]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_buf.c
xfs: removed unused error variable from xchk_refcountbt_rec
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
3fcfab16 7#include <linux/backing-dev.h>
1da177e4 8
5467b34b 9#include "xfs_shared.h"
4fb6e8ad 10#include "xfs_format.h"
239880ef 11#include "xfs_log_format.h"
7fd36c44 12#include "xfs_trans_resv.h"
239880ef 13#include "xfs_sb.h"
b7963133 14#include "xfs_mount.h"
0b1b213f 15#include "xfs_trace.h"
239880ef 16#include "xfs_log.h"
e9e899a2 17#include "xfs_errortag.h"
7561d27e 18#include "xfs_error.h"
b7963133 19
7989cb8e 20static kmem_zone_t *xfs_buf_zone;
23ea4032 21
ce8e922c 22#define xb_to_gfp(flags) \
aa5c158e 23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 24
37fd1678
DC
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_wait_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
1da177e4 51
73c77e2c
JB
52static inline int
53xfs_buf_is_vmapped(
54 struct xfs_buf *bp)
55{
56 /*
57 * Return true if the buffer is vmapped.
58 *
611c9946
DC
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 62 */
611c9946 63 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
64}
65
66static inline int
67xfs_buf_vmap_len(
68 struct xfs_buf *bp)
69{
70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71}
72
9c7504aa
BF
73/*
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80 * in-flight buffers.
81 *
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
85 */
86static inline void
87xfs_buf_ioacct_inc(
88 struct xfs_buf *bp)
89{
63db7c81 90 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
91 return;
92
93 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
94 spin_lock(&bp->b_lock);
95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 percpu_counter_inc(&bp->b_target->bt_io_count);
98 }
99 spin_unlock(&bp->b_lock);
9c7504aa
BF
100}
101
102/*
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
105 */
106static inline void
63db7c81 107__xfs_buf_ioacct_dec(
9c7504aa
BF
108 struct xfs_buf *bp)
109{
95989c46 110 lockdep_assert_held(&bp->b_lock);
9c7504aa 111
63db7c81
BF
112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_dec(&bp->b_target->bt_io_count);
115 }
116}
117
118static inline void
119xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 spin_lock(&bp->b_lock);
123 __xfs_buf_ioacct_dec(bp);
124 spin_unlock(&bp->b_lock);
9c7504aa
BF
125}
126
430cbeb8
DC
127/*
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
132 *
133 * This prevents build-up of stale buffers on the LRU.
134 */
135void
136xfs_buf_stale(
137 struct xfs_buf *bp)
138{
43ff2122
CH
139 ASSERT(xfs_buf_islocked(bp));
140
430cbeb8 141 bp->b_flags |= XBF_STALE;
43ff2122
CH
142
143 /*
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
147 */
148 bp->b_flags &= ~_XBF_DELWRI_Q;
149
9c7504aa
BF
150 /*
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
155 */
a4082357 156 spin_lock(&bp->b_lock);
63db7c81
BF
157 __xfs_buf_ioacct_dec(bp);
158
a4082357
DC
159 atomic_set(&bp->b_lru_ref, 0);
160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 atomic_dec(&bp->b_hold);
163
430cbeb8 164 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 165 spin_unlock(&bp->b_lock);
430cbeb8 166}
1da177e4 167
3e85c868
DC
168static int
169xfs_buf_get_maps(
170 struct xfs_buf *bp,
171 int map_count)
172{
173 ASSERT(bp->b_maps == NULL);
174 bp->b_map_count = map_count;
175
176 if (map_count == 1) {
f4b42421 177 bp->b_maps = &bp->__b_map;
3e85c868
DC
178 return 0;
179 }
180
181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 KM_NOFS);
183 if (!bp->b_maps)
2451337d 184 return -ENOMEM;
3e85c868
DC
185 return 0;
186}
187
188/*
189 * Frees b_pages if it was allocated.
190 */
191static void
192xfs_buf_free_maps(
193 struct xfs_buf *bp)
194{
f4b42421 195 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
196 kmem_free(bp->b_maps);
197 bp->b_maps = NULL;
198 }
199}
200
0564501f 201static struct xfs_buf *
3e85c868 202_xfs_buf_alloc(
4347b9d7 203 struct xfs_buftarg *target,
3e85c868
DC
204 struct xfs_buf_map *map,
205 int nmaps,
ce8e922c 206 xfs_buf_flags_t flags)
1da177e4 207{
4347b9d7 208 struct xfs_buf *bp;
3e85c868
DC
209 int error;
210 int i;
4347b9d7 211
aa5c158e 212 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
213 if (unlikely(!bp))
214 return NULL;
215
1da177e4 216 /*
12bcb3f7
DC
217 * We don't want certain flags to appear in b_flags unless they are
218 * specifically set by later operations on the buffer.
1da177e4 219 */
611c9946 220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 221
ce8e922c 222 atomic_set(&bp->b_hold, 1);
430cbeb8 223 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 224 init_completion(&bp->b_iowait);
430cbeb8 225 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 226 INIT_LIST_HEAD(&bp->b_list);
643c8c05 227 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 228 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 229 spin_lock_init(&bp->b_lock);
ce8e922c 230 bp->b_target = target;
dbd329f1 231 bp->b_mount = target->bt_mount;
3e85c868 232 bp->b_flags = flags;
de1cbee4 233
1da177e4 234 /*
aa0e8833
DC
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
1da177e4
LT
237 * most cases but may be reset (e.g. XFS recovery).
238 */
3e85c868
DC
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
3e85c868 252
ce8e922c
NS
253 atomic_set(&bp->b_pin_count, 0);
254 init_waitqueue_head(&bp->b_waiters);
255
dbd329f1 256 XFS_STATS_INC(bp->b_mount, xb_create);
0b1b213f 257 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
258
259 return bp;
1da177e4
LT
260}
261
262/*
ce8e922c
NS
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
1da177e4
LT
265 */
266STATIC int
ce8e922c
NS
267_xfs_buf_get_pages(
268 xfs_buf_t *bp,
87937bf8 269 int page_count)
1da177e4
LT
270{
271 /* Make sure that we have a page list */
ce8e922c 272 if (bp->b_pages == NULL) {
ce8e922c
NS
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
1da177e4 276 } else {
ce8e922c 277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 278 page_count, KM_NOFS);
ce8e922c 279 if (bp->b_pages == NULL)
1da177e4
LT
280 return -ENOMEM;
281 }
ce8e922c 282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
283 }
284 return 0;
285}
286
287/*
ce8e922c 288 * Frees b_pages if it was allocated.
1da177e4
LT
289 */
290STATIC void
ce8e922c 291_xfs_buf_free_pages(
1da177e4
LT
292 xfs_buf_t *bp)
293{
ce8e922c 294 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 295 kmem_free(bp->b_pages);
3fc98b1a 296 bp->b_pages = NULL;
1da177e4
LT
297 }
298}
299
300/*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
b46fe825 304 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
305 * hashed and refcounted buffers
306 */
307void
ce8e922c 308xfs_buf_free(
1da177e4
LT
309 xfs_buf_t *bp)
310{
0b1b213f 311 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 312
430cbeb8
DC
313 ASSERT(list_empty(&bp->b_lru));
314
0e6e847f 315 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
316 uint i;
317
73c77e2c 318 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
1da177e4 321
948ecdb4
NS
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
0e6e847f 325 __free_page(page);
948ecdb4 326 }
0e6e847f
DC
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
3fc98b1a 329 _xfs_buf_free_pages(bp);
3e85c868 330 xfs_buf_free_maps(bp);
4347b9d7 331 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
332}
333
334/*
0e6e847f 335 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
336 */
337STATIC int
0e6e847f 338xfs_buf_allocate_memory(
1da177e4
LT
339 xfs_buf_t *bp,
340 uint flags)
341{
aa0e8833 342 size_t size;
1da177e4 343 size_t nbytes, offset;
ce8e922c 344 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 345 unsigned short page_count, i;
795cac72 346 xfs_off_t start, end;
1da177e4
LT
347 int error;
348
0e6e847f
DC
349 /*
350 * for buffers that are contained within a single page, just allocate
351 * the memory from the heap - there's no need for the complexity of
352 * page arrays to keep allocation down to order 0.
353 */
795cac72
DC
354 size = BBTOB(bp->b_length);
355 if (size < PAGE_SIZE) {
f8f9ee47
DC
356 int align_mask = xfs_buftarg_dma_alignment(bp->b_target);
357 bp->b_addr = kmem_alloc_io(size, align_mask, KM_NOFS);
0e6e847f
DC
358 if (!bp->b_addr) {
359 /* low memory - use alloc_page loop instead */
360 goto use_alloc_page;
361 }
362
795cac72 363 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
364 ((unsigned long)bp->b_addr & PAGE_MASK)) {
365 /* b_addr spans two pages - use alloc_page instead */
366 kmem_free(bp->b_addr);
367 bp->b_addr = NULL;
368 goto use_alloc_page;
369 }
370 bp->b_offset = offset_in_page(bp->b_addr);
371 bp->b_pages = bp->b_page_array;
f8f9ee47 372 bp->b_pages[0] = kmem_to_page(bp->b_addr);
0e6e847f 373 bp->b_page_count = 1;
611c9946 374 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
375 return 0;
376 }
377
378use_alloc_page:
f4b42421
MT
379 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
380 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 381 >> PAGE_SHIFT;
795cac72 382 page_count = end - start;
87937bf8 383 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
384 if (unlikely(error))
385 return error;
1da177e4 386
ce8e922c 387 offset = bp->b_offset;
0e6e847f 388 bp->b_flags |= _XBF_PAGES;
1da177e4 389
ce8e922c 390 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
391 struct page *page;
392 uint retries = 0;
0e6e847f
DC
393retry:
394 page = alloc_page(gfp_mask);
1da177e4 395 if (unlikely(page == NULL)) {
ce8e922c
NS
396 if (flags & XBF_READ_AHEAD) {
397 bp->b_page_count = i;
2451337d 398 error = -ENOMEM;
0e6e847f 399 goto out_free_pages;
1da177e4
LT
400 }
401
402 /*
403 * This could deadlock.
404 *
405 * But until all the XFS lowlevel code is revamped to
406 * handle buffer allocation failures we can't do much.
407 */
408 if (!(++retries % 100))
4f10700a 409 xfs_err(NULL,
5bf97b1c
TH
410 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
411 current->comm, current->pid,
34a622b2 412 __func__, gfp_mask);
1da177e4 413
dbd329f1 414 XFS_STATS_INC(bp->b_mount, xb_page_retries);
8aa7e847 415 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
416 goto retry;
417 }
418
dbd329f1 419 XFS_STATS_INC(bp->b_mount, xb_page_found);
1da177e4 420
0e6e847f 421 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 422 size -= nbytes;
ce8e922c 423 bp->b_pages[i] = page;
1da177e4
LT
424 offset = 0;
425 }
0e6e847f 426 return 0;
1da177e4 427
0e6e847f
DC
428out_free_pages:
429 for (i = 0; i < bp->b_page_count; i++)
430 __free_page(bp->b_pages[i]);
2aa6ba7b 431 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
432 return error;
433}
434
435/*
25985edc 436 * Map buffer into kernel address-space if necessary.
1da177e4
LT
437 */
438STATIC int
ce8e922c 439_xfs_buf_map_pages(
1da177e4
LT
440 xfs_buf_t *bp,
441 uint flags)
442{
0e6e847f 443 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 444 if (bp->b_page_count == 1) {
0e6e847f 445 /* A single page buffer is always mappable */
ce8e922c 446 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
447 } else if (flags & XBF_UNMAPPED) {
448 bp->b_addr = NULL;
449 } else {
a19fb380 450 int retried = 0;
9ba1fb2c 451 unsigned nofs_flag;
ae687e58
DC
452
453 /*
454 * vm_map_ram() will allocate auxillary structures (e.g.
455 * pagetables) with GFP_KERNEL, yet we are likely to be under
456 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 457 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
458 * memory reclaim re-entering the filesystem here and
459 * potentially deadlocking.
460 */
9ba1fb2c 461 nofs_flag = memalloc_nofs_save();
a19fb380
DC
462 do {
463 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
464 -1, PAGE_KERNEL);
465 if (bp->b_addr)
466 break;
467 vm_unmap_aliases();
468 } while (retried++ <= 1);
9ba1fb2c 469 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
470
471 if (!bp->b_addr)
1da177e4 472 return -ENOMEM;
ce8e922c 473 bp->b_addr += bp->b_offset;
1da177e4
LT
474 }
475
476 return 0;
477}
478
479/*
480 * Finding and Reading Buffers
481 */
6031e73a
LS
482static int
483_xfs_buf_obj_cmp(
484 struct rhashtable_compare_arg *arg,
485 const void *obj)
486{
487 const struct xfs_buf_map *map = arg->key;
488 const struct xfs_buf *bp = obj;
489
490 /*
491 * The key hashing in the lookup path depends on the key being the
492 * first element of the compare_arg, make sure to assert this.
493 */
494 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
495
496 if (bp->b_bn != map->bm_bn)
497 return 1;
498
499 if (unlikely(bp->b_length != map->bm_len)) {
500 /*
501 * found a block number match. If the range doesn't
502 * match, the only way this is allowed is if the buffer
503 * in the cache is stale and the transaction that made
504 * it stale has not yet committed. i.e. we are
505 * reallocating a busy extent. Skip this buffer and
506 * continue searching for an exact match.
507 */
508 ASSERT(bp->b_flags & XBF_STALE);
509 return 1;
510 }
511 return 0;
512}
513
514static const struct rhashtable_params xfs_buf_hash_params = {
515 .min_size = 32, /* empty AGs have minimal footprint */
516 .nelem_hint = 16,
517 .key_len = sizeof(xfs_daddr_t),
518 .key_offset = offsetof(struct xfs_buf, b_bn),
519 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
520 .automatic_shrinking = true,
521 .obj_cmpfn = _xfs_buf_obj_cmp,
522};
523
524int
525xfs_buf_hash_init(
526 struct xfs_perag *pag)
527{
528 spin_lock_init(&pag->pag_buf_lock);
529 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
530}
531
532void
533xfs_buf_hash_destroy(
534 struct xfs_perag *pag)
535{
536 rhashtable_destroy(&pag->pag_buf_hash);
537}
1da177e4
LT
538
539/*
b027d4c9
DC
540 * Look up a buffer in the buffer cache and return it referenced and locked
541 * in @found_bp.
542 *
543 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
544 * cache.
545 *
546 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
547 * -EAGAIN if we fail to lock it.
548 *
549 * Return values are:
550 * -EFSCORRUPTED if have been supplied with an invalid address
551 * -EAGAIN on trylock failure
552 * -ENOENT if we fail to find a match and @new_bp was NULL
553 * 0, with @found_bp:
554 * - @new_bp if we inserted it into the cache
555 * - the buffer we found and locked.
1da177e4 556 */
b027d4c9
DC
557static int
558xfs_buf_find(
e70b73f8 559 struct xfs_buftarg *btp,
3e85c868
DC
560 struct xfs_buf_map *map,
561 int nmaps,
ce8e922c 562 xfs_buf_flags_t flags,
b027d4c9
DC
563 struct xfs_buf *new_bp,
564 struct xfs_buf **found_bp)
1da177e4 565{
74f75a0c 566 struct xfs_perag *pag;
74f75a0c 567 xfs_buf_t *bp;
6031e73a 568 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 569 xfs_daddr_t eofs;
3e85c868 570 int i;
1da177e4 571
b027d4c9
DC
572 *found_bp = NULL;
573
3e85c868 574 for (i = 0; i < nmaps; i++)
6031e73a 575 cmap.bm_len += map[i].bm_len;
1da177e4
LT
576
577 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
578 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
579 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 580
10616b80
DC
581 /*
582 * Corrupted block numbers can get through to here, unfortunately, so we
583 * have to check that the buffer falls within the filesystem bounds.
584 */
585 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 586 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 587 xfs_alert(btp->bt_mount,
c219b015 588 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
6031e73a 589 __func__, cmap.bm_bn, eofs);
7bc0dc27 590 WARN_ON(1);
b027d4c9 591 return -EFSCORRUPTED;
10616b80
DC
592 }
593
74f75a0c 594 pag = xfs_perag_get(btp->bt_mount,
6031e73a 595 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 596
74f75a0c 597 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
598 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
599 xfs_buf_hash_params);
600 if (bp) {
601 atomic_inc(&bp->b_hold);
602 goto found;
1da177e4
LT
603 }
604
605 /* No match found */
b027d4c9 606 if (!new_bp) {
ff6d6af2 607 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
608 spin_unlock(&pag->pag_buf_lock);
609 xfs_perag_put(pag);
b027d4c9 610 return -ENOENT;
1da177e4 611 }
b027d4c9
DC
612
613 /* the buffer keeps the perag reference until it is freed */
614 new_bp->b_pag = pag;
615 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
616 xfs_buf_hash_params);
617 spin_unlock(&pag->pag_buf_lock);
618 *found_bp = new_bp;
619 return 0;
1da177e4
LT
620
621found:
74f75a0c
DC
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
1da177e4 624
0c842ad4
CH
625 if (!xfs_buf_trylock(bp)) {
626 if (flags & XBF_TRYLOCK) {
ce8e922c 627 xfs_buf_rele(bp);
ff6d6af2 628 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
b027d4c9 629 return -EAGAIN;
1da177e4 630 }
0c842ad4 631 xfs_buf_lock(bp);
ff6d6af2 632 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
633 }
634
0e6e847f
DC
635 /*
636 * if the buffer is stale, clear all the external state associated with
637 * it. We need to keep flags such as how we allocated the buffer memory
638 * intact here.
639 */
ce8e922c
NS
640 if (bp->b_flags & XBF_STALE) {
641 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 642 ASSERT(bp->b_iodone == NULL);
611c9946 643 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 644 bp->b_ops = NULL;
2f926587 645 }
0b1b213f
CH
646
647 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 648 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
b027d4c9
DC
649 *found_bp = bp;
650 return 0;
1da177e4
LT
651}
652
8925a3dc
DC
653struct xfs_buf *
654xfs_buf_incore(
655 struct xfs_buftarg *target,
656 xfs_daddr_t blkno,
657 size_t numblks,
658 xfs_buf_flags_t flags)
659{
b027d4c9
DC
660 struct xfs_buf *bp;
661 int error;
8925a3dc 662 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
b027d4c9
DC
663
664 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
665 if (error)
666 return NULL;
667 return bp;
8925a3dc
DC
668}
669
1da177e4 670/*
3815832a
DC
671 * Assembles a buffer covering the specified range. The code is optimised for
672 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
673 * more hits than misses.
1da177e4 674 */
3815832a 675struct xfs_buf *
6dde2707
DC
676xfs_buf_get_map(
677 struct xfs_buftarg *target,
678 struct xfs_buf_map *map,
679 int nmaps,
ce8e922c 680 xfs_buf_flags_t flags)
1da177e4 681{
3815832a
DC
682 struct xfs_buf *bp;
683 struct xfs_buf *new_bp;
0e6e847f 684 int error = 0;
1da177e4 685
b027d4c9
DC
686 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
687
688 switch (error) {
689 case 0:
690 /* cache hit */
3815832a 691 goto found;
b027d4c9
DC
692 case -EAGAIN:
693 /* cache hit, trylock failure, caller handles failure */
694 ASSERT(flags & XBF_TRYLOCK);
695 return NULL;
696 case -ENOENT:
697 /* cache miss, go for insert */
698 break;
699 case -EFSCORRUPTED:
700 default:
701 /*
702 * None of the higher layers understand failure types
703 * yet, so return NULL to signal a fatal lookup error.
704 */
705 return NULL;
706 }
3815832a 707
6dde2707 708 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 709 if (unlikely(!new_bp))
1da177e4
LT
710 return NULL;
711
fe2429b0
DC
712 error = xfs_buf_allocate_memory(new_bp, flags);
713 if (error) {
3e85c868 714 xfs_buf_free(new_bp);
fe2429b0
DC
715 return NULL;
716 }
717
b027d4c9
DC
718 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
719 if (error) {
fe2429b0 720 xfs_buf_free(new_bp);
3815832a
DC
721 return NULL;
722 }
723
fe2429b0
DC
724 if (bp != new_bp)
725 xfs_buf_free(new_bp);
1da177e4 726
3815832a 727found:
611c9946 728 if (!bp->b_addr) {
ce8e922c 729 error = _xfs_buf_map_pages(bp, flags);
1da177e4 730 if (unlikely(error)) {
4f10700a 731 xfs_warn(target->bt_mount,
08e96e1a 732 "%s: failed to map pagesn", __func__);
a8acad70
DC
733 xfs_buf_relse(bp);
734 return NULL;
1da177e4
LT
735 }
736 }
737
b79f4a1c
DC
738 /*
739 * Clear b_error if this is a lookup from a caller that doesn't expect
740 * valid data to be found in the buffer.
741 */
742 if (!(flags & XBF_READ))
743 xfs_buf_ioerror(bp, 0);
744
ff6d6af2 745 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 746 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 747 return bp;
1da177e4
LT
748}
749
5d765b97
CH
750STATIC int
751_xfs_buf_read(
752 xfs_buf_t *bp,
753 xfs_buf_flags_t flags)
754{
43ff2122 755 ASSERT(!(flags & XBF_WRITE));
f4b42421 756 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 757
43ff2122 758 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 759 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 760
6af88cda 761 return xfs_buf_submit(bp);
5d765b97
CH
762}
763
1aff5696 764/*
75d02303 765 * Reverify a buffer found in cache without an attached ->b_ops.
add46b3b 766 *
75d02303
BF
767 * If the caller passed an ops structure and the buffer doesn't have ops
768 * assigned, set the ops and use it to verify the contents. If verification
769 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
770 * already in XBF_DONE state on entry.
add46b3b 771 *
75d02303
BF
772 * Under normal operations, every in-core buffer is verified on read I/O
773 * completion. There are two scenarios that can lead to in-core buffers without
774 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
775 * filesystem, though these buffers are purged at the end of recovery. The
776 * other is online repair, which intentionally reads with a NULL buffer ops to
777 * run several verifiers across an in-core buffer in order to establish buffer
778 * type. If repair can't establish that, the buffer will be left in memory
779 * with NULL buffer ops.
1aff5696
DW
780 */
781int
75d02303 782xfs_buf_reverify(
1aff5696
DW
783 struct xfs_buf *bp,
784 const struct xfs_buf_ops *ops)
785{
786 ASSERT(bp->b_flags & XBF_DONE);
787 ASSERT(bp->b_error == 0);
788
789 if (!ops || bp->b_ops)
790 return 0;
791
792 bp->b_ops = ops;
793 bp->b_ops->verify_read(bp);
794 if (bp->b_error)
795 bp->b_flags &= ~XBF_DONE;
796 return bp->b_error;
797}
798
1da177e4 799xfs_buf_t *
6dde2707
DC
800xfs_buf_read_map(
801 struct xfs_buftarg *target,
802 struct xfs_buf_map *map,
803 int nmaps,
c3f8fc73 804 xfs_buf_flags_t flags,
1813dd64 805 const struct xfs_buf_ops *ops)
1da177e4 806{
6dde2707 807 struct xfs_buf *bp;
ce8e922c
NS
808
809 flags |= XBF_READ;
810
6dde2707 811 bp = xfs_buf_get_map(target, map, nmaps, flags);
1aff5696
DW
812 if (!bp)
813 return NULL;
0b1b213f 814
1aff5696
DW
815 trace_xfs_buf_read(bp, flags, _RET_IP_);
816
817 if (!(bp->b_flags & XBF_DONE)) {
818 XFS_STATS_INC(target->bt_mount, xb_get_read);
819 bp->b_ops = ops;
820 _xfs_buf_read(bp, flags);
821 return bp;
822 }
823
75d02303 824 xfs_buf_reverify(bp, ops);
1aff5696
DW
825
826 if (flags & XBF_ASYNC) {
827 /*
828 * Read ahead call which is already satisfied,
829 * drop the buffer
830 */
831 xfs_buf_relse(bp);
832 return NULL;
1da177e4
LT
833 }
834
1aff5696
DW
835 /* We do not want read in the flags */
836 bp->b_flags &= ~XBF_READ;
837 ASSERT(bp->b_ops != NULL || ops == NULL);
ce8e922c 838 return bp;
1da177e4
LT
839}
840
1da177e4 841/*
ce8e922c
NS
842 * If we are not low on memory then do the readahead in a deadlock
843 * safe manner.
1da177e4
LT
844 */
845void
6dde2707
DC
846xfs_buf_readahead_map(
847 struct xfs_buftarg *target,
848 struct xfs_buf_map *map,
c3f8fc73 849 int nmaps,
1813dd64 850 const struct xfs_buf_ops *ops)
1da177e4 851{
efa7c9f9 852 if (bdi_read_congested(target->bt_bdev->bd_bdi))
1da177e4
LT
853 return;
854
6dde2707 855 xfs_buf_read_map(target, map, nmaps,
1813dd64 856 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
857}
858
5adc94c2
DC
859/*
860 * Read an uncached buffer from disk. Allocates and returns a locked
861 * buffer containing the disk contents or nothing.
862 */
ba372674 863int
5adc94c2 864xfs_buf_read_uncached(
5adc94c2
DC
865 struct xfs_buftarg *target,
866 xfs_daddr_t daddr,
e70b73f8 867 size_t numblks,
c3f8fc73 868 int flags,
ba372674 869 struct xfs_buf **bpp,
1813dd64 870 const struct xfs_buf_ops *ops)
5adc94c2 871{
eab4e633 872 struct xfs_buf *bp;
5adc94c2 873
ba372674
DC
874 *bpp = NULL;
875
e70b73f8 876 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 877 if (!bp)
ba372674 878 return -ENOMEM;
5adc94c2
DC
879
880 /* set up the buffer for a read IO */
3e85c868 881 ASSERT(bp->b_map_count == 1);
ba372674 882 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 883 bp->b_maps[0].bm_bn = daddr;
cbb7baab 884 bp->b_flags |= XBF_READ;
1813dd64 885 bp->b_ops = ops;
5adc94c2 886
6af88cda 887 xfs_buf_submit(bp);
ba372674
DC
888 if (bp->b_error) {
889 int error = bp->b_error;
83a0adc3 890 xfs_buf_relse(bp);
ba372674 891 return error;
83a0adc3 892 }
ba372674
DC
893
894 *bpp = bp;
895 return 0;
1da177e4
LT
896}
897
1da177e4 898xfs_buf_t *
686865f7
DC
899xfs_buf_get_uncached(
900 struct xfs_buftarg *target,
e70b73f8 901 size_t numblks,
686865f7 902 int flags)
1da177e4 903{
e70b73f8 904 unsigned long page_count;
1fa40b01 905 int error, i;
3e85c868
DC
906 struct xfs_buf *bp;
907 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 908
c891c30a
BF
909 /* flags might contain irrelevant bits, pass only what we care about */
910 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1da177e4
LT
911 if (unlikely(bp == NULL))
912 goto fail;
1da177e4 913
e70b73f8 914 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 915 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 916 if (error)
1da177e4
LT
917 goto fail_free_buf;
918
1fa40b01 919 for (i = 0; i < page_count; i++) {
686865f7 920 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
921 if (!bp->b_pages[i])
922 goto fail_free_mem;
1da177e4 923 }
1fa40b01 924 bp->b_flags |= _XBF_PAGES;
1da177e4 925
611c9946 926 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 927 if (unlikely(error)) {
4f10700a 928 xfs_warn(target->bt_mount,
08e96e1a 929 "%s: failed to map pages", __func__);
1da177e4 930 goto fail_free_mem;
1fa40b01 931 }
1da177e4 932
686865f7 933 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 934 return bp;
1fa40b01 935
1da177e4 936 fail_free_mem:
1fa40b01
CH
937 while (--i >= 0)
938 __free_page(bp->b_pages[i]);
ca165b88 939 _xfs_buf_free_pages(bp);
1da177e4 940 fail_free_buf:
3e85c868 941 xfs_buf_free_maps(bp);
4347b9d7 942 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
943 fail:
944 return NULL;
945}
946
947/*
1da177e4
LT
948 * Increment reference count on buffer, to hold the buffer concurrently
949 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
950 * Must hold the buffer already to call this function.
951 */
952void
ce8e922c
NS
953xfs_buf_hold(
954 xfs_buf_t *bp)
1da177e4 955{
0b1b213f 956 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 957 atomic_inc(&bp->b_hold);
1da177e4
LT
958}
959
960/*
9c7504aa
BF
961 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
962 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
963 */
964void
ce8e922c
NS
965xfs_buf_rele(
966 xfs_buf_t *bp)
1da177e4 967{
74f75a0c 968 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
969 bool release;
970 bool freebuf = false;
1da177e4 971
0b1b213f 972 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 973
74f75a0c 974 if (!pag) {
430cbeb8 975 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
976 if (atomic_dec_and_test(&bp->b_hold)) {
977 xfs_buf_ioacct_dec(bp);
fad3aa1e 978 xfs_buf_free(bp);
9c7504aa 979 }
fad3aa1e
NS
980 return;
981 }
982
3790689f 983 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 984
37fd1678
DC
985 /*
986 * We grab the b_lock here first to serialise racing xfs_buf_rele()
987 * calls. The pag_buf_lock being taken on the last reference only
988 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
989 * to last reference we drop here is not serialised against the last
990 * reference until we take bp->b_lock. Hence if we don't grab b_lock
991 * first, the last "release" reference can win the race to the lock and
992 * free the buffer before the second-to-last reference is processed,
993 * leading to a use-after-free scenario.
994 */
9c7504aa 995 spin_lock(&bp->b_lock);
37fd1678 996 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
9c7504aa
BF
997 if (!release) {
998 /*
999 * Drop the in-flight state if the buffer is already on the LRU
1000 * and it holds the only reference. This is racy because we
1001 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1002 * ensures the decrement occurs only once per-buf.
1003 */
1004 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 1005 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1006 goto out_unlock;
1007 }
1008
1009 /* the last reference has been dropped ... */
63db7c81 1010 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1011 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1012 /*
1013 * If the buffer is added to the LRU take a new reference to the
1014 * buffer for the LRU and clear the (now stale) dispose list
1015 * state flag
1016 */
1017 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1018 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1019 atomic_inc(&bp->b_hold);
1da177e4 1020 }
9c7504aa
BF
1021 spin_unlock(&pag->pag_buf_lock);
1022 } else {
1023 /*
1024 * most of the time buffers will already be removed from the
1025 * LRU, so optimise that case by checking for the
1026 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1027 * was on was the disposal list
1028 */
1029 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1030 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1031 } else {
1032 ASSERT(list_empty(&bp->b_lru));
1da177e4 1033 }
9c7504aa
BF
1034
1035 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1036 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1037 xfs_buf_hash_params);
9c7504aa
BF
1038 spin_unlock(&pag->pag_buf_lock);
1039 xfs_perag_put(pag);
1040 freebuf = true;
1da177e4 1041 }
9c7504aa
BF
1042
1043out_unlock:
1044 spin_unlock(&bp->b_lock);
1045
1046 if (freebuf)
1047 xfs_buf_free(bp);
1da177e4
LT
1048}
1049
1050
1051/*
0e6e847f 1052 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1053 *
1054 * If we come across a stale, pinned, locked buffer, we know that we are
1055 * being asked to lock a buffer that has been reallocated. Because it is
1056 * pinned, we know that the log has not been pushed to disk and hence it
1057 * will still be locked. Rather than continuing to have trylock attempts
1058 * fail until someone else pushes the log, push it ourselves before
1059 * returning. This means that the xfsaild will not get stuck trying
1060 * to push on stale inode buffers.
1da177e4
LT
1061 */
1062int
0c842ad4
CH
1063xfs_buf_trylock(
1064 struct xfs_buf *bp)
1da177e4
LT
1065{
1066 int locked;
1067
ce8e922c 1068 locked = down_trylock(&bp->b_sema) == 0;
fa6c668d 1069 if (locked)
479c6412 1070 trace_xfs_buf_trylock(bp, _RET_IP_);
fa6c668d 1071 else
479c6412 1072 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
0c842ad4 1073 return locked;
1da177e4 1074}
1da177e4
LT
1075
1076/*
0e6e847f 1077 * Lock a buffer object.
ed3b4d6c
DC
1078 *
1079 * If we come across a stale, pinned, locked buffer, we know that we
1080 * are being asked to lock a buffer that has been reallocated. Because
1081 * it is pinned, we know that the log has not been pushed to disk and
1082 * hence it will still be locked. Rather than sleeping until someone
1083 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1084 */
ce8e922c
NS
1085void
1086xfs_buf_lock(
0c842ad4 1087 struct xfs_buf *bp)
1da177e4 1088{
0b1b213f
CH
1089 trace_xfs_buf_lock(bp, _RET_IP_);
1090
ed3b4d6c 1091 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
dbd329f1 1092 xfs_log_force(bp->b_mount, 0);
ce8e922c 1093 down(&bp->b_sema);
0b1b213f
CH
1094
1095 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1096}
1097
1da177e4 1098void
ce8e922c 1099xfs_buf_unlock(
0c842ad4 1100 struct xfs_buf *bp)
1da177e4 1101{
20e8a063
BF
1102 ASSERT(xfs_buf_islocked(bp));
1103
ce8e922c 1104 up(&bp->b_sema);
0b1b213f 1105 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1106}
1107
ce8e922c
NS
1108STATIC void
1109xfs_buf_wait_unpin(
1110 xfs_buf_t *bp)
1da177e4
LT
1111{
1112 DECLARE_WAITQUEUE (wait, current);
1113
ce8e922c 1114 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1115 return;
1116
ce8e922c 1117 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1118 for (;;) {
1119 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1120 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1121 break;
7eaceacc 1122 io_schedule();
1da177e4 1123 }
ce8e922c 1124 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1125 set_current_state(TASK_RUNNING);
1126}
1127
1128/*
1129 * Buffer Utility Routines
1130 */
1131
e8aaba9a
DC
1132void
1133xfs_buf_ioend(
1134 struct xfs_buf *bp)
1da177e4 1135{
e8aaba9a
DC
1136 bool read = bp->b_flags & XBF_READ;
1137
1138 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1139
1140 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1141
61be9c52
DC
1142 /*
1143 * Pull in IO completion errors now. We are guaranteed to be running
1144 * single threaded, so we don't need the lock to read b_io_error.
1145 */
1146 if (!bp->b_error && bp->b_io_error)
1147 xfs_buf_ioerror(bp, bp->b_io_error);
1148
e8aaba9a
DC
1149 /* Only validate buffers that were read without errors */
1150 if (read && !bp->b_error && bp->b_ops) {
1151 ASSERT(!bp->b_iodone);
1813dd64 1152 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1153 }
1154
1155 if (!bp->b_error)
1156 bp->b_flags |= XBF_DONE;
1da177e4 1157
80f6c29d 1158 if (bp->b_iodone)
ce8e922c
NS
1159 (*(bp->b_iodone))(bp);
1160 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1161 xfs_buf_relse(bp);
595bff75 1162 else
1813dd64 1163 complete(&bp->b_iowait);
1da177e4
LT
1164}
1165
e8aaba9a
DC
1166static void
1167xfs_buf_ioend_work(
1168 struct work_struct *work)
1da177e4 1169{
e8aaba9a 1170 struct xfs_buf *bp =
b29c70f5 1171 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1172
e8aaba9a
DC
1173 xfs_buf_ioend(bp);
1174}
1da177e4 1175
211fe1a4 1176static void
e8aaba9a
DC
1177xfs_buf_ioend_async(
1178 struct xfs_buf *bp)
1179{
b29c70f5 1180 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
dbd329f1 1181 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1da177e4
LT
1182}
1183
1da177e4 1184void
31ca03c9 1185__xfs_buf_ioerror(
ce8e922c 1186 xfs_buf_t *bp,
31ca03c9
DW
1187 int error,
1188 xfs_failaddr_t failaddr)
1da177e4 1189{
2451337d
DC
1190 ASSERT(error <= 0 && error >= -1000);
1191 bp->b_error = error;
31ca03c9 1192 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1193}
1194
901796af
CH
1195void
1196xfs_buf_ioerror_alert(
1197 struct xfs_buf *bp,
1198 const char *func)
1199{
dbd329f1 1200 xfs_alert(bp->b_mount,
c219b015
DW
1201"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1202 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1203 -bp->b_error);
901796af
CH
1204}
1205
a2dcf5df
CH
1206int
1207xfs_bwrite(
1208 struct xfs_buf *bp)
1209{
1210 int error;
1211
1212 ASSERT(xfs_buf_islocked(bp));
1213
1214 bp->b_flags |= XBF_WRITE;
27187754
DC
1215 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1216 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1217
6af88cda 1218 error = xfs_buf_submit(bp);
dbd329f1
CH
1219 if (error)
1220 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
a2dcf5df
CH
1221 return error;
1222}
1223
9bdd9bd6 1224static void
ce8e922c 1225xfs_buf_bio_end_io(
4246a0b6 1226 struct bio *bio)
1da177e4 1227{
9bdd9bd6 1228 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1229
37eb17e6
DC
1230 /*
1231 * don't overwrite existing errors - otherwise we can lose errors on
1232 * buffers that require multiple bios to complete.
1233 */
4e4cbee9
CH
1234 if (bio->bi_status) {
1235 int error = blk_status_to_errno(bio->bi_status);
1236
1237 cmpxchg(&bp->b_io_error, 0, error);
1238 }
1da177e4 1239
37eb17e6 1240 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1241 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1242
e8aaba9a
DC
1243 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1244 xfs_buf_ioend_async(bp);
1da177e4 1245 bio_put(bio);
1da177e4
LT
1246}
1247
3e85c868
DC
1248static void
1249xfs_buf_ioapply_map(
1250 struct xfs_buf *bp,
1251 int map,
1252 int *buf_offset,
1253 int *count,
50bfcd0c
MC
1254 int op,
1255 int op_flags)
1da177e4 1256{
3e85c868
DC
1257 int page_index;
1258 int total_nr_pages = bp->b_page_count;
1259 int nr_pages;
1260 struct bio *bio;
1261 sector_t sector = bp->b_maps[map].bm_bn;
1262 int size;
1263 int offset;
1da177e4 1264
3e85c868
DC
1265 /* skip the pages in the buffer before the start offset */
1266 page_index = 0;
1267 offset = *buf_offset;
1268 while (offset >= PAGE_SIZE) {
1269 page_index++;
1270 offset -= PAGE_SIZE;
f538d4da
CH
1271 }
1272
3e85c868
DC
1273 /*
1274 * Limit the IO size to the length of the current vector, and update the
1275 * remaining IO count for the next time around.
1276 */
1277 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1278 *count -= size;
1279 *buf_offset += size;
34951f5c 1280
1da177e4 1281next_chunk:
ce8e922c 1282 atomic_inc(&bp->b_io_remaining);
c908e380 1283 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1da177e4
LT
1284
1285 bio = bio_alloc(GFP_NOIO, nr_pages);
74d46992 1286 bio_set_dev(bio, bp->b_target->bt_bdev);
4f024f37 1287 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1288 bio->bi_end_io = xfs_buf_bio_end_io;
1289 bio->bi_private = bp;
50bfcd0c 1290 bio_set_op_attrs(bio, op, op_flags);
0e6e847f 1291
3e85c868 1292 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1293 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1294
1295 if (nbytes > size)
1296 nbytes = size;
1297
3e85c868
DC
1298 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1299 offset);
ce8e922c 1300 if (rbytes < nbytes)
1da177e4
LT
1301 break;
1302
1303 offset = 0;
aa0e8833 1304 sector += BTOBB(nbytes);
1da177e4
LT
1305 size -= nbytes;
1306 total_nr_pages--;
1307 }
1308
4f024f37 1309 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1310 if (xfs_buf_is_vmapped(bp)) {
1311 flush_kernel_vmap_range(bp->b_addr,
1312 xfs_buf_vmap_len(bp));
1313 }
4e49ea4a 1314 submit_bio(bio);
1da177e4
LT
1315 if (size)
1316 goto next_chunk;
1317 } else {
37eb17e6
DC
1318 /*
1319 * This is guaranteed not to be the last io reference count
595bff75 1320 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1321 */
1322 atomic_dec(&bp->b_io_remaining);
2451337d 1323 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1324 bio_put(bio);
1da177e4 1325 }
3e85c868
DC
1326
1327}
1328
1329STATIC void
1330_xfs_buf_ioapply(
1331 struct xfs_buf *bp)
1332{
1333 struct blk_plug plug;
50bfcd0c
MC
1334 int op;
1335 int op_flags = 0;
3e85c868
DC
1336 int offset;
1337 int size;
1338 int i;
1339
c163f9a1
DC
1340 /*
1341 * Make sure we capture only current IO errors rather than stale errors
1342 * left over from previous use of the buffer (e.g. failed readahead).
1343 */
1344 bp->b_error = 0;
1345
3e85c868 1346 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1347 op = REQ_OP_WRITE;
1813dd64
DC
1348
1349 /*
1350 * Run the write verifier callback function if it exists. If
1351 * this function fails it will mark the buffer with an error and
1352 * the IO should not be dispatched.
1353 */
1354 if (bp->b_ops) {
1355 bp->b_ops->verify_write(bp);
1356 if (bp->b_error) {
dbd329f1 1357 xfs_force_shutdown(bp->b_mount,
1813dd64
DC
1358 SHUTDOWN_CORRUPT_INCORE);
1359 return;
1360 }
400b9d88 1361 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
dbd329f1 1362 struct xfs_mount *mp = bp->b_mount;
400b9d88
DC
1363
1364 /*
1365 * non-crc filesystems don't attach verifiers during
1366 * log recovery, so don't warn for such filesystems.
1367 */
1368 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1369 xfs_warn(mp,
c219b015 1370 "%s: no buf ops on daddr 0x%llx len %d",
400b9d88 1371 __func__, bp->b_bn, bp->b_length);
9c712a13
DW
1372 xfs_hex_dump(bp->b_addr,
1373 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1374 dump_stack();
1375 }
1813dd64 1376 }
3e85c868 1377 } else if (bp->b_flags & XBF_READ_AHEAD) {
50bfcd0c
MC
1378 op = REQ_OP_READ;
1379 op_flags = REQ_RAHEAD;
3e85c868 1380 } else {
50bfcd0c 1381 op = REQ_OP_READ;
3e85c868
DC
1382 }
1383
1384 /* we only use the buffer cache for meta-data */
50bfcd0c 1385 op_flags |= REQ_META;
3e85c868
DC
1386
1387 /*
1388 * Walk all the vectors issuing IO on them. Set up the initial offset
1389 * into the buffer and the desired IO size before we start -
1390 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1391 * subsequent call.
1392 */
1393 offset = bp->b_offset;
8124b9b6 1394 size = BBTOB(bp->b_length);
3e85c868
DC
1395 blk_start_plug(&plug);
1396 for (i = 0; i < bp->b_map_count; i++) {
50bfcd0c 1397 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
3e85c868
DC
1398 if (bp->b_error)
1399 break;
1400 if (size <= 0)
1401 break; /* all done */
1402 }
1403 blk_finish_plug(&plug);
1da177e4
LT
1404}
1405
595bff75 1406/*
bb00b6f1 1407 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1408 */
eaebb515 1409static int
bb00b6f1 1410xfs_buf_iowait(
595bff75 1411 struct xfs_buf *bp)
1da177e4 1412{
bb00b6f1
BF
1413 ASSERT(!(bp->b_flags & XBF_ASYNC));
1414
1415 trace_xfs_buf_iowait(bp, _RET_IP_);
1416 wait_for_completion(&bp->b_iowait);
1417 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1418
1419 return bp->b_error;
1420}
1421
1422/*
1423 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1424 * the buffer lock ownership and the current reference to the IO. It is not
1425 * safe to reference the buffer after a call to this function unless the caller
1426 * holds an additional reference itself.
1427 */
1428int
1429__xfs_buf_submit(
1430 struct xfs_buf *bp,
1431 bool wait)
1432{
1433 int error = 0;
1434
595bff75 1435 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1436
43ff2122 1437 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1438
1439 /* on shutdown we stale and complete the buffer immediately */
dbd329f1 1440 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
595bff75
DC
1441 xfs_buf_ioerror(bp, -EIO);
1442 bp->b_flags &= ~XBF_DONE;
1443 xfs_buf_stale(bp);
465fa17f 1444 xfs_buf_ioend(bp);
eaebb515 1445 return -EIO;
595bff75 1446 }
1da177e4 1447
bb00b6f1
BF
1448 /*
1449 * Grab a reference so the buffer does not go away underneath us. For
1450 * async buffers, I/O completion drops the callers reference, which
1451 * could occur before submission returns.
1452 */
1453 xfs_buf_hold(bp);
1454
375ec69d 1455 if (bp->b_flags & XBF_WRITE)
ce8e922c 1456 xfs_buf_wait_unpin(bp);
e11bb805 1457
61be9c52
DC
1458 /* clear the internal error state to avoid spurious errors */
1459 bp->b_io_error = 0;
1460
8d6c1210 1461 /*
e11bb805
DC
1462 * Set the count to 1 initially, this will stop an I/O completion
1463 * callout which happens before we have started all the I/O from calling
1464 * xfs_buf_ioend too early.
1da177e4 1465 */
ce8e922c 1466 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1467 if (bp->b_flags & XBF_ASYNC)
1468 xfs_buf_ioacct_inc(bp);
ce8e922c 1469 _xfs_buf_ioapply(bp);
e11bb805 1470
8d6c1210 1471 /*
595bff75
DC
1472 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1473 * reference we took above. If we drop it to zero, run completion so
1474 * that we don't return to the caller with completion still pending.
8d6c1210 1475 */
e8aaba9a 1476 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1477 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1478 xfs_buf_ioend(bp);
1479 else
1480 xfs_buf_ioend_async(bp);
1481 }
1da177e4 1482
6af88cda
BF
1483 if (wait)
1484 error = xfs_buf_iowait(bp);
bb00b6f1 1485
595bff75 1486 /*
6af88cda
BF
1487 * Release the hold that keeps the buffer referenced for the entire
1488 * I/O. Note that if the buffer is async, it is not safe to reference
1489 * after this release.
595bff75
DC
1490 */
1491 xfs_buf_rele(bp);
1492 return error;
1da177e4
LT
1493}
1494
88ee2df7 1495void *
ce8e922c 1496xfs_buf_offset(
88ee2df7 1497 struct xfs_buf *bp,
1da177e4
LT
1498 size_t offset)
1499{
1500 struct page *page;
1501
611c9946 1502 if (bp->b_addr)
62926044 1503 return bp->b_addr + offset;
1da177e4 1504
ce8e922c 1505 offset += bp->b_offset;
0e6e847f 1506 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1507 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1508}
1509
1da177e4 1510void
f9a196ee
CH
1511xfs_buf_zero(
1512 struct xfs_buf *bp,
1513 size_t boff,
1514 size_t bsize)
1da177e4 1515{
795cac72 1516 size_t bend;
1da177e4
LT
1517
1518 bend = boff + bsize;
1519 while (boff < bend) {
795cac72
DC
1520 struct page *page;
1521 int page_index, page_offset, csize;
1522
1523 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1524 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1525 page = bp->b_pages[page_index];
1526 csize = min_t(size_t, PAGE_SIZE - page_offset,
8124b9b6 1527 BBTOB(bp->b_length) - boff);
1da177e4 1528
795cac72 1529 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4 1530
f9a196ee 1531 memset(page_address(page) + page_offset, 0, csize);
1da177e4
LT
1532
1533 boff += csize;
1da177e4
LT
1534 }
1535}
1536
1537/*
ce8e922c 1538 * Handling of buffer targets (buftargs).
1da177e4
LT
1539 */
1540
1541/*
430cbeb8
DC
1542 * Wait for any bufs with callbacks that have been submitted but have not yet
1543 * returned. These buffers will have an elevated hold count, so wait on those
1544 * while freeing all the buffers only held by the LRU.
1da177e4 1545 */
e80dfa19
DC
1546static enum lru_status
1547xfs_buftarg_wait_rele(
1548 struct list_head *item,
3f97b163 1549 struct list_lru_one *lru,
e80dfa19
DC
1550 spinlock_t *lru_lock,
1551 void *arg)
1552
1da177e4 1553{
e80dfa19 1554 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1555 struct list_head *dispose = arg;
430cbeb8 1556
e80dfa19 1557 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1558 /* need to wait, so skip it this pass */
e80dfa19 1559 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1560 return LRU_SKIP;
1da177e4 1561 }
a4082357
DC
1562 if (!spin_trylock(&bp->b_lock))
1563 return LRU_SKIP;
e80dfa19 1564
a4082357
DC
1565 /*
1566 * clear the LRU reference count so the buffer doesn't get
1567 * ignored in xfs_buf_rele().
1568 */
1569 atomic_set(&bp->b_lru_ref, 0);
1570 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1571 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1572 spin_unlock(&bp->b_lock);
1573 return LRU_REMOVED;
1da177e4
LT
1574}
1575
e80dfa19
DC
1576void
1577xfs_wait_buftarg(
1578 struct xfs_buftarg *btp)
1579{
a4082357
DC
1580 LIST_HEAD(dispose);
1581 int loop = 0;
1582
85bec546 1583 /*
9c7504aa
BF
1584 * First wait on the buftarg I/O count for all in-flight buffers to be
1585 * released. This is critical as new buffers do not make the LRU until
1586 * they are released.
1587 *
1588 * Next, flush the buffer workqueue to ensure all completion processing
1589 * has finished. Just waiting on buffer locks is not sufficient for
1590 * async IO as the reference count held over IO is not released until
1591 * after the buffer lock is dropped. Hence we need to ensure here that
1592 * all reference counts have been dropped before we start walking the
1593 * LRU list.
85bec546 1594 */
9c7504aa
BF
1595 while (percpu_counter_sum(&btp->bt_io_count))
1596 delay(100);
800b2694 1597 flush_workqueue(btp->bt_mount->m_buf_workqueue);
85bec546 1598
a4082357
DC
1599 /* loop until there is nothing left on the lru list. */
1600 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1601 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1602 &dispose, LONG_MAX);
1603
1604 while (!list_empty(&dispose)) {
1605 struct xfs_buf *bp;
1606 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1607 list_del_init(&bp->b_lru);
ac8809f9
DC
1608 if (bp->b_flags & XBF_WRITE_FAIL) {
1609 xfs_alert(btp->bt_mount,
c219b015 1610"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
ac8809f9 1611 (long long)bp->b_bn);
f41febd2
JP
1612 xfs_alert(btp->bt_mount,
1613"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1614 }
a4082357
DC
1615 xfs_buf_rele(bp);
1616 }
1617 if (loop++ != 0)
1618 delay(100);
1619 }
e80dfa19
DC
1620}
1621
1622static enum lru_status
1623xfs_buftarg_isolate(
1624 struct list_head *item,
3f97b163 1625 struct list_lru_one *lru,
e80dfa19
DC
1626 spinlock_t *lru_lock,
1627 void *arg)
1628{
1629 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1630 struct list_head *dispose = arg;
1631
a4082357
DC
1632 /*
1633 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1634 * If we fail to get the lock, just skip it.
1635 */
1636 if (!spin_trylock(&bp->b_lock))
1637 return LRU_SKIP;
e80dfa19
DC
1638 /*
1639 * Decrement the b_lru_ref count unless the value is already
1640 * zero. If the value is already zero, we need to reclaim the
1641 * buffer, otherwise it gets another trip through the LRU.
1642 */
19957a18 1643 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1644 spin_unlock(&bp->b_lock);
e80dfa19 1645 return LRU_ROTATE;
a4082357 1646 }
e80dfa19 1647
a4082357 1648 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1649 list_lru_isolate_move(lru, item, dispose);
a4082357 1650 spin_unlock(&bp->b_lock);
e80dfa19
DC
1651 return LRU_REMOVED;
1652}
1653
addbda40 1654static unsigned long
e80dfa19 1655xfs_buftarg_shrink_scan(
ff57ab21 1656 struct shrinker *shrink,
1495f230 1657 struct shrink_control *sc)
a6867a68 1658{
ff57ab21
DC
1659 struct xfs_buftarg *btp = container_of(shrink,
1660 struct xfs_buftarg, bt_shrinker);
430cbeb8 1661 LIST_HEAD(dispose);
addbda40 1662 unsigned long freed;
430cbeb8 1663
503c358c
VD
1664 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1665 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1666
1667 while (!list_empty(&dispose)) {
e80dfa19 1668 struct xfs_buf *bp;
430cbeb8
DC
1669 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1670 list_del_init(&bp->b_lru);
1671 xfs_buf_rele(bp);
1672 }
1673
e80dfa19
DC
1674 return freed;
1675}
1676
addbda40 1677static unsigned long
e80dfa19
DC
1678xfs_buftarg_shrink_count(
1679 struct shrinker *shrink,
1680 struct shrink_control *sc)
1681{
1682 struct xfs_buftarg *btp = container_of(shrink,
1683 struct xfs_buftarg, bt_shrinker);
503c358c 1684 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1685}
1686
1da177e4
LT
1687void
1688xfs_free_buftarg(
b7963133 1689 struct xfs_buftarg *btp)
1da177e4 1690{
ff57ab21 1691 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1692 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1693 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1694 list_lru_destroy(&btp->bt_lru);
ff57ab21 1695
2291dab2 1696 xfs_blkdev_issue_flush(btp);
a6867a68 1697
f0e2d93c 1698 kmem_free(btp);
1da177e4
LT
1699}
1700
3fefdeee
ES
1701int
1702xfs_setsize_buftarg(
1da177e4 1703 xfs_buftarg_t *btp,
3fefdeee 1704 unsigned int sectorsize)
1da177e4 1705{
7c71ee78 1706 /* Set up metadata sector size info */
6da54179
ES
1707 btp->bt_meta_sectorsize = sectorsize;
1708 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1709
ce8e922c 1710 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1711 xfs_warn(btp->bt_mount,
a1c6f057
DM
1712 "Cannot set_blocksize to %u on device %pg",
1713 sectorsize, btp->bt_bdev);
2451337d 1714 return -EINVAL;
1da177e4
LT
1715 }
1716
7c71ee78
ES
1717 /* Set up device logical sector size mask */
1718 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1719 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1720
1da177e4
LT
1721 return 0;
1722}
1723
1724/*
3fefdeee
ES
1725 * When allocating the initial buffer target we have not yet
1726 * read in the superblock, so don't know what sized sectors
1727 * are being used at this early stage. Play safe.
ce8e922c 1728 */
1da177e4
LT
1729STATIC int
1730xfs_setsize_buftarg_early(
1731 xfs_buftarg_t *btp,
1732 struct block_device *bdev)
1733{
a96c4151 1734 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1735}
1736
1da177e4
LT
1737xfs_buftarg_t *
1738xfs_alloc_buftarg(
ebad861b 1739 struct xfs_mount *mp,
486aff5e
DW
1740 struct block_device *bdev,
1741 struct dax_device *dax_dev)
1da177e4
LT
1742{
1743 xfs_buftarg_t *btp;
1744
707e0dda 1745 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1da177e4 1746
ebad861b 1747 btp->bt_mount = mp;
ce8e922c
NS
1748 btp->bt_dev = bdev->bd_dev;
1749 btp->bt_bdev = bdev;
486aff5e 1750 btp->bt_daxdev = dax_dev;
0e6e847f 1751
1da177e4 1752 if (xfs_setsize_buftarg_early(btp, bdev))
d210a987 1753 goto error_free;
5ca302c8
GC
1754
1755 if (list_lru_init(&btp->bt_lru))
d210a987 1756 goto error_free;
5ca302c8 1757
9c7504aa 1758 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 1759 goto error_lru;
9c7504aa 1760
e80dfa19
DC
1761 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1762 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1763 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1764 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
d210a987
MH
1765 if (register_shrinker(&btp->bt_shrinker))
1766 goto error_pcpu;
1da177e4
LT
1767 return btp;
1768
d210a987
MH
1769error_pcpu:
1770 percpu_counter_destroy(&btp->bt_io_count);
1771error_lru:
1772 list_lru_destroy(&btp->bt_lru);
1773error_free:
f0e2d93c 1774 kmem_free(btp);
1da177e4
LT
1775 return NULL;
1776}
1777
20e8a063
BF
1778/*
1779 * Cancel a delayed write list.
1780 *
1781 * Remove each buffer from the list, clear the delwri queue flag and drop the
1782 * associated buffer reference.
1783 */
1784void
1785xfs_buf_delwri_cancel(
1786 struct list_head *list)
1787{
1788 struct xfs_buf *bp;
1789
1790 while (!list_empty(list)) {
1791 bp = list_first_entry(list, struct xfs_buf, b_list);
1792
1793 xfs_buf_lock(bp);
1794 bp->b_flags &= ~_XBF_DELWRI_Q;
1795 list_del_init(&bp->b_list);
1796 xfs_buf_relse(bp);
1797 }
1798}
1799
1da177e4 1800/*
43ff2122
CH
1801 * Add a buffer to the delayed write list.
1802 *
1803 * This queues a buffer for writeout if it hasn't already been. Note that
1804 * neither this routine nor the buffer list submission functions perform
1805 * any internal synchronization. It is expected that the lists are thread-local
1806 * to the callers.
1807 *
1808 * Returns true if we queued up the buffer, or false if it already had
1809 * been on the buffer list.
1da177e4 1810 */
43ff2122 1811bool
ce8e922c 1812xfs_buf_delwri_queue(
43ff2122
CH
1813 struct xfs_buf *bp,
1814 struct list_head *list)
1da177e4 1815{
43ff2122 1816 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1817 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1818
43ff2122
CH
1819 /*
1820 * If the buffer is already marked delwri it already is queued up
1821 * by someone else for imediate writeout. Just ignore it in that
1822 * case.
1823 */
1824 if (bp->b_flags & _XBF_DELWRI_Q) {
1825 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1826 return false;
1da177e4 1827 }
1da177e4 1828
43ff2122 1829 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1830
1831 /*
43ff2122
CH
1832 * If a buffer gets written out synchronously or marked stale while it
1833 * is on a delwri list we lazily remove it. To do this, the other party
1834 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1835 * It remains referenced and on the list. In a rare corner case it
1836 * might get readded to a delwri list after the synchronous writeout, in
1837 * which case we need just need to re-add the flag here.
d808f617 1838 */
43ff2122
CH
1839 bp->b_flags |= _XBF_DELWRI_Q;
1840 if (list_empty(&bp->b_list)) {
1841 atomic_inc(&bp->b_hold);
1842 list_add_tail(&bp->b_list, list);
585e6d88 1843 }
585e6d88 1844
43ff2122 1845 return true;
585e6d88
DC
1846}
1847
089716aa
DC
1848/*
1849 * Compare function is more complex than it needs to be because
1850 * the return value is only 32 bits and we are doing comparisons
1851 * on 64 bit values
1852 */
1853static int
1854xfs_buf_cmp(
1855 void *priv,
1856 struct list_head *a,
1857 struct list_head *b)
1858{
1859 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1860 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1861 xfs_daddr_t diff;
1862
f4b42421 1863 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1864 if (diff < 0)
1865 return -1;
1866 if (diff > 0)
1867 return 1;
1868 return 0;
1869}
1870
26f1fe85 1871/*
e339dd8d
BF
1872 * Submit buffers for write. If wait_list is specified, the buffers are
1873 * submitted using sync I/O and placed on the wait list such that the caller can
1874 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1875 * at I/O completion time. In either case, buffers remain locked until I/O
1876 * completes and the buffer is released from the queue.
26f1fe85 1877 */
43ff2122 1878static int
26f1fe85 1879xfs_buf_delwri_submit_buffers(
43ff2122 1880 struct list_head *buffer_list,
26f1fe85 1881 struct list_head *wait_list)
1da177e4 1882{
43ff2122
CH
1883 struct xfs_buf *bp, *n;
1884 int pinned = 0;
26f1fe85 1885 struct blk_plug plug;
43ff2122 1886
26f1fe85 1887 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 1888
26f1fe85 1889 blk_start_plug(&plug);
43ff2122 1890 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 1891 if (!wait_list) {
43ff2122
CH
1892 if (xfs_buf_ispinned(bp)) {
1893 pinned++;
1894 continue;
1895 }
1896 if (!xfs_buf_trylock(bp))
1897 continue;
1898 } else {
1899 xfs_buf_lock(bp);
1900 }
978c7b2f 1901
43ff2122
CH
1902 /*
1903 * Someone else might have written the buffer synchronously or
1904 * marked it stale in the meantime. In that case only the
1905 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1906 * reference and remove it from the list here.
1907 */
1908 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1909 list_del_init(&bp->b_list);
1910 xfs_buf_relse(bp);
1911 continue;
1912 }
c9c12971 1913
43ff2122 1914 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 1915
cf53e99d 1916 /*
e339dd8d
BF
1917 * If we have a wait list, each buffer (and associated delwri
1918 * queue reference) transfers to it and is submitted
1919 * synchronously. Otherwise, drop the buffer from the delwri
1920 * queue and submit async.
cf53e99d 1921 */
bbfeb614 1922 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
e339dd8d 1923 bp->b_flags |= XBF_WRITE;
26f1fe85 1924 if (wait_list) {
e339dd8d 1925 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 1926 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
1927 } else {
1928 bp->b_flags |= XBF_ASYNC;
ce8e922c 1929 list_del_init(&bp->b_list);
e339dd8d 1930 }
6af88cda 1931 __xfs_buf_submit(bp, false);
43ff2122
CH
1932 }
1933 blk_finish_plug(&plug);
1da177e4 1934
43ff2122 1935 return pinned;
1da177e4
LT
1936}
1937
1938/*
43ff2122
CH
1939 * Write out a buffer list asynchronously.
1940 *
1941 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1942 * out and not wait for I/O completion on any of the buffers. This interface
1943 * is only safely useable for callers that can track I/O completion by higher
1944 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1945 * function.
efc3289c
BF
1946 *
1947 * Note: this function will skip buffers it would block on, and in doing so
1948 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1949 * it is up to the caller to ensure that the buffer list is fully submitted or
1950 * cancelled appropriately when they are finished with the list. Failure to
1951 * cancel or resubmit the list until it is empty will result in leaked buffers
1952 * at unmount time.
1da177e4
LT
1953 */
1954int
43ff2122
CH
1955xfs_buf_delwri_submit_nowait(
1956 struct list_head *buffer_list)
1da177e4 1957{
26f1fe85 1958 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 1959}
1da177e4 1960
43ff2122
CH
1961/*
1962 * Write out a buffer list synchronously.
1963 *
1964 * This will take the @buffer_list, write all buffers out and wait for I/O
1965 * completion on all of the buffers. @buffer_list is consumed by the function,
1966 * so callers must have some other way of tracking buffers if they require such
1967 * functionality.
1968 */
1969int
1970xfs_buf_delwri_submit(
1971 struct list_head *buffer_list)
1972{
26f1fe85 1973 LIST_HEAD (wait_list);
43ff2122
CH
1974 int error = 0, error2;
1975 struct xfs_buf *bp;
1da177e4 1976
26f1fe85 1977 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 1978
43ff2122 1979 /* Wait for IO to complete. */
26f1fe85
DC
1980 while (!list_empty(&wait_list)) {
1981 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 1982
089716aa 1983 list_del_init(&bp->b_list);
cf53e99d 1984
e339dd8d
BF
1985 /*
1986 * Wait on the locked buffer, check for errors and unlock and
1987 * release the delwri queue reference.
1988 */
1989 error2 = xfs_buf_iowait(bp);
43ff2122
CH
1990 xfs_buf_relse(bp);
1991 if (!error)
1992 error = error2;
1da177e4
LT
1993 }
1994
43ff2122 1995 return error;
1da177e4
LT
1996}
1997
7912e7fe
BF
1998/*
1999 * Push a single buffer on a delwri queue.
2000 *
2001 * The purpose of this function is to submit a single buffer of a delwri queue
2002 * and return with the buffer still on the original queue. The waiting delwri
2003 * buffer submission infrastructure guarantees transfer of the delwri queue
2004 * buffer reference to a temporary wait list. We reuse this infrastructure to
2005 * transfer the buffer back to the original queue.
2006 *
2007 * Note the buffer transitions from the queued state, to the submitted and wait
2008 * listed state and back to the queued state during this call. The buffer
2009 * locking and queue management logic between _delwri_pushbuf() and
2010 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2011 * before returning.
2012 */
2013int
2014xfs_buf_delwri_pushbuf(
2015 struct xfs_buf *bp,
2016 struct list_head *buffer_list)
2017{
2018 LIST_HEAD (submit_list);
2019 int error;
2020
2021 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2022
2023 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2024
2025 /*
2026 * Isolate the buffer to a new local list so we can submit it for I/O
2027 * independently from the rest of the original list.
2028 */
2029 xfs_buf_lock(bp);
2030 list_move(&bp->b_list, &submit_list);
2031 xfs_buf_unlock(bp);
2032
2033 /*
2034 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2035 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2036 * bounce the buffer from a local wait list back to the original list
2037 * after I/O completion, reuse the original list as the wait list.
2038 */
2039 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2040
2041 /*
e339dd8d
BF
2042 * The buffer is now locked, under I/O and wait listed on the original
2043 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2044 * return with the buffer unlocked and on the original queue.
7912e7fe 2045 */
e339dd8d 2046 error = xfs_buf_iowait(bp);
7912e7fe
BF
2047 bp->b_flags |= _XBF_DELWRI_Q;
2048 xfs_buf_unlock(bp);
2049
2050 return error;
2051}
2052
04d8b284 2053int __init
ce8e922c 2054xfs_buf_init(void)
1da177e4 2055{
8758280f
NS
2056 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2057 KM_ZONE_HWALIGN, NULL);
ce8e922c 2058 if (!xfs_buf_zone)
0b1b213f 2059 goto out;
04d8b284 2060
23ea4032 2061 return 0;
1da177e4 2062
0b1b213f 2063 out:
8758280f 2064 return -ENOMEM;
1da177e4
LT
2065}
2066
1da177e4 2067void
ce8e922c 2068xfs_buf_terminate(void)
1da177e4 2069{
ce8e922c 2070 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2071}
7561d27e
BF
2072
2073void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2074{
7561d27e
BF
2075 /*
2076 * Set the lru reference count to 0 based on the error injection tag.
2077 * This allows userspace to disrupt buffer caching for debug/testing
2078 * purposes.
2079 */
dbd329f1 2080 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2081 lru_ref = 0;
2082
2083 atomic_set(&bp->b_lru_ref, lru_ref);
2084}
8473fee3
BF
2085
2086/*
2087 * Verify an on-disk magic value against the magic value specified in the
2088 * verifier structure. The verifier magic is in disk byte order so the caller is
2089 * expected to pass the value directly from disk.
2090 */
2091bool
2092xfs_verify_magic(
2093 struct xfs_buf *bp,
15baadf7 2094 __be32 dmagic)
8473fee3 2095{
dbd329f1 2096 struct xfs_mount *mp = bp->b_mount;
8473fee3
BF
2097 int idx;
2098
2099 idx = xfs_sb_version_hascrc(&mp->m_sb);
14ed8688 2100 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
8473fee3
BF
2101 return false;
2102 return dmagic == bp->b_ops->magic[idx];
2103}
15baadf7
DW
2104/*
2105 * Verify an on-disk magic value against the magic value specified in the
2106 * verifier structure. The verifier magic is in disk byte order so the caller is
2107 * expected to pass the value directly from disk.
2108 */
2109bool
2110xfs_verify_magic16(
2111 struct xfs_buf *bp,
2112 __be16 dmagic)
2113{
dbd329f1 2114 struct xfs_mount *mp = bp->b_mount;
15baadf7
DW
2115 int idx;
2116
2117 idx = xfs_sb_version_hascrc(&mp->m_sb);
14ed8688 2118 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
15baadf7
DW
2119 return false;
2120 return dmagic == bp->b_ops->magic16[idx];
2121}