
1271 xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
1272 if (bp->b_error)
1273 break;
1274 if (size <= 0)
1275 break; /* all done */
1276 }
1277 blk_finish_plug(&plug);
1da177e4
LT
1278}
1279
595bff75
DC
1280/*
1281 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1282 * the current reference to the IO. It is not safe to reference the buffer after
1283 * a call to this function unless the caller holds an additional reference
1284 * itself.
1285 */
0e95f19a 1286void
595bff75
DC
1287xfs_buf_submit(
1288 struct xfs_buf *bp)
1da177e4 1289{
595bff75 1290 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1291
43ff2122 1292 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1293 ASSERT(bp->b_flags & XBF_ASYNC);
1294
1295 /* on shutdown we stale and complete the buffer immediately */
1296 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1297 xfs_buf_ioerror(bp, -EIO);
1298 bp->b_flags &= ~XBF_DONE;
1299 xfs_buf_stale(bp);
1300 xfs_buf_ioend(bp);
1301 return;
1302 }
1da177e4 1303
375ec69d 1304 if (bp->b_flags & XBF_WRITE)
ce8e922c 1305 xfs_buf_wait_unpin(bp);
e11bb805 1306
61be9c52
DC
1307 /* clear the internal error state to avoid spurious errors */
1308 bp->b_io_error = 0;
1309
e11bb805 1310 /*
595bff75
DC
1311 * The caller's reference is released during I/O completion.
1312 * This occurs some time after the last b_io_remaining reference is
1313 * released, so after we drop our Io reference we have to have some
1314 * other reference to ensure the buffer doesn't go away from underneath
1315 * us. Take a direct reference to ensure we have safe access to the
1316 * buffer until we are finished with it.
e11bb805 1317 */
ce8e922c 1318 xfs_buf_hold(bp);
1da177e4 1319
8d6c1210 1320 /*
e11bb805
DC
1321 * Set the count to 1 initially, this will stop an I/O completion
1322 * callout which happens before we have started all the I/O from calling
1323 * xfs_buf_ioend too early.
1da177e4 1324 */
ce8e922c
NS
1325 atomic_set(&bp->b_io_remaining, 1);
1326 _xfs_buf_ioapply(bp);
e11bb805 1327
8d6c1210 1328 /*
595bff75
DC
1329 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1330 * reference we took above. If we drop it to zero, run completion so
1331 * that we don't return to the caller with completion still pending.
8d6c1210 1332 */
e8aaba9a 1333 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
595bff75 1334 if (bp->b_error)
e8aaba9a
DC
1335 xfs_buf_ioend(bp);
1336 else
1337 xfs_buf_ioend_async(bp);
1338 }
1da177e4 1339
ce8e922c 1340 xfs_buf_rele(bp);
595bff75 1341 /* Note: it is not safe to reference bp now we've dropped our ref */
1da177e4
LT
1342}
1343
1344/*
595bff75 1345 * Synchronous buffer IO submission path, read or write.
1da177e4
LT
1346 */
1347int
595bff75
DC
1348xfs_buf_submit_wait(
1349 struct xfs_buf *bp)
1da177e4 1350{
595bff75 1351 int error;
0b1b213f 1352
595bff75
DC
1353 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1354
1355 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
0b1b213f 1356
595bff75
DC
1357 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1358 xfs_buf_ioerror(bp, -EIO);
1359 xfs_buf_stale(bp);
1360 bp->b_flags &= ~XBF_DONE;
1361 return -EIO;
1362 }
1363
1364 if (bp->b_flags & XBF_WRITE)
1365 xfs_buf_wait_unpin(bp);
1366
1367 /* clear the internal error state to avoid spurious errors */
1368 bp->b_io_error = 0;
1369
1370 /*
1371 * For synchronous IO, the IO does not inherit the submitters reference
1372 * count, nor the buffer lock. Hence we cannot release the reference we
1373 * are about to take until we've waited for all IO completion to occur,
1374 * including any xfs_buf_ioend_async() work that may be pending.
1375 */
1376 xfs_buf_hold(bp);
1377
1378 /*
1379 * Set the count to 1 initially, this will stop an I/O completion
1380 * callout which happens before we have started all the I/O from calling
1381 * xfs_buf_ioend too early.
1382 */
1383 atomic_set(&bp->b_io_remaining, 1);
1384 _xfs_buf_ioapply(bp);
1385
1386 /*
1387 * make sure we run completion synchronously if it raced with us and is
1388 * already complete.
1389 */
1390 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1391 xfs_buf_ioend(bp);
1392
1393 /* wait for completion before gathering the error from the buffer */
1394 trace_xfs_buf_iowait(bp, _RET_IP_);
1395 wait_for_completion(&bp->b_iowait);
0b1b213f 1396 trace_xfs_buf_iowait_done(bp, _RET_IP_);
595bff75
DC
1397 error = bp->b_error;
1398
1399 /*
1400 * all done now, we can release the hold that keeps the buffer
1401 * referenced for the entire IO.
1402 */
1403 xfs_buf_rele(bp);
1404 return error;
1da177e4
LT
1405}
1406
ce8e922c
NS
1407xfs_caddr_t
1408xfs_buf_offset(
1409 xfs_buf_t *bp,
1da177e4
LT
1410 size_t offset)
1411{
1412 struct page *page;
1413
611c9946 1414 if (bp->b_addr)
62926044 1415 return bp->b_addr + offset;
1da177e4 1416
ce8e922c 1417 offset += bp->b_offset;
0e6e847f
DC
1418 page = bp->b_pages[offset >> PAGE_SHIFT];
1419 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1420}
1421
1422/*
1da177e4
LT
1423 * Move data into or out of a buffer.
1424 */
1425void
ce8e922c
NS
1426xfs_buf_iomove(
1427 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1428 size_t boff, /* starting buffer offset */
1429 size_t bsize, /* length to copy */
b9c48649 1430 void *data, /* data address */
ce8e922c 1431 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4 1432{
795cac72 1433 size_t bend;
1da177e4
LT
1434
1435 bend = boff + bsize;
1436 while (boff < bend) {
795cac72
DC
1437 struct page *page;
1438 int page_index, page_offset, csize;
1439
1440 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1441 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1442 page = bp->b_pages[page_index];
1443 csize = min_t(size_t, PAGE_SIZE - page_offset,
1444 BBTOB(bp->b_io_length) - boff);
1da177e4 1445
795cac72 1446 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4
LT
1447
1448 switch (mode) {
ce8e922c 1449 case XBRW_ZERO:
795cac72 1450 memset(page_address(page) + page_offset, 0, csize);
1da177e4 1451 break;
ce8e922c 1452 case XBRW_READ:
795cac72 1453 memcpy(data, page_address(page) + page_offset, csize);
1da177e4 1454 break;
ce8e922c 1455 case XBRW_WRITE:
795cac72 1456 memcpy(page_address(page) + page_offset, data, csize);
1da177e4
LT
1457 }
1458
1459 boff += csize;
1460 data += csize;
1461 }
1462}
1463
1464/*
ce8e922c 1465 * Handling of buffer targets (buftargs).
1da177e4
LT
1466 */
1467
1468/*
430cbeb8
DC
1469 * Wait for any bufs with callbacks that have been submitted but have not yet
1470 * returned. These buffers will have an elevated hold count, so wait on those
1471 * while freeing all the buffers only held by the LRU.
1da177e4 1472 */
e80dfa19
DC
1473static enum lru_status
1474xfs_buftarg_wait_rele(
1475 struct list_head *item,
1476 spinlock_t *lru_lock,
1477 void *arg)
1478
1da177e4 1479{
e80dfa19 1480 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1481 struct list_head *dispose = arg;
430cbeb8 1482
e80dfa19 1483 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1484 /* need to wait, so skip it this pass */
e80dfa19 1485 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1486 return LRU_SKIP;
1da177e4 1487 }
a4082357
DC
1488 if (!spin_trylock(&bp->b_lock))
1489 return LRU_SKIP;
e80dfa19 1490
a4082357
DC
1491 /*
1492 * clear the LRU reference count so the buffer doesn't get
1493 * ignored in xfs_buf_rele().
1494 */
1495 atomic_set(&bp->b_lru_ref, 0);
1496 bp->b_state |= XFS_BSTATE_DISPOSE;
1497 list_move(item, dispose);
1498 spin_unlock(&bp->b_lock);
1499 return LRU_REMOVED;
1da177e4
LT
1500}
1501
e80dfa19
DC
1502void
1503xfs_wait_buftarg(
1504 struct xfs_buftarg *btp)
1505{
a4082357
DC
1506 LIST_HEAD(dispose);
1507 int loop = 0;
1508
1509 /* loop until there is nothing left on the lru list. */
1510 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1511 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1512 &dispose, LONG_MAX);
1513
1514 while (!list_empty(&dispose)) {
1515 struct xfs_buf *bp;
1516 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1517 list_del_init(&bp->b_lru);
ac8809f9
DC
1518 if (bp->b_flags & XBF_WRITE_FAIL) {
1519 xfs_alert(btp->bt_mount,
1520"Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
1521"Please run xfs_repair to determine the extent of the problem.",
1522 (long long)bp->b_bn);
1523 }
a4082357
DC
1524 xfs_buf_rele(bp);
1525 }
1526 if (loop++ != 0)
1527 delay(100);
1528 }
e80dfa19
DC
1529}
1530
1531static enum lru_status
1532xfs_buftarg_isolate(
1533 struct list_head *item,
1534 spinlock_t *lru_lock,
1535 void *arg)
1536{
1537 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1538 struct list_head *dispose = arg;
1539
a4082357
DC
1540 /*
1541 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1542 * If we fail to get the lock, just skip it.
1543 */
1544 if (!spin_trylock(&bp->b_lock))
1545 return LRU_SKIP;
e80dfa19
DC
1546 /*
1547 * Decrement the b_lru_ref count unless the value is already
1548 * zero. If the value is already zero, we need to reclaim the
1549 * buffer, otherwise it gets another trip through the LRU.
1550 */
a4082357
DC
1551 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1552 spin_unlock(&bp->b_lock);
e80dfa19 1553 return LRU_ROTATE;
a4082357 1554 }
e80dfa19 1555
a4082357 1556 bp->b_state |= XFS_BSTATE_DISPOSE;
e80dfa19 1557 list_move(item, dispose);
a4082357 1558 spin_unlock(&bp->b_lock);
e80dfa19
DC
1559 return LRU_REMOVED;
1560}
1561
addbda40 1562static unsigned long
e80dfa19 1563xfs_buftarg_shrink_scan(
ff57ab21 1564 struct shrinker *shrink,
1495f230 1565 struct shrink_control *sc)
a6867a68 1566{
ff57ab21
DC
1567 struct xfs_buftarg *btp = container_of(shrink,
1568 struct xfs_buftarg, bt_shrinker);
430cbeb8 1569 LIST_HEAD(dispose);
addbda40 1570 unsigned long freed;
e80dfa19 1571 unsigned long nr_to_scan = sc->nr_to_scan;
430cbeb8 1572
e80dfa19
DC
1573 freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
1574 &dispose, &nr_to_scan);
430cbeb8
DC
1575
1576 while (!list_empty(&dispose)) {
e80dfa19 1577 struct xfs_buf *bp;
430cbeb8
DC
1578 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1579 list_del_init(&bp->b_lru);
1580 xfs_buf_rele(bp);
1581 }
1582
e80dfa19
DC
1583 return freed;
1584}
1585
addbda40 1586static unsigned long
e80dfa19
DC
1587xfs_buftarg_shrink_count(
1588 struct shrinker *shrink,
1589 struct shrink_control *sc)
1590{
1591 struct xfs_buftarg *btp = container_of(shrink,
1592 struct xfs_buftarg, bt_shrinker);
1593 return list_lru_count_node(&btp->bt_lru, sc->nid);
a6867a68
DC
1594}
1595
1da177e4
LT
1596void
1597xfs_free_buftarg(
b7963133
CH
1598 struct xfs_mount *mp,
1599 struct xfs_buftarg *btp)
1da177e4 1600{
ff57ab21 1601 unregister_shrinker(&btp->bt_shrinker);
f5e1dd34 1602 list_lru_destroy(&btp->bt_lru);
ff57ab21 1603
b7963133
CH
1604 if (mp->m_flags & XFS_MOUNT_BARRIER)
1605 xfs_blkdev_issue_flush(btp);
a6867a68 1606
f0e2d93c 1607 kmem_free(btp);
1da177e4
LT
1608}
1609
3fefdeee
ES
1610int
1611xfs_setsize_buftarg(
1da177e4 1612 xfs_buftarg_t *btp,
3fefdeee 1613 unsigned int sectorsize)
1da177e4 1614{
7c71ee78 1615 /* Set up metadata sector size info */
6da54179
ES
1616 btp->bt_meta_sectorsize = sectorsize;
1617 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1618
ce8e922c 1619 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1620 char name[BDEVNAME_SIZE];
1621
1622 bdevname(btp->bt_bdev, name);
1623
4f10700a 1624 xfs_warn(btp->bt_mount,
08e96e1a 1625 "Cannot set_blocksize to %u on device %s",
02b102df 1626 sectorsize, name);
2451337d 1627 return -EINVAL;
1da177e4
LT
1628 }
1629
7c71ee78
ES
1630 /* Set up device logical sector size mask */
1631 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1632 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1633
1da177e4
LT
1634 return 0;
1635}
1636
1637/*
3fefdeee
ES
1638 * When allocating the initial buffer target we have not yet
1639 * read in the superblock, so don't know what sized sectors
1640 * are being used at this early stage. Play safe.
ce8e922c 1641 */
1da177e4
LT
1642STATIC int
1643xfs_setsize_buftarg_early(
1644 xfs_buftarg_t *btp,
1645 struct block_device *bdev)
1646{
a96c4151 1647 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1648}
1649
1da177e4
LT
1650xfs_buftarg_t *
1651xfs_alloc_buftarg(
ebad861b 1652 struct xfs_mount *mp,
34dcefd7 1653 struct block_device *bdev)
1da177e4
LT
1654{
1655 xfs_buftarg_t *btp;
1656
b17cb364 1657 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1da177e4 1658
ebad861b 1659 btp->bt_mount = mp;
ce8e922c
NS
1660 btp->bt_dev = bdev->bd_dev;
1661 btp->bt_bdev = bdev;
0e6e847f
DC
1662 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1663 if (!btp->bt_bdi)
1664 goto error;
1665
1da177e4
LT
1666 if (xfs_setsize_buftarg_early(btp, bdev))
1667 goto error;
5ca302c8
GC
1668
1669 if (list_lru_init(&btp->bt_lru))
1670 goto error;
1671
e80dfa19
DC
1672 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1673 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1674 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1675 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
ff57ab21 1676 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1677 return btp;
1678
1679error:
f0e2d93c 1680 kmem_free(btp);
1da177e4
LT
1681 return NULL;
1682}
1683
1da177e4 1684/*
43ff2122
CH
1685 * Add a buffer to the delayed write list.
1686 *
1687 * This queues a buffer for writeout if it hasn't already been. Note that
1688 * neither this routine nor the buffer list submission functions perform
1689 * any internal synchronization. It is expected that the lists are thread-local
1690 * to the callers.
1691 *
1692 * Returns true if we queued up the buffer, or false if it already had
1693 * been on the buffer list.
1da177e4 1694 */
43ff2122 1695bool
ce8e922c 1696xfs_buf_delwri_queue(
43ff2122
CH
1697 struct xfs_buf *bp,
1698 struct list_head *list)
1da177e4 1699{
43ff2122 1700 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1701 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1702
43ff2122
CH
1703 /*
1704 * If the buffer is already marked delwri it already is queued up
1705 * by someone else for imediate writeout. Just ignore it in that
1706 * case.
1707 */
1708 if (bp->b_flags & _XBF_DELWRI_Q) {
1709 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1710 return false;
1da177e4 1711 }
1da177e4 1712
43ff2122 1713 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1714
1715 /*
43ff2122
CH
1716 * If a buffer gets written out synchronously or marked stale while it
1717 * is on a delwri list we lazily remove it. To do this, the other party
1718 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1719 * It remains referenced and on the list. In a rare corner case it
1720 * might get readded to a delwri list after the synchronous writeout, in
1721 * which case we need just need to re-add the flag here.
d808f617 1722 */
43ff2122
CH
1723 bp->b_flags |= _XBF_DELWRI_Q;
1724 if (list_empty(&bp->b_list)) {
1725 atomic_inc(&bp->b_hold);
1726 list_add_tail(&bp->b_list, list);
585e6d88 1727 }
585e6d88 1728
43ff2122 1729 return true;
585e6d88
DC
1730}
1731
089716aa
DC
1732/*
1733 * Compare function is more complex than it needs to be because
1734 * the return value is only 32 bits and we are doing comparisons
1735 * on 64 bit values
1736 */
1737static int
1738xfs_buf_cmp(
1739 void *priv,
1740 struct list_head *a,
1741 struct list_head *b)
1742{
1743 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1744 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1745 xfs_daddr_t diff;
1746
f4b42421 1747 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1748 if (diff < 0)
1749 return -1;
1750 if (diff > 0)
1751 return 1;
1752 return 0;
1753}
1754
43ff2122
CH
1755static int
1756__xfs_buf_delwri_submit(
1757 struct list_head *buffer_list,
1758 struct list_head *io_list,
1759 bool wait)
1da177e4 1760{
43ff2122
CH
1761 struct blk_plug plug;
1762 struct xfs_buf *bp, *n;
1763 int pinned = 0;
1764
1765 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1766 if (!wait) {
1767 if (xfs_buf_ispinned(bp)) {
1768 pinned++;
1769 continue;
1770 }
1771 if (!xfs_buf_trylock(bp))
1772 continue;
1773 } else {
1774 xfs_buf_lock(bp);
1775 }
978c7b2f 1776
43ff2122
CH
1777 /*
1778 * Someone else might have written the buffer synchronously or
1779 * marked it stale in the meantime. In that case only the
1780 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1781 * reference and remove it from the list here.
1782 */
1783 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1784 list_del_init(&bp->b_list);
1785 xfs_buf_relse(bp);
1786 continue;
1787 }
c9c12971 1788
43ff2122
CH
1789 list_move_tail(&bp->b_list, io_list);
1790 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1791 }
1da177e4 1792
43ff2122 1793 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1794
43ff2122
CH
1795 blk_start_plug(&plug);
1796 list_for_each_entry_safe(bp, n, io_list, b_list) {
ac8809f9 1797 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
cf53e99d 1798 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
a1b7ea5d 1799
cf53e99d
DC
1800 /*
1801 * we do all Io submission async. This means if we need to wait
1802 * for IO completion we need to take an extra reference so the
1803 * buffer is still valid on the other side.
1804 */
1805 if (wait)
1806 xfs_buf_hold(bp);
1807 else
ce8e922c 1808 list_del_init(&bp->b_list);
8dac3921 1809
595bff75 1810 xfs_buf_submit(bp);
43ff2122
CH
1811 }
1812 blk_finish_plug(&plug);
1da177e4 1813
43ff2122 1814 return pinned;
1da177e4
LT
1815}
1816
1817/*
43ff2122
CH
1818 * Write out a buffer list asynchronously.
1819 *
1820 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1821 * out and not wait for I/O completion on any of the buffers. This interface
1822 * is only safely useable for callers that can track I/O completion by higher
1823 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1824 * function.
1da177e4
LT
1825 */
1826int
43ff2122
CH
1827xfs_buf_delwri_submit_nowait(
1828 struct list_head *buffer_list)
1da177e4 1829{
43ff2122
CH
1830 LIST_HEAD (io_list);
1831 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1832}
1da177e4 1833
43ff2122
CH
1834/*
1835 * Write out a buffer list synchronously.
1836 *
1837 * This will take the @buffer_list, write all buffers out and wait for I/O
1838 * completion on all of the buffers. @buffer_list is consumed by the function,
1839 * so callers must have some other way of tracking buffers if they require such
1840 * functionality.
1841 */
1842int
1843xfs_buf_delwri_submit(
1844 struct list_head *buffer_list)
1845{
1846 LIST_HEAD (io_list);
1847 int error = 0, error2;
1848 struct xfs_buf *bp;
1da177e4 1849
43ff2122 1850 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1851
43ff2122
CH
1852 /* Wait for IO to complete. */
1853 while (!list_empty(&io_list)) {
1854 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1855
089716aa 1856 list_del_init(&bp->b_list);
cf53e99d
DC
1857
1858 /* locking the buffer will wait for async IO completion. */
1859 xfs_buf_lock(bp);
1860 error2 = bp->b_error;
43ff2122
CH
1861 xfs_buf_relse(bp);
1862 if (!error)
1863 error = error2;
1da177e4
LT
1864 }
1865
43ff2122 1866 return error;
1da177e4
LT
1867}
1868
04d8b284 1869int __init
ce8e922c 1870xfs_buf_init(void)
1da177e4 1871{
8758280f
NS
1872 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1873 KM_ZONE_HWALIGN, NULL);
ce8e922c 1874 if (!xfs_buf_zone)
0b1b213f 1875 goto out;
04d8b284 1876
51749e47 1877 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1878 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1879 if (!xfslogd_workqueue)
04d8b284 1880 goto out_free_buf_zone;
1da177e4 1881
23ea4032 1882 return 0;
1da177e4 1883
23ea4032 1884 out_free_buf_zone:
ce8e922c 1885 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1886 out:
8758280f 1887 return -ENOMEM;
1da177e4
LT
1888}
1889
1da177e4 1890void
ce8e922c 1891xfs_buf_terminate(void)
1da177e4 1892{
04d8b284 1893 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1894 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1895}