]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_buf.c
xfs: use kmem_zone_zalloc for buffers
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
1da177e4 36
b7963133
CH
37#include "xfs_sb.h"
38#include "xfs_inum.h"
ed3b4d6c 39#include "xfs_log.h"
b7963133 40#include "xfs_ag.h"
b7963133 41#include "xfs_mount.h"
0b1b213f 42#include "xfs_trace.h"
b7963133 43
7989cb8e 44static kmem_zone_t *xfs_buf_zone;
23ea4032 45
7989cb8e 46static struct workqueue_struct *xfslogd_workqueue;
1da177e4 47
ce8e922c
NS
48#ifdef XFS_BUF_LOCK_TRACKING
49# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
50# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
51# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 52#else
ce8e922c
NS
53# define XB_SET_OWNER(bp) do { } while (0)
54# define XB_CLEAR_OWNER(bp) do { } while (0)
55# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
56#endif
57
ce8e922c
NS
58#define xb_to_gfp(flags) \
59 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
60 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 61
ce8e922c
NS
62#define xb_to_km(flags) \
63 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 64
1da177e4 65
73c77e2c
JB
66static inline int
67xfs_buf_is_vmapped(
68 struct xfs_buf *bp)
69{
70 /*
71 * Return true if the buffer is vmapped.
72 *
73 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
74 * code is clever enough to know it doesn't have to map a single page,
75 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
76 */
77 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
78}
79
80static inline int
81xfs_buf_vmap_len(
82 struct xfs_buf *bp)
83{
84 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
85}
86
1da177e4 87/*
430cbeb8
DC
88 * xfs_buf_lru_add - add a buffer to the LRU.
89 *
90 * The LRU takes a new reference to the buffer so that it will only be freed
91 * once the shrinker takes the buffer off the LRU.
92 */
93STATIC void
94xfs_buf_lru_add(
95 struct xfs_buf *bp)
96{
97 struct xfs_buftarg *btp = bp->b_target;
98
99 spin_lock(&btp->bt_lru_lock);
100 if (list_empty(&bp->b_lru)) {
101 atomic_inc(&bp->b_hold);
102 list_add_tail(&bp->b_lru, &btp->bt_lru);
103 btp->bt_lru_nr++;
104 }
105 spin_unlock(&btp->bt_lru_lock);
106}
107
108/*
109 * xfs_buf_lru_del - remove a buffer from the LRU
110 *
111 * The unlocked check is safe here because it only occurs when there are not
112 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
113 * to optimise the shrinker removing the buffer from the LRU and calling
25985edc 114 * xfs_buf_free(). i.e. it removes an unnecessary round trip on the
430cbeb8 115 * bt_lru_lock.
1da177e4 116 */
430cbeb8
DC
117STATIC void
118xfs_buf_lru_del(
119 struct xfs_buf *bp)
120{
121 struct xfs_buftarg *btp = bp->b_target;
122
123 if (list_empty(&bp->b_lru))
124 return;
125
126 spin_lock(&btp->bt_lru_lock);
127 if (!list_empty(&bp->b_lru)) {
128 list_del_init(&bp->b_lru);
129 btp->bt_lru_nr--;
130 }
131 spin_unlock(&btp->bt_lru_lock);
132}
133
134/*
135 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
136 * b_lru_ref count so that the buffer is freed immediately when the buffer
137 * reference count falls to zero. If the buffer is already on the LRU, we need
138 * to remove the reference that LRU holds on the buffer.
139 *
140 * This prevents build-up of stale buffers on the LRU.
141 */
142void
143xfs_buf_stale(
144 struct xfs_buf *bp)
145{
43ff2122
CH
146 ASSERT(xfs_buf_islocked(bp));
147
430cbeb8 148 bp->b_flags |= XBF_STALE;
43ff2122
CH
149
150 /*
151 * Clear the delwri status so that a delwri queue walker will not
152 * flush this buffer to disk now that it is stale. The delwri queue has
153 * a reference to the buffer, so this is safe to do.
154 */
155 bp->b_flags &= ~_XBF_DELWRI_Q;
156
430cbeb8
DC
157 atomic_set(&(bp)->b_lru_ref, 0);
158 if (!list_empty(&bp->b_lru)) {
159 struct xfs_buftarg *btp = bp->b_target;
160
161 spin_lock(&btp->bt_lru_lock);
162 if (!list_empty(&bp->b_lru)) {
163 list_del_init(&bp->b_lru);
164 btp->bt_lru_nr--;
165 atomic_dec(&bp->b_hold);
166 }
167 spin_unlock(&btp->bt_lru_lock);
168 }
169 ASSERT(atomic_read(&bp->b_hold) >= 1);
170}
1da177e4 171
4347b9d7
CH
172struct xfs_buf *
173xfs_buf_alloc(
174 struct xfs_buftarg *target,
204ab25f 175 xfs_off_t range_base,
1da177e4 176 size_t range_length,
ce8e922c 177 xfs_buf_flags_t flags)
1da177e4 178{
4347b9d7
CH
179 struct xfs_buf *bp;
180
bf813cdd 181 bp = kmem_zone_zalloc(xfs_buf_zone, xb_to_km(flags));
4347b9d7
CH
182 if (unlikely(!bp))
183 return NULL;
184
1da177e4 185 /*
ce8e922c 186 * We don't want certain flags to appear in b_flags.
1da177e4 187 */
ce8e922c
NS
188 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
189
ce8e922c 190 atomic_set(&bp->b_hold, 1);
430cbeb8 191 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 192 init_completion(&bp->b_iowait);
430cbeb8 193 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 194 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 195 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 196 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
197 XB_SET_OWNER(bp);
198 bp->b_target = target;
199 bp->b_file_offset = range_base;
1da177e4
LT
200 /*
201 * Set buffer_length and count_desired to the same value initially.
202 * I/O routines should use count_desired, which will be the same in
203 * most cases but may be reset (e.g. XFS recovery).
204 */
ce8e922c
NS
205 bp->b_buffer_length = bp->b_count_desired = range_length;
206 bp->b_flags = flags;
207 bp->b_bn = XFS_BUF_DADDR_NULL;
208 atomic_set(&bp->b_pin_count, 0);
209 init_waitqueue_head(&bp->b_waiters);
210
211 XFS_STATS_INC(xb_create);
0b1b213f 212 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
213
214 return bp;
1da177e4
LT
215}
216
217/*
ce8e922c
NS
218 * Allocate a page array capable of holding a specified number
219 * of pages, and point the page buf at it.
1da177e4
LT
220 */
221STATIC int
ce8e922c
NS
222_xfs_buf_get_pages(
223 xfs_buf_t *bp,
1da177e4 224 int page_count,
ce8e922c 225 xfs_buf_flags_t flags)
1da177e4
LT
226{
227 /* Make sure that we have a page list */
ce8e922c 228 if (bp->b_pages == NULL) {
ce8e922c
NS
229 bp->b_page_count = page_count;
230 if (page_count <= XB_PAGES) {
231 bp->b_pages = bp->b_page_array;
1da177e4 232 } else {
ce8e922c
NS
233 bp->b_pages = kmem_alloc(sizeof(struct page *) *
234 page_count, xb_to_km(flags));
235 if (bp->b_pages == NULL)
1da177e4
LT
236 return -ENOMEM;
237 }
ce8e922c 238 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
239 }
240 return 0;
241}
242
243/*
ce8e922c 244 * Frees b_pages if it was allocated.
1da177e4
LT
245 */
246STATIC void
ce8e922c 247_xfs_buf_free_pages(
1da177e4
LT
248 xfs_buf_t *bp)
249{
ce8e922c 250 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 251 kmem_free(bp->b_pages);
3fc98b1a 252 bp->b_pages = NULL;
1da177e4
LT
253 }
254}
255
256/*
257 * Releases the specified buffer.
258 *
259 * The modification state of any associated pages is left unchanged.
ce8e922c 260 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
261 * hashed and refcounted buffers
262 */
263void
ce8e922c 264xfs_buf_free(
1da177e4
LT
265 xfs_buf_t *bp)
266{
0b1b213f 267 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 268
430cbeb8
DC
269 ASSERT(list_empty(&bp->b_lru));
270
0e6e847f 271 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
272 uint i;
273
73c77e2c 274 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
275 vm_unmap_ram(bp->b_addr - bp->b_offset,
276 bp->b_page_count);
1da177e4 277
948ecdb4
NS
278 for (i = 0; i < bp->b_page_count; i++) {
279 struct page *page = bp->b_pages[i];
280
0e6e847f 281 __free_page(page);
948ecdb4 282 }
0e6e847f
DC
283 } else if (bp->b_flags & _XBF_KMEM)
284 kmem_free(bp->b_addr);
3fc98b1a 285 _xfs_buf_free_pages(bp);
4347b9d7 286 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
287}
288
289/*
0e6e847f 290 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
291 */
292STATIC int
0e6e847f 293xfs_buf_allocate_memory(
1da177e4
LT
294 xfs_buf_t *bp,
295 uint flags)
296{
ce8e922c 297 size_t size = bp->b_count_desired;
1da177e4 298 size_t nbytes, offset;
ce8e922c 299 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 300 unsigned short page_count, i;
204ab25f 301 xfs_off_t end;
1da177e4
LT
302 int error;
303
0e6e847f
DC
304 /*
305 * for buffers that are contained within a single page, just allocate
306 * the memory from the heap - there's no need for the complexity of
307 * page arrays to keep allocation down to order 0.
308 */
309 if (bp->b_buffer_length < PAGE_SIZE) {
310 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
311 if (!bp->b_addr) {
312 /* low memory - use alloc_page loop instead */
313 goto use_alloc_page;
314 }
315
316 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
317 PAGE_MASK) !=
318 ((unsigned long)bp->b_addr & PAGE_MASK)) {
319 /* b_addr spans two pages - use alloc_page instead */
320 kmem_free(bp->b_addr);
321 bp->b_addr = NULL;
322 goto use_alloc_page;
323 }
324 bp->b_offset = offset_in_page(bp->b_addr);
325 bp->b_pages = bp->b_page_array;
326 bp->b_pages[0] = virt_to_page(bp->b_addr);
327 bp->b_page_count = 1;
328 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
329 return 0;
330 }
331
332use_alloc_page:
ce8e922c
NS
333 end = bp->b_file_offset + bp->b_buffer_length;
334 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
ce8e922c 335 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
336 if (unlikely(error))
337 return error;
1da177e4 338
ce8e922c 339 offset = bp->b_offset;
0e6e847f 340 bp->b_flags |= _XBF_PAGES;
1da177e4 341
ce8e922c 342 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
343 struct page *page;
344 uint retries = 0;
0e6e847f
DC
345retry:
346 page = alloc_page(gfp_mask);
1da177e4 347 if (unlikely(page == NULL)) {
ce8e922c
NS
348 if (flags & XBF_READ_AHEAD) {
349 bp->b_page_count = i;
0e6e847f
DC
350 error = ENOMEM;
351 goto out_free_pages;
1da177e4
LT
352 }
353
354 /*
355 * This could deadlock.
356 *
357 * But until all the XFS lowlevel code is revamped to
358 * handle buffer allocation failures we can't do much.
359 */
360 if (!(++retries % 100))
4f10700a
DC
361 xfs_err(NULL,
362 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 363 __func__, gfp_mask);
1da177e4 364
ce8e922c 365 XFS_STATS_INC(xb_page_retries);
8aa7e847 366 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
367 goto retry;
368 }
369
ce8e922c 370 XFS_STATS_INC(xb_page_found);
1da177e4 371
0e6e847f 372 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 373 size -= nbytes;
ce8e922c 374 bp->b_pages[i] = page;
1da177e4
LT
375 offset = 0;
376 }
0e6e847f 377 return 0;
1da177e4 378
0e6e847f
DC
379out_free_pages:
380 for (i = 0; i < bp->b_page_count; i++)
381 __free_page(bp->b_pages[i]);
1da177e4
LT
382 return error;
383}
384
385/*
25985edc 386 * Map buffer into kernel address-space if necessary.
1da177e4
LT
387 */
388STATIC int
ce8e922c 389_xfs_buf_map_pages(
1da177e4
LT
390 xfs_buf_t *bp,
391 uint flags)
392{
0e6e847f 393 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 394 if (bp->b_page_count == 1) {
0e6e847f 395 /* A single page buffer is always mappable */
ce8e922c
NS
396 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
397 bp->b_flags |= XBF_MAPPED;
398 } else if (flags & XBF_MAPPED) {
a19fb380
DC
399 int retried = 0;
400
401 do {
402 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
403 -1, PAGE_KERNEL);
404 if (bp->b_addr)
405 break;
406 vm_unmap_aliases();
407 } while (retried++ <= 1);
408
409 if (!bp->b_addr)
1da177e4 410 return -ENOMEM;
ce8e922c
NS
411 bp->b_addr += bp->b_offset;
412 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
413 }
414
415 return 0;
416}
417
418/*
419 * Finding and Reading Buffers
420 */
421
422/*
ce8e922c 423 * Look up, and creates if absent, a lockable buffer for
1da177e4 424 * a given range of an inode. The buffer is returned
eabbaf11 425 * locked. No I/O is implied by this call.
1da177e4
LT
426 */
427xfs_buf_t *
ce8e922c 428_xfs_buf_find(
1da177e4 429 xfs_buftarg_t *btp, /* block device target */
204ab25f 430 xfs_off_t ioff, /* starting offset of range */
1da177e4 431 size_t isize, /* length of range */
ce8e922c
NS
432 xfs_buf_flags_t flags,
433 xfs_buf_t *new_bp)
1da177e4 434{
204ab25f 435 xfs_off_t range_base;
1da177e4 436 size_t range_length;
74f75a0c
DC
437 struct xfs_perag *pag;
438 struct rb_node **rbp;
439 struct rb_node *parent;
440 xfs_buf_t *bp;
1da177e4
LT
441
442 range_base = (ioff << BBSHIFT);
443 range_length = (isize << BBSHIFT);
444
445 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 446 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 447 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 448
74f75a0c
DC
449 /* get tree root */
450 pag = xfs_perag_get(btp->bt_mount,
451 xfs_daddr_to_agno(btp->bt_mount, ioff));
452
453 /* walk tree */
454 spin_lock(&pag->pag_buf_lock);
455 rbp = &pag->pag_buf_tree.rb_node;
456 parent = NULL;
457 bp = NULL;
458 while (*rbp) {
459 parent = *rbp;
460 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
461
462 if (range_base < bp->b_file_offset)
463 rbp = &(*rbp)->rb_left;
464 else if (range_base > bp->b_file_offset)
465 rbp = &(*rbp)->rb_right;
466 else {
467 /*
468 * found a block offset match. If the range doesn't
469 * match, the only way this is allowed is if the buffer
470 * in the cache is stale and the transaction that made
471 * it stale has not yet committed. i.e. we are
472 * reallocating a busy extent. Skip this buffer and
473 * continue searching to the right for an exact match.
474 */
475 if (bp->b_buffer_length != range_length) {
476 ASSERT(bp->b_flags & XBF_STALE);
477 rbp = &(*rbp)->rb_right;
478 continue;
479 }
ce8e922c 480 atomic_inc(&bp->b_hold);
1da177e4
LT
481 goto found;
482 }
483 }
484
485 /* No match found */
ce8e922c 486 if (new_bp) {
74f75a0c
DC
487 rb_link_node(&new_bp->b_rbnode, parent, rbp);
488 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
489 /* the buffer keeps the perag reference until it is freed */
490 new_bp->b_pag = pag;
491 spin_unlock(&pag->pag_buf_lock);
1da177e4 492 } else {
ce8e922c 493 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
494 spin_unlock(&pag->pag_buf_lock);
495 xfs_perag_put(pag);
1da177e4 496 }
ce8e922c 497 return new_bp;
1da177e4
LT
498
499found:
74f75a0c
DC
500 spin_unlock(&pag->pag_buf_lock);
501 xfs_perag_put(pag);
1da177e4 502
0c842ad4
CH
503 if (!xfs_buf_trylock(bp)) {
504 if (flags & XBF_TRYLOCK) {
ce8e922c
NS
505 xfs_buf_rele(bp);
506 XFS_STATS_INC(xb_busy_locked);
507 return NULL;
1da177e4 508 }
0c842ad4
CH
509 xfs_buf_lock(bp);
510 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
511 }
512
0e6e847f
DC
513 /*
514 * if the buffer is stale, clear all the external state associated with
515 * it. We need to keep flags such as how we allocated the buffer memory
516 * intact here.
517 */
ce8e922c
NS
518 if (bp->b_flags & XBF_STALE) {
519 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
0e6e847f 520 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
2f926587 521 }
0b1b213f
CH
522
523 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
524 XFS_STATS_INC(xb_get_locked);
525 return bp;
1da177e4
LT
526}
527
528/*
3815832a
DC
529 * Assembles a buffer covering the specified range. The code is optimised for
530 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
531 * more hits than misses.
1da177e4 532 */
3815832a 533struct xfs_buf *
6ad112bf 534xfs_buf_get(
1da177e4 535 xfs_buftarg_t *target,/* target for buffer */
204ab25f 536 xfs_off_t ioff, /* starting offset of range */
1da177e4 537 size_t isize, /* length of range */
ce8e922c 538 xfs_buf_flags_t flags)
1da177e4 539{
3815832a
DC
540 struct xfs_buf *bp;
541 struct xfs_buf *new_bp;
0e6e847f 542 int error = 0;
1da177e4 543
3815832a
DC
544 bp = _xfs_buf_find(target, ioff, isize, flags, NULL);
545 if (likely(bp))
546 goto found;
547
4347b9d7
CH
548 new_bp = xfs_buf_alloc(target, ioff << BBSHIFT, isize << BBSHIFT,
549 flags);
ce8e922c 550 if (unlikely(!new_bp))
1da177e4
LT
551 return NULL;
552
fe2429b0
DC
553 error = xfs_buf_allocate_memory(new_bp, flags);
554 if (error) {
555 kmem_zone_free(xfs_buf_zone, new_bp);
556 return NULL;
557 }
558
ce8e922c 559 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
3815832a 560 if (!bp) {
fe2429b0 561 xfs_buf_free(new_bp);
3815832a
DC
562 return NULL;
563 }
564
fe2429b0
DC
565 if (bp != new_bp)
566 xfs_buf_free(new_bp);
1da177e4 567
3815832a
DC
568 /*
569 * Now we have a workable buffer, fill in the block number so
570 * that we can do IO on it.
571 */
572 bp->b_bn = ioff;
573 bp->b_count_desired = bp->b_buffer_length;
574
575found:
ce8e922c
NS
576 if (!(bp->b_flags & XBF_MAPPED)) {
577 error = _xfs_buf_map_pages(bp, flags);
1da177e4 578 if (unlikely(error)) {
4f10700a
DC
579 xfs_warn(target->bt_mount,
580 "%s: failed to map pages\n", __func__);
1da177e4
LT
581 goto no_buffer;
582 }
583 }
584
ce8e922c 585 XFS_STATS_INC(xb_get);
0b1b213f 586 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 587 return bp;
1da177e4 588
3815832a 589no_buffer:
ce8e922c
NS
590 if (flags & (XBF_LOCK | XBF_TRYLOCK))
591 xfs_buf_unlock(bp);
592 xfs_buf_rele(bp);
1da177e4
LT
593 return NULL;
594}
595
5d765b97
CH
596STATIC int
597_xfs_buf_read(
598 xfs_buf_t *bp,
599 xfs_buf_flags_t flags)
600{
43ff2122 601 ASSERT(!(flags & XBF_WRITE));
5d765b97
CH
602 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
603
43ff2122 604 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 605 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 606
0e95f19a
DC
607 xfs_buf_iorequest(bp);
608 if (flags & XBF_ASYNC)
609 return 0;
ec53d1db 610 return xfs_buf_iowait(bp);
5d765b97
CH
611}
612
1da177e4 613xfs_buf_t *
6ad112bf 614xfs_buf_read(
1da177e4 615 xfs_buftarg_t *target,
204ab25f 616 xfs_off_t ioff,
1da177e4 617 size_t isize,
ce8e922c 618 xfs_buf_flags_t flags)
1da177e4 619{
ce8e922c
NS
620 xfs_buf_t *bp;
621
622 flags |= XBF_READ;
623
6ad112bf 624 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 625 if (bp) {
0b1b213f
CH
626 trace_xfs_buf_read(bp, flags, _RET_IP_);
627
ce8e922c 628 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 629 XFS_STATS_INC(xb_get_read);
5d765b97 630 _xfs_buf_read(bp, flags);
ce8e922c 631 } else if (flags & XBF_ASYNC) {
1da177e4
LT
632 /*
633 * Read ahead call which is already satisfied,
634 * drop the buffer
635 */
636 goto no_buffer;
637 } else {
1da177e4 638 /* We do not want read in the flags */
ce8e922c 639 bp->b_flags &= ~XBF_READ;
1da177e4
LT
640 }
641 }
642
ce8e922c 643 return bp;
1da177e4
LT
644
645 no_buffer:
ce8e922c
NS
646 if (flags & (XBF_LOCK | XBF_TRYLOCK))
647 xfs_buf_unlock(bp);
648 xfs_buf_rele(bp);
1da177e4
LT
649 return NULL;
650}
651
1da177e4 652/*
ce8e922c
NS
653 * If we are not low on memory then do the readahead in a deadlock
654 * safe manner.
1da177e4
LT
655 */
656void
ce8e922c 657xfs_buf_readahead(
1da177e4 658 xfs_buftarg_t *target,
204ab25f 659 xfs_off_t ioff,
1a1a3e97 660 size_t isize)
1da177e4 661{
0e6e847f 662 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
663 return;
664
1a1a3e97
CH
665 xfs_buf_read(target, ioff, isize,
666 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
667}
668
5adc94c2
DC
669/*
670 * Read an uncached buffer from disk. Allocates and returns a locked
671 * buffer containing the disk contents or nothing.
672 */
673struct xfs_buf *
674xfs_buf_read_uncached(
675 struct xfs_mount *mp,
676 struct xfs_buftarg *target,
677 xfs_daddr_t daddr,
678 size_t length,
679 int flags)
680{
681 xfs_buf_t *bp;
682 int error;
683
684 bp = xfs_buf_get_uncached(target, length, flags);
685 if (!bp)
686 return NULL;
687
688 /* set up the buffer for a read IO */
5adc94c2
DC
689 XFS_BUF_SET_ADDR(bp, daddr);
690 XFS_BUF_READ(bp);
5adc94c2
DC
691
692 xfsbdstrat(mp, bp);
1a1a3e97 693 error = xfs_buf_iowait(bp);
0e95f19a 694 if (error) {
5adc94c2
DC
695 xfs_buf_relse(bp);
696 return NULL;
697 }
698 return bp;
1da177e4
LT
699}
700
44396476
DC
701/*
702 * Return a buffer allocated as an empty buffer and associated to external
703 * memory via xfs_buf_associate_memory() back to it's empty state.
704 */
705void
706xfs_buf_set_empty(
707 struct xfs_buf *bp,
708 size_t len)
709{
710 if (bp->b_pages)
711 _xfs_buf_free_pages(bp);
712
713 bp->b_pages = NULL;
714 bp->b_page_count = 0;
715 bp->b_addr = NULL;
716 bp->b_file_offset = 0;
717 bp->b_buffer_length = bp->b_count_desired = len;
718 bp->b_bn = XFS_BUF_DADDR_NULL;
719 bp->b_flags &= ~XBF_MAPPED;
720}
721
1da177e4
LT
722static inline struct page *
723mem_to_page(
724 void *addr)
725{
9e2779fa 726 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
727 return virt_to_page(addr);
728 } else {
729 return vmalloc_to_page(addr);
730 }
731}
732
733int
ce8e922c
NS
734xfs_buf_associate_memory(
735 xfs_buf_t *bp,
1da177e4
LT
736 void *mem,
737 size_t len)
738{
739 int rval;
740 int i = 0;
d1afb678
LM
741 unsigned long pageaddr;
742 unsigned long offset;
743 size_t buflen;
1da177e4
LT
744 int page_count;
745
0e6e847f 746 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 747 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
748 buflen = PAGE_ALIGN(len + offset);
749 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
750
751 /* Free any previous set of page pointers */
ce8e922c
NS
752 if (bp->b_pages)
753 _xfs_buf_free_pages(bp);
1da177e4 754
ce8e922c
NS
755 bp->b_pages = NULL;
756 bp->b_addr = mem;
1da177e4 757
36fae17a 758 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
759 if (rval)
760 return rval;
761
ce8e922c 762 bp->b_offset = offset;
d1afb678
LM
763
764 for (i = 0; i < bp->b_page_count; i++) {
765 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 766 pageaddr += PAGE_SIZE;
1da177e4 767 }
1da177e4 768
d1afb678
LM
769 bp->b_count_desired = len;
770 bp->b_buffer_length = buflen;
ce8e922c 771 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
772
773 return 0;
774}
775
776xfs_buf_t *
686865f7
DC
777xfs_buf_get_uncached(
778 struct xfs_buftarg *target,
1da177e4 779 size_t len,
686865f7 780 int flags)
1da177e4 781{
1fa40b01
CH
782 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
783 int error, i;
1da177e4 784 xfs_buf_t *bp;
1da177e4 785
4347b9d7 786 bp = xfs_buf_alloc(target, 0, len, 0);
1da177e4
LT
787 if (unlikely(bp == NULL))
788 goto fail;
1da177e4 789
1fa40b01
CH
790 error = _xfs_buf_get_pages(bp, page_count, 0);
791 if (error)
1da177e4
LT
792 goto fail_free_buf;
793
1fa40b01 794 for (i = 0; i < page_count; i++) {
686865f7 795 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
796 if (!bp->b_pages[i])
797 goto fail_free_mem;
1da177e4 798 }
1fa40b01 799 bp->b_flags |= _XBF_PAGES;
1da177e4 800
1fa40b01
CH
801 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
802 if (unlikely(error)) {
4f10700a
DC
803 xfs_warn(target->bt_mount,
804 "%s: failed to map pages\n", __func__);
1da177e4 805 goto fail_free_mem;
1fa40b01 806 }
1da177e4 807
686865f7 808 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 809 return bp;
1fa40b01 810
1da177e4 811 fail_free_mem:
1fa40b01
CH
812 while (--i >= 0)
813 __free_page(bp->b_pages[i]);
ca165b88 814 _xfs_buf_free_pages(bp);
1da177e4 815 fail_free_buf:
4347b9d7 816 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
817 fail:
818 return NULL;
819}
820
821/*
1da177e4
LT
822 * Increment reference count on buffer, to hold the buffer concurrently
823 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
824 * Must hold the buffer already to call this function.
825 */
826void
ce8e922c
NS
827xfs_buf_hold(
828 xfs_buf_t *bp)
1da177e4 829{
0b1b213f 830 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 831 atomic_inc(&bp->b_hold);
1da177e4
LT
832}
833
834/*
ce8e922c
NS
835 * Releases a hold on the specified buffer. If the
836 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
837 */
838void
ce8e922c
NS
839xfs_buf_rele(
840 xfs_buf_t *bp)
1da177e4 841{
74f75a0c 842 struct xfs_perag *pag = bp->b_pag;
1da177e4 843
0b1b213f 844 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 845
74f75a0c 846 if (!pag) {
430cbeb8 847 ASSERT(list_empty(&bp->b_lru));
74f75a0c 848 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
849 if (atomic_dec_and_test(&bp->b_hold))
850 xfs_buf_free(bp);
851 return;
852 }
853
74f75a0c 854 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 855
3790689f 856 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 857 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 858 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
859 atomic_read(&bp->b_lru_ref)) {
860 xfs_buf_lru_add(bp);
861 spin_unlock(&pag->pag_buf_lock);
1da177e4 862 } else {
430cbeb8 863 xfs_buf_lru_del(bp);
43ff2122 864 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
74f75a0c
DC
865 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
866 spin_unlock(&pag->pag_buf_lock);
867 xfs_perag_put(pag);
ce8e922c 868 xfs_buf_free(bp);
1da177e4
LT
869 }
870 }
871}
872
873
874/*
0e6e847f 875 * Lock a buffer object, if it is not already locked.
90810b9e
DC
876 *
877 * If we come across a stale, pinned, locked buffer, we know that we are
878 * being asked to lock a buffer that has been reallocated. Because it is
879 * pinned, we know that the log has not been pushed to disk and hence it
880 * will still be locked. Rather than continuing to have trylock attempts
881 * fail until someone else pushes the log, push it ourselves before
882 * returning. This means that the xfsaild will not get stuck trying
883 * to push on stale inode buffers.
1da177e4
LT
884 */
885int
0c842ad4
CH
886xfs_buf_trylock(
887 struct xfs_buf *bp)
1da177e4
LT
888{
889 int locked;
890
ce8e922c 891 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 892 if (locked)
ce8e922c 893 XB_SET_OWNER(bp);
90810b9e
DC
894 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
895 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f 896
0c842ad4
CH
897 trace_xfs_buf_trylock(bp, _RET_IP_);
898 return locked;
1da177e4 899}
1da177e4
LT
900
901/*
0e6e847f 902 * Lock a buffer object.
ed3b4d6c
DC
903 *
904 * If we come across a stale, pinned, locked buffer, we know that we
905 * are being asked to lock a buffer that has been reallocated. Because
906 * it is pinned, we know that the log has not been pushed to disk and
907 * hence it will still be locked. Rather than sleeping until someone
908 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 909 */
ce8e922c
NS
910void
911xfs_buf_lock(
0c842ad4 912 struct xfs_buf *bp)
1da177e4 913{
0b1b213f
CH
914 trace_xfs_buf_lock(bp, _RET_IP_);
915
ed3b4d6c 916 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 917 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
918 down(&bp->b_sema);
919 XB_SET_OWNER(bp);
0b1b213f
CH
920
921 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
922}
923
1da177e4 924void
ce8e922c 925xfs_buf_unlock(
0c842ad4 926 struct xfs_buf *bp)
1da177e4 927{
ce8e922c
NS
928 XB_CLEAR_OWNER(bp);
929 up(&bp->b_sema);
0b1b213f
CH
930
931 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
932}
933
ce8e922c
NS
934STATIC void
935xfs_buf_wait_unpin(
936 xfs_buf_t *bp)
1da177e4
LT
937{
938 DECLARE_WAITQUEUE (wait, current);
939
ce8e922c 940 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
941 return;
942
ce8e922c 943 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
944 for (;;) {
945 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 946 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 947 break;
7eaceacc 948 io_schedule();
1da177e4 949 }
ce8e922c 950 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
951 set_current_state(TASK_RUNNING);
952}
953
954/*
955 * Buffer Utility Routines
956 */
957
1da177e4 958STATIC void
ce8e922c 959xfs_buf_iodone_work(
c4028958 960 struct work_struct *work)
1da177e4 961{
c4028958
DH
962 xfs_buf_t *bp =
963 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 964
80f6c29d 965 if (bp->b_iodone)
ce8e922c
NS
966 (*(bp->b_iodone))(bp);
967 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
968 xfs_buf_relse(bp);
969}
970
971void
ce8e922c
NS
972xfs_buf_ioend(
973 xfs_buf_t *bp,
1da177e4
LT
974 int schedule)
975{
0b1b213f
CH
976 trace_xfs_buf_iodone(bp, _RET_IP_);
977
77be55a5 978 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
979 if (bp->b_error == 0)
980 bp->b_flags |= XBF_DONE;
1da177e4 981
ce8e922c 982 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 983 if (schedule) {
c4028958 984 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 985 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 986 } else {
c4028958 987 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
988 }
989 } else {
b4dd330b 990 complete(&bp->b_iowait);
1da177e4
LT
991 }
992}
993
1da177e4 994void
ce8e922c
NS
995xfs_buf_ioerror(
996 xfs_buf_t *bp,
997 int error)
1da177e4
LT
998{
999 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1000 bp->b_error = (unsigned short)error;
0b1b213f 1001 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1002}
1003
901796af
CH
1004void
1005xfs_buf_ioerror_alert(
1006 struct xfs_buf *bp,
1007 const char *func)
1008{
1009 xfs_alert(bp->b_target->bt_mount,
1010"metadata I/O error: block 0x%llx (\"%s\") error %d buf count %zd",
1011 (__uint64_t)XFS_BUF_ADDR(bp), func,
1012 bp->b_error, XFS_BUF_COUNT(bp));
1013}
1014
1da177e4 1015int
64e0bc7d 1016xfs_bwrite(
5d765b97 1017 struct xfs_buf *bp)
1da177e4 1018{
8c38366f 1019 int error;
1da177e4 1020
43ff2122
CH
1021 ASSERT(xfs_buf_islocked(bp));
1022
64e0bc7d 1023 bp->b_flags |= XBF_WRITE;
43ff2122 1024 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q);
1da177e4 1025
939d723b 1026 xfs_bdstrat_cb(bp);
1da177e4 1027
8c38366f 1028 error = xfs_buf_iowait(bp);
c2b006c1
CH
1029 if (error) {
1030 xfs_force_shutdown(bp->b_target->bt_mount,
1031 SHUTDOWN_META_IO_ERROR);
1032 }
64e0bc7d 1033 return error;
5d765b97 1034}
1da177e4 1035
4e23471a
CH
1036/*
1037 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1038 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1039 * so that the proper iodone callbacks get called.
1040 */
1041STATIC int
1042xfs_bioerror(
1043 xfs_buf_t *bp)
1044{
1045#ifdef XFSERRORDEBUG
1046 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1047#endif
1048
1049 /*
1050 * No need to wait until the buffer is unpinned, we aren't flushing it.
1051 */
5a52c2a5 1052 xfs_buf_ioerror(bp, EIO);
4e23471a
CH
1053
1054 /*
1a1a3e97 1055 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1056 */
1057 XFS_BUF_UNREAD(bp);
4e23471a 1058 XFS_BUF_UNDONE(bp);
c867cb61 1059 xfs_buf_stale(bp);
4e23471a 1060
1a1a3e97 1061 xfs_buf_ioend(bp, 0);
4e23471a
CH
1062
1063 return EIO;
1064}
1065
1066/*
1067 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1068 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1069 * This is meant for userdata errors; metadata bufs come with
1070 * iodone functions attached, so that we can track down errors.
1071 */
1072STATIC int
1073xfs_bioerror_relse(
1074 struct xfs_buf *bp)
1075{
ed43233b 1076 int64_t fl = bp->b_flags;
4e23471a
CH
1077 /*
1078 * No need to wait until the buffer is unpinned.
1079 * We aren't flushing it.
1080 *
1081 * chunkhold expects B_DONE to be set, whether
1082 * we actually finish the I/O or not. We don't want to
1083 * change that interface.
1084 */
1085 XFS_BUF_UNREAD(bp);
4e23471a 1086 XFS_BUF_DONE(bp);
c867cb61 1087 xfs_buf_stale(bp);
cb669ca5 1088 bp->b_iodone = NULL;
0cadda1c 1089 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1090 /*
1091 * Mark b_error and B_ERROR _both_.
1092 * Lot's of chunkcache code assumes that.
1093 * There's no reason to mark error for
1094 * ASYNC buffers.
1095 */
5a52c2a5 1096 xfs_buf_ioerror(bp, EIO);
5fde0326 1097 complete(&bp->b_iowait);
4e23471a
CH
1098 } else {
1099 xfs_buf_relse(bp);
1100 }
1101
1102 return EIO;
1103}
1104
1105
1106/*
1107 * All xfs metadata buffers except log state machine buffers
1108 * get this attached as their b_bdstrat callback function.
1109 * This is so that we can catch a buffer
1110 * after prematurely unpinning it to forcibly shutdown the filesystem.
1111 */
1112int
1113xfs_bdstrat_cb(
1114 struct xfs_buf *bp)
1115{
ebad861b 1116 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1117 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1118 /*
1119 * Metadata write that didn't get logged but
1120 * written delayed anyway. These aren't associated
1121 * with a transaction, and can be ignored.
1122 */
1123 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1124 return xfs_bioerror_relse(bp);
1125 else
1126 return xfs_bioerror(bp);
1127 }
1128
1129 xfs_buf_iorequest(bp);
1130 return 0;
1131}
1132
1133/*
1134 * Wrapper around bdstrat so that we can stop data from going to disk in case
1135 * we are shutting down the filesystem. Typically user data goes thru this
1136 * path; one of the exceptions is the superblock.
1137 */
1138void
1139xfsbdstrat(
1140 struct xfs_mount *mp,
1141 struct xfs_buf *bp)
1142{
1143 if (XFS_FORCED_SHUTDOWN(mp)) {
1144 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1145 xfs_bioerror_relse(bp);
1146 return;
1147 }
1148
1149 xfs_buf_iorequest(bp);
1150}
1151
b8f82a4a 1152STATIC void
ce8e922c
NS
1153_xfs_buf_ioend(
1154 xfs_buf_t *bp,
1da177e4
LT
1155 int schedule)
1156{
0e6e847f 1157 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1158 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1159}
1160
782e3b3b 1161STATIC void
ce8e922c 1162xfs_buf_bio_end_io(
1da177e4 1163 struct bio *bio,
1da177e4
LT
1164 int error)
1165{
ce8e922c 1166 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1167
cfbe5267 1168 xfs_buf_ioerror(bp, -error);
1da177e4 1169
73c77e2c
JB
1170 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1171 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1172
ce8e922c 1173 _xfs_buf_ioend(bp, 1);
1da177e4 1174 bio_put(bio);
1da177e4
LT
1175}
1176
1177STATIC void
ce8e922c
NS
1178_xfs_buf_ioapply(
1179 xfs_buf_t *bp)
1da177e4 1180{
a9759f2d 1181 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1182 struct bio *bio;
ce8e922c
NS
1183 int offset = bp->b_offset;
1184 int size = bp->b_count_desired;
1185 sector_t sector = bp->b_bn;
1da177e4 1186
ce8e922c 1187 total_nr_pages = bp->b_page_count;
1da177e4
LT
1188 map_i = 0;
1189
1d5ae5df
CH
1190 if (bp->b_flags & XBF_WRITE) {
1191 if (bp->b_flags & XBF_SYNCIO)
1192 rw = WRITE_SYNC;
1193 else
1194 rw = WRITE;
1195 if (bp->b_flags & XBF_FUA)
1196 rw |= REQ_FUA;
1197 if (bp->b_flags & XBF_FLUSH)
1198 rw |= REQ_FLUSH;
1199 } else if (bp->b_flags & XBF_READ_AHEAD) {
1200 rw = READA;
51bdd706 1201 } else {
1d5ae5df 1202 rw = READ;
f538d4da
CH
1203 }
1204
34951f5c
CH
1205 /* we only use the buffer cache for meta-data */
1206 rw |= REQ_META;
1207
1da177e4 1208next_chunk:
ce8e922c 1209 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1210 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1211 if (nr_pages > total_nr_pages)
1212 nr_pages = total_nr_pages;
1213
1214 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1215 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1216 bio->bi_sector = sector;
ce8e922c
NS
1217 bio->bi_end_io = xfs_buf_bio_end_io;
1218 bio->bi_private = bp;
1da177e4 1219
0e6e847f 1220
1da177e4 1221 for (; size && nr_pages; nr_pages--, map_i++) {
0e6e847f 1222 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1223
1224 if (nbytes > size)
1225 nbytes = size;
1226
ce8e922c
NS
1227 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1228 if (rbytes < nbytes)
1da177e4
LT
1229 break;
1230
1231 offset = 0;
1232 sector += nbytes >> BBSHIFT;
1233 size -= nbytes;
1234 total_nr_pages--;
1235 }
1236
1da177e4 1237 if (likely(bio->bi_size)) {
73c77e2c
JB
1238 if (xfs_buf_is_vmapped(bp)) {
1239 flush_kernel_vmap_range(bp->b_addr,
1240 xfs_buf_vmap_len(bp));
1241 }
1da177e4
LT
1242 submit_bio(rw, bio);
1243 if (size)
1244 goto next_chunk;
1245 } else {
ce8e922c 1246 xfs_buf_ioerror(bp, EIO);
ec53d1db 1247 bio_put(bio);
1da177e4
LT
1248 }
1249}
1250
0e95f19a 1251void
ce8e922c
NS
1252xfs_buf_iorequest(
1253 xfs_buf_t *bp)
1da177e4 1254{
0b1b213f 1255 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1256
43ff2122 1257 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1da177e4 1258
375ec69d 1259 if (bp->b_flags & XBF_WRITE)
ce8e922c 1260 xfs_buf_wait_unpin(bp);
ce8e922c 1261 xfs_buf_hold(bp);
1da177e4
LT
1262
1263 /* Set the count to 1 initially, this will stop an I/O
1264 * completion callout which happens before we have started
ce8e922c 1265 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1266 */
ce8e922c
NS
1267 atomic_set(&bp->b_io_remaining, 1);
1268 _xfs_buf_ioapply(bp);
1269 _xfs_buf_ioend(bp, 0);
1da177e4 1270
ce8e922c 1271 xfs_buf_rele(bp);
1da177e4
LT
1272}
1273
1274/*
0e95f19a
DC
1275 * Waits for I/O to complete on the buffer supplied. It returns immediately if
1276 * no I/O is pending or there is already a pending error on the buffer. It
1277 * returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1278 */
1279int
ce8e922c
NS
1280xfs_buf_iowait(
1281 xfs_buf_t *bp)
1da177e4 1282{
0b1b213f
CH
1283 trace_xfs_buf_iowait(bp, _RET_IP_);
1284
0e95f19a
DC
1285 if (!bp->b_error)
1286 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1287
1288 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1289 return bp->b_error;
1da177e4
LT
1290}
1291
ce8e922c
NS
1292xfs_caddr_t
1293xfs_buf_offset(
1294 xfs_buf_t *bp,
1da177e4
LT
1295 size_t offset)
1296{
1297 struct page *page;
1298
ce8e922c 1299 if (bp->b_flags & XBF_MAPPED)
62926044 1300 return bp->b_addr + offset;
1da177e4 1301
ce8e922c 1302 offset += bp->b_offset;
0e6e847f
DC
1303 page = bp->b_pages[offset >> PAGE_SHIFT];
1304 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1305}
1306
1307/*
1da177e4
LT
1308 * Move data into or out of a buffer.
1309 */
1310void
ce8e922c
NS
1311xfs_buf_iomove(
1312 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1313 size_t boff, /* starting buffer offset */
1314 size_t bsize, /* length to copy */
b9c48649 1315 void *data, /* data address */
ce8e922c 1316 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1317{
1318 size_t bend, cpoff, csize;
1319 struct page *page;
1320
1321 bend = boff + bsize;
1322 while (boff < bend) {
ce8e922c
NS
1323 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1324 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1325 csize = min_t(size_t,
0e6e847f 1326 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4 1327
0e6e847f 1328 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1da177e4
LT
1329
1330 switch (mode) {
ce8e922c 1331 case XBRW_ZERO:
1da177e4
LT
1332 memset(page_address(page) + cpoff, 0, csize);
1333 break;
ce8e922c 1334 case XBRW_READ:
1da177e4
LT
1335 memcpy(data, page_address(page) + cpoff, csize);
1336 break;
ce8e922c 1337 case XBRW_WRITE:
1da177e4
LT
1338 memcpy(page_address(page) + cpoff, data, csize);
1339 }
1340
1341 boff += csize;
1342 data += csize;
1343 }
1344}
1345
1346/*
ce8e922c 1347 * Handling of buffer targets (buftargs).
1da177e4
LT
1348 */
1349
1350/*
430cbeb8
DC
1351 * Wait for any bufs with callbacks that have been submitted but have not yet
1352 * returned. These buffers will have an elevated hold count, so wait on those
1353 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1354 */
1355void
1356xfs_wait_buftarg(
74f75a0c 1357 struct xfs_buftarg *btp)
1da177e4 1358{
430cbeb8
DC
1359 struct xfs_buf *bp;
1360
1361restart:
1362 spin_lock(&btp->bt_lru_lock);
1363 while (!list_empty(&btp->bt_lru)) {
1364 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1365 if (atomic_read(&bp->b_hold) > 1) {
1366 spin_unlock(&btp->bt_lru_lock);
26af6552 1367 delay(100);
430cbeb8 1368 goto restart;
1da177e4 1369 }
430cbeb8 1370 /*
90802ed9 1371 * clear the LRU reference count so the buffer doesn't get
430cbeb8
DC
1372 * ignored in xfs_buf_rele().
1373 */
1374 atomic_set(&bp->b_lru_ref, 0);
1375 spin_unlock(&btp->bt_lru_lock);
1376 xfs_buf_rele(bp);
1377 spin_lock(&btp->bt_lru_lock);
1da177e4 1378 }
430cbeb8 1379 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1380}
1381
ff57ab21
DC
1382int
1383xfs_buftarg_shrink(
1384 struct shrinker *shrink,
1495f230 1385 struct shrink_control *sc)
a6867a68 1386{
ff57ab21
DC
1387 struct xfs_buftarg *btp = container_of(shrink,
1388 struct xfs_buftarg, bt_shrinker);
430cbeb8 1389 struct xfs_buf *bp;
1495f230 1390 int nr_to_scan = sc->nr_to_scan;
430cbeb8
DC
1391 LIST_HEAD(dispose);
1392
1393 if (!nr_to_scan)
1394 return btp->bt_lru_nr;
1395
1396 spin_lock(&btp->bt_lru_lock);
1397 while (!list_empty(&btp->bt_lru)) {
1398 if (nr_to_scan-- <= 0)
1399 break;
1400
1401 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1402
1403 /*
1404 * Decrement the b_lru_ref count unless the value is already
1405 * zero. If the value is already zero, we need to reclaim the
1406 * buffer, otherwise it gets another trip through the LRU.
1407 */
1408 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1409 list_move_tail(&bp->b_lru, &btp->bt_lru);
1410 continue;
1411 }
1412
1413 /*
1414 * remove the buffer from the LRU now to avoid needing another
1415 * lock round trip inside xfs_buf_rele().
1416 */
1417 list_move(&bp->b_lru, &dispose);
1418 btp->bt_lru_nr--;
ff57ab21 1419 }
430cbeb8
DC
1420 spin_unlock(&btp->bt_lru_lock);
1421
1422 while (!list_empty(&dispose)) {
1423 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1424 list_del_init(&bp->b_lru);
1425 xfs_buf_rele(bp);
1426 }
1427
1428 return btp->bt_lru_nr;
a6867a68
DC
1429}
1430
1da177e4
LT
1431void
1432xfs_free_buftarg(
b7963133
CH
1433 struct xfs_mount *mp,
1434 struct xfs_buftarg *btp)
1da177e4 1435{
ff57ab21
DC
1436 unregister_shrinker(&btp->bt_shrinker);
1437
b7963133
CH
1438 if (mp->m_flags & XFS_MOUNT_BARRIER)
1439 xfs_blkdev_issue_flush(btp);
a6867a68 1440
f0e2d93c 1441 kmem_free(btp);
1da177e4
LT
1442}
1443
1da177e4
LT
1444STATIC int
1445xfs_setsize_buftarg_flags(
1446 xfs_buftarg_t *btp,
1447 unsigned int blocksize,
1448 unsigned int sectorsize,
1449 int verbose)
1450{
ce8e922c
NS
1451 btp->bt_bsize = blocksize;
1452 btp->bt_sshift = ffs(sectorsize) - 1;
1453 btp->bt_smask = sectorsize - 1;
1da177e4 1454
ce8e922c 1455 if (set_blocksize(btp->bt_bdev, sectorsize)) {
02b102df
CH
1456 char name[BDEVNAME_SIZE];
1457
1458 bdevname(btp->bt_bdev, name);
1459
4f10700a
DC
1460 xfs_warn(btp->bt_mount,
1461 "Cannot set_blocksize to %u on device %s\n",
02b102df 1462 sectorsize, name);
1da177e4
LT
1463 return EINVAL;
1464 }
1465
1da177e4
LT
1466 return 0;
1467}
1468
1469/*
ce8e922c
NS
1470 * When allocating the initial buffer target we have not yet
1471 * read in the superblock, so don't know what sized sectors
1472 * are being used is at this early stage. Play safe.
1473 */
1da177e4
LT
1474STATIC int
1475xfs_setsize_buftarg_early(
1476 xfs_buftarg_t *btp,
1477 struct block_device *bdev)
1478{
1479 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1480 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1481}
1482
1483int
1484xfs_setsize_buftarg(
1485 xfs_buftarg_t *btp,
1486 unsigned int blocksize,
1487 unsigned int sectorsize)
1488{
1489 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1490}
1491
1da177e4
LT
1492xfs_buftarg_t *
1493xfs_alloc_buftarg(
ebad861b 1494 struct xfs_mount *mp,
1da177e4 1495 struct block_device *bdev,
e2a07812
JE
1496 int external,
1497 const char *fsname)
1da177e4
LT
1498{
1499 xfs_buftarg_t *btp;
1500
1501 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1502
ebad861b 1503 btp->bt_mount = mp;
ce8e922c
NS
1504 btp->bt_dev = bdev->bd_dev;
1505 btp->bt_bdev = bdev;
0e6e847f
DC
1506 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1507 if (!btp->bt_bdi)
1508 goto error;
1509
430cbeb8
DC
1510 INIT_LIST_HEAD(&btp->bt_lru);
1511 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1512 if (xfs_setsize_buftarg_early(btp, bdev))
1513 goto error;
ff57ab21
DC
1514 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1515 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1516 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1517 return btp;
1518
1519error:
f0e2d93c 1520 kmem_free(btp);
1da177e4
LT
1521 return NULL;
1522}
1523
1da177e4 1524/*
43ff2122
CH
1525 * Add a buffer to the delayed write list.
1526 *
1527 * This queues a buffer for writeout if it hasn't already been. Note that
1528 * neither this routine nor the buffer list submission functions perform
1529 * any internal synchronization. It is expected that the lists are thread-local
1530 * to the callers.
1531 *
1532 * Returns true if we queued up the buffer, or false if it already had
1533 * been on the buffer list.
1da177e4 1534 */
43ff2122 1535bool
ce8e922c 1536xfs_buf_delwri_queue(
43ff2122
CH
1537 struct xfs_buf *bp,
1538 struct list_head *list)
1da177e4 1539{
43ff2122 1540 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1541 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1542
43ff2122
CH
1543 /*
1544 * If the buffer is already marked delwri it already is queued up
1545 * by someone else for imediate writeout. Just ignore it in that
1546 * case.
1547 */
1548 if (bp->b_flags & _XBF_DELWRI_Q) {
1549 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1550 return false;
1da177e4 1551 }
1da177e4 1552
43ff2122 1553 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1554
1555 /*
43ff2122
CH
1556 * If a buffer gets written out synchronously or marked stale while it
1557 * is on a delwri list we lazily remove it. To do this, the other party
1558 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1559 * It remains referenced and on the list. In a rare corner case it
1560 * might get readded to a delwri list after the synchronous writeout, in
1561 * which case we need just need to re-add the flag here.
d808f617 1562 */
43ff2122
CH
1563 bp->b_flags |= _XBF_DELWRI_Q;
1564 if (list_empty(&bp->b_list)) {
1565 atomic_inc(&bp->b_hold);
1566 list_add_tail(&bp->b_list, list);
585e6d88 1567 }
585e6d88 1568
43ff2122 1569 return true;
585e6d88
DC
1570}
1571
089716aa
DC
1572/*
1573 * Compare function is more complex than it needs to be because
1574 * the return value is only 32 bits and we are doing comparisons
1575 * on 64 bit values
1576 */
1577static int
1578xfs_buf_cmp(
1579 void *priv,
1580 struct list_head *a,
1581 struct list_head *b)
1582{
1583 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1584 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1585 xfs_daddr_t diff;
1586
1587 diff = ap->b_bn - bp->b_bn;
1588 if (diff < 0)
1589 return -1;
1590 if (diff > 0)
1591 return 1;
1592 return 0;
1593}
1594
43ff2122
CH
1595static int
1596__xfs_buf_delwri_submit(
1597 struct list_head *buffer_list,
1598 struct list_head *io_list,
1599 bool wait)
1da177e4 1600{
43ff2122
CH
1601 struct blk_plug plug;
1602 struct xfs_buf *bp, *n;
1603 int pinned = 0;
1604
1605 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1606 if (!wait) {
1607 if (xfs_buf_ispinned(bp)) {
1608 pinned++;
1609 continue;
1610 }
1611 if (!xfs_buf_trylock(bp))
1612 continue;
1613 } else {
1614 xfs_buf_lock(bp);
1615 }
978c7b2f 1616
43ff2122
CH
1617 /*
1618 * Someone else might have written the buffer synchronously or
1619 * marked it stale in the meantime. In that case only the
1620 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1621 * reference and remove it from the list here.
1622 */
1623 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1624 list_del_init(&bp->b_list);
1625 xfs_buf_relse(bp);
1626 continue;
1627 }
c9c12971 1628
43ff2122
CH
1629 list_move_tail(&bp->b_list, io_list);
1630 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1631 }
1da177e4 1632
43ff2122 1633 list_sort(NULL, io_list, xfs_buf_cmp);
1da177e4 1634
43ff2122
CH
1635 blk_start_plug(&plug);
1636 list_for_each_entry_safe(bp, n, io_list, b_list) {
1637 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
1638 bp->b_flags |= XBF_WRITE;
a1b7ea5d 1639
43ff2122
CH
1640 if (!wait) {
1641 bp->b_flags |= XBF_ASYNC;
ce8e922c 1642 list_del_init(&bp->b_list);
1da177e4 1643 }
43ff2122
CH
1644 xfs_bdstrat_cb(bp);
1645 }
1646 blk_finish_plug(&plug);
1da177e4 1647
43ff2122 1648 return pinned;
1da177e4
LT
1649}
1650
1651/*
43ff2122
CH
1652 * Write out a buffer list asynchronously.
1653 *
1654 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1655 * out and not wait for I/O completion on any of the buffers. This interface
1656 * is only safely useable for callers that can track I/O completion by higher
1657 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1658 * function.
1da177e4
LT
1659 */
1660int
43ff2122
CH
1661xfs_buf_delwri_submit_nowait(
1662 struct list_head *buffer_list)
1da177e4 1663{
43ff2122
CH
1664 LIST_HEAD (io_list);
1665 return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
1666}
1da177e4 1667
43ff2122
CH
1668/*
1669 * Write out a buffer list synchronously.
1670 *
1671 * This will take the @buffer_list, write all buffers out and wait for I/O
1672 * completion on all of the buffers. @buffer_list is consumed by the function,
1673 * so callers must have some other way of tracking buffers if they require such
1674 * functionality.
1675 */
1676int
1677xfs_buf_delwri_submit(
1678 struct list_head *buffer_list)
1679{
1680 LIST_HEAD (io_list);
1681 int error = 0, error2;
1682 struct xfs_buf *bp;
1da177e4 1683
43ff2122 1684 __xfs_buf_delwri_submit(buffer_list, &io_list, true);
1da177e4 1685
43ff2122
CH
1686 /* Wait for IO to complete. */
1687 while (!list_empty(&io_list)) {
1688 bp = list_first_entry(&io_list, struct xfs_buf, b_list);
a1b7ea5d 1689
089716aa 1690 list_del_init(&bp->b_list);
43ff2122
CH
1691 error2 = xfs_buf_iowait(bp);
1692 xfs_buf_relse(bp);
1693 if (!error)
1694 error = error2;
1da177e4
LT
1695 }
1696
43ff2122 1697 return error;
1da177e4
LT
1698}
1699
04d8b284 1700int __init
ce8e922c 1701xfs_buf_init(void)
1da177e4 1702{
8758280f
NS
1703 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1704 KM_ZONE_HWALIGN, NULL);
ce8e922c 1705 if (!xfs_buf_zone)
0b1b213f 1706 goto out;
04d8b284 1707
51749e47 1708 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1709 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1710 if (!xfslogd_workqueue)
04d8b284 1711 goto out_free_buf_zone;
1da177e4 1712
23ea4032 1713 return 0;
1da177e4 1714
23ea4032 1715 out_free_buf_zone:
ce8e922c 1716 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1717 out:
8758280f 1718 return -ENOMEM;
1da177e4
LT
1719}
1720
1da177e4 1721void
ce8e922c 1722xfs_buf_terminate(void)
1da177e4 1723{
04d8b284 1724 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1725 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1726}