]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_buf.c
xfs: separate CIL commit record IO
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
3fcfab16 7#include <linux/backing-dev.h>
1da177e4 8
5467b34b 9#include "xfs_shared.h"
4fb6e8ad 10#include "xfs_format.h"
239880ef 11#include "xfs_log_format.h"
7fd36c44 12#include "xfs_trans_resv.h"
b7963133 13#include "xfs_mount.h"
0b1b213f 14#include "xfs_trace.h"
239880ef 15#include "xfs_log.h"
9fe5c77c 16#include "xfs_log_recover.h"
f593bf14
DC
17#include "xfs_trans.h"
18#include "xfs_buf_item.h"
e9e899a2 19#include "xfs_errortag.h"
7561d27e 20#include "xfs_error.h"
9bbafc71 21#include "xfs_ag.h"
b7963133 22
7989cb8e 23static kmem_zone_t *xfs_buf_zone;
23ea4032 24
37fd1678
DC
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
10fb9ac1 43 * xfs_buftarg_drain_rele
37fd1678
DC
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
1da177e4 51
26e32875
CH
52static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
53
54static inline int
55xfs_buf_submit(
56 struct xfs_buf *bp)
57{
58 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
59}
60
73c77e2c
JB
61static inline int
62xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64{
65 /*
66 * Return true if the buffer is vmapped.
67 *
611c9946
DC
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 71 */
611c9946 72 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
73}
74
75static inline int
76xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78{
54cd3aa6 79 return (bp->b_page_count * PAGE_SIZE);
73c77e2c
JB
80}
81
9c7504aa
BF
82/*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
10fb9ac1 88 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
9c7504aa
BF
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95static inline void
96xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98{
63db7c81 99 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
103 spin_lock(&bp->b_lock);
104 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 percpu_counter_inc(&bp->b_target->bt_io_count);
107 }
108 spin_unlock(&bp->b_lock);
9c7504aa
BF
109}
110
111/*
112 * Clear the in-flight state on a buffer about to be released to the LRU or
113 * freed and unaccount from the buftarg.
114 */
115static inline void
63db7c81 116__xfs_buf_ioacct_dec(
9c7504aa
BF
117 struct xfs_buf *bp)
118{
95989c46 119 lockdep_assert_held(&bp->b_lock);
9c7504aa 120
63db7c81
BF
121 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 percpu_counter_dec(&bp->b_target->bt_io_count);
124 }
125}
126
127static inline void
128xfs_buf_ioacct_dec(
129 struct xfs_buf *bp)
130{
131 spin_lock(&bp->b_lock);
132 __xfs_buf_ioacct_dec(bp);
133 spin_unlock(&bp->b_lock);
9c7504aa
BF
134}
135
430cbeb8
DC
136/*
137 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138 * b_lru_ref count so that the buffer is freed immediately when the buffer
139 * reference count falls to zero. If the buffer is already on the LRU, we need
140 * to remove the reference that LRU holds on the buffer.
141 *
142 * This prevents build-up of stale buffers on the LRU.
143 */
144void
145xfs_buf_stale(
146 struct xfs_buf *bp)
147{
43ff2122
CH
148 ASSERT(xfs_buf_islocked(bp));
149
430cbeb8 150 bp->b_flags |= XBF_STALE;
43ff2122
CH
151
152 /*
153 * Clear the delwri status so that a delwri queue walker will not
154 * flush this buffer to disk now that it is stale. The delwri queue has
155 * a reference to the buffer, so this is safe to do.
156 */
157 bp->b_flags &= ~_XBF_DELWRI_Q;
158
9c7504aa
BF
159 /*
160 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 * could reset b_flags. There is no guarantee that the buffer is
162 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 * status now to preserve accounting consistency.
164 */
a4082357 165 spin_lock(&bp->b_lock);
63db7c81
BF
166 __xfs_buf_ioacct_dec(bp);
167
a4082357
DC
168 atomic_set(&bp->b_lru_ref, 0);
169 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
170 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 atomic_dec(&bp->b_hold);
172
430cbeb8 173 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 174 spin_unlock(&bp->b_lock);
430cbeb8 175}
1da177e4 176
3e85c868
DC
177static int
178xfs_buf_get_maps(
179 struct xfs_buf *bp,
180 int map_count)
181{
182 ASSERT(bp->b_maps == NULL);
183 bp->b_map_count = map_count;
184
185 if (map_count == 1) {
f4b42421 186 bp->b_maps = &bp->__b_map;
3e85c868
DC
187 return 0;
188 }
189
190 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
191 KM_NOFS);
192 if (!bp->b_maps)
2451337d 193 return -ENOMEM;
3e85c868
DC
194 return 0;
195}
196
197/*
198 * Frees b_pages if it was allocated.
199 */
200static void
201xfs_buf_free_maps(
202 struct xfs_buf *bp)
203{
f4b42421 204 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
205 kmem_free(bp->b_maps);
206 bp->b_maps = NULL;
207 }
208}
209
32dff5e5 210static int
3e85c868 211_xfs_buf_alloc(
4347b9d7 212 struct xfs_buftarg *target,
3e85c868
DC
213 struct xfs_buf_map *map,
214 int nmaps,
32dff5e5
DW
215 xfs_buf_flags_t flags,
216 struct xfs_buf **bpp)
1da177e4 217{
4347b9d7 218 struct xfs_buf *bp;
3e85c868
DC
219 int error;
220 int i;
4347b9d7 221
32dff5e5 222 *bpp = NULL;
32a2b11f 223 bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
4347b9d7 224
1da177e4 225 /*
12bcb3f7
DC
226 * We don't want certain flags to appear in b_flags unless they are
227 * specifically set by later operations on the buffer.
1da177e4 228 */
611c9946 229 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 230
ce8e922c 231 atomic_set(&bp->b_hold, 1);
430cbeb8 232 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 233 init_completion(&bp->b_iowait);
430cbeb8 234 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 235 INIT_LIST_HEAD(&bp->b_list);
643c8c05 236 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 237 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 238 spin_lock_init(&bp->b_lock);
ce8e922c 239 bp->b_target = target;
dbd329f1 240 bp->b_mount = target->bt_mount;
3e85c868 241 bp->b_flags = flags;
de1cbee4 242
1da177e4 243 /*
aa0e8833
DC
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
1da177e4
LT
246 * most cases but may be reset (e.g. XFS recovery).
247 */
3e85c868
DC
248 error = xfs_buf_get_maps(bp, nmaps);
249 if (error) {
377bcd5f 250 kmem_cache_free(xfs_buf_zone, bp);
32dff5e5 251 return error;
3e85c868
DC
252 }
253
254 bp->b_bn = map[0].bm_bn;
255 bp->b_length = 0;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
260 }
3e85c868 261
ce8e922c
NS
262 atomic_set(&bp->b_pin_count, 0);
263 init_waitqueue_head(&bp->b_waiters);
264
dbd329f1 265 XFS_STATS_INC(bp->b_mount, xb_create);
0b1b213f 266 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7 267
32dff5e5
DW
268 *bpp = bp;
269 return 0;
1da177e4
LT
270}
271
e7d236a6
DC
272static void
273xfs_buf_free_pages(
e8222613 274 struct xfs_buf *bp)
1da177e4 275{
e7d236a6
DC
276 uint i;
277
278 ASSERT(bp->b_flags & _XBF_PAGES);
279
280 if (xfs_buf_is_vmapped(bp))
54cd3aa6 281 vm_unmap_ram(bp->b_addr, bp->b_page_count);
e7d236a6
DC
282
283 for (i = 0; i < bp->b_page_count; i++) {
284 if (bp->b_pages[i])
285 __free_page(bp->b_pages[i]);
286 }
287 if (current->reclaim_state)
288 current->reclaim_state->reclaimed_slab += bp->b_page_count;
289
02c51173 290 if (bp->b_pages != bp->b_page_array)
f0e2d93c 291 kmem_free(bp->b_pages);
02c51173 292 bp->b_pages = NULL;
e7d236a6 293 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
294}
295
25a40957 296static void
ce8e922c 297xfs_buf_free(
e8222613 298 struct xfs_buf *bp)
1da177e4 299{
0b1b213f 300 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 301
430cbeb8
DC
302 ASSERT(list_empty(&bp->b_lru));
303
e7d236a6
DC
304 if (bp->b_flags & _XBF_PAGES)
305 xfs_buf_free_pages(bp);
306 else if (bp->b_flags & _XBF_KMEM)
0e6e847f 307 kmem_free(bp->b_addr);
e7d236a6 308
3e85c868 309 xfs_buf_free_maps(bp);
377bcd5f 310 kmem_cache_free(xfs_buf_zone, bp);
1da177e4
LT
311}
312
0a683794
DC
313static int
314xfs_buf_alloc_kmem(
315 struct xfs_buf *bp,
0a683794 316 xfs_buf_flags_t flags)
1da177e4 317{
0a683794
DC
318 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
319 xfs_km_flags_t kmflag_mask = KM_NOFS;
8bcac744 320 size_t size = BBTOB(bp->b_length);
3219e8cf 321
0a683794
DC
322 /* Assure zeroed buffer for non-read cases. */
323 if (!(flags & XBF_READ))
3219e8cf 324 kmflag_mask |= KM_ZERO;
1da177e4 325
0a683794
DC
326 bp->b_addr = kmem_alloc_io(size, align_mask, kmflag_mask);
327 if (!bp->b_addr)
328 return -ENOMEM;
0e6e847f 329
0a683794
DC
330 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
331 ((unsigned long)bp->b_addr & PAGE_MASK)) {
332 /* b_addr spans two pages - use alloc_page instead */
333 kmem_free(bp->b_addr);
334 bp->b_addr = NULL;
335 return -ENOMEM;
0e6e847f 336 }
0a683794
DC
337 bp->b_offset = offset_in_page(bp->b_addr);
338 bp->b_pages = bp->b_page_array;
339 bp->b_pages[0] = kmem_to_page(bp->b_addr);
340 bp->b_page_count = 1;
341 bp->b_flags |= _XBF_KMEM;
342 return 0;
343}
344
345static int
346xfs_buf_alloc_pages(
347 struct xfs_buf *bp,
0a683794
DC
348 xfs_buf_flags_t flags)
349{
289ae7b4 350 gfp_t gfp_mask = __GFP_NOWARN;
c9fa5630 351 long filled = 0;
0a683794 352
289ae7b4
DC
353 if (flags & XBF_READ_AHEAD)
354 gfp_mask |= __GFP_NORETRY;
355 else
356 gfp_mask |= GFP_NOFS;
357
02c51173 358 /* Make sure that we have a page list */
934d1076 359 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
02c51173
DC
360 if (bp->b_page_count <= XB_PAGES) {
361 bp->b_pages = bp->b_page_array;
362 } else {
363 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
364 gfp_mask);
365 if (!bp->b_pages)
366 return -ENOMEM;
367 }
368 bp->b_flags |= _XBF_PAGES;
369
0a683794
DC
370 /* Assure zeroed buffer for non-read cases. */
371 if (!(flags & XBF_READ))
372 gfp_mask |= __GFP_ZERO;
0e6e847f 373
c9fa5630
DC
374 /*
375 * Bulk filling of pages can take multiple calls. Not filling the entire
376 * array is not an allocation failure, so don't back off if we get at
377 * least one extra page.
378 */
379 for (;;) {
380 long last = filled;
381
382 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
383 bp->b_pages);
384 if (filled == bp->b_page_count) {
385 XFS_STATS_INC(bp->b_mount, xb_page_found);
386 break;
1da177e4
LT
387 }
388
c9fa5630
DC
389 if (filled != last)
390 continue;
391
392 if (flags & XBF_READ_AHEAD) {
e7d236a6
DC
393 xfs_buf_free_pages(bp);
394 return -ENOMEM;
c9fa5630 395 }
1da177e4 396
c9fa5630
DC
397 XFS_STATS_INC(bp->b_mount, xb_page_retries);
398 congestion_wait(BLK_RW_ASYNC, HZ / 50);
1da177e4 399 }
0e6e847f 400 return 0;
1da177e4
LT
401}
402
403/*
25985edc 404 * Map buffer into kernel address-space if necessary.
1da177e4
LT
405 */
406STATIC int
ce8e922c 407_xfs_buf_map_pages(
e8222613 408 struct xfs_buf *bp,
1da177e4
LT
409 uint flags)
410{
0e6e847f 411 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 412 if (bp->b_page_count == 1) {
0e6e847f 413 /* A single page buffer is always mappable */
54cd3aa6 414 bp->b_addr = page_address(bp->b_pages[0]);
611c9946
DC
415 } else if (flags & XBF_UNMAPPED) {
416 bp->b_addr = NULL;
417 } else {
a19fb380 418 int retried = 0;
9ba1fb2c 419 unsigned nofs_flag;
ae687e58
DC
420
421 /*
cf085a1b 422 * vm_map_ram() will allocate auxiliary structures (e.g.
ae687e58
DC
423 * pagetables) with GFP_KERNEL, yet we are likely to be under
424 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 425 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
426 * memory reclaim re-entering the filesystem here and
427 * potentially deadlocking.
428 */
9ba1fb2c 429 nofs_flag = memalloc_nofs_save();
a19fb380
DC
430 do {
431 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
d4efd79a 432 -1);
a19fb380
DC
433 if (bp->b_addr)
434 break;
435 vm_unmap_aliases();
436 } while (retried++ <= 1);
9ba1fb2c 437 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
438
439 if (!bp->b_addr)
1da177e4 440 return -ENOMEM;
1da177e4
LT
441 }
442
443 return 0;
444}
445
446/*
447 * Finding and Reading Buffers
448 */
6031e73a
LS
449static int
450_xfs_buf_obj_cmp(
451 struct rhashtable_compare_arg *arg,
452 const void *obj)
453{
454 const struct xfs_buf_map *map = arg->key;
455 const struct xfs_buf *bp = obj;
456
457 /*
458 * The key hashing in the lookup path depends on the key being the
459 * first element of the compare_arg, make sure to assert this.
460 */
461 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
462
463 if (bp->b_bn != map->bm_bn)
464 return 1;
465
466 if (unlikely(bp->b_length != map->bm_len)) {
467 /*
468 * found a block number match. If the range doesn't
469 * match, the only way this is allowed is if the buffer
470 * in the cache is stale and the transaction that made
471 * it stale has not yet committed. i.e. we are
472 * reallocating a busy extent. Skip this buffer and
473 * continue searching for an exact match.
474 */
475 ASSERT(bp->b_flags & XBF_STALE);
476 return 1;
477 }
478 return 0;
479}
480
481static const struct rhashtable_params xfs_buf_hash_params = {
482 .min_size = 32, /* empty AGs have minimal footprint */
483 .nelem_hint = 16,
484 .key_len = sizeof(xfs_daddr_t),
485 .key_offset = offsetof(struct xfs_buf, b_bn),
486 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
487 .automatic_shrinking = true,
488 .obj_cmpfn = _xfs_buf_obj_cmp,
489};
490
491int
492xfs_buf_hash_init(
493 struct xfs_perag *pag)
494{
495 spin_lock_init(&pag->pag_buf_lock);
496 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
497}
498
499void
500xfs_buf_hash_destroy(
501 struct xfs_perag *pag)
502{
503 rhashtable_destroy(&pag->pag_buf_hash);
504}
1da177e4
LT
505
506/*
b027d4c9
DC
507 * Look up a buffer in the buffer cache and return it referenced and locked
508 * in @found_bp.
509 *
510 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
511 * cache.
512 *
513 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
514 * -EAGAIN if we fail to lock it.
515 *
516 * Return values are:
517 * -EFSCORRUPTED if have been supplied with an invalid address
518 * -EAGAIN on trylock failure
519 * -ENOENT if we fail to find a match and @new_bp was NULL
520 * 0, with @found_bp:
521 * - @new_bp if we inserted it into the cache
522 * - the buffer we found and locked.
1da177e4 523 */
b027d4c9
DC
524static int
525xfs_buf_find(
e70b73f8 526 struct xfs_buftarg *btp,
3e85c868
DC
527 struct xfs_buf_map *map,
528 int nmaps,
ce8e922c 529 xfs_buf_flags_t flags,
b027d4c9
DC
530 struct xfs_buf *new_bp,
531 struct xfs_buf **found_bp)
1da177e4 532{
74f75a0c 533 struct xfs_perag *pag;
e8222613 534 struct xfs_buf *bp;
6031e73a 535 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 536 xfs_daddr_t eofs;
3e85c868 537 int i;
1da177e4 538
b027d4c9
DC
539 *found_bp = NULL;
540
3e85c868 541 for (i = 0; i < nmaps; i++)
6031e73a 542 cmap.bm_len += map[i].bm_len;
1da177e4
LT
543
544 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
545 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
546 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 547
10616b80
DC
548 /*
549 * Corrupted block numbers can get through to here, unfortunately, so we
550 * have to check that the buffer falls within the filesystem bounds.
551 */
552 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 553 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 554 xfs_alert(btp->bt_mount,
c219b015 555 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
6031e73a 556 __func__, cmap.bm_bn, eofs);
7bc0dc27 557 WARN_ON(1);
b027d4c9 558 return -EFSCORRUPTED;
10616b80
DC
559 }
560
74f75a0c 561 pag = xfs_perag_get(btp->bt_mount,
6031e73a 562 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 563
74f75a0c 564 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
565 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
566 xfs_buf_hash_params);
567 if (bp) {
568 atomic_inc(&bp->b_hold);
569 goto found;
1da177e4
LT
570 }
571
572 /* No match found */
b027d4c9 573 if (!new_bp) {
ff6d6af2 574 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
575 spin_unlock(&pag->pag_buf_lock);
576 xfs_perag_put(pag);
b027d4c9 577 return -ENOENT;
1da177e4 578 }
b027d4c9
DC
579
580 /* the buffer keeps the perag reference until it is freed */
581 new_bp->b_pag = pag;
582 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
583 xfs_buf_hash_params);
584 spin_unlock(&pag->pag_buf_lock);
585 *found_bp = new_bp;
586 return 0;
1da177e4
LT
587
588found:
74f75a0c
DC
589 spin_unlock(&pag->pag_buf_lock);
590 xfs_perag_put(pag);
1da177e4 591
0c842ad4
CH
592 if (!xfs_buf_trylock(bp)) {
593 if (flags & XBF_TRYLOCK) {
ce8e922c 594 xfs_buf_rele(bp);
ff6d6af2 595 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
b027d4c9 596 return -EAGAIN;
1da177e4 597 }
0c842ad4 598 xfs_buf_lock(bp);
ff6d6af2 599 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
600 }
601
0e6e847f
DC
602 /*
603 * if the buffer is stale, clear all the external state associated with
604 * it. We need to keep flags such as how we allocated the buffer memory
605 * intact here.
606 */
ce8e922c
NS
607 if (bp->b_flags & XBF_STALE) {
608 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
611c9946 609 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 610 bp->b_ops = NULL;
2f926587 611 }
0b1b213f
CH
612
613 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 614 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
b027d4c9
DC
615 *found_bp = bp;
616 return 0;
1da177e4
LT
617}
618
8925a3dc
DC
619struct xfs_buf *
620xfs_buf_incore(
621 struct xfs_buftarg *target,
622 xfs_daddr_t blkno,
623 size_t numblks,
624 xfs_buf_flags_t flags)
625{
b027d4c9
DC
626 struct xfs_buf *bp;
627 int error;
8925a3dc 628 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
b027d4c9
DC
629
630 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
631 if (error)
632 return NULL;
633 return bp;
8925a3dc
DC
634}
635
1da177e4 636/*
3815832a
DC
637 * Assembles a buffer covering the specified range. The code is optimised for
638 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
639 * more hits than misses.
1da177e4 640 */
3848b5f6 641int
6dde2707
DC
642xfs_buf_get_map(
643 struct xfs_buftarg *target,
644 struct xfs_buf_map *map,
645 int nmaps,
3848b5f6
DW
646 xfs_buf_flags_t flags,
647 struct xfs_buf **bpp)
1da177e4 648{
3815832a
DC
649 struct xfs_buf *bp;
650 struct xfs_buf *new_bp;
9bb38aa0 651 int error;
1da177e4 652
3848b5f6 653 *bpp = NULL;
b027d4c9 654 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
3848b5f6 655 if (!error)
3815832a 656 goto found;
3848b5f6
DW
657 if (error != -ENOENT)
658 return error;
3815832a 659
32dff5e5
DW
660 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
661 if (error)
3848b5f6 662 return error;
1da177e4 663
8bcac744
DC
664 /*
665 * For buffers that fit entirely within a single page, first attempt to
666 * allocate the memory from the heap to minimise memory usage. If we
667 * can't get heap memory for these small buffers, we fall back to using
668 * the page allocator.
669 */
670 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
671 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
672 error = xfs_buf_alloc_pages(new_bp, flags);
673 if (error)
674 goto out_free_buf;
675 }
fe2429b0 676
b027d4c9 677 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
170041f7
CH
678 if (error)
679 goto out_free_buf;
3815832a 680
fe2429b0
DC
681 if (bp != new_bp)
682 xfs_buf_free(new_bp);
1da177e4 683
3815832a 684found:
611c9946 685 if (!bp->b_addr) {
ce8e922c 686 error = _xfs_buf_map_pages(bp, flags);
1da177e4 687 if (unlikely(error)) {
93baa55a
DW
688 xfs_warn_ratelimited(target->bt_mount,
689 "%s: failed to map %u pages", __func__,
690 bp->b_page_count);
a8acad70 691 xfs_buf_relse(bp);
3848b5f6 692 return error;
1da177e4
LT
693 }
694 }
695
b79f4a1c
DC
696 /*
697 * Clear b_error if this is a lookup from a caller that doesn't expect
698 * valid data to be found in the buffer.
699 */
700 if (!(flags & XBF_READ))
701 xfs_buf_ioerror(bp, 0);
702
ff6d6af2 703 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 704 trace_xfs_buf_get(bp, flags, _RET_IP_);
3848b5f6
DW
705 *bpp = bp;
706 return 0;
170041f7
CH
707out_free_buf:
708 xfs_buf_free(new_bp);
709 return error;
1da177e4
LT
710}
711
26e32875 712int
5d765b97 713_xfs_buf_read(
e8222613 714 struct xfs_buf *bp,
5d765b97
CH
715 xfs_buf_flags_t flags)
716{
43ff2122 717 ASSERT(!(flags & XBF_WRITE));
f4b42421 718 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 719
26e32875 720 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
1d5ae5df 721 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 722
6af88cda 723 return xfs_buf_submit(bp);
5d765b97
CH
724}
725
1aff5696 726/*
75d02303 727 * Reverify a buffer found in cache without an attached ->b_ops.
add46b3b 728 *
75d02303
BF
729 * If the caller passed an ops structure and the buffer doesn't have ops
730 * assigned, set the ops and use it to verify the contents. If verification
731 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
732 * already in XBF_DONE state on entry.
add46b3b 733 *
75d02303
BF
734 * Under normal operations, every in-core buffer is verified on read I/O
735 * completion. There are two scenarios that can lead to in-core buffers without
736 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
737 * filesystem, though these buffers are purged at the end of recovery. The
738 * other is online repair, which intentionally reads with a NULL buffer ops to
739 * run several verifiers across an in-core buffer in order to establish buffer
740 * type. If repair can't establish that, the buffer will be left in memory
741 * with NULL buffer ops.
1aff5696
DW
742 */
743int
75d02303 744xfs_buf_reverify(
1aff5696
DW
745 struct xfs_buf *bp,
746 const struct xfs_buf_ops *ops)
747{
748 ASSERT(bp->b_flags & XBF_DONE);
749 ASSERT(bp->b_error == 0);
750
751 if (!ops || bp->b_ops)
752 return 0;
753
754 bp->b_ops = ops;
755 bp->b_ops->verify_read(bp);
756 if (bp->b_error)
757 bp->b_flags &= ~XBF_DONE;
758 return bp->b_error;
759}
760
4ed8e27b 761int
6dde2707
DC
762xfs_buf_read_map(
763 struct xfs_buftarg *target,
764 struct xfs_buf_map *map,
765 int nmaps,
c3f8fc73 766 xfs_buf_flags_t flags,
4ed8e27b 767 struct xfs_buf **bpp,
cdbcf82b
DW
768 const struct xfs_buf_ops *ops,
769 xfs_failaddr_t fa)
1da177e4 770{
6dde2707 771 struct xfs_buf *bp;
3848b5f6 772 int error;
ce8e922c
NS
773
774 flags |= XBF_READ;
4ed8e27b 775 *bpp = NULL;
ce8e922c 776
3848b5f6
DW
777 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
778 if (error)
4ed8e27b 779 return error;
0b1b213f 780
1aff5696
DW
781 trace_xfs_buf_read(bp, flags, _RET_IP_);
782
783 if (!(bp->b_flags & XBF_DONE)) {
4ed8e27b 784 /* Initiate the buffer read and wait. */
1aff5696
DW
785 XFS_STATS_INC(target->bt_mount, xb_get_read);
786 bp->b_ops = ops;
4ed8e27b
DW
787 error = _xfs_buf_read(bp, flags);
788
789 /* Readahead iodone already dropped the buffer, so exit. */
790 if (flags & XBF_ASYNC)
791 return 0;
792 } else {
793 /* Buffer already read; all we need to do is check it. */
794 error = xfs_buf_reverify(bp, ops);
795
796 /* Readahead already finished; drop the buffer and exit. */
797 if (flags & XBF_ASYNC) {
798 xfs_buf_relse(bp);
799 return 0;
800 }
801
802 /* We do not want read in the flags */
803 bp->b_flags &= ~XBF_READ;
804 ASSERT(bp->b_ops != NULL || ops == NULL);
1aff5696
DW
805 }
806
4ed8e27b
DW
807 /*
808 * If we've had a read error, then the contents of the buffer are
809 * invalid and should not be used. To ensure that a followup read tries
810 * to pull the buffer from disk again, we clear the XBF_DONE flag and
811 * mark the buffer stale. This ensures that anyone who has a current
812 * reference to the buffer will interpret it's contents correctly and
813 * future cache lookups will also treat it as an empty, uninitialised
814 * buffer.
815 */
816 if (error) {
817 if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
cdbcf82b 818 xfs_buf_ioerror_alert(bp, fa);
1aff5696 819
4ed8e27b
DW
820 bp->b_flags &= ~XBF_DONE;
821 xfs_buf_stale(bp);
1aff5696 822 xfs_buf_relse(bp);
4ed8e27b
DW
823
824 /* bad CRC means corrupted metadata */
825 if (error == -EFSBADCRC)
826 error = -EFSCORRUPTED;
827 return error;
1da177e4
LT
828 }
829
4ed8e27b
DW
830 *bpp = bp;
831 return 0;
1da177e4
LT
832}
833
1da177e4 834/*
ce8e922c
NS
835 * If we are not low on memory then do the readahead in a deadlock
836 * safe manner.
1da177e4
LT
837 */
838void
6dde2707
DC
839xfs_buf_readahead_map(
840 struct xfs_buftarg *target,
841 struct xfs_buf_map *map,
c3f8fc73 842 int nmaps,
1813dd64 843 const struct xfs_buf_ops *ops)
1da177e4 844{
4ed8e27b
DW
845 struct xfs_buf *bp;
846
efa7c9f9 847 if (bdi_read_congested(target->bt_bdev->bd_bdi))
1da177e4
LT
848 return;
849
6dde2707 850 xfs_buf_read_map(target, map, nmaps,
cdbcf82b
DW
851 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
852 __this_address);
1da177e4
LT
853}
854
5adc94c2
DC
855/*
856 * Read an uncached buffer from disk. Allocates and returns a locked
857 * buffer containing the disk contents or nothing.
858 */
ba372674 859int
5adc94c2 860xfs_buf_read_uncached(
5adc94c2
DC
861 struct xfs_buftarg *target,
862 xfs_daddr_t daddr,
e70b73f8 863 size_t numblks,
c3f8fc73 864 int flags,
ba372674 865 struct xfs_buf **bpp,
1813dd64 866 const struct xfs_buf_ops *ops)
5adc94c2 867{
eab4e633 868 struct xfs_buf *bp;
2842b6db 869 int error;
5adc94c2 870
ba372674
DC
871 *bpp = NULL;
872
2842b6db
DW
873 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
874 if (error)
875 return error;
5adc94c2
DC
876
877 /* set up the buffer for a read IO */
3e85c868 878 ASSERT(bp->b_map_count == 1);
ba372674 879 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 880 bp->b_maps[0].bm_bn = daddr;
cbb7baab 881 bp->b_flags |= XBF_READ;
1813dd64 882 bp->b_ops = ops;
5adc94c2 883
6af88cda 884 xfs_buf_submit(bp);
ba372674 885 if (bp->b_error) {
2842b6db 886 error = bp->b_error;
83a0adc3 887 xfs_buf_relse(bp);
ba372674 888 return error;
83a0adc3 889 }
ba372674
DC
890
891 *bpp = bp;
892 return 0;
1da177e4
LT
893}
894
2842b6db 895int
686865f7
DC
896xfs_buf_get_uncached(
897 struct xfs_buftarg *target,
e70b73f8 898 size_t numblks,
2842b6db
DW
899 int flags,
900 struct xfs_buf **bpp)
1da177e4 901{
07b5c5ad 902 int error;
3e85c868
DC
903 struct xfs_buf *bp;
904 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 905
2842b6db
DW
906 *bpp = NULL;
907
c891c30a 908 /* flags might contain irrelevant bits, pass only what we care about */
32dff5e5
DW
909 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
910 if (error)
07b5c5ad 911 return error;
1da177e4 912
934d1076 913 error = xfs_buf_alloc_pages(bp, flags);
1fa40b01 914 if (error)
1da177e4
LT
915 goto fail_free_buf;
916
611c9946 917 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 918 if (unlikely(error)) {
4f10700a 919 xfs_warn(target->bt_mount,
08e96e1a 920 "%s: failed to map pages", __func__);
07b5c5ad 921 goto fail_free_buf;
1fa40b01 922 }
1da177e4 923
686865f7 924 trace_xfs_buf_get_uncached(bp, _RET_IP_);
2842b6db
DW
925 *bpp = bp;
926 return 0;
1fa40b01 927
07b5c5ad
DC
928fail_free_buf:
929 xfs_buf_free(bp);
2842b6db 930 return error;
1da177e4
LT
931}
932
933/*
1da177e4
LT
934 * Increment reference count on buffer, to hold the buffer concurrently
935 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
936 * Must hold the buffer already to call this function.
937 */
938void
ce8e922c 939xfs_buf_hold(
e8222613 940 struct xfs_buf *bp)
1da177e4 941{
0b1b213f 942 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 943 atomic_inc(&bp->b_hold);
1da177e4
LT
944}
945
946/*
9c7504aa
BF
947 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
948 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
949 */
950void
ce8e922c 951xfs_buf_rele(
e8222613 952 struct xfs_buf *bp)
1da177e4 953{
74f75a0c 954 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
955 bool release;
956 bool freebuf = false;
1da177e4 957
0b1b213f 958 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 959
74f75a0c 960 if (!pag) {
430cbeb8 961 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
962 if (atomic_dec_and_test(&bp->b_hold)) {
963 xfs_buf_ioacct_dec(bp);
fad3aa1e 964 xfs_buf_free(bp);
9c7504aa 965 }
fad3aa1e
NS
966 return;
967 }
968
3790689f 969 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 970
37fd1678
DC
971 /*
972 * We grab the b_lock here first to serialise racing xfs_buf_rele()
973 * calls. The pag_buf_lock being taken on the last reference only
974 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
975 * to last reference we drop here is not serialised against the last
976 * reference until we take bp->b_lock. Hence if we don't grab b_lock
977 * first, the last "release" reference can win the race to the lock and
978 * free the buffer before the second-to-last reference is processed,
979 * leading to a use-after-free scenario.
980 */
9c7504aa 981 spin_lock(&bp->b_lock);
37fd1678 982 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
9c7504aa
BF
983 if (!release) {
984 /*
985 * Drop the in-flight state if the buffer is already on the LRU
986 * and it holds the only reference. This is racy because we
987 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
988 * ensures the decrement occurs only once per-buf.
989 */
990 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 991 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
992 goto out_unlock;
993 }
994
995 /* the last reference has been dropped ... */
63db7c81 996 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
997 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
998 /*
999 * If the buffer is added to the LRU take a new reference to the
1000 * buffer for the LRU and clear the (now stale) dispose list
1001 * state flag
1002 */
1003 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1004 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1005 atomic_inc(&bp->b_hold);
1da177e4 1006 }
9c7504aa
BF
1007 spin_unlock(&pag->pag_buf_lock);
1008 } else {
1009 /*
1010 * most of the time buffers will already be removed from the
1011 * LRU, so optimise that case by checking for the
1012 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1013 * was on was the disposal list
1014 */
1015 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1016 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1017 } else {
1018 ASSERT(list_empty(&bp->b_lru));
1da177e4 1019 }
9c7504aa
BF
1020
1021 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1022 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1023 xfs_buf_hash_params);
9c7504aa
BF
1024 spin_unlock(&pag->pag_buf_lock);
1025 xfs_perag_put(pag);
1026 freebuf = true;
1da177e4 1027 }
9c7504aa
BF
1028
1029out_unlock:
1030 spin_unlock(&bp->b_lock);
1031
1032 if (freebuf)
1033 xfs_buf_free(bp);
1da177e4
LT
1034}
1035
1036
1037/*
0e6e847f 1038 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1039 *
1040 * If we come across a stale, pinned, locked buffer, we know that we are
1041 * being asked to lock a buffer that has been reallocated. Because it is
1042 * pinned, we know that the log has not been pushed to disk and hence it
1043 * will still be locked. Rather than continuing to have trylock attempts
1044 * fail until someone else pushes the log, push it ourselves before
1045 * returning. This means that the xfsaild will not get stuck trying
1046 * to push on stale inode buffers.
1da177e4
LT
1047 */
1048int
0c842ad4
CH
1049xfs_buf_trylock(
1050 struct xfs_buf *bp)
1da177e4
LT
1051{
1052 int locked;
1053
ce8e922c 1054 locked = down_trylock(&bp->b_sema) == 0;
fa6c668d 1055 if (locked)
479c6412 1056 trace_xfs_buf_trylock(bp, _RET_IP_);
fa6c668d 1057 else
479c6412 1058 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
0c842ad4 1059 return locked;
1da177e4 1060}
1da177e4
LT
1061
1062/*
0e6e847f 1063 * Lock a buffer object.
ed3b4d6c
DC
1064 *
1065 * If we come across a stale, pinned, locked buffer, we know that we
1066 * are being asked to lock a buffer that has been reallocated. Because
1067 * it is pinned, we know that the log has not been pushed to disk and
1068 * hence it will still be locked. Rather than sleeping until someone
1069 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1070 */
ce8e922c
NS
1071void
1072xfs_buf_lock(
0c842ad4 1073 struct xfs_buf *bp)
1da177e4 1074{
0b1b213f
CH
1075 trace_xfs_buf_lock(bp, _RET_IP_);
1076
ed3b4d6c 1077 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
dbd329f1 1078 xfs_log_force(bp->b_mount, 0);
ce8e922c 1079 down(&bp->b_sema);
0b1b213f
CH
1080
1081 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1082}
1083
1da177e4 1084void
ce8e922c 1085xfs_buf_unlock(
0c842ad4 1086 struct xfs_buf *bp)
1da177e4 1087{
20e8a063
BF
1088 ASSERT(xfs_buf_islocked(bp));
1089
ce8e922c 1090 up(&bp->b_sema);
0b1b213f 1091 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1092}
1093
ce8e922c
NS
1094STATIC void
1095xfs_buf_wait_unpin(
e8222613 1096 struct xfs_buf *bp)
1da177e4
LT
1097{
1098 DECLARE_WAITQUEUE (wait, current);
1099
ce8e922c 1100 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1101 return;
1102
ce8e922c 1103 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1104 for (;;) {
1105 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1106 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1107 break;
7eaceacc 1108 io_schedule();
1da177e4 1109 }
ce8e922c 1110 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1111 set_current_state(TASK_RUNNING);
1112}
1113
f58d0ea9
CH
1114static void
1115xfs_buf_ioerror_alert_ratelimited(
664ffb8a
CH
1116 struct xfs_buf *bp)
1117{
664ffb8a
CH
1118 static unsigned long lasttime;
1119 static struct xfs_buftarg *lasttarg;
1120
664ffb8a
CH
1121 if (bp->b_target != lasttarg ||
1122 time_after(jiffies, (lasttime + 5*HZ))) {
1123 lasttime = jiffies;
1124 xfs_buf_ioerror_alert(bp, __this_address);
1125 }
1126 lasttarg = bp->b_target;
664ffb8a
CH
1127}
1128
664ffb8a
CH
1129/*
1130 * Account for this latest trip around the retry handler, and decide if
1131 * we've failed enough times to constitute a permanent failure.
1132 */
1133static bool
1134xfs_buf_ioerror_permanent(
1135 struct xfs_buf *bp,
1136 struct xfs_error_cfg *cfg)
1137{
1138 struct xfs_mount *mp = bp->b_mount;
1139
1140 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1141 ++bp->b_retries > cfg->max_retries)
1142 return true;
1143 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1144 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1145 return true;
1146
1147 /* At unmount we may treat errors differently */
1148 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1149 return true;
1150
1151 return false;
1152}
1153
1154/*
1155 * On a sync write or shutdown we just want to stale the buffer and let the
1156 * caller handle the error in bp->b_error appropriately.
1157 *
1158 * If the write was asynchronous then no one will be looking for the error. If
1159 * this is the first failure of this type, clear the error state and write the
1160 * buffer out again. This means we always retry an async write failure at least
1161 * once, but we also need to set the buffer up to behave correctly now for
1162 * repeated failures.
1163 *
1164 * If we get repeated async write failures, then we take action according to the
1165 * error configuration we have been set up to use.
1166 *
70796c6b
CH
1167 * Returns true if this function took care of error handling and the caller must
1168 * not touch the buffer again. Return false if the caller should proceed with
1169 * normal I/O completion handling.
664ffb8a 1170 */
70796c6b
CH
1171static bool
1172xfs_buf_ioend_handle_error(
664ffb8a
CH
1173 struct xfs_buf *bp)
1174{
1175 struct xfs_mount *mp = bp->b_mount;
1176 struct xfs_error_cfg *cfg;
1177
f58d0ea9
CH
1178 /*
1179 * If we've already decided to shutdown the filesystem because of I/O
1180 * errors, there's no point in giving this a retry.
1181 */
1182 if (XFS_FORCED_SHUTDOWN(mp))
1183 goto out_stale;
1184
1185 xfs_buf_ioerror_alert_ratelimited(bp);
1186
22c10589
CH
1187 /*
1188 * We're not going to bother about retrying this during recovery.
1189 * One strike!
1190 */
1191 if (bp->b_flags & _XBF_LOGRECOVERY) {
1192 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1193 return false;
1194 }
1195
f58d0ea9
CH
1196 /*
1197 * Synchronous writes will have callers process the error.
1198 */
1199 if (!(bp->b_flags & XBF_ASYNC))
664ffb8a
CH
1200 goto out_stale;
1201
1202 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1203
1204 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
3cc49884
CH
1205 if (bp->b_last_error != bp->b_error ||
1206 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1207 bp->b_last_error = bp->b_error;
1208 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1209 !bp->b_first_retry_time)
1210 bp->b_first_retry_time = jiffies;
1211 goto resubmit;
664ffb8a
CH
1212 }
1213
1214 /*
1215 * Permanent error - we need to trigger a shutdown if we haven't already
1216 * to indicate that inconsistency will result from this action.
1217 */
1218 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1219 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1220 goto out_stale;
1221 }
1222
1223 /* Still considered a transient error. Caller will schedule retries. */
844c9358
CH
1224 if (bp->b_flags & _XBF_INODES)
1225 xfs_buf_inode_io_fail(bp);
1226 else if (bp->b_flags & _XBF_DQUOTS)
1227 xfs_buf_dquot_io_fail(bp);
1228 else
1229 ASSERT(list_empty(&bp->b_li_list));
1230 xfs_buf_ioerror(bp, 0);
1231 xfs_buf_relse(bp);
70796c6b 1232 return true;
664ffb8a 1233
3cc49884
CH
1234resubmit:
1235 xfs_buf_ioerror(bp, 0);
55b7d711 1236 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
3cc49884 1237 xfs_buf_submit(bp);
70796c6b 1238 return true;
664ffb8a
CH
1239out_stale:
1240 xfs_buf_stale(bp);
1241 bp->b_flags |= XBF_DONE;
55b7d711 1242 bp->b_flags &= ~XBF_WRITE;
664ffb8a 1243 trace_xfs_buf_error_relse(bp, _RET_IP_);
70796c6b 1244 return false;
664ffb8a 1245}
1da177e4 1246
76b2d323 1247static void
e8aaba9a
DC
1248xfs_buf_ioend(
1249 struct xfs_buf *bp)
1da177e4 1250{
e8aaba9a 1251 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64 1252
61be9c52
DC
1253 /*
1254 * Pull in IO completion errors now. We are guaranteed to be running
1255 * single threaded, so we don't need the lock to read b_io_error.
1256 */
1257 if (!bp->b_error && bp->b_io_error)
1258 xfs_buf_ioerror(bp, bp->b_io_error);
1259
55b7d711 1260 if (bp->b_flags & XBF_READ) {
b01d1461
DC
1261 if (!bp->b_error && bp->b_ops)
1262 bp->b_ops->verify_read(bp);
1263 if (!bp->b_error)
1264 bp->b_flags |= XBF_DONE;
23fb5a93
CH
1265 } else {
1266 if (!bp->b_error) {
1267 bp->b_flags &= ~XBF_WRITE_FAIL;
1268 bp->b_flags |= XBF_DONE;
1269 }
f593bf14 1270
70796c6b 1271 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
664ffb8a 1272 return;
664ffb8a
CH
1273
1274 /* clear the retry state */
1275 bp->b_last_error = 0;
1276 bp->b_retries = 0;
1277 bp->b_first_retry_time = 0;
1278
1279 /*
1280 * Note that for things like remote attribute buffers, there may
1281 * not be a buffer log item here, so processing the buffer log
1282 * item must remain optional.
1283 */
1284 if (bp->b_log_item)
1285 xfs_buf_item_done(bp);
1286
23fb5a93
CH
1287 if (bp->b_flags & _XBF_INODES)
1288 xfs_buf_inode_iodone(bp);
1289 else if (bp->b_flags & _XBF_DQUOTS)
1290 xfs_buf_dquot_iodone(bp);
22c10589 1291
0c7e5afb 1292 }
6a7584b1 1293
22c10589
CH
1294 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1295 _XBF_LOGRECOVERY);
55b7d711 1296
6a7584b1
CH
1297 if (bp->b_flags & XBF_ASYNC)
1298 xfs_buf_relse(bp);
1299 else
1300 complete(&bp->b_iowait);
1da177e4
LT
1301}
1302
e8aaba9a
DC
1303static void
1304xfs_buf_ioend_work(
1305 struct work_struct *work)
1da177e4 1306{
e8aaba9a 1307 struct xfs_buf *bp =
e8222613 1308 container_of(work, struct xfs_buf, b_ioend_work);
0b1b213f 1309
e8aaba9a
DC
1310 xfs_buf_ioend(bp);
1311}
1da177e4 1312
211fe1a4 1313static void
e8aaba9a
DC
1314xfs_buf_ioend_async(
1315 struct xfs_buf *bp)
1316{
b29c70f5 1317 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
dbd329f1 1318 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1da177e4
LT
1319}
1320
1da177e4 1321void
31ca03c9 1322__xfs_buf_ioerror(
e8222613 1323 struct xfs_buf *bp,
31ca03c9
DW
1324 int error,
1325 xfs_failaddr_t failaddr)
1da177e4 1326{
2451337d
DC
1327 ASSERT(error <= 0 && error >= -1000);
1328 bp->b_error = error;
31ca03c9 1329 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1330}
1331
901796af
CH
1332void
1333xfs_buf_ioerror_alert(
1334 struct xfs_buf *bp,
cdbcf82b 1335 xfs_failaddr_t func)
901796af 1336{
f9bccfcc
BF
1337 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1338 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1339 func, (uint64_t)XFS_BUF_ADDR(bp),
1340 bp->b_length, -bp->b_error);
901796af
CH
1341}
1342
54b3b1f6
BF
1343/*
1344 * To simulate an I/O failure, the buffer must be locked and held with at least
1345 * three references. The LRU reference is dropped by the stale call. The buf
1346 * item reference is dropped via ioend processing. The third reference is owned
1347 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1348 */
1349void
1350xfs_buf_ioend_fail(
1351 struct xfs_buf *bp)
1352{
1353 bp->b_flags &= ~XBF_DONE;
1354 xfs_buf_stale(bp);
1355 xfs_buf_ioerror(bp, -EIO);
1356 xfs_buf_ioend(bp);
901796af
CH
1357}
1358
a2dcf5df
CH
1359int
1360xfs_bwrite(
1361 struct xfs_buf *bp)
1362{
1363 int error;
1364
1365 ASSERT(xfs_buf_islocked(bp));
1366
1367 bp->b_flags |= XBF_WRITE;
27187754 1368 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
b6983e80 1369 XBF_DONE);
a2dcf5df 1370
6af88cda 1371 error = xfs_buf_submit(bp);
dbd329f1
CH
1372 if (error)
1373 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
a2dcf5df
CH
1374 return error;
1375}
1376
9bdd9bd6 1377static void
ce8e922c 1378xfs_buf_bio_end_io(
4246a0b6 1379 struct bio *bio)
1da177e4 1380{
9bdd9bd6 1381 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1382
7376d745
BF
1383 if (!bio->bi_status &&
1384 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
43dc0aa8 1385 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
7376d745 1386 bio->bi_status = BLK_STS_IOERR;
1da177e4 1387
37eb17e6
DC
1388 /*
1389 * don't overwrite existing errors - otherwise we can lose errors on
1390 * buffers that require multiple bios to complete.
1391 */
4e4cbee9
CH
1392 if (bio->bi_status) {
1393 int error = blk_status_to_errno(bio->bi_status);
1394
1395 cmpxchg(&bp->b_io_error, 0, error);
1396 }
1da177e4 1397
37eb17e6 1398 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1399 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1400
e8aaba9a
DC
1401 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1402 xfs_buf_ioend_async(bp);
1da177e4 1403 bio_put(bio);
1da177e4
LT
1404}
1405
3e85c868
DC
1406static void
1407xfs_buf_ioapply_map(
1408 struct xfs_buf *bp,
1409 int map,
1410 int *buf_offset,
1411 int *count,
2123ef85 1412 int op)
1da177e4 1413{
3e85c868 1414 int page_index;
5f7136db 1415 unsigned int total_nr_pages = bp->b_page_count;
3e85c868
DC
1416 int nr_pages;
1417 struct bio *bio;
1418 sector_t sector = bp->b_maps[map].bm_bn;
1419 int size;
1420 int offset;
1da177e4 1421
3e85c868
DC
1422 /* skip the pages in the buffer before the start offset */
1423 page_index = 0;
1424 offset = *buf_offset;
1425 while (offset >= PAGE_SIZE) {
1426 page_index++;
1427 offset -= PAGE_SIZE;
f538d4da
CH
1428 }
1429
3e85c868
DC
1430 /*
1431 * Limit the IO size to the length of the current vector, and update the
1432 * remaining IO count for the next time around.
1433 */
1434 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1435 *count -= size;
1436 *buf_offset += size;
34951f5c 1437
1da177e4 1438next_chunk:
ce8e922c 1439 atomic_inc(&bp->b_io_remaining);
5f7136db 1440 nr_pages = bio_max_segs(total_nr_pages);
1da177e4
LT
1441
1442 bio = bio_alloc(GFP_NOIO, nr_pages);
74d46992 1443 bio_set_dev(bio, bp->b_target->bt_bdev);
4f024f37 1444 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1445 bio->bi_end_io = xfs_buf_bio_end_io;
1446 bio->bi_private = bp;
2123ef85 1447 bio->bi_opf = op;
0e6e847f 1448
3e85c868 1449 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1450 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1451
1452 if (nbytes > size)
1453 nbytes = size;
1454
3e85c868
DC
1455 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1456 offset);
ce8e922c 1457 if (rbytes < nbytes)
1da177e4
LT
1458 break;
1459
1460 offset = 0;
aa0e8833 1461 sector += BTOBB(nbytes);
1da177e4
LT
1462 size -= nbytes;
1463 total_nr_pages--;
1464 }
1465
4f024f37 1466 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1467 if (xfs_buf_is_vmapped(bp)) {
1468 flush_kernel_vmap_range(bp->b_addr,
1469 xfs_buf_vmap_len(bp));
1470 }
4e49ea4a 1471 submit_bio(bio);
1da177e4
LT
1472 if (size)
1473 goto next_chunk;
1474 } else {
37eb17e6
DC
1475 /*
1476 * This is guaranteed not to be the last io reference count
595bff75 1477 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1478 */
1479 atomic_dec(&bp->b_io_remaining);
2451337d 1480 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1481 bio_put(bio);
1da177e4 1482 }
3e85c868
DC
1483
1484}
1485
1486STATIC void
1487_xfs_buf_ioapply(
1488 struct xfs_buf *bp)
1489{
1490 struct blk_plug plug;
50bfcd0c 1491 int op;
3e85c868
DC
1492 int offset;
1493 int size;
1494 int i;
1495
c163f9a1
DC
1496 /*
1497 * Make sure we capture only current IO errors rather than stale errors
1498 * left over from previous use of the buffer (e.g. failed readahead).
1499 */
1500 bp->b_error = 0;
1501
3e85c868 1502 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1503 op = REQ_OP_WRITE;
1813dd64
DC
1504
1505 /*
1506 * Run the write verifier callback function if it exists. If
1507 * this function fails it will mark the buffer with an error and
1508 * the IO should not be dispatched.
1509 */
1510 if (bp->b_ops) {
1511 bp->b_ops->verify_write(bp);
1512 if (bp->b_error) {
dbd329f1 1513 xfs_force_shutdown(bp->b_mount,
1813dd64
DC
1514 SHUTDOWN_CORRUPT_INCORE);
1515 return;
1516 }
400b9d88 1517 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
dbd329f1 1518 struct xfs_mount *mp = bp->b_mount;
400b9d88
DC
1519
1520 /*
1521 * non-crc filesystems don't attach verifiers during
1522 * log recovery, so don't warn for such filesystems.
1523 */
1524 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1525 xfs_warn(mp,
c219b015 1526 "%s: no buf ops on daddr 0x%llx len %d",
400b9d88 1527 __func__, bp->b_bn, bp->b_length);
9c712a13
DW
1528 xfs_hex_dump(bp->b_addr,
1529 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1530 dump_stack();
1531 }
1813dd64 1532 }
3e85c868 1533 } else {
50bfcd0c 1534 op = REQ_OP_READ;
2123ef85
CH
1535 if (bp->b_flags & XBF_READ_AHEAD)
1536 op |= REQ_RAHEAD;
3e85c868
DC
1537 }
1538
1539 /* we only use the buffer cache for meta-data */
2123ef85 1540 op |= REQ_META;
3e85c868
DC
1541
1542 /*
1543 * Walk all the vectors issuing IO on them. Set up the initial offset
1544 * into the buffer and the desired IO size before we start -
1545 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1546 * subsequent call.
1547 */
1548 offset = bp->b_offset;
8124b9b6 1549 size = BBTOB(bp->b_length);
3e85c868
DC
1550 blk_start_plug(&plug);
1551 for (i = 0; i < bp->b_map_count; i++) {
2123ef85 1552 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
3e85c868
DC
1553 if (bp->b_error)
1554 break;
1555 if (size <= 0)
1556 break; /* all done */
1557 }
1558 blk_finish_plug(&plug);
1da177e4
LT
1559}
1560
595bff75 1561/*
bb00b6f1 1562 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1563 */
eaebb515 1564static int
bb00b6f1 1565xfs_buf_iowait(
595bff75 1566 struct xfs_buf *bp)
1da177e4 1567{
bb00b6f1
BF
1568 ASSERT(!(bp->b_flags & XBF_ASYNC));
1569
1570 trace_xfs_buf_iowait(bp, _RET_IP_);
1571 wait_for_completion(&bp->b_iowait);
1572 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1573
1574 return bp->b_error;
1575}
1576
1577/*
1578 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1579 * the buffer lock ownership and the current reference to the IO. It is not
1580 * safe to reference the buffer after a call to this function unless the caller
1581 * holds an additional reference itself.
1582 */
26e32875 1583static int
bb00b6f1
BF
1584__xfs_buf_submit(
1585 struct xfs_buf *bp,
1586 bool wait)
1587{
1588 int error = 0;
1589
595bff75 1590 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1591
43ff2122 1592 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1593
1594 /* on shutdown we stale and complete the buffer immediately */
dbd329f1 1595 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
54b3b1f6 1596 xfs_buf_ioend_fail(bp);
eaebb515 1597 return -EIO;
595bff75 1598 }
1da177e4 1599
bb00b6f1
BF
1600 /*
1601 * Grab a reference so the buffer does not go away underneath us. For
1602 * async buffers, I/O completion drops the callers reference, which
1603 * could occur before submission returns.
1604 */
1605 xfs_buf_hold(bp);
1606
375ec69d 1607 if (bp->b_flags & XBF_WRITE)
ce8e922c 1608 xfs_buf_wait_unpin(bp);
e11bb805 1609
61be9c52
DC
1610 /* clear the internal error state to avoid spurious errors */
1611 bp->b_io_error = 0;
1612
8d6c1210 1613 /*
e11bb805
DC
1614 * Set the count to 1 initially, this will stop an I/O completion
1615 * callout which happens before we have started all the I/O from calling
1616 * xfs_buf_ioend too early.
1da177e4 1617 */
ce8e922c 1618 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1619 if (bp->b_flags & XBF_ASYNC)
1620 xfs_buf_ioacct_inc(bp);
ce8e922c 1621 _xfs_buf_ioapply(bp);
e11bb805 1622
8d6c1210 1623 /*
595bff75
DC
1624 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1625 * reference we took above. If we drop it to zero, run completion so
1626 * that we don't return to the caller with completion still pending.
8d6c1210 1627 */
e8aaba9a 1628 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1629 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1630 xfs_buf_ioend(bp);
1631 else
1632 xfs_buf_ioend_async(bp);
1633 }
1da177e4 1634
6af88cda
BF
1635 if (wait)
1636 error = xfs_buf_iowait(bp);
bb00b6f1 1637
595bff75 1638 /*
6af88cda
BF
1639 * Release the hold that keeps the buffer referenced for the entire
1640 * I/O. Note that if the buffer is async, it is not safe to reference
1641 * after this release.
595bff75
DC
1642 */
1643 xfs_buf_rele(bp);
1644 return error;
1da177e4
LT
1645}
1646
88ee2df7 1647void *
ce8e922c 1648xfs_buf_offset(
88ee2df7 1649 struct xfs_buf *bp,
1da177e4
LT
1650 size_t offset)
1651{
1652 struct page *page;
1653
611c9946 1654 if (bp->b_addr)
62926044 1655 return bp->b_addr + offset;
1da177e4 1656
0e6e847f 1657 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1658 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1659}
1660
1da177e4 1661void
f9a196ee
CH
1662xfs_buf_zero(
1663 struct xfs_buf *bp,
1664 size_t boff,
1665 size_t bsize)
1da177e4 1666{
795cac72 1667 size_t bend;
1da177e4
LT
1668
1669 bend = boff + bsize;
1670 while (boff < bend) {
795cac72
DC
1671 struct page *page;
1672 int page_index, page_offset, csize;
1673
1674 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1675 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1676 page = bp->b_pages[page_index];
1677 csize = min_t(size_t, PAGE_SIZE - page_offset,
8124b9b6 1678 BBTOB(bp->b_length) - boff);
1da177e4 1679
795cac72 1680 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4 1681
f9a196ee 1682 memset(page_address(page) + page_offset, 0, csize);
1da177e4
LT
1683
1684 boff += csize;
1da177e4
LT
1685 }
1686}
1687
8d57c216
DW
1688/*
1689 * Log a message about and stale a buffer that a caller has decided is corrupt.
1690 *
1691 * This function should be called for the kinds of metadata corruption that
1692 * cannot be detect from a verifier, such as incorrect inter-block relationship
1693 * data. Do /not/ call this function from a verifier function.
1694 *
1695 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1696 * be marked stale, but b_error will not be set. The caller is responsible for
1697 * releasing the buffer or fixing it.
1698 */
1699void
1700__xfs_buf_mark_corrupt(
1701 struct xfs_buf *bp,
1702 xfs_failaddr_t fa)
1703{
1704 ASSERT(bp->b_flags & XBF_DONE);
1705
e83cf875 1706 xfs_buf_corruption_error(bp, fa);
8d57c216
DW
1707 xfs_buf_stale(bp);
1708}
1709
1da177e4 1710/*
ce8e922c 1711 * Handling of buffer targets (buftargs).
1da177e4
LT
1712 */
1713
1714/*
430cbeb8
DC
1715 * Wait for any bufs with callbacks that have been submitted but have not yet
1716 * returned. These buffers will have an elevated hold count, so wait on those
1717 * while freeing all the buffers only held by the LRU.
1da177e4 1718 */
e80dfa19 1719static enum lru_status
10fb9ac1 1720xfs_buftarg_drain_rele(
e80dfa19 1721 struct list_head *item,
3f97b163 1722 struct list_lru_one *lru,
e80dfa19
DC
1723 spinlock_t *lru_lock,
1724 void *arg)
1725
1da177e4 1726{
e80dfa19 1727 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1728 struct list_head *dispose = arg;
430cbeb8 1729
e80dfa19 1730 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1731 /* need to wait, so skip it this pass */
10fb9ac1 1732 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
a4082357 1733 return LRU_SKIP;
1da177e4 1734 }
a4082357
DC
1735 if (!spin_trylock(&bp->b_lock))
1736 return LRU_SKIP;
e80dfa19 1737
a4082357
DC
1738 /*
1739 * clear the LRU reference count so the buffer doesn't get
1740 * ignored in xfs_buf_rele().
1741 */
1742 atomic_set(&bp->b_lru_ref, 0);
1743 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1744 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1745 spin_unlock(&bp->b_lock);
1746 return LRU_REMOVED;
1da177e4
LT
1747}
1748
8321ddb2
BF
1749/*
1750 * Wait for outstanding I/O on the buftarg to complete.
1751 */
e80dfa19 1752void
8321ddb2 1753xfs_buftarg_wait(
e80dfa19
DC
1754 struct xfs_buftarg *btp)
1755{
85bec546 1756 /*
9c7504aa
BF
1757 * First wait on the buftarg I/O count for all in-flight buffers to be
1758 * released. This is critical as new buffers do not make the LRU until
1759 * they are released.
1760 *
1761 * Next, flush the buffer workqueue to ensure all completion processing
1762 * has finished. Just waiting on buffer locks is not sufficient for
1763 * async IO as the reference count held over IO is not released until
1764 * after the buffer lock is dropped. Hence we need to ensure here that
1765 * all reference counts have been dropped before we start walking the
1766 * LRU list.
85bec546 1767 */
9c7504aa
BF
1768 while (percpu_counter_sum(&btp->bt_io_count))
1769 delay(100);
800b2694 1770 flush_workqueue(btp->bt_mount->m_buf_workqueue);
8321ddb2
BF
1771}
1772
1773void
1774xfs_buftarg_drain(
1775 struct xfs_buftarg *btp)
1776{
1777 LIST_HEAD(dispose);
1778 int loop = 0;
1779 bool write_fail = false;
1780
1781 xfs_buftarg_wait(btp);
85bec546 1782
a4082357
DC
1783 /* loop until there is nothing left on the lru list. */
1784 while (list_lru_count(&btp->bt_lru)) {
10fb9ac1 1785 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
a4082357
DC
1786 &dispose, LONG_MAX);
1787
1788 while (!list_empty(&dispose)) {
1789 struct xfs_buf *bp;
1790 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1791 list_del_init(&bp->b_lru);
ac8809f9 1792 if (bp->b_flags & XBF_WRITE_FAIL) {
61948b6f
BF
1793 write_fail = true;
1794 xfs_buf_alert_ratelimited(bp,
1795 "XFS: Corruption Alert",
c219b015 1796"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
ac8809f9
DC
1797 (long long)bp->b_bn);
1798 }
a4082357
DC
1799 xfs_buf_rele(bp);
1800 }
1801 if (loop++ != 0)
1802 delay(100);
1803 }
61948b6f
BF
1804
1805 /*
1806 * If one or more failed buffers were freed, that means dirty metadata
1807 * was thrown away. This should only ever happen after I/O completion
1808 * handling has elevated I/O error(s) to permanent failures and shuts
1809 * down the fs.
1810 */
1811 if (write_fail) {
1812 ASSERT(XFS_FORCED_SHUTDOWN(btp->bt_mount));
1813 xfs_alert(btp->bt_mount,
1814 "Please run xfs_repair to determine the extent of the problem.");
1815 }
e80dfa19
DC
1816}
1817
1818static enum lru_status
1819xfs_buftarg_isolate(
1820 struct list_head *item,
3f97b163 1821 struct list_lru_one *lru,
e80dfa19
DC
1822 spinlock_t *lru_lock,
1823 void *arg)
1824{
1825 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1826 struct list_head *dispose = arg;
1827
a4082357
DC
1828 /*
1829 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1830 * If we fail to get the lock, just skip it.
1831 */
1832 if (!spin_trylock(&bp->b_lock))
1833 return LRU_SKIP;
e80dfa19
DC
1834 /*
1835 * Decrement the b_lru_ref count unless the value is already
1836 * zero. If the value is already zero, we need to reclaim the
1837 * buffer, otherwise it gets another trip through the LRU.
1838 */
19957a18 1839 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1840 spin_unlock(&bp->b_lock);
e80dfa19 1841 return LRU_ROTATE;
a4082357 1842 }
e80dfa19 1843
a4082357 1844 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1845 list_lru_isolate_move(lru, item, dispose);
a4082357 1846 spin_unlock(&bp->b_lock);
e80dfa19
DC
1847 return LRU_REMOVED;
1848}
1849
addbda40 1850static unsigned long
e80dfa19 1851xfs_buftarg_shrink_scan(
ff57ab21 1852 struct shrinker *shrink,
1495f230 1853 struct shrink_control *sc)
a6867a68 1854{
ff57ab21
DC
1855 struct xfs_buftarg *btp = container_of(shrink,
1856 struct xfs_buftarg, bt_shrinker);
430cbeb8 1857 LIST_HEAD(dispose);
addbda40 1858 unsigned long freed;
430cbeb8 1859
503c358c
VD
1860 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1861 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1862
1863 while (!list_empty(&dispose)) {
e80dfa19 1864 struct xfs_buf *bp;
430cbeb8
DC
1865 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1866 list_del_init(&bp->b_lru);
1867 xfs_buf_rele(bp);
1868 }
1869
e80dfa19
DC
1870 return freed;
1871}
1872
addbda40 1873static unsigned long
e80dfa19
DC
1874xfs_buftarg_shrink_count(
1875 struct shrinker *shrink,
1876 struct shrink_control *sc)
1877{
1878 struct xfs_buftarg *btp = container_of(shrink,
1879 struct xfs_buftarg, bt_shrinker);
503c358c 1880 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1881}
1882
1da177e4
LT
1883void
1884xfs_free_buftarg(
b7963133 1885 struct xfs_buftarg *btp)
1da177e4 1886{
ff57ab21 1887 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1888 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1889 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1890 list_lru_destroy(&btp->bt_lru);
ff57ab21 1891
2291dab2 1892 xfs_blkdev_issue_flush(btp);
a6867a68 1893
f0e2d93c 1894 kmem_free(btp);
1da177e4
LT
1895}
1896
3fefdeee
ES
1897int
1898xfs_setsize_buftarg(
1da177e4 1899 xfs_buftarg_t *btp,
3fefdeee 1900 unsigned int sectorsize)
1da177e4 1901{
7c71ee78 1902 /* Set up metadata sector size info */
6da54179
ES
1903 btp->bt_meta_sectorsize = sectorsize;
1904 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1905
ce8e922c 1906 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1907 xfs_warn(btp->bt_mount,
a1c6f057
DM
1908 "Cannot set_blocksize to %u on device %pg",
1909 sectorsize, btp->bt_bdev);
2451337d 1910 return -EINVAL;
1da177e4
LT
1911 }
1912
7c71ee78
ES
1913 /* Set up device logical sector size mask */
1914 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1915 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1916
1da177e4
LT
1917 return 0;
1918}
1919
1920/*
3fefdeee
ES
1921 * When allocating the initial buffer target we have not yet
1922 * read in the superblock, so don't know what sized sectors
1923 * are being used at this early stage. Play safe.
ce8e922c 1924 */
1da177e4
LT
1925STATIC int
1926xfs_setsize_buftarg_early(
1927 xfs_buftarg_t *btp,
1928 struct block_device *bdev)
1929{
a96c4151 1930 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1931}
1932
1da177e4
LT
1933xfs_buftarg_t *
1934xfs_alloc_buftarg(
ebad861b 1935 struct xfs_mount *mp,
486aff5e
DW
1936 struct block_device *bdev,
1937 struct dax_device *dax_dev)
1da177e4
LT
1938{
1939 xfs_buftarg_t *btp;
1940
707e0dda 1941 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1da177e4 1942
ebad861b 1943 btp->bt_mount = mp;
ce8e922c
NS
1944 btp->bt_dev = bdev->bd_dev;
1945 btp->bt_bdev = bdev;
486aff5e 1946 btp->bt_daxdev = dax_dev;
0e6e847f 1947
f9bccfcc
BF
1948 /*
1949 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1950 * per 30 seconds so as to not spam logs too much on repeated errors.
1951 */
1952 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1953 DEFAULT_RATELIMIT_BURST);
1954
1da177e4 1955 if (xfs_setsize_buftarg_early(btp, bdev))
d210a987 1956 goto error_free;
5ca302c8
GC
1957
1958 if (list_lru_init(&btp->bt_lru))
d210a987 1959 goto error_free;
5ca302c8 1960
9c7504aa 1961 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 1962 goto error_lru;
9c7504aa 1963
e80dfa19
DC
1964 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1965 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1966 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1967 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
d210a987
MH
1968 if (register_shrinker(&btp->bt_shrinker))
1969 goto error_pcpu;
1da177e4
LT
1970 return btp;
1971
d210a987
MH
1972error_pcpu:
1973 percpu_counter_destroy(&btp->bt_io_count);
1974error_lru:
1975 list_lru_destroy(&btp->bt_lru);
1976error_free:
f0e2d93c 1977 kmem_free(btp);
1da177e4
LT
1978 return NULL;
1979}
1980
20e8a063
BF
1981/*
1982 * Cancel a delayed write list.
1983 *
1984 * Remove each buffer from the list, clear the delwri queue flag and drop the
1985 * associated buffer reference.
1986 */
1987void
1988xfs_buf_delwri_cancel(
1989 struct list_head *list)
1990{
1991 struct xfs_buf *bp;
1992
1993 while (!list_empty(list)) {
1994 bp = list_first_entry(list, struct xfs_buf, b_list);
1995
1996 xfs_buf_lock(bp);
1997 bp->b_flags &= ~_XBF_DELWRI_Q;
1998 list_del_init(&bp->b_list);
1999 xfs_buf_relse(bp);
2000 }
2001}
2002
1da177e4 2003/*
43ff2122
CH
2004 * Add a buffer to the delayed write list.
2005 *
2006 * This queues a buffer for writeout if it hasn't already been. Note that
2007 * neither this routine nor the buffer list submission functions perform
2008 * any internal synchronization. It is expected that the lists are thread-local
2009 * to the callers.
2010 *
2011 * Returns true if we queued up the buffer, or false if it already had
2012 * been on the buffer list.
1da177e4 2013 */
43ff2122 2014bool
ce8e922c 2015xfs_buf_delwri_queue(
43ff2122
CH
2016 struct xfs_buf *bp,
2017 struct list_head *list)
1da177e4 2018{
43ff2122 2019 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 2020 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 2021
43ff2122
CH
2022 /*
2023 * If the buffer is already marked delwri it already is queued up
2024 * by someone else for imediate writeout. Just ignore it in that
2025 * case.
2026 */
2027 if (bp->b_flags & _XBF_DELWRI_Q) {
2028 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2029 return false;
1da177e4 2030 }
1da177e4 2031
43ff2122 2032 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
2033
2034 /*
43ff2122
CH
2035 * If a buffer gets written out synchronously or marked stale while it
2036 * is on a delwri list we lazily remove it. To do this, the other party
2037 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2038 * It remains referenced and on the list. In a rare corner case it
2039 * might get readded to a delwri list after the synchronous writeout, in
2040 * which case we need just need to re-add the flag here.
d808f617 2041 */
43ff2122
CH
2042 bp->b_flags |= _XBF_DELWRI_Q;
2043 if (list_empty(&bp->b_list)) {
2044 atomic_inc(&bp->b_hold);
2045 list_add_tail(&bp->b_list, list);
585e6d88 2046 }
585e6d88 2047
43ff2122 2048 return true;
585e6d88
DC
2049}
2050
089716aa
DC
2051/*
2052 * Compare function is more complex than it needs to be because
2053 * the return value is only 32 bits and we are doing comparisons
2054 * on 64 bit values
2055 */
2056static int
2057xfs_buf_cmp(
4f0f586b
ST
2058 void *priv,
2059 const struct list_head *a,
2060 const struct list_head *b)
089716aa
DC
2061{
2062 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2063 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2064 xfs_daddr_t diff;
2065
f4b42421 2066 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
2067 if (diff < 0)
2068 return -1;
2069 if (diff > 0)
2070 return 1;
2071 return 0;
2072}
2073
26f1fe85 2074/*
e339dd8d
BF
2075 * Submit buffers for write. If wait_list is specified, the buffers are
2076 * submitted using sync I/O and placed on the wait list such that the caller can
2077 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2078 * at I/O completion time. In either case, buffers remain locked until I/O
2079 * completes and the buffer is released from the queue.
26f1fe85 2080 */
43ff2122 2081static int
26f1fe85 2082xfs_buf_delwri_submit_buffers(
43ff2122 2083 struct list_head *buffer_list,
26f1fe85 2084 struct list_head *wait_list)
1da177e4 2085{
43ff2122
CH
2086 struct xfs_buf *bp, *n;
2087 int pinned = 0;
26f1fe85 2088 struct blk_plug plug;
43ff2122 2089
26f1fe85 2090 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 2091
26f1fe85 2092 blk_start_plug(&plug);
43ff2122 2093 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 2094 if (!wait_list) {
43ff2122
CH
2095 if (xfs_buf_ispinned(bp)) {
2096 pinned++;
2097 continue;
2098 }
2099 if (!xfs_buf_trylock(bp))
2100 continue;
2101 } else {
2102 xfs_buf_lock(bp);
2103 }
978c7b2f 2104
43ff2122
CH
2105 /*
2106 * Someone else might have written the buffer synchronously or
2107 * marked it stale in the meantime. In that case only the
2108 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2109 * reference and remove it from the list here.
2110 */
2111 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2112 list_del_init(&bp->b_list);
2113 xfs_buf_relse(bp);
2114 continue;
2115 }
c9c12971 2116
43ff2122 2117 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 2118
cf53e99d 2119 /*
e339dd8d
BF
2120 * If we have a wait list, each buffer (and associated delwri
2121 * queue reference) transfers to it and is submitted
2122 * synchronously. Otherwise, drop the buffer from the delwri
2123 * queue and submit async.
cf53e99d 2124 */
b6983e80 2125 bp->b_flags &= ~_XBF_DELWRI_Q;
e339dd8d 2126 bp->b_flags |= XBF_WRITE;
26f1fe85 2127 if (wait_list) {
e339dd8d 2128 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 2129 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
2130 } else {
2131 bp->b_flags |= XBF_ASYNC;
ce8e922c 2132 list_del_init(&bp->b_list);
e339dd8d 2133 }
6af88cda 2134 __xfs_buf_submit(bp, false);
43ff2122
CH
2135 }
2136 blk_finish_plug(&plug);
1da177e4 2137
43ff2122 2138 return pinned;
1da177e4
LT
2139}
2140
2141/*
43ff2122
CH
2142 * Write out a buffer list asynchronously.
2143 *
2144 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2145 * out and not wait for I/O completion on any of the buffers. This interface
2146 * is only safely useable for callers that can track I/O completion by higher
2147 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2148 * function.
efc3289c
BF
2149 *
2150 * Note: this function will skip buffers it would block on, and in doing so
2151 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2152 * it is up to the caller to ensure that the buffer list is fully submitted or
2153 * cancelled appropriately when they are finished with the list. Failure to
2154 * cancel or resubmit the list until it is empty will result in leaked buffers
2155 * at unmount time.
1da177e4
LT
2156 */
2157int
43ff2122
CH
2158xfs_buf_delwri_submit_nowait(
2159 struct list_head *buffer_list)
1da177e4 2160{
26f1fe85 2161 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 2162}
1da177e4 2163
43ff2122
CH
2164/*
2165 * Write out a buffer list synchronously.
2166 *
2167 * This will take the @buffer_list, write all buffers out and wait for I/O
2168 * completion on all of the buffers. @buffer_list is consumed by the function,
2169 * so callers must have some other way of tracking buffers if they require such
2170 * functionality.
2171 */
2172int
2173xfs_buf_delwri_submit(
2174 struct list_head *buffer_list)
2175{
26f1fe85 2176 LIST_HEAD (wait_list);
43ff2122
CH
2177 int error = 0, error2;
2178 struct xfs_buf *bp;
1da177e4 2179
26f1fe85 2180 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 2181
43ff2122 2182 /* Wait for IO to complete. */
26f1fe85
DC
2183 while (!list_empty(&wait_list)) {
2184 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 2185
089716aa 2186 list_del_init(&bp->b_list);
cf53e99d 2187
e339dd8d
BF
2188 /*
2189 * Wait on the locked buffer, check for errors and unlock and
2190 * release the delwri queue reference.
2191 */
2192 error2 = xfs_buf_iowait(bp);
43ff2122
CH
2193 xfs_buf_relse(bp);
2194 if (!error)
2195 error = error2;
1da177e4
LT
2196 }
2197
43ff2122 2198 return error;
1da177e4
LT
2199}
2200
7912e7fe
BF
2201/*
2202 * Push a single buffer on a delwri queue.
2203 *
2204 * The purpose of this function is to submit a single buffer of a delwri queue
2205 * and return with the buffer still on the original queue. The waiting delwri
2206 * buffer submission infrastructure guarantees transfer of the delwri queue
2207 * buffer reference to a temporary wait list. We reuse this infrastructure to
2208 * transfer the buffer back to the original queue.
2209 *
2210 * Note the buffer transitions from the queued state, to the submitted and wait
2211 * listed state and back to the queued state during this call. The buffer
2212 * locking and queue management logic between _delwri_pushbuf() and
2213 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2214 * before returning.
2215 */
2216int
2217xfs_buf_delwri_pushbuf(
2218 struct xfs_buf *bp,
2219 struct list_head *buffer_list)
2220{
2221 LIST_HEAD (submit_list);
2222 int error;
2223
2224 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2225
2226 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2227
2228 /*
2229 * Isolate the buffer to a new local list so we can submit it for I/O
2230 * independently from the rest of the original list.
2231 */
2232 xfs_buf_lock(bp);
2233 list_move(&bp->b_list, &submit_list);
2234 xfs_buf_unlock(bp);
2235
2236 /*
2237 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2238 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2239 * bounce the buffer from a local wait list back to the original list
2240 * after I/O completion, reuse the original list as the wait list.
2241 */
2242 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2243
2244 /*
e339dd8d
BF
2245 * The buffer is now locked, under I/O and wait listed on the original
2246 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2247 * return with the buffer unlocked and on the original queue.
7912e7fe 2248 */
e339dd8d 2249 error = xfs_buf_iowait(bp);
7912e7fe
BF
2250 bp->b_flags |= _XBF_DELWRI_Q;
2251 xfs_buf_unlock(bp);
2252
2253 return error;
2254}
2255
04d8b284 2256int __init
ce8e922c 2257xfs_buf_init(void)
1da177e4 2258{
12eba65b
DC
2259 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2260 SLAB_HWCACHE_ALIGN |
2261 SLAB_RECLAIM_ACCOUNT |
2262 SLAB_MEM_SPREAD,
2263 NULL);
ce8e922c 2264 if (!xfs_buf_zone)
0b1b213f 2265 goto out;
04d8b284 2266
23ea4032 2267 return 0;
1da177e4 2268
0b1b213f 2269 out:
8758280f 2270 return -ENOMEM;
1da177e4
LT
2271}
2272
1da177e4 2273void
ce8e922c 2274xfs_buf_terminate(void)
1da177e4 2275{
aaf54eb8 2276 kmem_cache_destroy(xfs_buf_zone);
1da177e4 2277}
7561d27e
BF
2278
2279void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2280{
7561d27e
BF
2281 /*
2282 * Set the lru reference count to 0 based on the error injection tag.
2283 * This allows userspace to disrupt buffer caching for debug/testing
2284 * purposes.
2285 */
dbd329f1 2286 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2287 lru_ref = 0;
2288
2289 atomic_set(&bp->b_lru_ref, lru_ref);
2290}
8473fee3
BF
2291
2292/*
2293 * Verify an on-disk magic value against the magic value specified in the
2294 * verifier structure. The verifier magic is in disk byte order so the caller is
2295 * expected to pass the value directly from disk.
2296 */
2297bool
2298xfs_verify_magic(
2299 struct xfs_buf *bp,
15baadf7 2300 __be32 dmagic)
8473fee3 2301{
dbd329f1 2302 struct xfs_mount *mp = bp->b_mount;
8473fee3
BF
2303 int idx;
2304
2305 idx = xfs_sb_version_hascrc(&mp->m_sb);
14ed8688 2306 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
8473fee3
BF
2307 return false;
2308 return dmagic == bp->b_ops->magic[idx];
2309}
15baadf7
DW
2310/*
2311 * Verify an on-disk magic value against the magic value specified in the
2312 * verifier structure. The verifier magic is in disk byte order so the caller is
2313 * expected to pass the value directly from disk.
2314 */
2315bool
2316xfs_verify_magic16(
2317 struct xfs_buf *bp,
2318 __be16 dmagic)
2319{
dbd329f1 2320 struct xfs_mount *mp = bp->b_mount;
15baadf7
DW
2321 int idx;
2322
2323 idx = xfs_sb_version_hascrc(&mp->m_sb);
14ed8688 2324 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
15baadf7
DW
2325 return false;
2326 return dmagic == bp->b_ops->magic16[idx];
2327}