]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_buf.c
xfs: reset buffer write failure state on successful completion
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
3fcfab16 7#include <linux/backing-dev.h>
1da177e4 8
5467b34b 9#include "xfs_shared.h"
4fb6e8ad 10#include "xfs_format.h"
239880ef 11#include "xfs_log_format.h"
7fd36c44 12#include "xfs_trans_resv.h"
239880ef 13#include "xfs_sb.h"
b7963133 14#include "xfs_mount.h"
0b1b213f 15#include "xfs_trace.h"
239880ef 16#include "xfs_log.h"
e9e899a2 17#include "xfs_errortag.h"
7561d27e 18#include "xfs_error.h"
b7963133 19
7989cb8e 20static kmem_zone_t *xfs_buf_zone;
23ea4032 21
ce8e922c 22#define xb_to_gfp(flags) \
aa5c158e 23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 24
37fd1678
DC
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_wait_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
1da177e4 51
73c77e2c
JB
52static inline int
53xfs_buf_is_vmapped(
54 struct xfs_buf *bp)
55{
56 /*
57 * Return true if the buffer is vmapped.
58 *
611c9946
DC
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 62 */
611c9946 63 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
64}
65
66static inline int
67xfs_buf_vmap_len(
68 struct xfs_buf *bp)
69{
70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71}
72
9c7504aa
BF
73/*
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80 * in-flight buffers.
81 *
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
85 */
86static inline void
87xfs_buf_ioacct_inc(
88 struct xfs_buf *bp)
89{
63db7c81 90 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
91 return;
92
93 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
94 spin_lock(&bp->b_lock);
95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 percpu_counter_inc(&bp->b_target->bt_io_count);
98 }
99 spin_unlock(&bp->b_lock);
9c7504aa
BF
100}
101
102/*
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
105 */
106static inline void
63db7c81 107__xfs_buf_ioacct_dec(
9c7504aa
BF
108 struct xfs_buf *bp)
109{
95989c46 110 lockdep_assert_held(&bp->b_lock);
9c7504aa 111
63db7c81
BF
112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_dec(&bp->b_target->bt_io_count);
115 }
116}
117
118static inline void
119xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 spin_lock(&bp->b_lock);
123 __xfs_buf_ioacct_dec(bp);
124 spin_unlock(&bp->b_lock);
9c7504aa
BF
125}
126
430cbeb8
DC
127/*
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
132 *
133 * This prevents build-up of stale buffers on the LRU.
134 */
135void
136xfs_buf_stale(
137 struct xfs_buf *bp)
138{
43ff2122
CH
139 ASSERT(xfs_buf_islocked(bp));
140
430cbeb8 141 bp->b_flags |= XBF_STALE;
43ff2122
CH
142
143 /*
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
147 */
148 bp->b_flags &= ~_XBF_DELWRI_Q;
149
9c7504aa
BF
150 /*
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
155 */
a4082357 156 spin_lock(&bp->b_lock);
63db7c81
BF
157 __xfs_buf_ioacct_dec(bp);
158
a4082357
DC
159 atomic_set(&bp->b_lru_ref, 0);
160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 atomic_dec(&bp->b_hold);
163
430cbeb8 164 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 165 spin_unlock(&bp->b_lock);
430cbeb8 166}
1da177e4 167
3e85c868
DC
168static int
169xfs_buf_get_maps(
170 struct xfs_buf *bp,
171 int map_count)
172{
173 ASSERT(bp->b_maps == NULL);
174 bp->b_map_count = map_count;
175
176 if (map_count == 1) {
f4b42421 177 bp->b_maps = &bp->__b_map;
3e85c868
DC
178 return 0;
179 }
180
181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 KM_NOFS);
183 if (!bp->b_maps)
2451337d 184 return -ENOMEM;
3e85c868
DC
185 return 0;
186}
187
188/*
189 * Frees b_pages if it was allocated.
190 */
191static void
192xfs_buf_free_maps(
193 struct xfs_buf *bp)
194{
f4b42421 195 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
196 kmem_free(bp->b_maps);
197 bp->b_maps = NULL;
198 }
199}
200
32dff5e5 201static int
3e85c868 202_xfs_buf_alloc(
4347b9d7 203 struct xfs_buftarg *target,
3e85c868
DC
204 struct xfs_buf_map *map,
205 int nmaps,
32dff5e5
DW
206 xfs_buf_flags_t flags,
207 struct xfs_buf **bpp)
1da177e4 208{
4347b9d7 209 struct xfs_buf *bp;
3e85c868
DC
210 int error;
211 int i;
4347b9d7 212
32dff5e5 213 *bpp = NULL;
aa5c158e 214 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7 215 if (unlikely(!bp))
32dff5e5 216 return -ENOMEM;
4347b9d7 217
1da177e4 218 /*
12bcb3f7
DC
219 * We don't want certain flags to appear in b_flags unless they are
220 * specifically set by later operations on the buffer.
1da177e4 221 */
611c9946 222 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 223
ce8e922c 224 atomic_set(&bp->b_hold, 1);
430cbeb8 225 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 226 init_completion(&bp->b_iowait);
430cbeb8 227 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 228 INIT_LIST_HEAD(&bp->b_list);
643c8c05 229 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 230 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 231 spin_lock_init(&bp->b_lock);
ce8e922c 232 bp->b_target = target;
dbd329f1 233 bp->b_mount = target->bt_mount;
3e85c868 234 bp->b_flags = flags;
de1cbee4 235
1da177e4 236 /*
aa0e8833
DC
237 * Set length and io_length to the same value initially.
238 * I/O routines should use io_length, which will be the same in
1da177e4
LT
239 * most cases but may be reset (e.g. XFS recovery).
240 */
3e85c868
DC
241 error = xfs_buf_get_maps(bp, nmaps);
242 if (error) {
377bcd5f 243 kmem_cache_free(xfs_buf_zone, bp);
32dff5e5 244 return error;
3e85c868
DC
245 }
246
247 bp->b_bn = map[0].bm_bn;
248 bp->b_length = 0;
249 for (i = 0; i < nmaps; i++) {
250 bp->b_maps[i].bm_bn = map[i].bm_bn;
251 bp->b_maps[i].bm_len = map[i].bm_len;
252 bp->b_length += map[i].bm_len;
253 }
3e85c868 254
ce8e922c
NS
255 atomic_set(&bp->b_pin_count, 0);
256 init_waitqueue_head(&bp->b_waiters);
257
dbd329f1 258 XFS_STATS_INC(bp->b_mount, xb_create);
0b1b213f 259 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7 260
32dff5e5
DW
261 *bpp = bp;
262 return 0;
1da177e4
LT
263}
264
265/*
ce8e922c
NS
266 * Allocate a page array capable of holding a specified number
267 * of pages, and point the page buf at it.
1da177e4
LT
268 */
269STATIC int
ce8e922c
NS
270_xfs_buf_get_pages(
271 xfs_buf_t *bp,
87937bf8 272 int page_count)
1da177e4
LT
273{
274 /* Make sure that we have a page list */
ce8e922c 275 if (bp->b_pages == NULL) {
ce8e922c
NS
276 bp->b_page_count = page_count;
277 if (page_count <= XB_PAGES) {
278 bp->b_pages = bp->b_page_array;
1da177e4 279 } else {
ce8e922c 280 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 281 page_count, KM_NOFS);
ce8e922c 282 if (bp->b_pages == NULL)
1da177e4
LT
283 return -ENOMEM;
284 }
ce8e922c 285 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
286 }
287 return 0;
288}
289
290/*
ce8e922c 291 * Frees b_pages if it was allocated.
1da177e4
LT
292 */
293STATIC void
ce8e922c 294_xfs_buf_free_pages(
1da177e4
LT
295 xfs_buf_t *bp)
296{
ce8e922c 297 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 298 kmem_free(bp->b_pages);
3fc98b1a 299 bp->b_pages = NULL;
1da177e4
LT
300 }
301}
302
303/*
304 * Releases the specified buffer.
305 *
306 * The modification state of any associated pages is left unchanged.
b46fe825 307 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
308 * hashed and refcounted buffers
309 */
25a40957 310static void
ce8e922c 311xfs_buf_free(
1da177e4
LT
312 xfs_buf_t *bp)
313{
0b1b213f 314 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 315
430cbeb8
DC
316 ASSERT(list_empty(&bp->b_lru));
317
0e6e847f 318 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
319 uint i;
320
73c77e2c 321 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
322 vm_unmap_ram(bp->b_addr - bp->b_offset,
323 bp->b_page_count);
1da177e4 324
948ecdb4
NS
325 for (i = 0; i < bp->b_page_count; i++) {
326 struct page *page = bp->b_pages[i];
327
0e6e847f 328 __free_page(page);
948ecdb4 329 }
12eba65b
DC
330 if (current->reclaim_state)
331 current->reclaim_state->reclaimed_slab +=
332 bp->b_page_count;
0e6e847f
DC
333 } else if (bp->b_flags & _XBF_KMEM)
334 kmem_free(bp->b_addr);
3fc98b1a 335 _xfs_buf_free_pages(bp);
3e85c868 336 xfs_buf_free_maps(bp);
377bcd5f 337 kmem_cache_free(xfs_buf_zone, bp);
1da177e4
LT
338}
339
340/*
0e6e847f 341 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
342 */
343STATIC int
0e6e847f 344xfs_buf_allocate_memory(
1da177e4
LT
345 xfs_buf_t *bp,
346 uint flags)
347{
aa0e8833 348 size_t size;
1da177e4 349 size_t nbytes, offset;
ce8e922c 350 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 351 unsigned short page_count, i;
795cac72 352 xfs_off_t start, end;
1da177e4 353 int error;
3219e8cf
BD
354 xfs_km_flags_t kmflag_mask = 0;
355
356 /*
357 * assure zeroed buffer for non-read cases.
358 */
359 if (!(flags & XBF_READ)) {
360 kmflag_mask |= KM_ZERO;
361 gfp_mask |= __GFP_ZERO;
362 }
1da177e4 363
0e6e847f
DC
364 /*
365 * for buffers that are contained within a single page, just allocate
366 * the memory from the heap - there's no need for the complexity of
367 * page arrays to keep allocation down to order 0.
368 */
795cac72
DC
369 size = BBTOB(bp->b_length);
370 if (size < PAGE_SIZE) {
f8f9ee47 371 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
3219e8cf
BD
372 bp->b_addr = kmem_alloc_io(size, align_mask,
373 KM_NOFS | kmflag_mask);
0e6e847f
DC
374 if (!bp->b_addr) {
375 /* low memory - use alloc_page loop instead */
376 goto use_alloc_page;
377 }
378
795cac72 379 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
380 ((unsigned long)bp->b_addr & PAGE_MASK)) {
381 /* b_addr spans two pages - use alloc_page instead */
382 kmem_free(bp->b_addr);
383 bp->b_addr = NULL;
384 goto use_alloc_page;
385 }
386 bp->b_offset = offset_in_page(bp->b_addr);
387 bp->b_pages = bp->b_page_array;
f8f9ee47 388 bp->b_pages[0] = kmem_to_page(bp->b_addr);
0e6e847f 389 bp->b_page_count = 1;
611c9946 390 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
391 return 0;
392 }
393
394use_alloc_page:
f4b42421
MT
395 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
396 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 397 >> PAGE_SHIFT;
795cac72 398 page_count = end - start;
87937bf8 399 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
400 if (unlikely(error))
401 return error;
1da177e4 402
ce8e922c 403 offset = bp->b_offset;
0e6e847f 404 bp->b_flags |= _XBF_PAGES;
1da177e4 405
ce8e922c 406 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
407 struct page *page;
408 uint retries = 0;
0e6e847f
DC
409retry:
410 page = alloc_page(gfp_mask);
1da177e4 411 if (unlikely(page == NULL)) {
ce8e922c
NS
412 if (flags & XBF_READ_AHEAD) {
413 bp->b_page_count = i;
2451337d 414 error = -ENOMEM;
0e6e847f 415 goto out_free_pages;
1da177e4
LT
416 }
417
418 /*
419 * This could deadlock.
420 *
421 * But until all the XFS lowlevel code is revamped to
422 * handle buffer allocation failures we can't do much.
423 */
424 if (!(++retries % 100))
4f10700a 425 xfs_err(NULL,
5bf97b1c
TH
426 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
427 current->comm, current->pid,
34a622b2 428 __func__, gfp_mask);
1da177e4 429
dbd329f1 430 XFS_STATS_INC(bp->b_mount, xb_page_retries);
8aa7e847 431 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
432 goto retry;
433 }
434
dbd329f1 435 XFS_STATS_INC(bp->b_mount, xb_page_found);
1da177e4 436
0e6e847f 437 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 438 size -= nbytes;
ce8e922c 439 bp->b_pages[i] = page;
1da177e4
LT
440 offset = 0;
441 }
0e6e847f 442 return 0;
1da177e4 443
0e6e847f
DC
444out_free_pages:
445 for (i = 0; i < bp->b_page_count; i++)
446 __free_page(bp->b_pages[i]);
2aa6ba7b 447 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
448 return error;
449}
450
451/*
25985edc 452 * Map buffer into kernel address-space if necessary.
1da177e4
LT
453 */
454STATIC int
ce8e922c 455_xfs_buf_map_pages(
1da177e4
LT
456 xfs_buf_t *bp,
457 uint flags)
458{
0e6e847f 459 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 460 if (bp->b_page_count == 1) {
0e6e847f 461 /* A single page buffer is always mappable */
ce8e922c 462 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
463 } else if (flags & XBF_UNMAPPED) {
464 bp->b_addr = NULL;
465 } else {
a19fb380 466 int retried = 0;
9ba1fb2c 467 unsigned nofs_flag;
ae687e58
DC
468
469 /*
cf085a1b 470 * vm_map_ram() will allocate auxiliary structures (e.g.
ae687e58
DC
471 * pagetables) with GFP_KERNEL, yet we are likely to be under
472 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 473 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
474 * memory reclaim re-entering the filesystem here and
475 * potentially deadlocking.
476 */
9ba1fb2c 477 nofs_flag = memalloc_nofs_save();
a19fb380
DC
478 do {
479 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
480 -1, PAGE_KERNEL);
481 if (bp->b_addr)
482 break;
483 vm_unmap_aliases();
484 } while (retried++ <= 1);
9ba1fb2c 485 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
486
487 if (!bp->b_addr)
1da177e4 488 return -ENOMEM;
ce8e922c 489 bp->b_addr += bp->b_offset;
1da177e4
LT
490 }
491
492 return 0;
493}
494
495/*
496 * Finding and Reading Buffers
497 */
6031e73a
LS
498static int
499_xfs_buf_obj_cmp(
500 struct rhashtable_compare_arg *arg,
501 const void *obj)
502{
503 const struct xfs_buf_map *map = arg->key;
504 const struct xfs_buf *bp = obj;
505
506 /*
507 * The key hashing in the lookup path depends on the key being the
508 * first element of the compare_arg, make sure to assert this.
509 */
510 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
511
512 if (bp->b_bn != map->bm_bn)
513 return 1;
514
515 if (unlikely(bp->b_length != map->bm_len)) {
516 /*
517 * found a block number match. If the range doesn't
518 * match, the only way this is allowed is if the buffer
519 * in the cache is stale and the transaction that made
520 * it stale has not yet committed. i.e. we are
521 * reallocating a busy extent. Skip this buffer and
522 * continue searching for an exact match.
523 */
524 ASSERT(bp->b_flags & XBF_STALE);
525 return 1;
526 }
527 return 0;
528}
529
530static const struct rhashtable_params xfs_buf_hash_params = {
531 .min_size = 32, /* empty AGs have minimal footprint */
532 .nelem_hint = 16,
533 .key_len = sizeof(xfs_daddr_t),
534 .key_offset = offsetof(struct xfs_buf, b_bn),
535 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
536 .automatic_shrinking = true,
537 .obj_cmpfn = _xfs_buf_obj_cmp,
538};
539
540int
541xfs_buf_hash_init(
542 struct xfs_perag *pag)
543{
544 spin_lock_init(&pag->pag_buf_lock);
545 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
546}
547
548void
549xfs_buf_hash_destroy(
550 struct xfs_perag *pag)
551{
552 rhashtable_destroy(&pag->pag_buf_hash);
553}
1da177e4
LT
554
555/*
b027d4c9
DC
556 * Look up a buffer in the buffer cache and return it referenced and locked
557 * in @found_bp.
558 *
559 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
560 * cache.
561 *
562 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
563 * -EAGAIN if we fail to lock it.
564 *
565 * Return values are:
566 * -EFSCORRUPTED if have been supplied with an invalid address
567 * -EAGAIN on trylock failure
568 * -ENOENT if we fail to find a match and @new_bp was NULL
569 * 0, with @found_bp:
570 * - @new_bp if we inserted it into the cache
571 * - the buffer we found and locked.
1da177e4 572 */
b027d4c9
DC
573static int
574xfs_buf_find(
e70b73f8 575 struct xfs_buftarg *btp,
3e85c868
DC
576 struct xfs_buf_map *map,
577 int nmaps,
ce8e922c 578 xfs_buf_flags_t flags,
b027d4c9
DC
579 struct xfs_buf *new_bp,
580 struct xfs_buf **found_bp)
1da177e4 581{
74f75a0c 582 struct xfs_perag *pag;
74f75a0c 583 xfs_buf_t *bp;
6031e73a 584 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 585 xfs_daddr_t eofs;
3e85c868 586 int i;
1da177e4 587
b027d4c9
DC
588 *found_bp = NULL;
589
3e85c868 590 for (i = 0; i < nmaps; i++)
6031e73a 591 cmap.bm_len += map[i].bm_len;
1da177e4
LT
592
593 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
594 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
595 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 596
10616b80
DC
597 /*
598 * Corrupted block numbers can get through to here, unfortunately, so we
599 * have to check that the buffer falls within the filesystem bounds.
600 */
601 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 602 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 603 xfs_alert(btp->bt_mount,
c219b015 604 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
6031e73a 605 __func__, cmap.bm_bn, eofs);
7bc0dc27 606 WARN_ON(1);
b027d4c9 607 return -EFSCORRUPTED;
10616b80
DC
608 }
609
74f75a0c 610 pag = xfs_perag_get(btp->bt_mount,
6031e73a 611 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 612
74f75a0c 613 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
614 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
615 xfs_buf_hash_params);
616 if (bp) {
617 atomic_inc(&bp->b_hold);
618 goto found;
1da177e4
LT
619 }
620
621 /* No match found */
b027d4c9 622 if (!new_bp) {
ff6d6af2 623 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
624 spin_unlock(&pag->pag_buf_lock);
625 xfs_perag_put(pag);
b027d4c9 626 return -ENOENT;
1da177e4 627 }
b027d4c9
DC
628
629 /* the buffer keeps the perag reference until it is freed */
630 new_bp->b_pag = pag;
631 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
632 xfs_buf_hash_params);
633 spin_unlock(&pag->pag_buf_lock);
634 *found_bp = new_bp;
635 return 0;
1da177e4
LT
636
637found:
74f75a0c
DC
638 spin_unlock(&pag->pag_buf_lock);
639 xfs_perag_put(pag);
1da177e4 640
0c842ad4
CH
641 if (!xfs_buf_trylock(bp)) {
642 if (flags & XBF_TRYLOCK) {
ce8e922c 643 xfs_buf_rele(bp);
ff6d6af2 644 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
b027d4c9 645 return -EAGAIN;
1da177e4 646 }
0c842ad4 647 xfs_buf_lock(bp);
ff6d6af2 648 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
649 }
650
0e6e847f
DC
651 /*
652 * if the buffer is stale, clear all the external state associated with
653 * it. We need to keep flags such as how we allocated the buffer memory
654 * intact here.
655 */
ce8e922c
NS
656 if (bp->b_flags & XBF_STALE) {
657 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 658 ASSERT(bp->b_iodone == NULL);
611c9946 659 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 660 bp->b_ops = NULL;
2f926587 661 }
0b1b213f
CH
662
663 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 664 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
b027d4c9
DC
665 *found_bp = bp;
666 return 0;
1da177e4
LT
667}
668
8925a3dc
DC
669struct xfs_buf *
670xfs_buf_incore(
671 struct xfs_buftarg *target,
672 xfs_daddr_t blkno,
673 size_t numblks,
674 xfs_buf_flags_t flags)
675{
b027d4c9
DC
676 struct xfs_buf *bp;
677 int error;
8925a3dc 678 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
b027d4c9
DC
679
680 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
681 if (error)
682 return NULL;
683 return bp;
8925a3dc
DC
684}
685
1da177e4 686/*
3815832a
DC
687 * Assembles a buffer covering the specified range. The code is optimised for
688 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
689 * more hits than misses.
1da177e4 690 */
3848b5f6 691int
6dde2707
DC
692xfs_buf_get_map(
693 struct xfs_buftarg *target,
694 struct xfs_buf_map *map,
695 int nmaps,
3848b5f6
DW
696 xfs_buf_flags_t flags,
697 struct xfs_buf **bpp)
1da177e4 698{
3815832a
DC
699 struct xfs_buf *bp;
700 struct xfs_buf *new_bp;
0e6e847f 701 int error = 0;
1da177e4 702
3848b5f6 703 *bpp = NULL;
b027d4c9 704 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
3848b5f6 705 if (!error)
3815832a 706 goto found;
3848b5f6
DW
707 if (error != -ENOENT)
708 return error;
3815832a 709
32dff5e5
DW
710 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
711 if (error)
3848b5f6 712 return error;
1da177e4 713
fe2429b0
DC
714 error = xfs_buf_allocate_memory(new_bp, flags);
715 if (error) {
3e85c868 716 xfs_buf_free(new_bp);
3848b5f6 717 return error;
fe2429b0
DC
718 }
719
b027d4c9
DC
720 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
721 if (error) {
fe2429b0 722 xfs_buf_free(new_bp);
3848b5f6 723 return error;
3815832a
DC
724 }
725
fe2429b0
DC
726 if (bp != new_bp)
727 xfs_buf_free(new_bp);
1da177e4 728
3815832a 729found:
611c9946 730 if (!bp->b_addr) {
ce8e922c 731 error = _xfs_buf_map_pages(bp, flags);
1da177e4 732 if (unlikely(error)) {
93baa55a
DW
733 xfs_warn_ratelimited(target->bt_mount,
734 "%s: failed to map %u pages", __func__,
735 bp->b_page_count);
a8acad70 736 xfs_buf_relse(bp);
3848b5f6 737 return error;
1da177e4
LT
738 }
739 }
740
b79f4a1c
DC
741 /*
742 * Clear b_error if this is a lookup from a caller that doesn't expect
743 * valid data to be found in the buffer.
744 */
745 if (!(flags & XBF_READ))
746 xfs_buf_ioerror(bp, 0);
747
ff6d6af2 748 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 749 trace_xfs_buf_get(bp, flags, _RET_IP_);
3848b5f6
DW
750 *bpp = bp;
751 return 0;
1da177e4
LT
752}
753
5d765b97
CH
754STATIC int
755_xfs_buf_read(
756 xfs_buf_t *bp,
757 xfs_buf_flags_t flags)
758{
43ff2122 759 ASSERT(!(flags & XBF_WRITE));
f4b42421 760 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 761
43ff2122 762 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 763 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 764
6af88cda 765 return xfs_buf_submit(bp);
5d765b97
CH
766}
767
1aff5696 768/*
75d02303 769 * Reverify a buffer found in cache without an attached ->b_ops.
add46b3b 770 *
75d02303
BF
771 * If the caller passed an ops structure and the buffer doesn't have ops
772 * assigned, set the ops and use it to verify the contents. If verification
773 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
774 * already in XBF_DONE state on entry.
add46b3b 775 *
75d02303
BF
776 * Under normal operations, every in-core buffer is verified on read I/O
777 * completion. There are two scenarios that can lead to in-core buffers without
778 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
779 * filesystem, though these buffers are purged at the end of recovery. The
780 * other is online repair, which intentionally reads with a NULL buffer ops to
781 * run several verifiers across an in-core buffer in order to establish buffer
782 * type. If repair can't establish that, the buffer will be left in memory
783 * with NULL buffer ops.
1aff5696
DW
784 */
785int
75d02303 786xfs_buf_reverify(
1aff5696
DW
787 struct xfs_buf *bp,
788 const struct xfs_buf_ops *ops)
789{
790 ASSERT(bp->b_flags & XBF_DONE);
791 ASSERT(bp->b_error == 0);
792
793 if (!ops || bp->b_ops)
794 return 0;
795
796 bp->b_ops = ops;
797 bp->b_ops->verify_read(bp);
798 if (bp->b_error)
799 bp->b_flags &= ~XBF_DONE;
800 return bp->b_error;
801}
802
4ed8e27b 803int
6dde2707
DC
804xfs_buf_read_map(
805 struct xfs_buftarg *target,
806 struct xfs_buf_map *map,
807 int nmaps,
c3f8fc73 808 xfs_buf_flags_t flags,
4ed8e27b 809 struct xfs_buf **bpp,
cdbcf82b
DW
810 const struct xfs_buf_ops *ops,
811 xfs_failaddr_t fa)
1da177e4 812{
6dde2707 813 struct xfs_buf *bp;
3848b5f6 814 int error;
ce8e922c
NS
815
816 flags |= XBF_READ;
4ed8e27b 817 *bpp = NULL;
ce8e922c 818
3848b5f6
DW
819 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
820 if (error)
4ed8e27b 821 return error;
0b1b213f 822
1aff5696
DW
823 trace_xfs_buf_read(bp, flags, _RET_IP_);
824
825 if (!(bp->b_flags & XBF_DONE)) {
4ed8e27b 826 /* Initiate the buffer read and wait. */
1aff5696
DW
827 XFS_STATS_INC(target->bt_mount, xb_get_read);
828 bp->b_ops = ops;
4ed8e27b
DW
829 error = _xfs_buf_read(bp, flags);
830
831 /* Readahead iodone already dropped the buffer, so exit. */
832 if (flags & XBF_ASYNC)
833 return 0;
834 } else {
835 /* Buffer already read; all we need to do is check it. */
836 error = xfs_buf_reverify(bp, ops);
837
838 /* Readahead already finished; drop the buffer and exit. */
839 if (flags & XBF_ASYNC) {
840 xfs_buf_relse(bp);
841 return 0;
842 }
843
844 /* We do not want read in the flags */
845 bp->b_flags &= ~XBF_READ;
846 ASSERT(bp->b_ops != NULL || ops == NULL);
1aff5696
DW
847 }
848
4ed8e27b
DW
849 /*
850 * If we've had a read error, then the contents of the buffer are
851 * invalid and should not be used. To ensure that a followup read tries
852 * to pull the buffer from disk again, we clear the XBF_DONE flag and
853 * mark the buffer stale. This ensures that anyone who has a current
854 * reference to the buffer will interpret it's contents correctly and
855 * future cache lookups will also treat it as an empty, uninitialised
856 * buffer.
857 */
858 if (error) {
859 if (!XFS_FORCED_SHUTDOWN(target->bt_mount))
cdbcf82b 860 xfs_buf_ioerror_alert(bp, fa);
1aff5696 861
4ed8e27b
DW
862 bp->b_flags &= ~XBF_DONE;
863 xfs_buf_stale(bp);
1aff5696 864 xfs_buf_relse(bp);
4ed8e27b
DW
865
866 /* bad CRC means corrupted metadata */
867 if (error == -EFSBADCRC)
868 error = -EFSCORRUPTED;
869 return error;
1da177e4
LT
870 }
871
4ed8e27b
DW
872 *bpp = bp;
873 return 0;
1da177e4
LT
874}
875
1da177e4 876/*
ce8e922c
NS
877 * If we are not low on memory then do the readahead in a deadlock
878 * safe manner.
1da177e4
LT
879 */
880void
6dde2707
DC
881xfs_buf_readahead_map(
882 struct xfs_buftarg *target,
883 struct xfs_buf_map *map,
c3f8fc73 884 int nmaps,
1813dd64 885 const struct xfs_buf_ops *ops)
1da177e4 886{
4ed8e27b
DW
887 struct xfs_buf *bp;
888
efa7c9f9 889 if (bdi_read_congested(target->bt_bdev->bd_bdi))
1da177e4
LT
890 return;
891
6dde2707 892 xfs_buf_read_map(target, map, nmaps,
cdbcf82b
DW
893 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
894 __this_address);
1da177e4
LT
895}
896
5adc94c2
DC
897/*
898 * Read an uncached buffer from disk. Allocates and returns a locked
899 * buffer containing the disk contents or nothing.
900 */
ba372674 901int
5adc94c2 902xfs_buf_read_uncached(
5adc94c2
DC
903 struct xfs_buftarg *target,
904 xfs_daddr_t daddr,
e70b73f8 905 size_t numblks,
c3f8fc73 906 int flags,
ba372674 907 struct xfs_buf **bpp,
1813dd64 908 const struct xfs_buf_ops *ops)
5adc94c2 909{
eab4e633 910 struct xfs_buf *bp;
2842b6db 911 int error;
5adc94c2 912
ba372674
DC
913 *bpp = NULL;
914
2842b6db
DW
915 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
916 if (error)
917 return error;
5adc94c2
DC
918
919 /* set up the buffer for a read IO */
3e85c868 920 ASSERT(bp->b_map_count == 1);
ba372674 921 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 922 bp->b_maps[0].bm_bn = daddr;
cbb7baab 923 bp->b_flags |= XBF_READ;
1813dd64 924 bp->b_ops = ops;
5adc94c2 925
6af88cda 926 xfs_buf_submit(bp);
ba372674 927 if (bp->b_error) {
2842b6db 928 error = bp->b_error;
83a0adc3 929 xfs_buf_relse(bp);
ba372674 930 return error;
83a0adc3 931 }
ba372674
DC
932
933 *bpp = bp;
934 return 0;
1da177e4
LT
935}
936
2842b6db 937int
686865f7
DC
938xfs_buf_get_uncached(
939 struct xfs_buftarg *target,
e70b73f8 940 size_t numblks,
2842b6db
DW
941 int flags,
942 struct xfs_buf **bpp)
1da177e4 943{
e70b73f8 944 unsigned long page_count;
1fa40b01 945 int error, i;
3e85c868
DC
946 struct xfs_buf *bp;
947 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 948
2842b6db
DW
949 *bpp = NULL;
950
c891c30a 951 /* flags might contain irrelevant bits, pass only what we care about */
32dff5e5
DW
952 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
953 if (error)
1da177e4 954 goto fail;
1da177e4 955
e70b73f8 956 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 957 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 958 if (error)
1da177e4
LT
959 goto fail_free_buf;
960
1fa40b01 961 for (i = 0; i < page_count; i++) {
686865f7 962 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
2842b6db
DW
963 if (!bp->b_pages[i]) {
964 error = -ENOMEM;
1fa40b01 965 goto fail_free_mem;
2842b6db 966 }
1da177e4 967 }
1fa40b01 968 bp->b_flags |= _XBF_PAGES;
1da177e4 969
611c9946 970 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 971 if (unlikely(error)) {
4f10700a 972 xfs_warn(target->bt_mount,
08e96e1a 973 "%s: failed to map pages", __func__);
1da177e4 974 goto fail_free_mem;
1fa40b01 975 }
1da177e4 976
686865f7 977 trace_xfs_buf_get_uncached(bp, _RET_IP_);
2842b6db
DW
978 *bpp = bp;
979 return 0;
1fa40b01 980
1da177e4 981 fail_free_mem:
1fa40b01
CH
982 while (--i >= 0)
983 __free_page(bp->b_pages[i]);
ca165b88 984 _xfs_buf_free_pages(bp);
1da177e4 985 fail_free_buf:
3e85c868 986 xfs_buf_free_maps(bp);
377bcd5f 987 kmem_cache_free(xfs_buf_zone, bp);
1da177e4 988 fail:
2842b6db 989 return error;
1da177e4
LT
990}
991
992/*
1da177e4
LT
993 * Increment reference count on buffer, to hold the buffer concurrently
994 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
995 * Must hold the buffer already to call this function.
996 */
997void
ce8e922c
NS
998xfs_buf_hold(
999 xfs_buf_t *bp)
1da177e4 1000{
0b1b213f 1001 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 1002 atomic_inc(&bp->b_hold);
1da177e4
LT
1003}
1004
1005/*
9c7504aa
BF
1006 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1007 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
1008 */
1009void
ce8e922c
NS
1010xfs_buf_rele(
1011 xfs_buf_t *bp)
1da177e4 1012{
74f75a0c 1013 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
1014 bool release;
1015 bool freebuf = false;
1da177e4 1016
0b1b213f 1017 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 1018
74f75a0c 1019 if (!pag) {
430cbeb8 1020 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
1021 if (atomic_dec_and_test(&bp->b_hold)) {
1022 xfs_buf_ioacct_dec(bp);
fad3aa1e 1023 xfs_buf_free(bp);
9c7504aa 1024 }
fad3aa1e
NS
1025 return;
1026 }
1027
3790689f 1028 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 1029
37fd1678
DC
1030 /*
1031 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1032 * calls. The pag_buf_lock being taken on the last reference only
1033 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1034 * to last reference we drop here is not serialised against the last
1035 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1036 * first, the last "release" reference can win the race to the lock and
1037 * free the buffer before the second-to-last reference is processed,
1038 * leading to a use-after-free scenario.
1039 */
9c7504aa 1040 spin_lock(&bp->b_lock);
37fd1678 1041 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
9c7504aa
BF
1042 if (!release) {
1043 /*
1044 * Drop the in-flight state if the buffer is already on the LRU
1045 * and it holds the only reference. This is racy because we
1046 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1047 * ensures the decrement occurs only once per-buf.
1048 */
1049 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 1050 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1051 goto out_unlock;
1052 }
1053
1054 /* the last reference has been dropped ... */
63db7c81 1055 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1056 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1057 /*
1058 * If the buffer is added to the LRU take a new reference to the
1059 * buffer for the LRU and clear the (now stale) dispose list
1060 * state flag
1061 */
1062 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1063 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1064 atomic_inc(&bp->b_hold);
1da177e4 1065 }
9c7504aa
BF
1066 spin_unlock(&pag->pag_buf_lock);
1067 } else {
1068 /*
1069 * most of the time buffers will already be removed from the
1070 * LRU, so optimise that case by checking for the
1071 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1072 * was on was the disposal list
1073 */
1074 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1075 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1076 } else {
1077 ASSERT(list_empty(&bp->b_lru));
1da177e4 1078 }
9c7504aa
BF
1079
1080 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1081 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1082 xfs_buf_hash_params);
9c7504aa
BF
1083 spin_unlock(&pag->pag_buf_lock);
1084 xfs_perag_put(pag);
1085 freebuf = true;
1da177e4 1086 }
9c7504aa
BF
1087
1088out_unlock:
1089 spin_unlock(&bp->b_lock);
1090
1091 if (freebuf)
1092 xfs_buf_free(bp);
1da177e4
LT
1093}
1094
1095
1096/*
0e6e847f 1097 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1098 *
1099 * If we come across a stale, pinned, locked buffer, we know that we are
1100 * being asked to lock a buffer that has been reallocated. Because it is
1101 * pinned, we know that the log has not been pushed to disk and hence it
1102 * will still be locked. Rather than continuing to have trylock attempts
1103 * fail until someone else pushes the log, push it ourselves before
1104 * returning. This means that the xfsaild will not get stuck trying
1105 * to push on stale inode buffers.
1da177e4
LT
1106 */
1107int
0c842ad4
CH
1108xfs_buf_trylock(
1109 struct xfs_buf *bp)
1da177e4
LT
1110{
1111 int locked;
1112
ce8e922c 1113 locked = down_trylock(&bp->b_sema) == 0;
fa6c668d 1114 if (locked)
479c6412 1115 trace_xfs_buf_trylock(bp, _RET_IP_);
fa6c668d 1116 else
479c6412 1117 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
0c842ad4 1118 return locked;
1da177e4 1119}
1da177e4
LT
1120
1121/*
0e6e847f 1122 * Lock a buffer object.
ed3b4d6c
DC
1123 *
1124 * If we come across a stale, pinned, locked buffer, we know that we
1125 * are being asked to lock a buffer that has been reallocated. Because
1126 * it is pinned, we know that the log has not been pushed to disk and
1127 * hence it will still be locked. Rather than sleeping until someone
1128 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1129 */
ce8e922c
NS
1130void
1131xfs_buf_lock(
0c842ad4 1132 struct xfs_buf *bp)
1da177e4 1133{
0b1b213f
CH
1134 trace_xfs_buf_lock(bp, _RET_IP_);
1135
ed3b4d6c 1136 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
dbd329f1 1137 xfs_log_force(bp->b_mount, 0);
ce8e922c 1138 down(&bp->b_sema);
0b1b213f
CH
1139
1140 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1141}
1142
1da177e4 1143void
ce8e922c 1144xfs_buf_unlock(
0c842ad4 1145 struct xfs_buf *bp)
1da177e4 1146{
20e8a063
BF
1147 ASSERT(xfs_buf_islocked(bp));
1148
ce8e922c 1149 up(&bp->b_sema);
0b1b213f 1150 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1151}
1152
ce8e922c
NS
1153STATIC void
1154xfs_buf_wait_unpin(
1155 xfs_buf_t *bp)
1da177e4
LT
1156{
1157 DECLARE_WAITQUEUE (wait, current);
1158
ce8e922c 1159 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1160 return;
1161
ce8e922c 1162 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1163 for (;;) {
1164 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1165 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1166 break;
7eaceacc 1167 io_schedule();
1da177e4 1168 }
ce8e922c 1169 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1170 set_current_state(TASK_RUNNING);
1171}
1172
1173/*
1174 * Buffer Utility Routines
1175 */
1176
e8aaba9a
DC
1177void
1178xfs_buf_ioend(
1179 struct xfs_buf *bp)
1da177e4 1180{
e8aaba9a
DC
1181 bool read = bp->b_flags & XBF_READ;
1182
1183 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1184
1185 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1186
61be9c52
DC
1187 /*
1188 * Pull in IO completion errors now. We are guaranteed to be running
1189 * single threaded, so we don't need the lock to read b_io_error.
1190 */
1191 if (!bp->b_error && bp->b_io_error)
1192 xfs_buf_ioerror(bp, bp->b_io_error);
1193
e8aaba9a
DC
1194 /* Only validate buffers that were read without errors */
1195 if (read && !bp->b_error && bp->b_ops) {
1196 ASSERT(!bp->b_iodone);
1813dd64 1197 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1198 }
1199
b6983e80
BF
1200 if (!bp->b_error) {
1201 bp->b_flags &= ~XBF_WRITE_FAIL;
e8aaba9a 1202 bp->b_flags |= XBF_DONE;
b6983e80 1203 }
1da177e4 1204
80f6c29d 1205 if (bp->b_iodone)
ce8e922c
NS
1206 (*(bp->b_iodone))(bp);
1207 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1208 xfs_buf_relse(bp);
595bff75 1209 else
1813dd64 1210 complete(&bp->b_iowait);
1da177e4
LT
1211}
1212
e8aaba9a
DC
1213static void
1214xfs_buf_ioend_work(
1215 struct work_struct *work)
1da177e4 1216{
e8aaba9a 1217 struct xfs_buf *bp =
b29c70f5 1218 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1219
e8aaba9a
DC
1220 xfs_buf_ioend(bp);
1221}
1da177e4 1222
211fe1a4 1223static void
e8aaba9a
DC
1224xfs_buf_ioend_async(
1225 struct xfs_buf *bp)
1226{
b29c70f5 1227 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
dbd329f1 1228 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1da177e4
LT
1229}
1230
1da177e4 1231void
31ca03c9 1232__xfs_buf_ioerror(
ce8e922c 1233 xfs_buf_t *bp,
31ca03c9
DW
1234 int error,
1235 xfs_failaddr_t failaddr)
1da177e4 1236{
2451337d
DC
1237 ASSERT(error <= 0 && error >= -1000);
1238 bp->b_error = error;
31ca03c9 1239 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1240}
1241
901796af
CH
1242void
1243xfs_buf_ioerror_alert(
1244 struct xfs_buf *bp,
cdbcf82b 1245 xfs_failaddr_t func)
901796af 1246{
13b1f811 1247 xfs_alert_ratelimited(bp->b_mount,
cdbcf82b 1248"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
c219b015
DW
1249 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1250 -bp->b_error);
901796af
CH
1251}
1252
54b3b1f6
BF
1253/*
1254 * To simulate an I/O failure, the buffer must be locked and held with at least
1255 * three references. The LRU reference is dropped by the stale call. The buf
1256 * item reference is dropped via ioend processing. The third reference is owned
1257 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1258 */
1259void
1260xfs_buf_ioend_fail(
1261 struct xfs_buf *bp)
1262{
1263 bp->b_flags &= ~XBF_DONE;
1264 xfs_buf_stale(bp);
1265 xfs_buf_ioerror(bp, -EIO);
1266 xfs_buf_ioend(bp);
1267}
1268
a2dcf5df
CH
1269int
1270xfs_bwrite(
1271 struct xfs_buf *bp)
1272{
1273 int error;
1274
1275 ASSERT(xfs_buf_islocked(bp));
1276
1277 bp->b_flags |= XBF_WRITE;
27187754 1278 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
b6983e80 1279 XBF_DONE);
a2dcf5df 1280
6af88cda 1281 error = xfs_buf_submit(bp);
dbd329f1
CH
1282 if (error)
1283 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
a2dcf5df
CH
1284 return error;
1285}
1286
9bdd9bd6 1287static void
ce8e922c 1288xfs_buf_bio_end_io(
4246a0b6 1289 struct bio *bio)
1da177e4 1290{
9bdd9bd6 1291 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1292
37eb17e6
DC
1293 /*
1294 * don't overwrite existing errors - otherwise we can lose errors on
1295 * buffers that require multiple bios to complete.
1296 */
4e4cbee9
CH
1297 if (bio->bi_status) {
1298 int error = blk_status_to_errno(bio->bi_status);
1299
1300 cmpxchg(&bp->b_io_error, 0, error);
1301 }
1da177e4 1302
37eb17e6 1303 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1304 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1305
e8aaba9a
DC
1306 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1307 xfs_buf_ioend_async(bp);
1da177e4 1308 bio_put(bio);
1da177e4
LT
1309}
1310
3e85c868
DC
1311static void
1312xfs_buf_ioapply_map(
1313 struct xfs_buf *bp,
1314 int map,
1315 int *buf_offset,
1316 int *count,
2123ef85 1317 int op)
1da177e4 1318{
3e85c868
DC
1319 int page_index;
1320 int total_nr_pages = bp->b_page_count;
1321 int nr_pages;
1322 struct bio *bio;
1323 sector_t sector = bp->b_maps[map].bm_bn;
1324 int size;
1325 int offset;
1da177e4 1326
3e85c868
DC
1327 /* skip the pages in the buffer before the start offset */
1328 page_index = 0;
1329 offset = *buf_offset;
1330 while (offset >= PAGE_SIZE) {
1331 page_index++;
1332 offset -= PAGE_SIZE;
f538d4da
CH
1333 }
1334
3e85c868
DC
1335 /*
1336 * Limit the IO size to the length of the current vector, and update the
1337 * remaining IO count for the next time around.
1338 */
1339 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1340 *count -= size;
1341 *buf_offset += size;
34951f5c 1342
1da177e4 1343next_chunk:
ce8e922c 1344 atomic_inc(&bp->b_io_remaining);
c908e380 1345 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1da177e4
LT
1346
1347 bio = bio_alloc(GFP_NOIO, nr_pages);
74d46992 1348 bio_set_dev(bio, bp->b_target->bt_bdev);
4f024f37 1349 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1350 bio->bi_end_io = xfs_buf_bio_end_io;
1351 bio->bi_private = bp;
2123ef85 1352 bio->bi_opf = op;
0e6e847f 1353
3e85c868 1354 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1355 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1356
1357 if (nbytes > size)
1358 nbytes = size;
1359
3e85c868
DC
1360 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1361 offset);
ce8e922c 1362 if (rbytes < nbytes)
1da177e4
LT
1363 break;
1364
1365 offset = 0;
aa0e8833 1366 sector += BTOBB(nbytes);
1da177e4
LT
1367 size -= nbytes;
1368 total_nr_pages--;
1369 }
1370
4f024f37 1371 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1372 if (xfs_buf_is_vmapped(bp)) {
1373 flush_kernel_vmap_range(bp->b_addr,
1374 xfs_buf_vmap_len(bp));
1375 }
4e49ea4a 1376 submit_bio(bio);
1da177e4
LT
1377 if (size)
1378 goto next_chunk;
1379 } else {
37eb17e6
DC
1380 /*
1381 * This is guaranteed not to be the last io reference count
595bff75 1382 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1383 */
1384 atomic_dec(&bp->b_io_remaining);
2451337d 1385 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1386 bio_put(bio);
1da177e4 1387 }
3e85c868
DC
1388
1389}
1390
1391STATIC void
1392_xfs_buf_ioapply(
1393 struct xfs_buf *bp)
1394{
1395 struct blk_plug plug;
50bfcd0c 1396 int op;
3e85c868
DC
1397 int offset;
1398 int size;
1399 int i;
1400
c163f9a1
DC
1401 /*
1402 * Make sure we capture only current IO errors rather than stale errors
1403 * left over from previous use of the buffer (e.g. failed readahead).
1404 */
1405 bp->b_error = 0;
1406
3e85c868 1407 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1408 op = REQ_OP_WRITE;
1813dd64
DC
1409
1410 /*
1411 * Run the write verifier callback function if it exists. If
1412 * this function fails it will mark the buffer with an error and
1413 * the IO should not be dispatched.
1414 */
1415 if (bp->b_ops) {
1416 bp->b_ops->verify_write(bp);
1417 if (bp->b_error) {
dbd329f1 1418 xfs_force_shutdown(bp->b_mount,
1813dd64
DC
1419 SHUTDOWN_CORRUPT_INCORE);
1420 return;
1421 }
400b9d88 1422 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
dbd329f1 1423 struct xfs_mount *mp = bp->b_mount;
400b9d88
DC
1424
1425 /*
1426 * non-crc filesystems don't attach verifiers during
1427 * log recovery, so don't warn for such filesystems.
1428 */
1429 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1430 xfs_warn(mp,
c219b015 1431 "%s: no buf ops on daddr 0x%llx len %d",
400b9d88 1432 __func__, bp->b_bn, bp->b_length);
9c712a13
DW
1433 xfs_hex_dump(bp->b_addr,
1434 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1435 dump_stack();
1436 }
1813dd64 1437 }
3e85c868 1438 } else {
50bfcd0c 1439 op = REQ_OP_READ;
2123ef85
CH
1440 if (bp->b_flags & XBF_READ_AHEAD)
1441 op |= REQ_RAHEAD;
3e85c868
DC
1442 }
1443
1444 /* we only use the buffer cache for meta-data */
2123ef85 1445 op |= REQ_META;
3e85c868
DC
1446
1447 /*
1448 * Walk all the vectors issuing IO on them. Set up the initial offset
1449 * into the buffer and the desired IO size before we start -
1450 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1451 * subsequent call.
1452 */
1453 offset = bp->b_offset;
8124b9b6 1454 size = BBTOB(bp->b_length);
3e85c868
DC
1455 blk_start_plug(&plug);
1456 for (i = 0; i < bp->b_map_count; i++) {
2123ef85 1457 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
3e85c868
DC
1458 if (bp->b_error)
1459 break;
1460 if (size <= 0)
1461 break; /* all done */
1462 }
1463 blk_finish_plug(&plug);
1da177e4
LT
1464}
1465
595bff75 1466/*
bb00b6f1 1467 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1468 */
eaebb515 1469static int
bb00b6f1 1470xfs_buf_iowait(
595bff75 1471 struct xfs_buf *bp)
1da177e4 1472{
bb00b6f1
BF
1473 ASSERT(!(bp->b_flags & XBF_ASYNC));
1474
1475 trace_xfs_buf_iowait(bp, _RET_IP_);
1476 wait_for_completion(&bp->b_iowait);
1477 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1478
1479 return bp->b_error;
1480}
1481
1482/*
1483 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1484 * the buffer lock ownership and the current reference to the IO. It is not
1485 * safe to reference the buffer after a call to this function unless the caller
1486 * holds an additional reference itself.
1487 */
1488int
1489__xfs_buf_submit(
1490 struct xfs_buf *bp,
1491 bool wait)
1492{
1493 int error = 0;
1494
595bff75 1495 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1496
43ff2122 1497 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1498
1499 /* on shutdown we stale and complete the buffer immediately */
dbd329f1 1500 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
54b3b1f6 1501 xfs_buf_ioend_fail(bp);
eaebb515 1502 return -EIO;
595bff75 1503 }
1da177e4 1504
bb00b6f1
BF
1505 /*
1506 * Grab a reference so the buffer does not go away underneath us. For
1507 * async buffers, I/O completion drops the callers reference, which
1508 * could occur before submission returns.
1509 */
1510 xfs_buf_hold(bp);
1511
375ec69d 1512 if (bp->b_flags & XBF_WRITE)
ce8e922c 1513 xfs_buf_wait_unpin(bp);
e11bb805 1514
61be9c52
DC
1515 /* clear the internal error state to avoid spurious errors */
1516 bp->b_io_error = 0;
1517
8d6c1210 1518 /*
e11bb805
DC
1519 * Set the count to 1 initially, this will stop an I/O completion
1520 * callout which happens before we have started all the I/O from calling
1521 * xfs_buf_ioend too early.
1da177e4 1522 */
ce8e922c 1523 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1524 if (bp->b_flags & XBF_ASYNC)
1525 xfs_buf_ioacct_inc(bp);
ce8e922c 1526 _xfs_buf_ioapply(bp);
e11bb805 1527
8d6c1210 1528 /*
595bff75
DC
1529 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1530 * reference we took above. If we drop it to zero, run completion so
1531 * that we don't return to the caller with completion still pending.
8d6c1210 1532 */
e8aaba9a 1533 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1534 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1535 xfs_buf_ioend(bp);
1536 else
1537 xfs_buf_ioend_async(bp);
1538 }
1da177e4 1539
6af88cda
BF
1540 if (wait)
1541 error = xfs_buf_iowait(bp);
bb00b6f1 1542
595bff75 1543 /*
6af88cda
BF
1544 * Release the hold that keeps the buffer referenced for the entire
1545 * I/O. Note that if the buffer is async, it is not safe to reference
1546 * after this release.
595bff75
DC
1547 */
1548 xfs_buf_rele(bp);
1549 return error;
1da177e4
LT
1550}
1551
88ee2df7 1552void *
ce8e922c 1553xfs_buf_offset(
88ee2df7 1554 struct xfs_buf *bp,
1da177e4
LT
1555 size_t offset)
1556{
1557 struct page *page;
1558
611c9946 1559 if (bp->b_addr)
62926044 1560 return bp->b_addr + offset;
1da177e4 1561
ce8e922c 1562 offset += bp->b_offset;
0e6e847f 1563 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1564 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1565}
1566
1da177e4 1567void
f9a196ee
CH
1568xfs_buf_zero(
1569 struct xfs_buf *bp,
1570 size_t boff,
1571 size_t bsize)
1da177e4 1572{
795cac72 1573 size_t bend;
1da177e4
LT
1574
1575 bend = boff + bsize;
1576 while (boff < bend) {
795cac72
DC
1577 struct page *page;
1578 int page_index, page_offset, csize;
1579
1580 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1581 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1582 page = bp->b_pages[page_index];
1583 csize = min_t(size_t, PAGE_SIZE - page_offset,
8124b9b6 1584 BBTOB(bp->b_length) - boff);
1da177e4 1585
795cac72 1586 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4 1587
f9a196ee 1588 memset(page_address(page) + page_offset, 0, csize);
1da177e4
LT
1589
1590 boff += csize;
1da177e4
LT
1591 }
1592}
1593
8d57c216
DW
1594/*
1595 * Log a message about and stale a buffer that a caller has decided is corrupt.
1596 *
1597 * This function should be called for the kinds of metadata corruption that
1598 * cannot be detect from a verifier, such as incorrect inter-block relationship
1599 * data. Do /not/ call this function from a verifier function.
1600 *
1601 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1602 * be marked stale, but b_error will not be set. The caller is responsible for
1603 * releasing the buffer or fixing it.
1604 */
1605void
1606__xfs_buf_mark_corrupt(
1607 struct xfs_buf *bp,
1608 xfs_failaddr_t fa)
1609{
1610 ASSERT(bp->b_flags & XBF_DONE);
1611
e83cf875 1612 xfs_buf_corruption_error(bp, fa);
8d57c216
DW
1613 xfs_buf_stale(bp);
1614}
1615
1da177e4 1616/*
ce8e922c 1617 * Handling of buffer targets (buftargs).
1da177e4
LT
1618 */
1619
1620/*
430cbeb8
DC
1621 * Wait for any bufs with callbacks that have been submitted but have not yet
1622 * returned. These buffers will have an elevated hold count, so wait on those
1623 * while freeing all the buffers only held by the LRU.
1da177e4 1624 */
e80dfa19
DC
1625static enum lru_status
1626xfs_buftarg_wait_rele(
1627 struct list_head *item,
3f97b163 1628 struct list_lru_one *lru,
e80dfa19
DC
1629 spinlock_t *lru_lock,
1630 void *arg)
1631
1da177e4 1632{
e80dfa19 1633 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1634 struct list_head *dispose = arg;
430cbeb8 1635
e80dfa19 1636 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1637 /* need to wait, so skip it this pass */
e80dfa19 1638 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1639 return LRU_SKIP;
1da177e4 1640 }
a4082357
DC
1641 if (!spin_trylock(&bp->b_lock))
1642 return LRU_SKIP;
e80dfa19 1643
a4082357
DC
1644 /*
1645 * clear the LRU reference count so the buffer doesn't get
1646 * ignored in xfs_buf_rele().
1647 */
1648 atomic_set(&bp->b_lru_ref, 0);
1649 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1650 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1651 spin_unlock(&bp->b_lock);
1652 return LRU_REMOVED;
1da177e4
LT
1653}
1654
e80dfa19
DC
1655void
1656xfs_wait_buftarg(
1657 struct xfs_buftarg *btp)
1658{
a4082357
DC
1659 LIST_HEAD(dispose);
1660 int loop = 0;
1661
85bec546 1662 /*
9c7504aa
BF
1663 * First wait on the buftarg I/O count for all in-flight buffers to be
1664 * released. This is critical as new buffers do not make the LRU until
1665 * they are released.
1666 *
1667 * Next, flush the buffer workqueue to ensure all completion processing
1668 * has finished. Just waiting on buffer locks is not sufficient for
1669 * async IO as the reference count held over IO is not released until
1670 * after the buffer lock is dropped. Hence we need to ensure here that
1671 * all reference counts have been dropped before we start walking the
1672 * LRU list.
85bec546 1673 */
9c7504aa
BF
1674 while (percpu_counter_sum(&btp->bt_io_count))
1675 delay(100);
800b2694 1676 flush_workqueue(btp->bt_mount->m_buf_workqueue);
85bec546 1677
a4082357
DC
1678 /* loop until there is nothing left on the lru list. */
1679 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1680 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1681 &dispose, LONG_MAX);
1682
1683 while (!list_empty(&dispose)) {
1684 struct xfs_buf *bp;
1685 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1686 list_del_init(&bp->b_lru);
ac8809f9
DC
1687 if (bp->b_flags & XBF_WRITE_FAIL) {
1688 xfs_alert(btp->bt_mount,
c219b015 1689"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
ac8809f9 1690 (long long)bp->b_bn);
f41febd2
JP
1691 xfs_alert(btp->bt_mount,
1692"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1693 }
a4082357
DC
1694 xfs_buf_rele(bp);
1695 }
1696 if (loop++ != 0)
1697 delay(100);
1698 }
e80dfa19
DC
1699}
1700
1701static enum lru_status
1702xfs_buftarg_isolate(
1703 struct list_head *item,
3f97b163 1704 struct list_lru_one *lru,
e80dfa19
DC
1705 spinlock_t *lru_lock,
1706 void *arg)
1707{
1708 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1709 struct list_head *dispose = arg;
1710
a4082357
DC
1711 /*
1712 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1713 * If we fail to get the lock, just skip it.
1714 */
1715 if (!spin_trylock(&bp->b_lock))
1716 return LRU_SKIP;
e80dfa19
DC
1717 /*
1718 * Decrement the b_lru_ref count unless the value is already
1719 * zero. If the value is already zero, we need to reclaim the
1720 * buffer, otherwise it gets another trip through the LRU.
1721 */
19957a18 1722 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1723 spin_unlock(&bp->b_lock);
e80dfa19 1724 return LRU_ROTATE;
a4082357 1725 }
e80dfa19 1726
a4082357 1727 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1728 list_lru_isolate_move(lru, item, dispose);
a4082357 1729 spin_unlock(&bp->b_lock);
e80dfa19
DC
1730 return LRU_REMOVED;
1731}
1732
addbda40 1733static unsigned long
e80dfa19 1734xfs_buftarg_shrink_scan(
ff57ab21 1735 struct shrinker *shrink,
1495f230 1736 struct shrink_control *sc)
a6867a68 1737{
ff57ab21
DC
1738 struct xfs_buftarg *btp = container_of(shrink,
1739 struct xfs_buftarg, bt_shrinker);
430cbeb8 1740 LIST_HEAD(dispose);
addbda40 1741 unsigned long freed;
430cbeb8 1742
503c358c
VD
1743 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1744 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1745
1746 while (!list_empty(&dispose)) {
e80dfa19 1747 struct xfs_buf *bp;
430cbeb8
DC
1748 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1749 list_del_init(&bp->b_lru);
1750 xfs_buf_rele(bp);
1751 }
1752
e80dfa19
DC
1753 return freed;
1754}
1755
addbda40 1756static unsigned long
e80dfa19
DC
1757xfs_buftarg_shrink_count(
1758 struct shrinker *shrink,
1759 struct shrink_control *sc)
1760{
1761 struct xfs_buftarg *btp = container_of(shrink,
1762 struct xfs_buftarg, bt_shrinker);
503c358c 1763 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1764}
1765
1da177e4
LT
1766void
1767xfs_free_buftarg(
b7963133 1768 struct xfs_buftarg *btp)
1da177e4 1769{
ff57ab21 1770 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1771 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1772 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1773 list_lru_destroy(&btp->bt_lru);
ff57ab21 1774
2291dab2 1775 xfs_blkdev_issue_flush(btp);
a6867a68 1776
f0e2d93c 1777 kmem_free(btp);
1da177e4
LT
1778}
1779
3fefdeee
ES
1780int
1781xfs_setsize_buftarg(
1da177e4 1782 xfs_buftarg_t *btp,
3fefdeee 1783 unsigned int sectorsize)
1da177e4 1784{
7c71ee78 1785 /* Set up metadata sector size info */
6da54179
ES
1786 btp->bt_meta_sectorsize = sectorsize;
1787 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1788
ce8e922c 1789 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1790 xfs_warn(btp->bt_mount,
a1c6f057
DM
1791 "Cannot set_blocksize to %u on device %pg",
1792 sectorsize, btp->bt_bdev);
2451337d 1793 return -EINVAL;
1da177e4
LT
1794 }
1795
7c71ee78
ES
1796 /* Set up device logical sector size mask */
1797 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1798 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1799
1da177e4
LT
1800 return 0;
1801}
1802
1803/*
3fefdeee
ES
1804 * When allocating the initial buffer target we have not yet
1805 * read in the superblock, so don't know what sized sectors
1806 * are being used at this early stage. Play safe.
ce8e922c 1807 */
1da177e4
LT
1808STATIC int
1809xfs_setsize_buftarg_early(
1810 xfs_buftarg_t *btp,
1811 struct block_device *bdev)
1812{
a96c4151 1813 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1814}
1815
1da177e4
LT
1816xfs_buftarg_t *
1817xfs_alloc_buftarg(
ebad861b 1818 struct xfs_mount *mp,
486aff5e
DW
1819 struct block_device *bdev,
1820 struct dax_device *dax_dev)
1da177e4
LT
1821{
1822 xfs_buftarg_t *btp;
1823
707e0dda 1824 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1da177e4 1825
ebad861b 1826 btp->bt_mount = mp;
ce8e922c
NS
1827 btp->bt_dev = bdev->bd_dev;
1828 btp->bt_bdev = bdev;
486aff5e 1829 btp->bt_daxdev = dax_dev;
0e6e847f 1830
1da177e4 1831 if (xfs_setsize_buftarg_early(btp, bdev))
d210a987 1832 goto error_free;
5ca302c8
GC
1833
1834 if (list_lru_init(&btp->bt_lru))
d210a987 1835 goto error_free;
5ca302c8 1836
9c7504aa 1837 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 1838 goto error_lru;
9c7504aa 1839
e80dfa19
DC
1840 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1841 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1842 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1843 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
d210a987
MH
1844 if (register_shrinker(&btp->bt_shrinker))
1845 goto error_pcpu;
1da177e4
LT
1846 return btp;
1847
d210a987
MH
1848error_pcpu:
1849 percpu_counter_destroy(&btp->bt_io_count);
1850error_lru:
1851 list_lru_destroy(&btp->bt_lru);
1852error_free:
f0e2d93c 1853 kmem_free(btp);
1da177e4
LT
1854 return NULL;
1855}
1856
20e8a063
BF
1857/*
1858 * Cancel a delayed write list.
1859 *
1860 * Remove each buffer from the list, clear the delwri queue flag and drop the
1861 * associated buffer reference.
1862 */
1863void
1864xfs_buf_delwri_cancel(
1865 struct list_head *list)
1866{
1867 struct xfs_buf *bp;
1868
1869 while (!list_empty(list)) {
1870 bp = list_first_entry(list, struct xfs_buf, b_list);
1871
1872 xfs_buf_lock(bp);
1873 bp->b_flags &= ~_XBF_DELWRI_Q;
1874 list_del_init(&bp->b_list);
1875 xfs_buf_relse(bp);
1876 }
1877}
1878
1da177e4 1879/*
43ff2122
CH
1880 * Add a buffer to the delayed write list.
1881 *
1882 * This queues a buffer for writeout if it hasn't already been. Note that
1883 * neither this routine nor the buffer list submission functions perform
1884 * any internal synchronization. It is expected that the lists are thread-local
1885 * to the callers.
1886 *
1887 * Returns true if we queued up the buffer, or false if it already had
1888 * been on the buffer list.
1da177e4 1889 */
43ff2122 1890bool
ce8e922c 1891xfs_buf_delwri_queue(
43ff2122
CH
1892 struct xfs_buf *bp,
1893 struct list_head *list)
1da177e4 1894{
43ff2122 1895 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1896 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1897
43ff2122
CH
1898 /*
1899 * If the buffer is already marked delwri it already is queued up
1900 * by someone else for imediate writeout. Just ignore it in that
1901 * case.
1902 */
1903 if (bp->b_flags & _XBF_DELWRI_Q) {
1904 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1905 return false;
1da177e4 1906 }
1da177e4 1907
43ff2122 1908 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1909
1910 /*
43ff2122
CH
1911 * If a buffer gets written out synchronously or marked stale while it
1912 * is on a delwri list we lazily remove it. To do this, the other party
1913 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1914 * It remains referenced and on the list. In a rare corner case it
1915 * might get readded to a delwri list after the synchronous writeout, in
1916 * which case we need just need to re-add the flag here.
d808f617 1917 */
43ff2122
CH
1918 bp->b_flags |= _XBF_DELWRI_Q;
1919 if (list_empty(&bp->b_list)) {
1920 atomic_inc(&bp->b_hold);
1921 list_add_tail(&bp->b_list, list);
585e6d88 1922 }
585e6d88 1923
43ff2122 1924 return true;
585e6d88
DC
1925}
1926
089716aa
DC
1927/*
1928 * Compare function is more complex than it needs to be because
1929 * the return value is only 32 bits and we are doing comparisons
1930 * on 64 bit values
1931 */
1932static int
1933xfs_buf_cmp(
1934 void *priv,
1935 struct list_head *a,
1936 struct list_head *b)
1937{
1938 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1939 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1940 xfs_daddr_t diff;
1941
f4b42421 1942 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1943 if (diff < 0)
1944 return -1;
1945 if (diff > 0)
1946 return 1;
1947 return 0;
1948}
1949
26f1fe85 1950/*
e339dd8d
BF
1951 * Submit buffers for write. If wait_list is specified, the buffers are
1952 * submitted using sync I/O and placed on the wait list such that the caller can
1953 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1954 * at I/O completion time. In either case, buffers remain locked until I/O
1955 * completes and the buffer is released from the queue.
26f1fe85 1956 */
43ff2122 1957static int
26f1fe85 1958xfs_buf_delwri_submit_buffers(
43ff2122 1959 struct list_head *buffer_list,
26f1fe85 1960 struct list_head *wait_list)
1da177e4 1961{
43ff2122
CH
1962 struct xfs_buf *bp, *n;
1963 int pinned = 0;
26f1fe85 1964 struct blk_plug plug;
43ff2122 1965
26f1fe85 1966 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 1967
26f1fe85 1968 blk_start_plug(&plug);
43ff2122 1969 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 1970 if (!wait_list) {
43ff2122
CH
1971 if (xfs_buf_ispinned(bp)) {
1972 pinned++;
1973 continue;
1974 }
1975 if (!xfs_buf_trylock(bp))
1976 continue;
1977 } else {
1978 xfs_buf_lock(bp);
1979 }
978c7b2f 1980
43ff2122
CH
1981 /*
1982 * Someone else might have written the buffer synchronously or
1983 * marked it stale in the meantime. In that case only the
1984 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1985 * reference and remove it from the list here.
1986 */
1987 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1988 list_del_init(&bp->b_list);
1989 xfs_buf_relse(bp);
1990 continue;
1991 }
c9c12971 1992
43ff2122 1993 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 1994
cf53e99d 1995 /*
e339dd8d
BF
1996 * If we have a wait list, each buffer (and associated delwri
1997 * queue reference) transfers to it and is submitted
1998 * synchronously. Otherwise, drop the buffer from the delwri
1999 * queue and submit async.
cf53e99d 2000 */
b6983e80 2001 bp->b_flags &= ~_XBF_DELWRI_Q;
e339dd8d 2002 bp->b_flags |= XBF_WRITE;
26f1fe85 2003 if (wait_list) {
e339dd8d 2004 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 2005 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
2006 } else {
2007 bp->b_flags |= XBF_ASYNC;
ce8e922c 2008 list_del_init(&bp->b_list);
e339dd8d 2009 }
6af88cda 2010 __xfs_buf_submit(bp, false);
43ff2122
CH
2011 }
2012 blk_finish_plug(&plug);
1da177e4 2013
43ff2122 2014 return pinned;
1da177e4
LT
2015}
2016
2017/*
43ff2122
CH
2018 * Write out a buffer list asynchronously.
2019 *
2020 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2021 * out and not wait for I/O completion on any of the buffers. This interface
2022 * is only safely useable for callers that can track I/O completion by higher
2023 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2024 * function.
efc3289c
BF
2025 *
2026 * Note: this function will skip buffers it would block on, and in doing so
2027 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2028 * it is up to the caller to ensure that the buffer list is fully submitted or
2029 * cancelled appropriately when they are finished with the list. Failure to
2030 * cancel or resubmit the list until it is empty will result in leaked buffers
2031 * at unmount time.
1da177e4
LT
2032 */
2033int
43ff2122
CH
2034xfs_buf_delwri_submit_nowait(
2035 struct list_head *buffer_list)
1da177e4 2036{
26f1fe85 2037 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 2038}
1da177e4 2039
43ff2122
CH
2040/*
2041 * Write out a buffer list synchronously.
2042 *
2043 * This will take the @buffer_list, write all buffers out and wait for I/O
2044 * completion on all of the buffers. @buffer_list is consumed by the function,
2045 * so callers must have some other way of tracking buffers if they require such
2046 * functionality.
2047 */
2048int
2049xfs_buf_delwri_submit(
2050 struct list_head *buffer_list)
2051{
26f1fe85 2052 LIST_HEAD (wait_list);
43ff2122
CH
2053 int error = 0, error2;
2054 struct xfs_buf *bp;
1da177e4 2055
26f1fe85 2056 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 2057
43ff2122 2058 /* Wait for IO to complete. */
26f1fe85
DC
2059 while (!list_empty(&wait_list)) {
2060 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 2061
089716aa 2062 list_del_init(&bp->b_list);
cf53e99d 2063
e339dd8d
BF
2064 /*
2065 * Wait on the locked buffer, check for errors and unlock and
2066 * release the delwri queue reference.
2067 */
2068 error2 = xfs_buf_iowait(bp);
43ff2122
CH
2069 xfs_buf_relse(bp);
2070 if (!error)
2071 error = error2;
1da177e4
LT
2072 }
2073
43ff2122 2074 return error;
1da177e4
LT
2075}
2076
7912e7fe
BF
2077/*
2078 * Push a single buffer on a delwri queue.
2079 *
2080 * The purpose of this function is to submit a single buffer of a delwri queue
2081 * and return with the buffer still on the original queue. The waiting delwri
2082 * buffer submission infrastructure guarantees transfer of the delwri queue
2083 * buffer reference to a temporary wait list. We reuse this infrastructure to
2084 * transfer the buffer back to the original queue.
2085 *
2086 * Note the buffer transitions from the queued state, to the submitted and wait
2087 * listed state and back to the queued state during this call. The buffer
2088 * locking and queue management logic between _delwri_pushbuf() and
2089 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2090 * before returning.
2091 */
2092int
2093xfs_buf_delwri_pushbuf(
2094 struct xfs_buf *bp,
2095 struct list_head *buffer_list)
2096{
2097 LIST_HEAD (submit_list);
2098 int error;
2099
2100 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2101
2102 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2103
2104 /*
2105 * Isolate the buffer to a new local list so we can submit it for I/O
2106 * independently from the rest of the original list.
2107 */
2108 xfs_buf_lock(bp);
2109 list_move(&bp->b_list, &submit_list);
2110 xfs_buf_unlock(bp);
2111
2112 /*
2113 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2114 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2115 * bounce the buffer from a local wait list back to the original list
2116 * after I/O completion, reuse the original list as the wait list.
2117 */
2118 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2119
2120 /*
e339dd8d
BF
2121 * The buffer is now locked, under I/O and wait listed on the original
2122 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2123 * return with the buffer unlocked and on the original queue.
7912e7fe 2124 */
e339dd8d 2125 error = xfs_buf_iowait(bp);
7912e7fe
BF
2126 bp->b_flags |= _XBF_DELWRI_Q;
2127 xfs_buf_unlock(bp);
2128
2129 return error;
2130}
2131
04d8b284 2132int __init
ce8e922c 2133xfs_buf_init(void)
1da177e4 2134{
12eba65b
DC
2135 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2136 SLAB_HWCACHE_ALIGN |
2137 SLAB_RECLAIM_ACCOUNT |
2138 SLAB_MEM_SPREAD,
2139 NULL);
ce8e922c 2140 if (!xfs_buf_zone)
0b1b213f 2141 goto out;
04d8b284 2142
23ea4032 2143 return 0;
1da177e4 2144
0b1b213f 2145 out:
8758280f 2146 return -ENOMEM;
1da177e4
LT
2147}
2148
1da177e4 2149void
ce8e922c 2150xfs_buf_terminate(void)
1da177e4 2151{
aaf54eb8 2152 kmem_cache_destroy(xfs_buf_zone);
1da177e4 2153}
7561d27e
BF
2154
2155void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2156{
7561d27e
BF
2157 /*
2158 * Set the lru reference count to 0 based on the error injection tag.
2159 * This allows userspace to disrupt buffer caching for debug/testing
2160 * purposes.
2161 */
dbd329f1 2162 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2163 lru_ref = 0;
2164
2165 atomic_set(&bp->b_lru_ref, lru_ref);
2166}
8473fee3
BF
2167
2168/*
2169 * Verify an on-disk magic value against the magic value specified in the
2170 * verifier structure. The verifier magic is in disk byte order so the caller is
2171 * expected to pass the value directly from disk.
2172 */
2173bool
2174xfs_verify_magic(
2175 struct xfs_buf *bp,
15baadf7 2176 __be32 dmagic)
8473fee3 2177{
dbd329f1 2178 struct xfs_mount *mp = bp->b_mount;
8473fee3
BF
2179 int idx;
2180
2181 idx = xfs_sb_version_hascrc(&mp->m_sb);
14ed8688 2182 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
8473fee3
BF
2183 return false;
2184 return dmagic == bp->b_ops->magic[idx];
2185}
15baadf7
DW
2186/*
2187 * Verify an on-disk magic value against the magic value specified in the
2188 * verifier structure. The verifier magic is in disk byte order so the caller is
2189 * expected to pass the value directly from disk.
2190 */
2191bool
2192xfs_verify_magic16(
2193 struct xfs_buf *bp,
2194 __be16 dmagic)
2195{
dbd329f1 2196 struct xfs_mount *mp = bp->b_mount;
15baadf7
DW
2197 int idx;
2198
2199 idx = xfs_sb_version_hascrc(&mp->m_sb);
14ed8688 2200 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
15baadf7
DW
2201 return false;
2202 return dmagic == bp->b_ops->magic16[idx];
2203}