]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_buf.c
xfs: Remove slab init wrappers
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
3fcfab16 7#include <linux/backing-dev.h>
1da177e4 8
5467b34b 9#include "xfs_shared.h"
4fb6e8ad 10#include "xfs_format.h"
239880ef 11#include "xfs_log_format.h"
7fd36c44 12#include "xfs_trans_resv.h"
239880ef 13#include "xfs_sb.h"
b7963133 14#include "xfs_mount.h"
0b1b213f 15#include "xfs_trace.h"
239880ef 16#include "xfs_log.h"
e9e899a2 17#include "xfs_errortag.h"
7561d27e 18#include "xfs_error.h"
b7963133 19
7989cb8e 20static kmem_zone_t *xfs_buf_zone;
23ea4032 21
ce8e922c 22#define xb_to_gfp(flags) \
aa5c158e 23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 24
37fd1678
DC
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_wait_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
1da177e4 51
73c77e2c
JB
52static inline int
53xfs_buf_is_vmapped(
54 struct xfs_buf *bp)
55{
56 /*
57 * Return true if the buffer is vmapped.
58 *
611c9946
DC
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 62 */
611c9946 63 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
64}
65
66static inline int
67xfs_buf_vmap_len(
68 struct xfs_buf *bp)
69{
70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71}
72
9c7504aa
BF
73/*
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80 * in-flight buffers.
81 *
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
85 */
86static inline void
87xfs_buf_ioacct_inc(
88 struct xfs_buf *bp)
89{
63db7c81 90 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
91 return;
92
93 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
94 spin_lock(&bp->b_lock);
95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 percpu_counter_inc(&bp->b_target->bt_io_count);
98 }
99 spin_unlock(&bp->b_lock);
9c7504aa
BF
100}
101
102/*
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
105 */
106static inline void
63db7c81 107__xfs_buf_ioacct_dec(
9c7504aa
BF
108 struct xfs_buf *bp)
109{
95989c46 110 lockdep_assert_held(&bp->b_lock);
9c7504aa 111
63db7c81
BF
112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_dec(&bp->b_target->bt_io_count);
115 }
116}
117
118static inline void
119xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 spin_lock(&bp->b_lock);
123 __xfs_buf_ioacct_dec(bp);
124 spin_unlock(&bp->b_lock);
9c7504aa
BF
125}
126
430cbeb8
DC
127/*
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
132 *
133 * This prevents build-up of stale buffers on the LRU.
134 */
135void
136xfs_buf_stale(
137 struct xfs_buf *bp)
138{
43ff2122
CH
139 ASSERT(xfs_buf_islocked(bp));
140
430cbeb8 141 bp->b_flags |= XBF_STALE;
43ff2122
CH
142
143 /*
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
147 */
148 bp->b_flags &= ~_XBF_DELWRI_Q;
149
9c7504aa
BF
150 /*
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
155 */
a4082357 156 spin_lock(&bp->b_lock);
63db7c81
BF
157 __xfs_buf_ioacct_dec(bp);
158
a4082357
DC
159 atomic_set(&bp->b_lru_ref, 0);
160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 atomic_dec(&bp->b_hold);
163
430cbeb8 164 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 165 spin_unlock(&bp->b_lock);
430cbeb8 166}
1da177e4 167
3e85c868
DC
168static int
169xfs_buf_get_maps(
170 struct xfs_buf *bp,
171 int map_count)
172{
173 ASSERT(bp->b_maps == NULL);
174 bp->b_map_count = map_count;
175
176 if (map_count == 1) {
f4b42421 177 bp->b_maps = &bp->__b_map;
3e85c868
DC
178 return 0;
179 }
180
181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 KM_NOFS);
183 if (!bp->b_maps)
2451337d 184 return -ENOMEM;
3e85c868
DC
185 return 0;
186}
187
188/*
189 * Frees b_pages if it was allocated.
190 */
191static void
192xfs_buf_free_maps(
193 struct xfs_buf *bp)
194{
f4b42421 195 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
196 kmem_free(bp->b_maps);
197 bp->b_maps = NULL;
198 }
199}
200
0564501f 201static struct xfs_buf *
3e85c868 202_xfs_buf_alloc(
4347b9d7 203 struct xfs_buftarg *target,
3e85c868
DC
204 struct xfs_buf_map *map,
205 int nmaps,
ce8e922c 206 xfs_buf_flags_t flags)
1da177e4 207{
4347b9d7 208 struct xfs_buf *bp;
3e85c868
DC
209 int error;
210 int i;
4347b9d7 211
aa5c158e 212 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
213 if (unlikely(!bp))
214 return NULL;
215
1da177e4 216 /*
12bcb3f7
DC
217 * We don't want certain flags to appear in b_flags unless they are
218 * specifically set by later operations on the buffer.
1da177e4 219 */
611c9946 220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 221
ce8e922c 222 atomic_set(&bp->b_hold, 1);
430cbeb8 223 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 224 init_completion(&bp->b_iowait);
430cbeb8 225 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 226 INIT_LIST_HEAD(&bp->b_list);
643c8c05 227 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 228 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 229 spin_lock_init(&bp->b_lock);
ce8e922c 230 bp->b_target = target;
dbd329f1 231 bp->b_mount = target->bt_mount;
3e85c868 232 bp->b_flags = flags;
de1cbee4 233
1da177e4 234 /*
aa0e8833
DC
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
1da177e4
LT
237 * most cases but may be reset (e.g. XFS recovery).
238 */
3e85c868
DC
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
3e85c868 252
ce8e922c
NS
253 atomic_set(&bp->b_pin_count, 0);
254 init_waitqueue_head(&bp->b_waiters);
255
dbd329f1 256 XFS_STATS_INC(bp->b_mount, xb_create);
0b1b213f 257 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
258
259 return bp;
1da177e4
LT
260}
261
262/*
ce8e922c
NS
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
1da177e4
LT
265 */
266STATIC int
ce8e922c
NS
267_xfs_buf_get_pages(
268 xfs_buf_t *bp,
87937bf8 269 int page_count)
1da177e4
LT
270{
271 /* Make sure that we have a page list */
ce8e922c 272 if (bp->b_pages == NULL) {
ce8e922c
NS
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
1da177e4 276 } else {
ce8e922c 277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 278 page_count, KM_NOFS);
ce8e922c 279 if (bp->b_pages == NULL)
1da177e4
LT
280 return -ENOMEM;
281 }
ce8e922c 282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
283 }
284 return 0;
285}
286
287/*
ce8e922c 288 * Frees b_pages if it was allocated.
1da177e4
LT
289 */
290STATIC void
ce8e922c 291_xfs_buf_free_pages(
1da177e4
LT
292 xfs_buf_t *bp)
293{
ce8e922c 294 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 295 kmem_free(bp->b_pages);
3fc98b1a 296 bp->b_pages = NULL;
1da177e4
LT
297 }
298}
299
300/*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
b46fe825 304 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
305 * hashed and refcounted buffers
306 */
25a40957 307static void
ce8e922c 308xfs_buf_free(
1da177e4
LT
309 xfs_buf_t *bp)
310{
0b1b213f 311 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 312
430cbeb8
DC
313 ASSERT(list_empty(&bp->b_lru));
314
0e6e847f 315 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
316 uint i;
317
73c77e2c 318 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
1da177e4 321
948ecdb4
NS
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
0e6e847f 325 __free_page(page);
948ecdb4 326 }
0e6e847f
DC
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
3fc98b1a 329 _xfs_buf_free_pages(bp);
3e85c868 330 xfs_buf_free_maps(bp);
4347b9d7 331 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
332}
333
334/*
0e6e847f 335 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
336 */
337STATIC int
0e6e847f 338xfs_buf_allocate_memory(
1da177e4
LT
339 xfs_buf_t *bp,
340 uint flags)
341{
aa0e8833 342 size_t size;
1da177e4 343 size_t nbytes, offset;
ce8e922c 344 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 345 unsigned short page_count, i;
795cac72 346 xfs_off_t start, end;
1da177e4 347 int error;
3219e8cf
BD
348 xfs_km_flags_t kmflag_mask = 0;
349
350 /*
351 * assure zeroed buffer for non-read cases.
352 */
353 if (!(flags & XBF_READ)) {
354 kmflag_mask |= KM_ZERO;
355 gfp_mask |= __GFP_ZERO;
356 }
1da177e4 357
0e6e847f
DC
358 /*
359 * for buffers that are contained within a single page, just allocate
360 * the memory from the heap - there's no need for the complexity of
361 * page arrays to keep allocation down to order 0.
362 */
795cac72
DC
363 size = BBTOB(bp->b_length);
364 if (size < PAGE_SIZE) {
f8f9ee47 365 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
3219e8cf
BD
366 bp->b_addr = kmem_alloc_io(size, align_mask,
367 KM_NOFS | kmflag_mask);
0e6e847f
DC
368 if (!bp->b_addr) {
369 /* low memory - use alloc_page loop instead */
370 goto use_alloc_page;
371 }
372
795cac72 373 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
374 ((unsigned long)bp->b_addr & PAGE_MASK)) {
375 /* b_addr spans two pages - use alloc_page instead */
376 kmem_free(bp->b_addr);
377 bp->b_addr = NULL;
378 goto use_alloc_page;
379 }
380 bp->b_offset = offset_in_page(bp->b_addr);
381 bp->b_pages = bp->b_page_array;
f8f9ee47 382 bp->b_pages[0] = kmem_to_page(bp->b_addr);
0e6e847f 383 bp->b_page_count = 1;
611c9946 384 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
385 return 0;
386 }
387
388use_alloc_page:
f4b42421
MT
389 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
390 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 391 >> PAGE_SHIFT;
795cac72 392 page_count = end - start;
87937bf8 393 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
394 if (unlikely(error))
395 return error;
1da177e4 396
ce8e922c 397 offset = bp->b_offset;
0e6e847f 398 bp->b_flags |= _XBF_PAGES;
1da177e4 399
ce8e922c 400 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
401 struct page *page;
402 uint retries = 0;
0e6e847f
DC
403retry:
404 page = alloc_page(gfp_mask);
1da177e4 405 if (unlikely(page == NULL)) {
ce8e922c
NS
406 if (flags & XBF_READ_AHEAD) {
407 bp->b_page_count = i;
2451337d 408 error = -ENOMEM;
0e6e847f 409 goto out_free_pages;
1da177e4
LT
410 }
411
412 /*
413 * This could deadlock.
414 *
415 * But until all the XFS lowlevel code is revamped to
416 * handle buffer allocation failures we can't do much.
417 */
418 if (!(++retries % 100))
4f10700a 419 xfs_err(NULL,
5bf97b1c
TH
420 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
421 current->comm, current->pid,
34a622b2 422 __func__, gfp_mask);
1da177e4 423
dbd329f1 424 XFS_STATS_INC(bp->b_mount, xb_page_retries);
8aa7e847 425 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
426 goto retry;
427 }
428
dbd329f1 429 XFS_STATS_INC(bp->b_mount, xb_page_found);
1da177e4 430
0e6e847f 431 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 432 size -= nbytes;
ce8e922c 433 bp->b_pages[i] = page;
1da177e4
LT
434 offset = 0;
435 }
0e6e847f 436 return 0;
1da177e4 437
0e6e847f
DC
438out_free_pages:
439 for (i = 0; i < bp->b_page_count; i++)
440 __free_page(bp->b_pages[i]);
2aa6ba7b 441 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
442 return error;
443}
444
445/*
25985edc 446 * Map buffer into kernel address-space if necessary.
1da177e4
LT
447 */
448STATIC int
ce8e922c 449_xfs_buf_map_pages(
1da177e4
LT
450 xfs_buf_t *bp,
451 uint flags)
452{
0e6e847f 453 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 454 if (bp->b_page_count == 1) {
0e6e847f 455 /* A single page buffer is always mappable */
ce8e922c 456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
457 } else if (flags & XBF_UNMAPPED) {
458 bp->b_addr = NULL;
459 } else {
a19fb380 460 int retried = 0;
9ba1fb2c 461 unsigned nofs_flag;
ae687e58
DC
462
463 /*
cf085a1b 464 * vm_map_ram() will allocate auxiliary structures (e.g.
ae687e58
DC
465 * pagetables) with GFP_KERNEL, yet we are likely to be under
466 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 467 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
468 * memory reclaim re-entering the filesystem here and
469 * potentially deadlocking.
470 */
9ba1fb2c 471 nofs_flag = memalloc_nofs_save();
a19fb380
DC
472 do {
473 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
474 -1, PAGE_KERNEL);
475 if (bp->b_addr)
476 break;
477 vm_unmap_aliases();
478 } while (retried++ <= 1);
9ba1fb2c 479 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
480
481 if (!bp->b_addr)
1da177e4 482 return -ENOMEM;
ce8e922c 483 bp->b_addr += bp->b_offset;
1da177e4
LT
484 }
485
486 return 0;
487}
488
489/*
490 * Finding and Reading Buffers
491 */
6031e73a
LS
492static int
493_xfs_buf_obj_cmp(
494 struct rhashtable_compare_arg *arg,
495 const void *obj)
496{
497 const struct xfs_buf_map *map = arg->key;
498 const struct xfs_buf *bp = obj;
499
500 /*
501 * The key hashing in the lookup path depends on the key being the
502 * first element of the compare_arg, make sure to assert this.
503 */
504 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
505
506 if (bp->b_bn != map->bm_bn)
507 return 1;
508
509 if (unlikely(bp->b_length != map->bm_len)) {
510 /*
511 * found a block number match. If the range doesn't
512 * match, the only way this is allowed is if the buffer
513 * in the cache is stale and the transaction that made
514 * it stale has not yet committed. i.e. we are
515 * reallocating a busy extent. Skip this buffer and
516 * continue searching for an exact match.
517 */
518 ASSERT(bp->b_flags & XBF_STALE);
519 return 1;
520 }
521 return 0;
522}
523
524static const struct rhashtable_params xfs_buf_hash_params = {
525 .min_size = 32, /* empty AGs have minimal footprint */
526 .nelem_hint = 16,
527 .key_len = sizeof(xfs_daddr_t),
528 .key_offset = offsetof(struct xfs_buf, b_bn),
529 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
530 .automatic_shrinking = true,
531 .obj_cmpfn = _xfs_buf_obj_cmp,
532};
533
534int
535xfs_buf_hash_init(
536 struct xfs_perag *pag)
537{
538 spin_lock_init(&pag->pag_buf_lock);
539 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
540}
541
542void
543xfs_buf_hash_destroy(
544 struct xfs_perag *pag)
545{
546 rhashtable_destroy(&pag->pag_buf_hash);
547}
1da177e4
LT
548
549/*
b027d4c9
DC
550 * Look up a buffer in the buffer cache and return it referenced and locked
551 * in @found_bp.
552 *
553 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
554 * cache.
555 *
556 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
557 * -EAGAIN if we fail to lock it.
558 *
559 * Return values are:
560 * -EFSCORRUPTED if have been supplied with an invalid address
561 * -EAGAIN on trylock failure
562 * -ENOENT if we fail to find a match and @new_bp was NULL
563 * 0, with @found_bp:
564 * - @new_bp if we inserted it into the cache
565 * - the buffer we found and locked.
1da177e4 566 */
b027d4c9
DC
567static int
568xfs_buf_find(
e70b73f8 569 struct xfs_buftarg *btp,
3e85c868
DC
570 struct xfs_buf_map *map,
571 int nmaps,
ce8e922c 572 xfs_buf_flags_t flags,
b027d4c9
DC
573 struct xfs_buf *new_bp,
574 struct xfs_buf **found_bp)
1da177e4 575{
74f75a0c 576 struct xfs_perag *pag;
74f75a0c 577 xfs_buf_t *bp;
6031e73a 578 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 579 xfs_daddr_t eofs;
3e85c868 580 int i;
1da177e4 581
b027d4c9
DC
582 *found_bp = NULL;
583
3e85c868 584 for (i = 0; i < nmaps; i++)
6031e73a 585 cmap.bm_len += map[i].bm_len;
1da177e4
LT
586
587 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
588 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
589 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 590
10616b80
DC
591 /*
592 * Corrupted block numbers can get through to here, unfortunately, so we
593 * have to check that the buffer falls within the filesystem bounds.
594 */
595 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 596 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 597 xfs_alert(btp->bt_mount,
c219b015 598 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
6031e73a 599 __func__, cmap.bm_bn, eofs);
7bc0dc27 600 WARN_ON(1);
b027d4c9 601 return -EFSCORRUPTED;
10616b80
DC
602 }
603
74f75a0c 604 pag = xfs_perag_get(btp->bt_mount,
6031e73a 605 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 606
74f75a0c 607 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
608 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
609 xfs_buf_hash_params);
610 if (bp) {
611 atomic_inc(&bp->b_hold);
612 goto found;
1da177e4
LT
613 }
614
615 /* No match found */
b027d4c9 616 if (!new_bp) {
ff6d6af2 617 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
618 spin_unlock(&pag->pag_buf_lock);
619 xfs_perag_put(pag);
b027d4c9 620 return -ENOENT;
1da177e4 621 }
b027d4c9
DC
622
623 /* the buffer keeps the perag reference until it is freed */
624 new_bp->b_pag = pag;
625 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
626 xfs_buf_hash_params);
627 spin_unlock(&pag->pag_buf_lock);
628 *found_bp = new_bp;
629 return 0;
1da177e4
LT
630
631found:
74f75a0c
DC
632 spin_unlock(&pag->pag_buf_lock);
633 xfs_perag_put(pag);
1da177e4 634
0c842ad4
CH
635 if (!xfs_buf_trylock(bp)) {
636 if (flags & XBF_TRYLOCK) {
ce8e922c 637 xfs_buf_rele(bp);
ff6d6af2 638 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
b027d4c9 639 return -EAGAIN;
1da177e4 640 }
0c842ad4 641 xfs_buf_lock(bp);
ff6d6af2 642 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
643 }
644
0e6e847f
DC
645 /*
646 * if the buffer is stale, clear all the external state associated with
647 * it. We need to keep flags such as how we allocated the buffer memory
648 * intact here.
649 */
ce8e922c
NS
650 if (bp->b_flags & XBF_STALE) {
651 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 652 ASSERT(bp->b_iodone == NULL);
611c9946 653 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 654 bp->b_ops = NULL;
2f926587 655 }
0b1b213f
CH
656
657 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 658 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
b027d4c9
DC
659 *found_bp = bp;
660 return 0;
1da177e4
LT
661}
662
8925a3dc
DC
663struct xfs_buf *
664xfs_buf_incore(
665 struct xfs_buftarg *target,
666 xfs_daddr_t blkno,
667 size_t numblks,
668 xfs_buf_flags_t flags)
669{
b027d4c9
DC
670 struct xfs_buf *bp;
671 int error;
8925a3dc 672 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
b027d4c9
DC
673
674 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
675 if (error)
676 return NULL;
677 return bp;
8925a3dc
DC
678}
679
1da177e4 680/*
3815832a
DC
681 * Assembles a buffer covering the specified range. The code is optimised for
682 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
683 * more hits than misses.
1da177e4 684 */
3815832a 685struct xfs_buf *
6dde2707
DC
686xfs_buf_get_map(
687 struct xfs_buftarg *target,
688 struct xfs_buf_map *map,
689 int nmaps,
ce8e922c 690 xfs_buf_flags_t flags)
1da177e4 691{
3815832a
DC
692 struct xfs_buf *bp;
693 struct xfs_buf *new_bp;
0e6e847f 694 int error = 0;
1da177e4 695
b027d4c9
DC
696 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
697
698 switch (error) {
699 case 0:
700 /* cache hit */
3815832a 701 goto found;
b027d4c9
DC
702 case -EAGAIN:
703 /* cache hit, trylock failure, caller handles failure */
704 ASSERT(flags & XBF_TRYLOCK);
705 return NULL;
706 case -ENOENT:
707 /* cache miss, go for insert */
708 break;
709 case -EFSCORRUPTED:
710 default:
711 /*
712 * None of the higher layers understand failure types
713 * yet, so return NULL to signal a fatal lookup error.
714 */
715 return NULL;
716 }
3815832a 717
6dde2707 718 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 719 if (unlikely(!new_bp))
1da177e4
LT
720 return NULL;
721
fe2429b0
DC
722 error = xfs_buf_allocate_memory(new_bp, flags);
723 if (error) {
3e85c868 724 xfs_buf_free(new_bp);
fe2429b0
DC
725 return NULL;
726 }
727
b027d4c9
DC
728 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
729 if (error) {
fe2429b0 730 xfs_buf_free(new_bp);
3815832a
DC
731 return NULL;
732 }
733
fe2429b0
DC
734 if (bp != new_bp)
735 xfs_buf_free(new_bp);
1da177e4 736
3815832a 737found:
611c9946 738 if (!bp->b_addr) {
ce8e922c 739 error = _xfs_buf_map_pages(bp, flags);
1da177e4 740 if (unlikely(error)) {
4f10700a 741 xfs_warn(target->bt_mount,
08e96e1a 742 "%s: failed to map pagesn", __func__);
a8acad70
DC
743 xfs_buf_relse(bp);
744 return NULL;
1da177e4
LT
745 }
746 }
747
b79f4a1c
DC
748 /*
749 * Clear b_error if this is a lookup from a caller that doesn't expect
750 * valid data to be found in the buffer.
751 */
752 if (!(flags & XBF_READ))
753 xfs_buf_ioerror(bp, 0);
754
ff6d6af2 755 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 756 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 757 return bp;
1da177e4
LT
758}
759
5d765b97
CH
760STATIC int
761_xfs_buf_read(
762 xfs_buf_t *bp,
763 xfs_buf_flags_t flags)
764{
43ff2122 765 ASSERT(!(flags & XBF_WRITE));
f4b42421 766 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 767
43ff2122 768 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 769 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 770
6af88cda 771 return xfs_buf_submit(bp);
5d765b97
CH
772}
773
1aff5696 774/*
75d02303 775 * Reverify a buffer found in cache without an attached ->b_ops.
add46b3b 776 *
75d02303
BF
777 * If the caller passed an ops structure and the buffer doesn't have ops
778 * assigned, set the ops and use it to verify the contents. If verification
779 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
780 * already in XBF_DONE state on entry.
add46b3b 781 *
75d02303
BF
782 * Under normal operations, every in-core buffer is verified on read I/O
783 * completion. There are two scenarios that can lead to in-core buffers without
784 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
785 * filesystem, though these buffers are purged at the end of recovery. The
786 * other is online repair, which intentionally reads with a NULL buffer ops to
787 * run several verifiers across an in-core buffer in order to establish buffer
788 * type. If repair can't establish that, the buffer will be left in memory
789 * with NULL buffer ops.
1aff5696
DW
790 */
791int
75d02303 792xfs_buf_reverify(
1aff5696
DW
793 struct xfs_buf *bp,
794 const struct xfs_buf_ops *ops)
795{
796 ASSERT(bp->b_flags & XBF_DONE);
797 ASSERT(bp->b_error == 0);
798
799 if (!ops || bp->b_ops)
800 return 0;
801
802 bp->b_ops = ops;
803 bp->b_ops->verify_read(bp);
804 if (bp->b_error)
805 bp->b_flags &= ~XBF_DONE;
806 return bp->b_error;
807}
808
1da177e4 809xfs_buf_t *
6dde2707
DC
810xfs_buf_read_map(
811 struct xfs_buftarg *target,
812 struct xfs_buf_map *map,
813 int nmaps,
c3f8fc73 814 xfs_buf_flags_t flags,
1813dd64 815 const struct xfs_buf_ops *ops)
1da177e4 816{
6dde2707 817 struct xfs_buf *bp;
ce8e922c
NS
818
819 flags |= XBF_READ;
820
6dde2707 821 bp = xfs_buf_get_map(target, map, nmaps, flags);
1aff5696
DW
822 if (!bp)
823 return NULL;
0b1b213f 824
1aff5696
DW
825 trace_xfs_buf_read(bp, flags, _RET_IP_);
826
827 if (!(bp->b_flags & XBF_DONE)) {
828 XFS_STATS_INC(target->bt_mount, xb_get_read);
829 bp->b_ops = ops;
830 _xfs_buf_read(bp, flags);
831 return bp;
832 }
833
75d02303 834 xfs_buf_reverify(bp, ops);
1aff5696
DW
835
836 if (flags & XBF_ASYNC) {
837 /*
838 * Read ahead call which is already satisfied,
839 * drop the buffer
840 */
841 xfs_buf_relse(bp);
842 return NULL;
1da177e4
LT
843 }
844
1aff5696
DW
845 /* We do not want read in the flags */
846 bp->b_flags &= ~XBF_READ;
847 ASSERT(bp->b_ops != NULL || ops == NULL);
ce8e922c 848 return bp;
1da177e4
LT
849}
850
1da177e4 851/*
ce8e922c
NS
852 * If we are not low on memory then do the readahead in a deadlock
853 * safe manner.
1da177e4
LT
854 */
855void
6dde2707
DC
856xfs_buf_readahead_map(
857 struct xfs_buftarg *target,
858 struct xfs_buf_map *map,
c3f8fc73 859 int nmaps,
1813dd64 860 const struct xfs_buf_ops *ops)
1da177e4 861{
efa7c9f9 862 if (bdi_read_congested(target->bt_bdev->bd_bdi))
1da177e4
LT
863 return;
864
6dde2707 865 xfs_buf_read_map(target, map, nmaps,
1813dd64 866 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
867}
868
5adc94c2
DC
869/*
870 * Read an uncached buffer from disk. Allocates and returns a locked
871 * buffer containing the disk contents or nothing.
872 */
ba372674 873int
5adc94c2 874xfs_buf_read_uncached(
5adc94c2
DC
875 struct xfs_buftarg *target,
876 xfs_daddr_t daddr,
e70b73f8 877 size_t numblks,
c3f8fc73 878 int flags,
ba372674 879 struct xfs_buf **bpp,
1813dd64 880 const struct xfs_buf_ops *ops)
5adc94c2 881{
eab4e633 882 struct xfs_buf *bp;
5adc94c2 883
ba372674
DC
884 *bpp = NULL;
885
e70b73f8 886 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 887 if (!bp)
ba372674 888 return -ENOMEM;
5adc94c2
DC
889
890 /* set up the buffer for a read IO */
3e85c868 891 ASSERT(bp->b_map_count == 1);
ba372674 892 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 893 bp->b_maps[0].bm_bn = daddr;
cbb7baab 894 bp->b_flags |= XBF_READ;
1813dd64 895 bp->b_ops = ops;
5adc94c2 896
6af88cda 897 xfs_buf_submit(bp);
ba372674
DC
898 if (bp->b_error) {
899 int error = bp->b_error;
83a0adc3 900 xfs_buf_relse(bp);
ba372674 901 return error;
83a0adc3 902 }
ba372674
DC
903
904 *bpp = bp;
905 return 0;
1da177e4
LT
906}
907
1da177e4 908xfs_buf_t *
686865f7
DC
909xfs_buf_get_uncached(
910 struct xfs_buftarg *target,
e70b73f8 911 size_t numblks,
686865f7 912 int flags)
1da177e4 913{
e70b73f8 914 unsigned long page_count;
1fa40b01 915 int error, i;
3e85c868
DC
916 struct xfs_buf *bp;
917 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 918
c891c30a
BF
919 /* flags might contain irrelevant bits, pass only what we care about */
920 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1da177e4
LT
921 if (unlikely(bp == NULL))
922 goto fail;
1da177e4 923
e70b73f8 924 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 925 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 926 if (error)
1da177e4
LT
927 goto fail_free_buf;
928
1fa40b01 929 for (i = 0; i < page_count; i++) {
686865f7 930 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
931 if (!bp->b_pages[i])
932 goto fail_free_mem;
1da177e4 933 }
1fa40b01 934 bp->b_flags |= _XBF_PAGES;
1da177e4 935
611c9946 936 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 937 if (unlikely(error)) {
4f10700a 938 xfs_warn(target->bt_mount,
08e96e1a 939 "%s: failed to map pages", __func__);
1da177e4 940 goto fail_free_mem;
1fa40b01 941 }
1da177e4 942
686865f7 943 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 944 return bp;
1fa40b01 945
1da177e4 946 fail_free_mem:
1fa40b01
CH
947 while (--i >= 0)
948 __free_page(bp->b_pages[i]);
ca165b88 949 _xfs_buf_free_pages(bp);
1da177e4 950 fail_free_buf:
3e85c868 951 xfs_buf_free_maps(bp);
4347b9d7 952 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
953 fail:
954 return NULL;
955}
956
957/*
1da177e4
LT
958 * Increment reference count on buffer, to hold the buffer concurrently
959 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
960 * Must hold the buffer already to call this function.
961 */
962void
ce8e922c
NS
963xfs_buf_hold(
964 xfs_buf_t *bp)
1da177e4 965{
0b1b213f 966 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 967 atomic_inc(&bp->b_hold);
1da177e4
LT
968}
969
970/*
9c7504aa
BF
971 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
972 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
973 */
974void
ce8e922c
NS
975xfs_buf_rele(
976 xfs_buf_t *bp)
1da177e4 977{
74f75a0c 978 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
979 bool release;
980 bool freebuf = false;
1da177e4 981
0b1b213f 982 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 983
74f75a0c 984 if (!pag) {
430cbeb8 985 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
986 if (atomic_dec_and_test(&bp->b_hold)) {
987 xfs_buf_ioacct_dec(bp);
fad3aa1e 988 xfs_buf_free(bp);
9c7504aa 989 }
fad3aa1e
NS
990 return;
991 }
992
3790689f 993 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 994
37fd1678
DC
995 /*
996 * We grab the b_lock here first to serialise racing xfs_buf_rele()
997 * calls. The pag_buf_lock being taken on the last reference only
998 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
999 * to last reference we drop here is not serialised against the last
1000 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1001 * first, the last "release" reference can win the race to the lock and
1002 * free the buffer before the second-to-last reference is processed,
1003 * leading to a use-after-free scenario.
1004 */
9c7504aa 1005 spin_lock(&bp->b_lock);
37fd1678 1006 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
9c7504aa
BF
1007 if (!release) {
1008 /*
1009 * Drop the in-flight state if the buffer is already on the LRU
1010 * and it holds the only reference. This is racy because we
1011 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1012 * ensures the decrement occurs only once per-buf.
1013 */
1014 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 1015 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1016 goto out_unlock;
1017 }
1018
1019 /* the last reference has been dropped ... */
63db7c81 1020 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1021 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1022 /*
1023 * If the buffer is added to the LRU take a new reference to the
1024 * buffer for the LRU and clear the (now stale) dispose list
1025 * state flag
1026 */
1027 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1028 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1029 atomic_inc(&bp->b_hold);
1da177e4 1030 }
9c7504aa
BF
1031 spin_unlock(&pag->pag_buf_lock);
1032 } else {
1033 /*
1034 * most of the time buffers will already be removed from the
1035 * LRU, so optimise that case by checking for the
1036 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1037 * was on was the disposal list
1038 */
1039 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1040 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1041 } else {
1042 ASSERT(list_empty(&bp->b_lru));
1da177e4 1043 }
9c7504aa
BF
1044
1045 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1046 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1047 xfs_buf_hash_params);
9c7504aa
BF
1048 spin_unlock(&pag->pag_buf_lock);
1049 xfs_perag_put(pag);
1050 freebuf = true;
1da177e4 1051 }
9c7504aa
BF
1052
1053out_unlock:
1054 spin_unlock(&bp->b_lock);
1055
1056 if (freebuf)
1057 xfs_buf_free(bp);
1da177e4
LT
1058}
1059
1060
1061/*
0e6e847f 1062 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1063 *
1064 * If we come across a stale, pinned, locked buffer, we know that we are
1065 * being asked to lock a buffer that has been reallocated. Because it is
1066 * pinned, we know that the log has not been pushed to disk and hence it
1067 * will still be locked. Rather than continuing to have trylock attempts
1068 * fail until someone else pushes the log, push it ourselves before
1069 * returning. This means that the xfsaild will not get stuck trying
1070 * to push on stale inode buffers.
1da177e4
LT
1071 */
1072int
0c842ad4
CH
1073xfs_buf_trylock(
1074 struct xfs_buf *bp)
1da177e4
LT
1075{
1076 int locked;
1077
ce8e922c 1078 locked = down_trylock(&bp->b_sema) == 0;
fa6c668d 1079 if (locked)
479c6412 1080 trace_xfs_buf_trylock(bp, _RET_IP_);
fa6c668d 1081 else
479c6412 1082 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
0c842ad4 1083 return locked;
1da177e4 1084}
1da177e4
LT
1085
1086/*
0e6e847f 1087 * Lock a buffer object.
ed3b4d6c
DC
1088 *
1089 * If we come across a stale, pinned, locked buffer, we know that we
1090 * are being asked to lock a buffer that has been reallocated. Because
1091 * it is pinned, we know that the log has not been pushed to disk and
1092 * hence it will still be locked. Rather than sleeping until someone
1093 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1094 */
ce8e922c
NS
1095void
1096xfs_buf_lock(
0c842ad4 1097 struct xfs_buf *bp)
1da177e4 1098{
0b1b213f
CH
1099 trace_xfs_buf_lock(bp, _RET_IP_);
1100
ed3b4d6c 1101 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
dbd329f1 1102 xfs_log_force(bp->b_mount, 0);
ce8e922c 1103 down(&bp->b_sema);
0b1b213f
CH
1104
1105 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1106}
1107
1da177e4 1108void
ce8e922c 1109xfs_buf_unlock(
0c842ad4 1110 struct xfs_buf *bp)
1da177e4 1111{
20e8a063
BF
1112 ASSERT(xfs_buf_islocked(bp));
1113
ce8e922c 1114 up(&bp->b_sema);
0b1b213f 1115 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1116}
1117
ce8e922c
NS
1118STATIC void
1119xfs_buf_wait_unpin(
1120 xfs_buf_t *bp)
1da177e4
LT
1121{
1122 DECLARE_WAITQUEUE (wait, current);
1123
ce8e922c 1124 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1125 return;
1126
ce8e922c 1127 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1128 for (;;) {
1129 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1130 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1131 break;
7eaceacc 1132 io_schedule();
1da177e4 1133 }
ce8e922c 1134 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1135 set_current_state(TASK_RUNNING);
1136}
1137
1138/*
1139 * Buffer Utility Routines
1140 */
1141
e8aaba9a
DC
1142void
1143xfs_buf_ioend(
1144 struct xfs_buf *bp)
1da177e4 1145{
e8aaba9a
DC
1146 bool read = bp->b_flags & XBF_READ;
1147
1148 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1149
1150 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1151
61be9c52
DC
1152 /*
1153 * Pull in IO completion errors now. We are guaranteed to be running
1154 * single threaded, so we don't need the lock to read b_io_error.
1155 */
1156 if (!bp->b_error && bp->b_io_error)
1157 xfs_buf_ioerror(bp, bp->b_io_error);
1158
e8aaba9a
DC
1159 /* Only validate buffers that were read without errors */
1160 if (read && !bp->b_error && bp->b_ops) {
1161 ASSERT(!bp->b_iodone);
1813dd64 1162 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1163 }
1164
1165 if (!bp->b_error)
1166 bp->b_flags |= XBF_DONE;
1da177e4 1167
80f6c29d 1168 if (bp->b_iodone)
ce8e922c
NS
1169 (*(bp->b_iodone))(bp);
1170 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1171 xfs_buf_relse(bp);
595bff75 1172 else
1813dd64 1173 complete(&bp->b_iowait);
1da177e4
LT
1174}
1175
e8aaba9a
DC
1176static void
1177xfs_buf_ioend_work(
1178 struct work_struct *work)
1da177e4 1179{
e8aaba9a 1180 struct xfs_buf *bp =
b29c70f5 1181 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1182
e8aaba9a
DC
1183 xfs_buf_ioend(bp);
1184}
1da177e4 1185
211fe1a4 1186static void
e8aaba9a
DC
1187xfs_buf_ioend_async(
1188 struct xfs_buf *bp)
1189{
b29c70f5 1190 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
dbd329f1 1191 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1da177e4
LT
1192}
1193
1da177e4 1194void
31ca03c9 1195__xfs_buf_ioerror(
ce8e922c 1196 xfs_buf_t *bp,
31ca03c9
DW
1197 int error,
1198 xfs_failaddr_t failaddr)
1da177e4 1199{
2451337d
DC
1200 ASSERT(error <= 0 && error >= -1000);
1201 bp->b_error = error;
31ca03c9 1202 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1203}
1204
901796af
CH
1205void
1206xfs_buf_ioerror_alert(
1207 struct xfs_buf *bp,
1208 const char *func)
1209{
dbd329f1 1210 xfs_alert(bp->b_mount,
c219b015
DW
1211"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1212 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1213 -bp->b_error);
901796af
CH
1214}
1215
a2dcf5df
CH
1216int
1217xfs_bwrite(
1218 struct xfs_buf *bp)
1219{
1220 int error;
1221
1222 ASSERT(xfs_buf_islocked(bp));
1223
1224 bp->b_flags |= XBF_WRITE;
27187754
DC
1225 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1226 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1227
6af88cda 1228 error = xfs_buf_submit(bp);
dbd329f1
CH
1229 if (error)
1230 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
a2dcf5df
CH
1231 return error;
1232}
1233
9bdd9bd6 1234static void
ce8e922c 1235xfs_buf_bio_end_io(
4246a0b6 1236 struct bio *bio)
1da177e4 1237{
9bdd9bd6 1238 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1239
37eb17e6
DC
1240 /*
1241 * don't overwrite existing errors - otherwise we can lose errors on
1242 * buffers that require multiple bios to complete.
1243 */
4e4cbee9
CH
1244 if (bio->bi_status) {
1245 int error = blk_status_to_errno(bio->bi_status);
1246
1247 cmpxchg(&bp->b_io_error, 0, error);
1248 }
1da177e4 1249
37eb17e6 1250 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1251 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1252
e8aaba9a
DC
1253 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1254 xfs_buf_ioend_async(bp);
1da177e4 1255 bio_put(bio);
1da177e4
LT
1256}
1257
3e85c868
DC
1258static void
1259xfs_buf_ioapply_map(
1260 struct xfs_buf *bp,
1261 int map,
1262 int *buf_offset,
1263 int *count,
2123ef85 1264 int op)
1da177e4 1265{
3e85c868
DC
1266 int page_index;
1267 int total_nr_pages = bp->b_page_count;
1268 int nr_pages;
1269 struct bio *bio;
1270 sector_t sector = bp->b_maps[map].bm_bn;
1271 int size;
1272 int offset;
1da177e4 1273
3e85c868
DC
1274 /* skip the pages in the buffer before the start offset */
1275 page_index = 0;
1276 offset = *buf_offset;
1277 while (offset >= PAGE_SIZE) {
1278 page_index++;
1279 offset -= PAGE_SIZE;
f538d4da
CH
1280 }
1281
3e85c868
DC
1282 /*
1283 * Limit the IO size to the length of the current vector, and update the
1284 * remaining IO count for the next time around.
1285 */
1286 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1287 *count -= size;
1288 *buf_offset += size;
34951f5c 1289
1da177e4 1290next_chunk:
ce8e922c 1291 atomic_inc(&bp->b_io_remaining);
c908e380 1292 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1da177e4
LT
1293
1294 bio = bio_alloc(GFP_NOIO, nr_pages);
74d46992 1295 bio_set_dev(bio, bp->b_target->bt_bdev);
4f024f37 1296 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1297 bio->bi_end_io = xfs_buf_bio_end_io;
1298 bio->bi_private = bp;
2123ef85 1299 bio->bi_opf = op;
0e6e847f 1300
3e85c868 1301 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1302 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1303
1304 if (nbytes > size)
1305 nbytes = size;
1306
3e85c868
DC
1307 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1308 offset);
ce8e922c 1309 if (rbytes < nbytes)
1da177e4
LT
1310 break;
1311
1312 offset = 0;
aa0e8833 1313 sector += BTOBB(nbytes);
1da177e4
LT
1314 size -= nbytes;
1315 total_nr_pages--;
1316 }
1317
4f024f37 1318 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1319 if (xfs_buf_is_vmapped(bp)) {
1320 flush_kernel_vmap_range(bp->b_addr,
1321 xfs_buf_vmap_len(bp));
1322 }
4e49ea4a 1323 submit_bio(bio);
1da177e4
LT
1324 if (size)
1325 goto next_chunk;
1326 } else {
37eb17e6
DC
1327 /*
1328 * This is guaranteed not to be the last io reference count
595bff75 1329 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1330 */
1331 atomic_dec(&bp->b_io_remaining);
2451337d 1332 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1333 bio_put(bio);
1da177e4 1334 }
3e85c868
DC
1335
1336}
1337
1338STATIC void
1339_xfs_buf_ioapply(
1340 struct xfs_buf *bp)
1341{
1342 struct blk_plug plug;
50bfcd0c 1343 int op;
3e85c868
DC
1344 int offset;
1345 int size;
1346 int i;
1347
c163f9a1
DC
1348 /*
1349 * Make sure we capture only current IO errors rather than stale errors
1350 * left over from previous use of the buffer (e.g. failed readahead).
1351 */
1352 bp->b_error = 0;
1353
3e85c868 1354 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1355 op = REQ_OP_WRITE;
1813dd64
DC
1356
1357 /*
1358 * Run the write verifier callback function if it exists. If
1359 * this function fails it will mark the buffer with an error and
1360 * the IO should not be dispatched.
1361 */
1362 if (bp->b_ops) {
1363 bp->b_ops->verify_write(bp);
1364 if (bp->b_error) {
dbd329f1 1365 xfs_force_shutdown(bp->b_mount,
1813dd64
DC
1366 SHUTDOWN_CORRUPT_INCORE);
1367 return;
1368 }
400b9d88 1369 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
dbd329f1 1370 struct xfs_mount *mp = bp->b_mount;
400b9d88
DC
1371
1372 /*
1373 * non-crc filesystems don't attach verifiers during
1374 * log recovery, so don't warn for such filesystems.
1375 */
1376 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1377 xfs_warn(mp,
c219b015 1378 "%s: no buf ops on daddr 0x%llx len %d",
400b9d88 1379 __func__, bp->b_bn, bp->b_length);
9c712a13
DW
1380 xfs_hex_dump(bp->b_addr,
1381 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1382 dump_stack();
1383 }
1813dd64 1384 }
3e85c868 1385 } else {
50bfcd0c 1386 op = REQ_OP_READ;
2123ef85
CH
1387 if (bp->b_flags & XBF_READ_AHEAD)
1388 op |= REQ_RAHEAD;
3e85c868
DC
1389 }
1390
1391 /* we only use the buffer cache for meta-data */
2123ef85 1392 op |= REQ_META;
3e85c868
DC
1393
1394 /*
1395 * Walk all the vectors issuing IO on them. Set up the initial offset
1396 * into the buffer and the desired IO size before we start -
1397 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1398 * subsequent call.
1399 */
1400 offset = bp->b_offset;
8124b9b6 1401 size = BBTOB(bp->b_length);
3e85c868
DC
1402 blk_start_plug(&plug);
1403 for (i = 0; i < bp->b_map_count; i++) {
2123ef85 1404 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
3e85c868
DC
1405 if (bp->b_error)
1406 break;
1407 if (size <= 0)
1408 break; /* all done */
1409 }
1410 blk_finish_plug(&plug);
1da177e4
LT
1411}
1412
595bff75 1413/*
bb00b6f1 1414 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1415 */
eaebb515 1416static int
bb00b6f1 1417xfs_buf_iowait(
595bff75 1418 struct xfs_buf *bp)
1da177e4 1419{
bb00b6f1
BF
1420 ASSERT(!(bp->b_flags & XBF_ASYNC));
1421
1422 trace_xfs_buf_iowait(bp, _RET_IP_);
1423 wait_for_completion(&bp->b_iowait);
1424 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1425
1426 return bp->b_error;
1427}
1428
1429/*
1430 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1431 * the buffer lock ownership and the current reference to the IO. It is not
1432 * safe to reference the buffer after a call to this function unless the caller
1433 * holds an additional reference itself.
1434 */
1435int
1436__xfs_buf_submit(
1437 struct xfs_buf *bp,
1438 bool wait)
1439{
1440 int error = 0;
1441
595bff75 1442 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1443
43ff2122 1444 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1445
1446 /* on shutdown we stale and complete the buffer immediately */
dbd329f1 1447 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
595bff75
DC
1448 xfs_buf_ioerror(bp, -EIO);
1449 bp->b_flags &= ~XBF_DONE;
1450 xfs_buf_stale(bp);
465fa17f 1451 xfs_buf_ioend(bp);
eaebb515 1452 return -EIO;
595bff75 1453 }
1da177e4 1454
bb00b6f1
BF
1455 /*
1456 * Grab a reference so the buffer does not go away underneath us. For
1457 * async buffers, I/O completion drops the callers reference, which
1458 * could occur before submission returns.
1459 */
1460 xfs_buf_hold(bp);
1461
375ec69d 1462 if (bp->b_flags & XBF_WRITE)
ce8e922c 1463 xfs_buf_wait_unpin(bp);
e11bb805 1464
61be9c52
DC
1465 /* clear the internal error state to avoid spurious errors */
1466 bp->b_io_error = 0;
1467
8d6c1210 1468 /*
e11bb805
DC
1469 * Set the count to 1 initially, this will stop an I/O completion
1470 * callout which happens before we have started all the I/O from calling
1471 * xfs_buf_ioend too early.
1da177e4 1472 */
ce8e922c 1473 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1474 if (bp->b_flags & XBF_ASYNC)
1475 xfs_buf_ioacct_inc(bp);
ce8e922c 1476 _xfs_buf_ioapply(bp);
e11bb805 1477
8d6c1210 1478 /*
595bff75
DC
1479 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1480 * reference we took above. If we drop it to zero, run completion so
1481 * that we don't return to the caller with completion still pending.
8d6c1210 1482 */
e8aaba9a 1483 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1484 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1485 xfs_buf_ioend(bp);
1486 else
1487 xfs_buf_ioend_async(bp);
1488 }
1da177e4 1489
6af88cda
BF
1490 if (wait)
1491 error = xfs_buf_iowait(bp);
bb00b6f1 1492
595bff75 1493 /*
6af88cda
BF
1494 * Release the hold that keeps the buffer referenced for the entire
1495 * I/O. Note that if the buffer is async, it is not safe to reference
1496 * after this release.
595bff75
DC
1497 */
1498 xfs_buf_rele(bp);
1499 return error;
1da177e4
LT
1500}
1501
88ee2df7 1502void *
ce8e922c 1503xfs_buf_offset(
88ee2df7 1504 struct xfs_buf *bp,
1da177e4
LT
1505 size_t offset)
1506{
1507 struct page *page;
1508
611c9946 1509 if (bp->b_addr)
62926044 1510 return bp->b_addr + offset;
1da177e4 1511
ce8e922c 1512 offset += bp->b_offset;
0e6e847f 1513 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1514 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1515}
1516
1da177e4 1517void
f9a196ee
CH
1518xfs_buf_zero(
1519 struct xfs_buf *bp,
1520 size_t boff,
1521 size_t bsize)
1da177e4 1522{
795cac72 1523 size_t bend;
1da177e4
LT
1524
1525 bend = boff + bsize;
1526 while (boff < bend) {
795cac72
DC
1527 struct page *page;
1528 int page_index, page_offset, csize;
1529
1530 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1531 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1532 page = bp->b_pages[page_index];
1533 csize = min_t(size_t, PAGE_SIZE - page_offset,
8124b9b6 1534 BBTOB(bp->b_length) - boff);
1da177e4 1535
795cac72 1536 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4 1537
f9a196ee 1538 memset(page_address(page) + page_offset, 0, csize);
1da177e4
LT
1539
1540 boff += csize;
1da177e4
LT
1541 }
1542}
1543
1544/*
ce8e922c 1545 * Handling of buffer targets (buftargs).
1da177e4
LT
1546 */
1547
1548/*
430cbeb8
DC
1549 * Wait for any bufs with callbacks that have been submitted but have not yet
1550 * returned. These buffers will have an elevated hold count, so wait on those
1551 * while freeing all the buffers only held by the LRU.
1da177e4 1552 */
e80dfa19
DC
1553static enum lru_status
1554xfs_buftarg_wait_rele(
1555 struct list_head *item,
3f97b163 1556 struct list_lru_one *lru,
e80dfa19
DC
1557 spinlock_t *lru_lock,
1558 void *arg)
1559
1da177e4 1560{
e80dfa19 1561 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1562 struct list_head *dispose = arg;
430cbeb8 1563
e80dfa19 1564 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1565 /* need to wait, so skip it this pass */
e80dfa19 1566 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1567 return LRU_SKIP;
1da177e4 1568 }
a4082357
DC
1569 if (!spin_trylock(&bp->b_lock))
1570 return LRU_SKIP;
e80dfa19 1571
a4082357
DC
1572 /*
1573 * clear the LRU reference count so the buffer doesn't get
1574 * ignored in xfs_buf_rele().
1575 */
1576 atomic_set(&bp->b_lru_ref, 0);
1577 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1578 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1579 spin_unlock(&bp->b_lock);
1580 return LRU_REMOVED;
1da177e4
LT
1581}
1582
e80dfa19
DC
1583void
1584xfs_wait_buftarg(
1585 struct xfs_buftarg *btp)
1586{
a4082357
DC
1587 LIST_HEAD(dispose);
1588 int loop = 0;
1589
85bec546 1590 /*
9c7504aa
BF
1591 * First wait on the buftarg I/O count for all in-flight buffers to be
1592 * released. This is critical as new buffers do not make the LRU until
1593 * they are released.
1594 *
1595 * Next, flush the buffer workqueue to ensure all completion processing
1596 * has finished. Just waiting on buffer locks is not sufficient for
1597 * async IO as the reference count held over IO is not released until
1598 * after the buffer lock is dropped. Hence we need to ensure here that
1599 * all reference counts have been dropped before we start walking the
1600 * LRU list.
85bec546 1601 */
9c7504aa
BF
1602 while (percpu_counter_sum(&btp->bt_io_count))
1603 delay(100);
800b2694 1604 flush_workqueue(btp->bt_mount->m_buf_workqueue);
85bec546 1605
a4082357
DC
1606 /* loop until there is nothing left on the lru list. */
1607 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1608 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1609 &dispose, LONG_MAX);
1610
1611 while (!list_empty(&dispose)) {
1612 struct xfs_buf *bp;
1613 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1614 list_del_init(&bp->b_lru);
ac8809f9
DC
1615 if (bp->b_flags & XBF_WRITE_FAIL) {
1616 xfs_alert(btp->bt_mount,
c219b015 1617"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
ac8809f9 1618 (long long)bp->b_bn);
f41febd2
JP
1619 xfs_alert(btp->bt_mount,
1620"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1621 }
a4082357
DC
1622 xfs_buf_rele(bp);
1623 }
1624 if (loop++ != 0)
1625 delay(100);
1626 }
e80dfa19
DC
1627}
1628
1629static enum lru_status
1630xfs_buftarg_isolate(
1631 struct list_head *item,
3f97b163 1632 struct list_lru_one *lru,
e80dfa19
DC
1633 spinlock_t *lru_lock,
1634 void *arg)
1635{
1636 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1637 struct list_head *dispose = arg;
1638
a4082357
DC
1639 /*
1640 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1641 * If we fail to get the lock, just skip it.
1642 */
1643 if (!spin_trylock(&bp->b_lock))
1644 return LRU_SKIP;
e80dfa19
DC
1645 /*
1646 * Decrement the b_lru_ref count unless the value is already
1647 * zero. If the value is already zero, we need to reclaim the
1648 * buffer, otherwise it gets another trip through the LRU.
1649 */
19957a18 1650 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1651 spin_unlock(&bp->b_lock);
e80dfa19 1652 return LRU_ROTATE;
a4082357 1653 }
e80dfa19 1654
a4082357 1655 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1656 list_lru_isolate_move(lru, item, dispose);
a4082357 1657 spin_unlock(&bp->b_lock);
e80dfa19
DC
1658 return LRU_REMOVED;
1659}
1660
addbda40 1661static unsigned long
e80dfa19 1662xfs_buftarg_shrink_scan(
ff57ab21 1663 struct shrinker *shrink,
1495f230 1664 struct shrink_control *sc)
a6867a68 1665{
ff57ab21
DC
1666 struct xfs_buftarg *btp = container_of(shrink,
1667 struct xfs_buftarg, bt_shrinker);
430cbeb8 1668 LIST_HEAD(dispose);
addbda40 1669 unsigned long freed;
430cbeb8 1670
503c358c
VD
1671 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1672 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1673
1674 while (!list_empty(&dispose)) {
e80dfa19 1675 struct xfs_buf *bp;
430cbeb8
DC
1676 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1677 list_del_init(&bp->b_lru);
1678 xfs_buf_rele(bp);
1679 }
1680
e80dfa19
DC
1681 return freed;
1682}
1683
addbda40 1684static unsigned long
e80dfa19
DC
1685xfs_buftarg_shrink_count(
1686 struct shrinker *shrink,
1687 struct shrink_control *sc)
1688{
1689 struct xfs_buftarg *btp = container_of(shrink,
1690 struct xfs_buftarg, bt_shrinker);
503c358c 1691 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1692}
1693
1da177e4
LT
1694void
1695xfs_free_buftarg(
b7963133 1696 struct xfs_buftarg *btp)
1da177e4 1697{
ff57ab21 1698 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1699 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1700 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1701 list_lru_destroy(&btp->bt_lru);
ff57ab21 1702
2291dab2 1703 xfs_blkdev_issue_flush(btp);
a6867a68 1704
f0e2d93c 1705 kmem_free(btp);
1da177e4
LT
1706}
1707
3fefdeee
ES
1708int
1709xfs_setsize_buftarg(
1da177e4 1710 xfs_buftarg_t *btp,
3fefdeee 1711 unsigned int sectorsize)
1da177e4 1712{
7c71ee78 1713 /* Set up metadata sector size info */
6da54179
ES
1714 btp->bt_meta_sectorsize = sectorsize;
1715 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1716
ce8e922c 1717 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1718 xfs_warn(btp->bt_mount,
a1c6f057
DM
1719 "Cannot set_blocksize to %u on device %pg",
1720 sectorsize, btp->bt_bdev);
2451337d 1721 return -EINVAL;
1da177e4
LT
1722 }
1723
7c71ee78
ES
1724 /* Set up device logical sector size mask */
1725 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1726 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1727
1da177e4
LT
1728 return 0;
1729}
1730
1731/*
3fefdeee
ES
1732 * When allocating the initial buffer target we have not yet
1733 * read in the superblock, so don't know what sized sectors
1734 * are being used at this early stage. Play safe.
ce8e922c 1735 */
1da177e4
LT
1736STATIC int
1737xfs_setsize_buftarg_early(
1738 xfs_buftarg_t *btp,
1739 struct block_device *bdev)
1740{
a96c4151 1741 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1742}
1743
1da177e4
LT
1744xfs_buftarg_t *
1745xfs_alloc_buftarg(
ebad861b 1746 struct xfs_mount *mp,
486aff5e
DW
1747 struct block_device *bdev,
1748 struct dax_device *dax_dev)
1da177e4
LT
1749{
1750 xfs_buftarg_t *btp;
1751
707e0dda 1752 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1da177e4 1753
ebad861b 1754 btp->bt_mount = mp;
ce8e922c
NS
1755 btp->bt_dev = bdev->bd_dev;
1756 btp->bt_bdev = bdev;
486aff5e 1757 btp->bt_daxdev = dax_dev;
0e6e847f 1758
1da177e4 1759 if (xfs_setsize_buftarg_early(btp, bdev))
d210a987 1760 goto error_free;
5ca302c8
GC
1761
1762 if (list_lru_init(&btp->bt_lru))
d210a987 1763 goto error_free;
5ca302c8 1764
9c7504aa 1765 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 1766 goto error_lru;
9c7504aa 1767
e80dfa19
DC
1768 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1769 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1770 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1771 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
d210a987
MH
1772 if (register_shrinker(&btp->bt_shrinker))
1773 goto error_pcpu;
1da177e4
LT
1774 return btp;
1775
d210a987
MH
1776error_pcpu:
1777 percpu_counter_destroy(&btp->bt_io_count);
1778error_lru:
1779 list_lru_destroy(&btp->bt_lru);
1780error_free:
f0e2d93c 1781 kmem_free(btp);
1da177e4
LT
1782 return NULL;
1783}
1784
20e8a063
BF
1785/*
1786 * Cancel a delayed write list.
1787 *
1788 * Remove each buffer from the list, clear the delwri queue flag and drop the
1789 * associated buffer reference.
1790 */
1791void
1792xfs_buf_delwri_cancel(
1793 struct list_head *list)
1794{
1795 struct xfs_buf *bp;
1796
1797 while (!list_empty(list)) {
1798 bp = list_first_entry(list, struct xfs_buf, b_list);
1799
1800 xfs_buf_lock(bp);
1801 bp->b_flags &= ~_XBF_DELWRI_Q;
1802 list_del_init(&bp->b_list);
1803 xfs_buf_relse(bp);
1804 }
1805}
1806
1da177e4 1807/*
43ff2122
CH
1808 * Add a buffer to the delayed write list.
1809 *
1810 * This queues a buffer for writeout if it hasn't already been. Note that
1811 * neither this routine nor the buffer list submission functions perform
1812 * any internal synchronization. It is expected that the lists are thread-local
1813 * to the callers.
1814 *
1815 * Returns true if we queued up the buffer, or false if it already had
1816 * been on the buffer list.
1da177e4 1817 */
43ff2122 1818bool
ce8e922c 1819xfs_buf_delwri_queue(
43ff2122
CH
1820 struct xfs_buf *bp,
1821 struct list_head *list)
1da177e4 1822{
43ff2122 1823 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1824 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1825
43ff2122
CH
1826 /*
1827 * If the buffer is already marked delwri it already is queued up
1828 * by someone else for imediate writeout. Just ignore it in that
1829 * case.
1830 */
1831 if (bp->b_flags & _XBF_DELWRI_Q) {
1832 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1833 return false;
1da177e4 1834 }
1da177e4 1835
43ff2122 1836 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1837
1838 /*
43ff2122
CH
1839 * If a buffer gets written out synchronously or marked stale while it
1840 * is on a delwri list we lazily remove it. To do this, the other party
1841 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1842 * It remains referenced and on the list. In a rare corner case it
1843 * might get readded to a delwri list after the synchronous writeout, in
1844 * which case we need just need to re-add the flag here.
d808f617 1845 */
43ff2122
CH
1846 bp->b_flags |= _XBF_DELWRI_Q;
1847 if (list_empty(&bp->b_list)) {
1848 atomic_inc(&bp->b_hold);
1849 list_add_tail(&bp->b_list, list);
585e6d88 1850 }
585e6d88 1851
43ff2122 1852 return true;
585e6d88
DC
1853}
1854
089716aa
DC
1855/*
1856 * Compare function is more complex than it needs to be because
1857 * the return value is only 32 bits and we are doing comparisons
1858 * on 64 bit values
1859 */
1860static int
1861xfs_buf_cmp(
1862 void *priv,
1863 struct list_head *a,
1864 struct list_head *b)
1865{
1866 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1867 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1868 xfs_daddr_t diff;
1869
f4b42421 1870 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1871 if (diff < 0)
1872 return -1;
1873 if (diff > 0)
1874 return 1;
1875 return 0;
1876}
1877
26f1fe85 1878/*
e339dd8d
BF
1879 * Submit buffers for write. If wait_list is specified, the buffers are
1880 * submitted using sync I/O and placed on the wait list such that the caller can
1881 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1882 * at I/O completion time. In either case, buffers remain locked until I/O
1883 * completes and the buffer is released from the queue.
26f1fe85 1884 */
43ff2122 1885static int
26f1fe85 1886xfs_buf_delwri_submit_buffers(
43ff2122 1887 struct list_head *buffer_list,
26f1fe85 1888 struct list_head *wait_list)
1da177e4 1889{
43ff2122
CH
1890 struct xfs_buf *bp, *n;
1891 int pinned = 0;
26f1fe85 1892 struct blk_plug plug;
43ff2122 1893
26f1fe85 1894 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 1895
26f1fe85 1896 blk_start_plug(&plug);
43ff2122 1897 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 1898 if (!wait_list) {
43ff2122
CH
1899 if (xfs_buf_ispinned(bp)) {
1900 pinned++;
1901 continue;
1902 }
1903 if (!xfs_buf_trylock(bp))
1904 continue;
1905 } else {
1906 xfs_buf_lock(bp);
1907 }
978c7b2f 1908
43ff2122
CH
1909 /*
1910 * Someone else might have written the buffer synchronously or
1911 * marked it stale in the meantime. In that case only the
1912 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1913 * reference and remove it from the list here.
1914 */
1915 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1916 list_del_init(&bp->b_list);
1917 xfs_buf_relse(bp);
1918 continue;
1919 }
c9c12971 1920
43ff2122 1921 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 1922
cf53e99d 1923 /*
e339dd8d
BF
1924 * If we have a wait list, each buffer (and associated delwri
1925 * queue reference) transfers to it and is submitted
1926 * synchronously. Otherwise, drop the buffer from the delwri
1927 * queue and submit async.
cf53e99d 1928 */
bbfeb614 1929 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
e339dd8d 1930 bp->b_flags |= XBF_WRITE;
26f1fe85 1931 if (wait_list) {
e339dd8d 1932 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 1933 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
1934 } else {
1935 bp->b_flags |= XBF_ASYNC;
ce8e922c 1936 list_del_init(&bp->b_list);
e339dd8d 1937 }
6af88cda 1938 __xfs_buf_submit(bp, false);
43ff2122
CH
1939 }
1940 blk_finish_plug(&plug);
1da177e4 1941
43ff2122 1942 return pinned;
1da177e4
LT
1943}
1944
1945/*
43ff2122
CH
1946 * Write out a buffer list asynchronously.
1947 *
1948 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1949 * out and not wait for I/O completion on any of the buffers. This interface
1950 * is only safely useable for callers that can track I/O completion by higher
1951 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1952 * function.
efc3289c
BF
1953 *
1954 * Note: this function will skip buffers it would block on, and in doing so
1955 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1956 * it is up to the caller to ensure that the buffer list is fully submitted or
1957 * cancelled appropriately when they are finished with the list. Failure to
1958 * cancel or resubmit the list until it is empty will result in leaked buffers
1959 * at unmount time.
1da177e4
LT
1960 */
1961int
43ff2122
CH
1962xfs_buf_delwri_submit_nowait(
1963 struct list_head *buffer_list)
1da177e4 1964{
26f1fe85 1965 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 1966}
1da177e4 1967
43ff2122
CH
1968/*
1969 * Write out a buffer list synchronously.
1970 *
1971 * This will take the @buffer_list, write all buffers out and wait for I/O
1972 * completion on all of the buffers. @buffer_list is consumed by the function,
1973 * so callers must have some other way of tracking buffers if they require such
1974 * functionality.
1975 */
1976int
1977xfs_buf_delwri_submit(
1978 struct list_head *buffer_list)
1979{
26f1fe85 1980 LIST_HEAD (wait_list);
43ff2122
CH
1981 int error = 0, error2;
1982 struct xfs_buf *bp;
1da177e4 1983
26f1fe85 1984 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 1985
43ff2122 1986 /* Wait for IO to complete. */
26f1fe85
DC
1987 while (!list_empty(&wait_list)) {
1988 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 1989
089716aa 1990 list_del_init(&bp->b_list);
cf53e99d 1991
e339dd8d
BF
1992 /*
1993 * Wait on the locked buffer, check for errors and unlock and
1994 * release the delwri queue reference.
1995 */
1996 error2 = xfs_buf_iowait(bp);
43ff2122
CH
1997 xfs_buf_relse(bp);
1998 if (!error)
1999 error = error2;
1da177e4
LT
2000 }
2001
43ff2122 2002 return error;
1da177e4
LT
2003}
2004
7912e7fe
BF
2005/*
2006 * Push a single buffer on a delwri queue.
2007 *
2008 * The purpose of this function is to submit a single buffer of a delwri queue
2009 * and return with the buffer still on the original queue. The waiting delwri
2010 * buffer submission infrastructure guarantees transfer of the delwri queue
2011 * buffer reference to a temporary wait list. We reuse this infrastructure to
2012 * transfer the buffer back to the original queue.
2013 *
2014 * Note the buffer transitions from the queued state, to the submitted and wait
2015 * listed state and back to the queued state during this call. The buffer
2016 * locking and queue management logic between _delwri_pushbuf() and
2017 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2018 * before returning.
2019 */
2020int
2021xfs_buf_delwri_pushbuf(
2022 struct xfs_buf *bp,
2023 struct list_head *buffer_list)
2024{
2025 LIST_HEAD (submit_list);
2026 int error;
2027
2028 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2029
2030 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2031
2032 /*
2033 * Isolate the buffer to a new local list so we can submit it for I/O
2034 * independently from the rest of the original list.
2035 */
2036 xfs_buf_lock(bp);
2037 list_move(&bp->b_list, &submit_list);
2038 xfs_buf_unlock(bp);
2039
2040 /*
2041 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2042 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2043 * bounce the buffer from a local wait list back to the original list
2044 * after I/O completion, reuse the original list as the wait list.
2045 */
2046 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2047
2048 /*
e339dd8d
BF
2049 * The buffer is now locked, under I/O and wait listed on the original
2050 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2051 * return with the buffer unlocked and on the original queue.
7912e7fe 2052 */
e339dd8d 2053 error = xfs_buf_iowait(bp);
7912e7fe
BF
2054 bp->b_flags |= _XBF_DELWRI_Q;
2055 xfs_buf_unlock(bp);
2056
2057 return error;
2058}
2059
04d8b284 2060int __init
ce8e922c 2061xfs_buf_init(void)
1da177e4 2062{
b1231760
CM
2063 xfs_buf_zone = kmem_cache_create("xfs_buf",
2064 sizeof(struct xfs_buf), 0,
2065 SLAB_HWCACHE_ALIGN, NULL);
ce8e922c 2066 if (!xfs_buf_zone)
0b1b213f 2067 goto out;
04d8b284 2068
23ea4032 2069 return 0;
1da177e4 2070
0b1b213f 2071 out:
8758280f 2072 return -ENOMEM;
1da177e4
LT
2073}
2074
1da177e4 2075void
ce8e922c 2076xfs_buf_terminate(void)
1da177e4 2077{
ce8e922c 2078 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2079}
7561d27e
BF
2080
2081void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2082{
7561d27e
BF
2083 /*
2084 * Set the lru reference count to 0 based on the error injection tag.
2085 * This allows userspace to disrupt buffer caching for debug/testing
2086 * purposes.
2087 */
dbd329f1 2088 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2089 lru_ref = 0;
2090
2091 atomic_set(&bp->b_lru_ref, lru_ref);
2092}
8473fee3
BF
2093
2094/*
2095 * Verify an on-disk magic value against the magic value specified in the
2096 * verifier structure. The verifier magic is in disk byte order so the caller is
2097 * expected to pass the value directly from disk.
2098 */
2099bool
2100xfs_verify_magic(
2101 struct xfs_buf *bp,
15baadf7 2102 __be32 dmagic)
8473fee3 2103{
dbd329f1 2104 struct xfs_mount *mp = bp->b_mount;
8473fee3
BF
2105 int idx;
2106
2107 idx = xfs_sb_version_hascrc(&mp->m_sb);
14ed8688 2108 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
8473fee3
BF
2109 return false;
2110 return dmagic == bp->b_ops->magic[idx];
2111}
15baadf7
DW
2112/*
2113 * Verify an on-disk magic value against the magic value specified in the
2114 * verifier structure. The verifier magic is in disk byte order so the caller is
2115 * expected to pass the value directly from disk.
2116 */
2117bool
2118xfs_verify_magic16(
2119 struct xfs_buf *bp,
2120 __be16 dmagic)
2121{
dbd329f1 2122 struct xfs_mount *mp = bp->b_mount;
15baadf7
DW
2123 int idx;
2124
2125 idx = xfs_sb_version_hascrc(&mp->m_sb);
14ed8688 2126 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
15baadf7
DW
2127 return false;
2128 return dmagic == bp->b_ops->magic16[idx];
2129}