]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_buf.c
xfs: get allocation alignment from the buftarg
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_buf.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
f07c2250 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
93c189c1 6#include "xfs.h"
3fcfab16 7#include <linux/backing-dev.h>
1da177e4 8
5467b34b 9#include "xfs_shared.h"
4fb6e8ad 10#include "xfs_format.h"
239880ef 11#include "xfs_log_format.h"
7fd36c44 12#include "xfs_trans_resv.h"
239880ef 13#include "xfs_sb.h"
b7963133 14#include "xfs_mount.h"
0b1b213f 15#include "xfs_trace.h"
239880ef 16#include "xfs_log.h"
e9e899a2 17#include "xfs_errortag.h"
7561d27e 18#include "xfs_error.h"
b7963133 19
7989cb8e 20static kmem_zone_t *xfs_buf_zone;
23ea4032 21
ce8e922c 22#define xb_to_gfp(flags) \
aa5c158e 23 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
1da177e4 24
37fd1678
DC
25/*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_wait_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
1da177e4 51
73c77e2c
JB
52static inline int
53xfs_buf_is_vmapped(
54 struct xfs_buf *bp)
55{
56 /*
57 * Return true if the buffer is vmapped.
58 *
611c9946
DC
59 * b_addr is null if the buffer is not mapped, but the code is clever
60 * enough to know it doesn't have to map a single page, so the check has
61 * to be both for b_addr and bp->b_page_count > 1.
73c77e2c 62 */
611c9946 63 return bp->b_addr && bp->b_page_count > 1;
73c77e2c
JB
64}
65
66static inline int
67xfs_buf_vmap_len(
68 struct xfs_buf *bp)
69{
70 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
71}
72
9c7504aa
BF
73/*
74 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
75 * this buffer. The count is incremented once per buffer (per hold cycle)
76 * because the corresponding decrement is deferred to buffer release. Buffers
77 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
78 * tracking adds unnecessary overhead. This is used for sychronization purposes
79 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
80 * in-flight buffers.
81 *
82 * Buffers that are never released (e.g., superblock, iclog buffers) must set
83 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
84 * never reaches zero and unmount hangs indefinitely.
85 */
86static inline void
87xfs_buf_ioacct_inc(
88 struct xfs_buf *bp)
89{
63db7c81 90 if (bp->b_flags & XBF_NO_IOACCT)
9c7504aa
BF
91 return;
92
93 ASSERT(bp->b_flags & XBF_ASYNC);
63db7c81
BF
94 spin_lock(&bp->b_lock);
95 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
96 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
97 percpu_counter_inc(&bp->b_target->bt_io_count);
98 }
99 spin_unlock(&bp->b_lock);
9c7504aa
BF
100}
101
102/*
103 * Clear the in-flight state on a buffer about to be released to the LRU or
104 * freed and unaccount from the buftarg.
105 */
106static inline void
63db7c81 107__xfs_buf_ioacct_dec(
9c7504aa
BF
108 struct xfs_buf *bp)
109{
95989c46 110 lockdep_assert_held(&bp->b_lock);
9c7504aa 111
63db7c81
BF
112 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
113 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
114 percpu_counter_dec(&bp->b_target->bt_io_count);
115 }
116}
117
118static inline void
119xfs_buf_ioacct_dec(
120 struct xfs_buf *bp)
121{
122 spin_lock(&bp->b_lock);
123 __xfs_buf_ioacct_dec(bp);
124 spin_unlock(&bp->b_lock);
9c7504aa
BF
125}
126
430cbeb8
DC
127/*
128 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
129 * b_lru_ref count so that the buffer is freed immediately when the buffer
130 * reference count falls to zero. If the buffer is already on the LRU, we need
131 * to remove the reference that LRU holds on the buffer.
132 *
133 * This prevents build-up of stale buffers on the LRU.
134 */
135void
136xfs_buf_stale(
137 struct xfs_buf *bp)
138{
43ff2122
CH
139 ASSERT(xfs_buf_islocked(bp));
140
430cbeb8 141 bp->b_flags |= XBF_STALE;
43ff2122
CH
142
143 /*
144 * Clear the delwri status so that a delwri queue walker will not
145 * flush this buffer to disk now that it is stale. The delwri queue has
146 * a reference to the buffer, so this is safe to do.
147 */
148 bp->b_flags &= ~_XBF_DELWRI_Q;
149
9c7504aa
BF
150 /*
151 * Once the buffer is marked stale and unlocked, a subsequent lookup
152 * could reset b_flags. There is no guarantee that the buffer is
153 * unaccounted (released to LRU) before that occurs. Drop in-flight
154 * status now to preserve accounting consistency.
155 */
a4082357 156 spin_lock(&bp->b_lock);
63db7c81
BF
157 __xfs_buf_ioacct_dec(bp);
158
a4082357
DC
159 atomic_set(&bp->b_lru_ref, 0);
160 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
e80dfa19
DC
161 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
162 atomic_dec(&bp->b_hold);
163
430cbeb8 164 ASSERT(atomic_read(&bp->b_hold) >= 1);
a4082357 165 spin_unlock(&bp->b_lock);
430cbeb8 166}
1da177e4 167
3e85c868
DC
168static int
169xfs_buf_get_maps(
170 struct xfs_buf *bp,
171 int map_count)
172{
173 ASSERT(bp->b_maps == NULL);
174 bp->b_map_count = map_count;
175
176 if (map_count == 1) {
f4b42421 177 bp->b_maps = &bp->__b_map;
3e85c868
DC
178 return 0;
179 }
180
181 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
182 KM_NOFS);
183 if (!bp->b_maps)
2451337d 184 return -ENOMEM;
3e85c868
DC
185 return 0;
186}
187
188/*
189 * Frees b_pages if it was allocated.
190 */
191static void
192xfs_buf_free_maps(
193 struct xfs_buf *bp)
194{
f4b42421 195 if (bp->b_maps != &bp->__b_map) {
3e85c868
DC
196 kmem_free(bp->b_maps);
197 bp->b_maps = NULL;
198 }
199}
200
0564501f 201static struct xfs_buf *
3e85c868 202_xfs_buf_alloc(
4347b9d7 203 struct xfs_buftarg *target,
3e85c868
DC
204 struct xfs_buf_map *map,
205 int nmaps,
ce8e922c 206 xfs_buf_flags_t flags)
1da177e4 207{
4347b9d7 208 struct xfs_buf *bp;
3e85c868
DC
209 int error;
210 int i;
4347b9d7 211
aa5c158e 212 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
4347b9d7
CH
213 if (unlikely(!bp))
214 return NULL;
215
1da177e4 216 /*
12bcb3f7
DC
217 * We don't want certain flags to appear in b_flags unless they are
218 * specifically set by later operations on the buffer.
1da177e4 219 */
611c9946 220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
ce8e922c 221
ce8e922c 222 atomic_set(&bp->b_hold, 1);
430cbeb8 223 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 224 init_completion(&bp->b_iowait);
430cbeb8 225 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 226 INIT_LIST_HEAD(&bp->b_list);
643c8c05 227 INIT_LIST_HEAD(&bp->b_li_list);
a731cd11 228 sema_init(&bp->b_sema, 0); /* held, no waiters */
a4082357 229 spin_lock_init(&bp->b_lock);
ce8e922c 230 bp->b_target = target;
dbd329f1 231 bp->b_mount = target->bt_mount;
3e85c868 232 bp->b_flags = flags;
de1cbee4 233
1da177e4 234 /*
aa0e8833
DC
235 * Set length and io_length to the same value initially.
236 * I/O routines should use io_length, which will be the same in
1da177e4
LT
237 * most cases but may be reset (e.g. XFS recovery).
238 */
3e85c868
DC
239 error = xfs_buf_get_maps(bp, nmaps);
240 if (error) {
241 kmem_zone_free(xfs_buf_zone, bp);
242 return NULL;
243 }
244
245 bp->b_bn = map[0].bm_bn;
246 bp->b_length = 0;
247 for (i = 0; i < nmaps; i++) {
248 bp->b_maps[i].bm_bn = map[i].bm_bn;
249 bp->b_maps[i].bm_len = map[i].bm_len;
250 bp->b_length += map[i].bm_len;
251 }
3e85c868 252
ce8e922c
NS
253 atomic_set(&bp->b_pin_count, 0);
254 init_waitqueue_head(&bp->b_waiters);
255
dbd329f1 256 XFS_STATS_INC(bp->b_mount, xb_create);
0b1b213f 257 trace_xfs_buf_init(bp, _RET_IP_);
4347b9d7
CH
258
259 return bp;
1da177e4
LT
260}
261
262/*
ce8e922c
NS
263 * Allocate a page array capable of holding a specified number
264 * of pages, and point the page buf at it.
1da177e4
LT
265 */
266STATIC int
ce8e922c
NS
267_xfs_buf_get_pages(
268 xfs_buf_t *bp,
87937bf8 269 int page_count)
1da177e4
LT
270{
271 /* Make sure that we have a page list */
ce8e922c 272 if (bp->b_pages == NULL) {
ce8e922c
NS
273 bp->b_page_count = page_count;
274 if (page_count <= XB_PAGES) {
275 bp->b_pages = bp->b_page_array;
1da177e4 276 } else {
ce8e922c 277 bp->b_pages = kmem_alloc(sizeof(struct page *) *
aa5c158e 278 page_count, KM_NOFS);
ce8e922c 279 if (bp->b_pages == NULL)
1da177e4
LT
280 return -ENOMEM;
281 }
ce8e922c 282 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
283 }
284 return 0;
285}
286
287/*
ce8e922c 288 * Frees b_pages if it was allocated.
1da177e4
LT
289 */
290STATIC void
ce8e922c 291_xfs_buf_free_pages(
1da177e4
LT
292 xfs_buf_t *bp)
293{
ce8e922c 294 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 295 kmem_free(bp->b_pages);
3fc98b1a 296 bp->b_pages = NULL;
1da177e4
LT
297 }
298}
299
300/*
301 * Releases the specified buffer.
302 *
303 * The modification state of any associated pages is left unchanged.
b46fe825 304 * The buffer must not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
305 * hashed and refcounted buffers
306 */
307void
ce8e922c 308xfs_buf_free(
1da177e4
LT
309 xfs_buf_t *bp)
310{
0b1b213f 311 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 312
430cbeb8
DC
313 ASSERT(list_empty(&bp->b_lru));
314
0e6e847f 315 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
316 uint i;
317
73c77e2c 318 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
319 vm_unmap_ram(bp->b_addr - bp->b_offset,
320 bp->b_page_count);
1da177e4 321
948ecdb4
NS
322 for (i = 0; i < bp->b_page_count; i++) {
323 struct page *page = bp->b_pages[i];
324
0e6e847f 325 __free_page(page);
948ecdb4 326 }
0e6e847f
DC
327 } else if (bp->b_flags & _XBF_KMEM)
328 kmem_free(bp->b_addr);
3fc98b1a 329 _xfs_buf_free_pages(bp);
3e85c868 330 xfs_buf_free_maps(bp);
4347b9d7 331 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
332}
333
334/*
0e6e847f 335 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
336 */
337STATIC int
0e6e847f 338xfs_buf_allocate_memory(
1da177e4
LT
339 xfs_buf_t *bp,
340 uint flags)
341{
aa0e8833 342 size_t size;
1da177e4 343 size_t nbytes, offset;
ce8e922c 344 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4 345 unsigned short page_count, i;
795cac72 346 xfs_off_t start, end;
1da177e4
LT
347 int error;
348
0e6e847f
DC
349 /*
350 * for buffers that are contained within a single page, just allocate
351 * the memory from the heap - there's no need for the complexity of
352 * page arrays to keep allocation down to order 0.
353 */
795cac72
DC
354 size = BBTOB(bp->b_length);
355 if (size < PAGE_SIZE) {
aa5c158e 356 bp->b_addr = kmem_alloc(size, KM_NOFS);
0e6e847f
DC
357 if (!bp->b_addr) {
358 /* low memory - use alloc_page loop instead */
359 goto use_alloc_page;
360 }
361
795cac72 362 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
0e6e847f
DC
363 ((unsigned long)bp->b_addr & PAGE_MASK)) {
364 /* b_addr spans two pages - use alloc_page instead */
365 kmem_free(bp->b_addr);
366 bp->b_addr = NULL;
367 goto use_alloc_page;
368 }
369 bp->b_offset = offset_in_page(bp->b_addr);
370 bp->b_pages = bp->b_page_array;
371 bp->b_pages[0] = virt_to_page(bp->b_addr);
372 bp->b_page_count = 1;
611c9946 373 bp->b_flags |= _XBF_KMEM;
0e6e847f
DC
374 return 0;
375 }
376
377use_alloc_page:
f4b42421
MT
378 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
379 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
cbb7baab 380 >> PAGE_SHIFT;
795cac72 381 page_count = end - start;
87937bf8 382 error = _xfs_buf_get_pages(bp, page_count);
1da177e4
LT
383 if (unlikely(error))
384 return error;
1da177e4 385
ce8e922c 386 offset = bp->b_offset;
0e6e847f 387 bp->b_flags |= _XBF_PAGES;
1da177e4 388
ce8e922c 389 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
390 struct page *page;
391 uint retries = 0;
0e6e847f
DC
392retry:
393 page = alloc_page(gfp_mask);
1da177e4 394 if (unlikely(page == NULL)) {
ce8e922c
NS
395 if (flags & XBF_READ_AHEAD) {
396 bp->b_page_count = i;
2451337d 397 error = -ENOMEM;
0e6e847f 398 goto out_free_pages;
1da177e4
LT
399 }
400
401 /*
402 * This could deadlock.
403 *
404 * But until all the XFS lowlevel code is revamped to
405 * handle buffer allocation failures we can't do much.
406 */
407 if (!(++retries % 100))
4f10700a 408 xfs_err(NULL,
5bf97b1c
TH
409 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
410 current->comm, current->pid,
34a622b2 411 __func__, gfp_mask);
1da177e4 412
dbd329f1 413 XFS_STATS_INC(bp->b_mount, xb_page_retries);
8aa7e847 414 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
415 goto retry;
416 }
417
dbd329f1 418 XFS_STATS_INC(bp->b_mount, xb_page_found);
1da177e4 419
0e6e847f 420 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 421 size -= nbytes;
ce8e922c 422 bp->b_pages[i] = page;
1da177e4
LT
423 offset = 0;
424 }
0e6e847f 425 return 0;
1da177e4 426
0e6e847f
DC
427out_free_pages:
428 for (i = 0; i < bp->b_page_count; i++)
429 __free_page(bp->b_pages[i]);
2aa6ba7b 430 bp->b_flags &= ~_XBF_PAGES;
1da177e4
LT
431 return error;
432}
433
434/*
25985edc 435 * Map buffer into kernel address-space if necessary.
1da177e4
LT
436 */
437STATIC int
ce8e922c 438_xfs_buf_map_pages(
1da177e4
LT
439 xfs_buf_t *bp,
440 uint flags)
441{
0e6e847f 442 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 443 if (bp->b_page_count == 1) {
0e6e847f 444 /* A single page buffer is always mappable */
ce8e922c 445 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
611c9946
DC
446 } else if (flags & XBF_UNMAPPED) {
447 bp->b_addr = NULL;
448 } else {
a19fb380 449 int retried = 0;
9ba1fb2c 450 unsigned nofs_flag;
ae687e58
DC
451
452 /*
453 * vm_map_ram() will allocate auxillary structures (e.g.
454 * pagetables) with GFP_KERNEL, yet we are likely to be under
455 * GFP_NOFS context here. Hence we need to tell memory reclaim
9ba1fb2c 456 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
ae687e58
DC
457 * memory reclaim re-entering the filesystem here and
458 * potentially deadlocking.
459 */
9ba1fb2c 460 nofs_flag = memalloc_nofs_save();
a19fb380
DC
461 do {
462 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
463 -1, PAGE_KERNEL);
464 if (bp->b_addr)
465 break;
466 vm_unmap_aliases();
467 } while (retried++ <= 1);
9ba1fb2c 468 memalloc_nofs_restore(nofs_flag);
a19fb380
DC
469
470 if (!bp->b_addr)
1da177e4 471 return -ENOMEM;
ce8e922c 472 bp->b_addr += bp->b_offset;
1da177e4
LT
473 }
474
475 return 0;
476}
477
478/*
479 * Finding and Reading Buffers
480 */
6031e73a
LS
481static int
482_xfs_buf_obj_cmp(
483 struct rhashtable_compare_arg *arg,
484 const void *obj)
485{
486 const struct xfs_buf_map *map = arg->key;
487 const struct xfs_buf *bp = obj;
488
489 /*
490 * The key hashing in the lookup path depends on the key being the
491 * first element of the compare_arg, make sure to assert this.
492 */
493 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
494
495 if (bp->b_bn != map->bm_bn)
496 return 1;
497
498 if (unlikely(bp->b_length != map->bm_len)) {
499 /*
500 * found a block number match. If the range doesn't
501 * match, the only way this is allowed is if the buffer
502 * in the cache is stale and the transaction that made
503 * it stale has not yet committed. i.e. we are
504 * reallocating a busy extent. Skip this buffer and
505 * continue searching for an exact match.
506 */
507 ASSERT(bp->b_flags & XBF_STALE);
508 return 1;
509 }
510 return 0;
511}
512
513static const struct rhashtable_params xfs_buf_hash_params = {
514 .min_size = 32, /* empty AGs have minimal footprint */
515 .nelem_hint = 16,
516 .key_len = sizeof(xfs_daddr_t),
517 .key_offset = offsetof(struct xfs_buf, b_bn),
518 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
519 .automatic_shrinking = true,
520 .obj_cmpfn = _xfs_buf_obj_cmp,
521};
522
523int
524xfs_buf_hash_init(
525 struct xfs_perag *pag)
526{
527 spin_lock_init(&pag->pag_buf_lock);
528 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
529}
530
531void
532xfs_buf_hash_destroy(
533 struct xfs_perag *pag)
534{
535 rhashtable_destroy(&pag->pag_buf_hash);
536}
1da177e4
LT
537
538/*
b027d4c9
DC
539 * Look up a buffer in the buffer cache and return it referenced and locked
540 * in @found_bp.
541 *
542 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
543 * cache.
544 *
545 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
546 * -EAGAIN if we fail to lock it.
547 *
548 * Return values are:
549 * -EFSCORRUPTED if have been supplied with an invalid address
550 * -EAGAIN on trylock failure
551 * -ENOENT if we fail to find a match and @new_bp was NULL
552 * 0, with @found_bp:
553 * - @new_bp if we inserted it into the cache
554 * - the buffer we found and locked.
1da177e4 555 */
b027d4c9
DC
556static int
557xfs_buf_find(
e70b73f8 558 struct xfs_buftarg *btp,
3e85c868
DC
559 struct xfs_buf_map *map,
560 int nmaps,
ce8e922c 561 xfs_buf_flags_t flags,
b027d4c9
DC
562 struct xfs_buf *new_bp,
563 struct xfs_buf **found_bp)
1da177e4 564{
74f75a0c 565 struct xfs_perag *pag;
74f75a0c 566 xfs_buf_t *bp;
6031e73a 567 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
10616b80 568 xfs_daddr_t eofs;
3e85c868 569 int i;
1da177e4 570
b027d4c9
DC
571 *found_bp = NULL;
572
3e85c868 573 for (i = 0; i < nmaps; i++)
6031e73a 574 cmap.bm_len += map[i].bm_len;
1da177e4
LT
575
576 /* Check for IOs smaller than the sector size / not sector aligned */
6031e73a
LS
577 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
578 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
1da177e4 579
10616b80
DC
580 /*
581 * Corrupted block numbers can get through to here, unfortunately, so we
582 * have to check that the buffer falls within the filesystem bounds.
583 */
584 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
6031e73a 585 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
10616b80 586 xfs_alert(btp->bt_mount,
c219b015 587 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
6031e73a 588 __func__, cmap.bm_bn, eofs);
7bc0dc27 589 WARN_ON(1);
b027d4c9 590 return -EFSCORRUPTED;
10616b80
DC
591 }
592
74f75a0c 593 pag = xfs_perag_get(btp->bt_mount,
6031e73a 594 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
74f75a0c 595
74f75a0c 596 spin_lock(&pag->pag_buf_lock);
6031e73a
LS
597 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
598 xfs_buf_hash_params);
599 if (bp) {
600 atomic_inc(&bp->b_hold);
601 goto found;
1da177e4
LT
602 }
603
604 /* No match found */
b027d4c9 605 if (!new_bp) {
ff6d6af2 606 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
74f75a0c
DC
607 spin_unlock(&pag->pag_buf_lock);
608 xfs_perag_put(pag);
b027d4c9 609 return -ENOENT;
1da177e4 610 }
b027d4c9
DC
611
612 /* the buffer keeps the perag reference until it is freed */
613 new_bp->b_pag = pag;
614 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
615 xfs_buf_hash_params);
616 spin_unlock(&pag->pag_buf_lock);
617 *found_bp = new_bp;
618 return 0;
1da177e4
LT
619
620found:
74f75a0c
DC
621 spin_unlock(&pag->pag_buf_lock);
622 xfs_perag_put(pag);
1da177e4 623
0c842ad4
CH
624 if (!xfs_buf_trylock(bp)) {
625 if (flags & XBF_TRYLOCK) {
ce8e922c 626 xfs_buf_rele(bp);
ff6d6af2 627 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
b027d4c9 628 return -EAGAIN;
1da177e4 629 }
0c842ad4 630 xfs_buf_lock(bp);
ff6d6af2 631 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
1da177e4
LT
632 }
633
0e6e847f
DC
634 /*
635 * if the buffer is stale, clear all the external state associated with
636 * it. We need to keep flags such as how we allocated the buffer memory
637 * intact here.
638 */
ce8e922c
NS
639 if (bp->b_flags & XBF_STALE) {
640 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
cfb02852 641 ASSERT(bp->b_iodone == NULL);
611c9946 642 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
1813dd64 643 bp->b_ops = NULL;
2f926587 644 }
0b1b213f
CH
645
646 trace_xfs_buf_find(bp, flags, _RET_IP_);
ff6d6af2 647 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
b027d4c9
DC
648 *found_bp = bp;
649 return 0;
1da177e4
LT
650}
651
8925a3dc
DC
652struct xfs_buf *
653xfs_buf_incore(
654 struct xfs_buftarg *target,
655 xfs_daddr_t blkno,
656 size_t numblks,
657 xfs_buf_flags_t flags)
658{
b027d4c9
DC
659 struct xfs_buf *bp;
660 int error;
8925a3dc 661 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
b027d4c9
DC
662
663 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
664 if (error)
665 return NULL;
666 return bp;
8925a3dc
DC
667}
668
1da177e4 669/*
3815832a
DC
670 * Assembles a buffer covering the specified range. The code is optimised for
671 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
672 * more hits than misses.
1da177e4 673 */
3815832a 674struct xfs_buf *
6dde2707
DC
675xfs_buf_get_map(
676 struct xfs_buftarg *target,
677 struct xfs_buf_map *map,
678 int nmaps,
ce8e922c 679 xfs_buf_flags_t flags)
1da177e4 680{
3815832a
DC
681 struct xfs_buf *bp;
682 struct xfs_buf *new_bp;
0e6e847f 683 int error = 0;
1da177e4 684
b027d4c9
DC
685 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
686
687 switch (error) {
688 case 0:
689 /* cache hit */
3815832a 690 goto found;
b027d4c9
DC
691 case -EAGAIN:
692 /* cache hit, trylock failure, caller handles failure */
693 ASSERT(flags & XBF_TRYLOCK);
694 return NULL;
695 case -ENOENT:
696 /* cache miss, go for insert */
697 break;
698 case -EFSCORRUPTED:
699 default:
700 /*
701 * None of the higher layers understand failure types
702 * yet, so return NULL to signal a fatal lookup error.
703 */
704 return NULL;
705 }
3815832a 706
6dde2707 707 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
ce8e922c 708 if (unlikely(!new_bp))
1da177e4
LT
709 return NULL;
710
fe2429b0
DC
711 error = xfs_buf_allocate_memory(new_bp, flags);
712 if (error) {
3e85c868 713 xfs_buf_free(new_bp);
fe2429b0
DC
714 return NULL;
715 }
716
b027d4c9
DC
717 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
718 if (error) {
fe2429b0 719 xfs_buf_free(new_bp);
3815832a
DC
720 return NULL;
721 }
722
fe2429b0
DC
723 if (bp != new_bp)
724 xfs_buf_free(new_bp);
1da177e4 725
3815832a 726found:
611c9946 727 if (!bp->b_addr) {
ce8e922c 728 error = _xfs_buf_map_pages(bp, flags);
1da177e4 729 if (unlikely(error)) {
4f10700a 730 xfs_warn(target->bt_mount,
08e96e1a 731 "%s: failed to map pagesn", __func__);
a8acad70
DC
732 xfs_buf_relse(bp);
733 return NULL;
1da177e4
LT
734 }
735 }
736
b79f4a1c
DC
737 /*
738 * Clear b_error if this is a lookup from a caller that doesn't expect
739 * valid data to be found in the buffer.
740 */
741 if (!(flags & XBF_READ))
742 xfs_buf_ioerror(bp, 0);
743
ff6d6af2 744 XFS_STATS_INC(target->bt_mount, xb_get);
0b1b213f 745 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 746 return bp;
1da177e4
LT
747}
748
5d765b97
CH
749STATIC int
750_xfs_buf_read(
751 xfs_buf_t *bp,
752 xfs_buf_flags_t flags)
753{
43ff2122 754 ASSERT(!(flags & XBF_WRITE));
f4b42421 755 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
5d765b97 756
43ff2122 757 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
1d5ae5df 758 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
5d765b97 759
6af88cda 760 return xfs_buf_submit(bp);
5d765b97
CH
761}
762
1aff5696 763/*
75d02303 764 * Reverify a buffer found in cache without an attached ->b_ops.
add46b3b 765 *
75d02303
BF
766 * If the caller passed an ops structure and the buffer doesn't have ops
767 * assigned, set the ops and use it to verify the contents. If verification
768 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
769 * already in XBF_DONE state on entry.
add46b3b 770 *
75d02303
BF
771 * Under normal operations, every in-core buffer is verified on read I/O
772 * completion. There are two scenarios that can lead to in-core buffers without
773 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
774 * filesystem, though these buffers are purged at the end of recovery. The
775 * other is online repair, which intentionally reads with a NULL buffer ops to
776 * run several verifiers across an in-core buffer in order to establish buffer
777 * type. If repair can't establish that, the buffer will be left in memory
778 * with NULL buffer ops.
1aff5696
DW
779 */
780int
75d02303 781xfs_buf_reverify(
1aff5696
DW
782 struct xfs_buf *bp,
783 const struct xfs_buf_ops *ops)
784{
785 ASSERT(bp->b_flags & XBF_DONE);
786 ASSERT(bp->b_error == 0);
787
788 if (!ops || bp->b_ops)
789 return 0;
790
791 bp->b_ops = ops;
792 bp->b_ops->verify_read(bp);
793 if (bp->b_error)
794 bp->b_flags &= ~XBF_DONE;
795 return bp->b_error;
796}
797
1da177e4 798xfs_buf_t *
6dde2707
DC
799xfs_buf_read_map(
800 struct xfs_buftarg *target,
801 struct xfs_buf_map *map,
802 int nmaps,
c3f8fc73 803 xfs_buf_flags_t flags,
1813dd64 804 const struct xfs_buf_ops *ops)
1da177e4 805{
6dde2707 806 struct xfs_buf *bp;
ce8e922c
NS
807
808 flags |= XBF_READ;
809
6dde2707 810 bp = xfs_buf_get_map(target, map, nmaps, flags);
1aff5696
DW
811 if (!bp)
812 return NULL;
0b1b213f 813
1aff5696
DW
814 trace_xfs_buf_read(bp, flags, _RET_IP_);
815
816 if (!(bp->b_flags & XBF_DONE)) {
817 XFS_STATS_INC(target->bt_mount, xb_get_read);
818 bp->b_ops = ops;
819 _xfs_buf_read(bp, flags);
820 return bp;
821 }
822
75d02303 823 xfs_buf_reverify(bp, ops);
1aff5696
DW
824
825 if (flags & XBF_ASYNC) {
826 /*
827 * Read ahead call which is already satisfied,
828 * drop the buffer
829 */
830 xfs_buf_relse(bp);
831 return NULL;
1da177e4
LT
832 }
833
1aff5696
DW
834 /* We do not want read in the flags */
835 bp->b_flags &= ~XBF_READ;
836 ASSERT(bp->b_ops != NULL || ops == NULL);
ce8e922c 837 return bp;
1da177e4
LT
838}
839
1da177e4 840/*
ce8e922c
NS
841 * If we are not low on memory then do the readahead in a deadlock
842 * safe manner.
1da177e4
LT
843 */
844void
6dde2707
DC
845xfs_buf_readahead_map(
846 struct xfs_buftarg *target,
847 struct xfs_buf_map *map,
c3f8fc73 848 int nmaps,
1813dd64 849 const struct xfs_buf_ops *ops)
1da177e4 850{
efa7c9f9 851 if (bdi_read_congested(target->bt_bdev->bd_bdi))
1da177e4
LT
852 return;
853
6dde2707 854 xfs_buf_read_map(target, map, nmaps,
1813dd64 855 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
1da177e4
LT
856}
857
5adc94c2
DC
858/*
859 * Read an uncached buffer from disk. Allocates and returns a locked
860 * buffer containing the disk contents or nothing.
861 */
ba372674 862int
5adc94c2 863xfs_buf_read_uncached(
5adc94c2
DC
864 struct xfs_buftarg *target,
865 xfs_daddr_t daddr,
e70b73f8 866 size_t numblks,
c3f8fc73 867 int flags,
ba372674 868 struct xfs_buf **bpp,
1813dd64 869 const struct xfs_buf_ops *ops)
5adc94c2 870{
eab4e633 871 struct xfs_buf *bp;
5adc94c2 872
ba372674
DC
873 *bpp = NULL;
874
e70b73f8 875 bp = xfs_buf_get_uncached(target, numblks, flags);
5adc94c2 876 if (!bp)
ba372674 877 return -ENOMEM;
5adc94c2
DC
878
879 /* set up the buffer for a read IO */
3e85c868 880 ASSERT(bp->b_map_count == 1);
ba372674 881 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
3e85c868 882 bp->b_maps[0].bm_bn = daddr;
cbb7baab 883 bp->b_flags |= XBF_READ;
1813dd64 884 bp->b_ops = ops;
5adc94c2 885
6af88cda 886 xfs_buf_submit(bp);
ba372674
DC
887 if (bp->b_error) {
888 int error = bp->b_error;
83a0adc3 889 xfs_buf_relse(bp);
ba372674 890 return error;
83a0adc3 891 }
ba372674
DC
892
893 *bpp = bp;
894 return 0;
1da177e4
LT
895}
896
1da177e4 897xfs_buf_t *
686865f7
DC
898xfs_buf_get_uncached(
899 struct xfs_buftarg *target,
e70b73f8 900 size_t numblks,
686865f7 901 int flags)
1da177e4 902{
e70b73f8 903 unsigned long page_count;
1fa40b01 904 int error, i;
3e85c868
DC
905 struct xfs_buf *bp;
906 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1da177e4 907
c891c30a
BF
908 /* flags might contain irrelevant bits, pass only what we care about */
909 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
1da177e4
LT
910 if (unlikely(bp == NULL))
911 goto fail;
1da177e4 912
e70b73f8 913 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
87937bf8 914 error = _xfs_buf_get_pages(bp, page_count);
1fa40b01 915 if (error)
1da177e4
LT
916 goto fail_free_buf;
917
1fa40b01 918 for (i = 0; i < page_count; i++) {
686865f7 919 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
920 if (!bp->b_pages[i])
921 goto fail_free_mem;
1da177e4 922 }
1fa40b01 923 bp->b_flags |= _XBF_PAGES;
1da177e4 924
611c9946 925 error = _xfs_buf_map_pages(bp, 0);
1fa40b01 926 if (unlikely(error)) {
4f10700a 927 xfs_warn(target->bt_mount,
08e96e1a 928 "%s: failed to map pages", __func__);
1da177e4 929 goto fail_free_mem;
1fa40b01 930 }
1da177e4 931
686865f7 932 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 933 return bp;
1fa40b01 934
1da177e4 935 fail_free_mem:
1fa40b01
CH
936 while (--i >= 0)
937 __free_page(bp->b_pages[i]);
ca165b88 938 _xfs_buf_free_pages(bp);
1da177e4 939 fail_free_buf:
3e85c868 940 xfs_buf_free_maps(bp);
4347b9d7 941 kmem_zone_free(xfs_buf_zone, bp);
1da177e4
LT
942 fail:
943 return NULL;
944}
945
946/*
1da177e4
LT
947 * Increment reference count on buffer, to hold the buffer concurrently
948 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
949 * Must hold the buffer already to call this function.
950 */
951void
ce8e922c
NS
952xfs_buf_hold(
953 xfs_buf_t *bp)
1da177e4 954{
0b1b213f 955 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 956 atomic_inc(&bp->b_hold);
1da177e4
LT
957}
958
959/*
9c7504aa
BF
960 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
961 * placed on LRU or freed (depending on b_lru_ref).
1da177e4
LT
962 */
963void
ce8e922c
NS
964xfs_buf_rele(
965 xfs_buf_t *bp)
1da177e4 966{
74f75a0c 967 struct xfs_perag *pag = bp->b_pag;
9c7504aa
BF
968 bool release;
969 bool freebuf = false;
1da177e4 970
0b1b213f 971 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 972
74f75a0c 973 if (!pag) {
430cbeb8 974 ASSERT(list_empty(&bp->b_lru));
9c7504aa
BF
975 if (atomic_dec_and_test(&bp->b_hold)) {
976 xfs_buf_ioacct_dec(bp);
fad3aa1e 977 xfs_buf_free(bp);
9c7504aa 978 }
fad3aa1e
NS
979 return;
980 }
981
3790689f 982 ASSERT(atomic_read(&bp->b_hold) > 0);
a4082357 983
37fd1678
DC
984 /*
985 * We grab the b_lock here first to serialise racing xfs_buf_rele()
986 * calls. The pag_buf_lock being taken on the last reference only
987 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
988 * to last reference we drop here is not serialised against the last
989 * reference until we take bp->b_lock. Hence if we don't grab b_lock
990 * first, the last "release" reference can win the race to the lock and
991 * free the buffer before the second-to-last reference is processed,
992 * leading to a use-after-free scenario.
993 */
9c7504aa 994 spin_lock(&bp->b_lock);
37fd1678 995 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
9c7504aa
BF
996 if (!release) {
997 /*
998 * Drop the in-flight state if the buffer is already on the LRU
999 * and it holds the only reference. This is racy because we
1000 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1001 * ensures the decrement occurs only once per-buf.
1002 */
1003 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
63db7c81 1004 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1005 goto out_unlock;
1006 }
1007
1008 /* the last reference has been dropped ... */
63db7c81 1009 __xfs_buf_ioacct_dec(bp);
9c7504aa
BF
1010 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1011 /*
1012 * If the buffer is added to the LRU take a new reference to the
1013 * buffer for the LRU and clear the (now stale) dispose list
1014 * state flag
1015 */
1016 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1017 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1018 atomic_inc(&bp->b_hold);
1da177e4 1019 }
9c7504aa
BF
1020 spin_unlock(&pag->pag_buf_lock);
1021 } else {
1022 /*
1023 * most of the time buffers will already be removed from the
1024 * LRU, so optimise that case by checking for the
1025 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1026 * was on was the disposal list
1027 */
1028 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1029 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1030 } else {
1031 ASSERT(list_empty(&bp->b_lru));
1da177e4 1032 }
9c7504aa
BF
1033
1034 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
6031e73a
LS
1035 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1036 xfs_buf_hash_params);
9c7504aa
BF
1037 spin_unlock(&pag->pag_buf_lock);
1038 xfs_perag_put(pag);
1039 freebuf = true;
1da177e4 1040 }
9c7504aa
BF
1041
1042out_unlock:
1043 spin_unlock(&bp->b_lock);
1044
1045 if (freebuf)
1046 xfs_buf_free(bp);
1da177e4
LT
1047}
1048
1049
1050/*
0e6e847f 1051 * Lock a buffer object, if it is not already locked.
90810b9e
DC
1052 *
1053 * If we come across a stale, pinned, locked buffer, we know that we are
1054 * being asked to lock a buffer that has been reallocated. Because it is
1055 * pinned, we know that the log has not been pushed to disk and hence it
1056 * will still be locked. Rather than continuing to have trylock attempts
1057 * fail until someone else pushes the log, push it ourselves before
1058 * returning. This means that the xfsaild will not get stuck trying
1059 * to push on stale inode buffers.
1da177e4
LT
1060 */
1061int
0c842ad4
CH
1062xfs_buf_trylock(
1063 struct xfs_buf *bp)
1da177e4
LT
1064{
1065 int locked;
1066
ce8e922c 1067 locked = down_trylock(&bp->b_sema) == 0;
fa6c668d 1068 if (locked)
479c6412 1069 trace_xfs_buf_trylock(bp, _RET_IP_);
fa6c668d 1070 else
479c6412 1071 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
0c842ad4 1072 return locked;
1da177e4 1073}
1da177e4
LT
1074
1075/*
0e6e847f 1076 * Lock a buffer object.
ed3b4d6c
DC
1077 *
1078 * If we come across a stale, pinned, locked buffer, we know that we
1079 * are being asked to lock a buffer that has been reallocated. Because
1080 * it is pinned, we know that the log has not been pushed to disk and
1081 * hence it will still be locked. Rather than sleeping until someone
1082 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 1083 */
ce8e922c
NS
1084void
1085xfs_buf_lock(
0c842ad4 1086 struct xfs_buf *bp)
1da177e4 1087{
0b1b213f
CH
1088 trace_xfs_buf_lock(bp, _RET_IP_);
1089
ed3b4d6c 1090 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
dbd329f1 1091 xfs_log_force(bp->b_mount, 0);
ce8e922c 1092 down(&bp->b_sema);
0b1b213f
CH
1093
1094 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1095}
1096
1da177e4 1097void
ce8e922c 1098xfs_buf_unlock(
0c842ad4 1099 struct xfs_buf *bp)
1da177e4 1100{
20e8a063
BF
1101 ASSERT(xfs_buf_islocked(bp));
1102
ce8e922c 1103 up(&bp->b_sema);
0b1b213f 1104 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1105}
1106
ce8e922c
NS
1107STATIC void
1108xfs_buf_wait_unpin(
1109 xfs_buf_t *bp)
1da177e4
LT
1110{
1111 DECLARE_WAITQUEUE (wait, current);
1112
ce8e922c 1113 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1114 return;
1115
ce8e922c 1116 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1117 for (;;) {
1118 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1119 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1120 break;
7eaceacc 1121 io_schedule();
1da177e4 1122 }
ce8e922c 1123 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1124 set_current_state(TASK_RUNNING);
1125}
1126
1127/*
1128 * Buffer Utility Routines
1129 */
1130
e8aaba9a
DC
1131void
1132xfs_buf_ioend(
1133 struct xfs_buf *bp)
1da177e4 1134{
e8aaba9a
DC
1135 bool read = bp->b_flags & XBF_READ;
1136
1137 trace_xfs_buf_iodone(bp, _RET_IP_);
1813dd64
DC
1138
1139 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
d5929de8 1140
61be9c52
DC
1141 /*
1142 * Pull in IO completion errors now. We are guaranteed to be running
1143 * single threaded, so we don't need the lock to read b_io_error.
1144 */
1145 if (!bp->b_error && bp->b_io_error)
1146 xfs_buf_ioerror(bp, bp->b_io_error);
1147
e8aaba9a
DC
1148 /* Only validate buffers that were read without errors */
1149 if (read && !bp->b_error && bp->b_ops) {
1150 ASSERT(!bp->b_iodone);
1813dd64 1151 bp->b_ops->verify_read(bp);
e8aaba9a
DC
1152 }
1153
1154 if (!bp->b_error)
1155 bp->b_flags |= XBF_DONE;
1da177e4 1156
80f6c29d 1157 if (bp->b_iodone)
ce8e922c
NS
1158 (*(bp->b_iodone))(bp);
1159 else if (bp->b_flags & XBF_ASYNC)
1da177e4 1160 xfs_buf_relse(bp);
595bff75 1161 else
1813dd64 1162 complete(&bp->b_iowait);
1da177e4
LT
1163}
1164
e8aaba9a
DC
1165static void
1166xfs_buf_ioend_work(
1167 struct work_struct *work)
1da177e4 1168{
e8aaba9a 1169 struct xfs_buf *bp =
b29c70f5 1170 container_of(work, xfs_buf_t, b_ioend_work);
0b1b213f 1171
e8aaba9a
DC
1172 xfs_buf_ioend(bp);
1173}
1da177e4 1174
211fe1a4 1175static void
e8aaba9a
DC
1176xfs_buf_ioend_async(
1177 struct xfs_buf *bp)
1178{
b29c70f5 1179 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
dbd329f1 1180 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1da177e4
LT
1181}
1182
1da177e4 1183void
31ca03c9 1184__xfs_buf_ioerror(
ce8e922c 1185 xfs_buf_t *bp,
31ca03c9
DW
1186 int error,
1187 xfs_failaddr_t failaddr)
1da177e4 1188{
2451337d
DC
1189 ASSERT(error <= 0 && error >= -1000);
1190 bp->b_error = error;
31ca03c9 1191 trace_xfs_buf_ioerror(bp, error, failaddr);
1da177e4
LT
1192}
1193
901796af
CH
1194void
1195xfs_buf_ioerror_alert(
1196 struct xfs_buf *bp,
1197 const char *func)
1198{
dbd329f1 1199 xfs_alert(bp->b_mount,
c219b015
DW
1200"metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1201 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1202 -bp->b_error);
901796af
CH
1203}
1204
a2dcf5df
CH
1205int
1206xfs_bwrite(
1207 struct xfs_buf *bp)
1208{
1209 int error;
1210
1211 ASSERT(xfs_buf_islocked(bp));
1212
1213 bp->b_flags |= XBF_WRITE;
27187754
DC
1214 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1215 XBF_WRITE_FAIL | XBF_DONE);
a2dcf5df 1216
6af88cda 1217 error = xfs_buf_submit(bp);
dbd329f1
CH
1218 if (error)
1219 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
a2dcf5df
CH
1220 return error;
1221}
1222
9bdd9bd6 1223static void
ce8e922c 1224xfs_buf_bio_end_io(
4246a0b6 1225 struct bio *bio)
1da177e4 1226{
9bdd9bd6 1227 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1da177e4 1228
37eb17e6
DC
1229 /*
1230 * don't overwrite existing errors - otherwise we can lose errors on
1231 * buffers that require multiple bios to complete.
1232 */
4e4cbee9
CH
1233 if (bio->bi_status) {
1234 int error = blk_status_to_errno(bio->bi_status);
1235
1236 cmpxchg(&bp->b_io_error, 0, error);
1237 }
1da177e4 1238
37eb17e6 1239 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
73c77e2c
JB
1240 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1241
e8aaba9a
DC
1242 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1243 xfs_buf_ioend_async(bp);
1da177e4 1244 bio_put(bio);
1da177e4
LT
1245}
1246
3e85c868
DC
1247static void
1248xfs_buf_ioapply_map(
1249 struct xfs_buf *bp,
1250 int map,
1251 int *buf_offset,
1252 int *count,
50bfcd0c
MC
1253 int op,
1254 int op_flags)
1da177e4 1255{
3e85c868
DC
1256 int page_index;
1257 int total_nr_pages = bp->b_page_count;
1258 int nr_pages;
1259 struct bio *bio;
1260 sector_t sector = bp->b_maps[map].bm_bn;
1261 int size;
1262 int offset;
1da177e4 1263
3e85c868
DC
1264 /* skip the pages in the buffer before the start offset */
1265 page_index = 0;
1266 offset = *buf_offset;
1267 while (offset >= PAGE_SIZE) {
1268 page_index++;
1269 offset -= PAGE_SIZE;
f538d4da
CH
1270 }
1271
3e85c868
DC
1272 /*
1273 * Limit the IO size to the length of the current vector, and update the
1274 * remaining IO count for the next time around.
1275 */
1276 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1277 *count -= size;
1278 *buf_offset += size;
34951f5c 1279
1da177e4 1280next_chunk:
ce8e922c 1281 atomic_inc(&bp->b_io_remaining);
c908e380 1282 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1da177e4
LT
1283
1284 bio = bio_alloc(GFP_NOIO, nr_pages);
74d46992 1285 bio_set_dev(bio, bp->b_target->bt_bdev);
4f024f37 1286 bio->bi_iter.bi_sector = sector;
ce8e922c
NS
1287 bio->bi_end_io = xfs_buf_bio_end_io;
1288 bio->bi_private = bp;
50bfcd0c 1289 bio_set_op_attrs(bio, op, op_flags);
0e6e847f 1290
3e85c868 1291 for (; size && nr_pages; nr_pages--, page_index++) {
0e6e847f 1292 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1293
1294 if (nbytes > size)
1295 nbytes = size;
1296
3e85c868
DC
1297 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1298 offset);
ce8e922c 1299 if (rbytes < nbytes)
1da177e4
LT
1300 break;
1301
1302 offset = 0;
aa0e8833 1303 sector += BTOBB(nbytes);
1da177e4
LT
1304 size -= nbytes;
1305 total_nr_pages--;
1306 }
1307
4f024f37 1308 if (likely(bio->bi_iter.bi_size)) {
73c77e2c
JB
1309 if (xfs_buf_is_vmapped(bp)) {
1310 flush_kernel_vmap_range(bp->b_addr,
1311 xfs_buf_vmap_len(bp));
1312 }
4e49ea4a 1313 submit_bio(bio);
1da177e4
LT
1314 if (size)
1315 goto next_chunk;
1316 } else {
37eb17e6
DC
1317 /*
1318 * This is guaranteed not to be the last io reference count
595bff75 1319 * because the caller (xfs_buf_submit) holds a count itself.
37eb17e6
DC
1320 */
1321 atomic_dec(&bp->b_io_remaining);
2451337d 1322 xfs_buf_ioerror(bp, -EIO);
ec53d1db 1323 bio_put(bio);
1da177e4 1324 }
3e85c868
DC
1325
1326}
1327
1328STATIC void
1329_xfs_buf_ioapply(
1330 struct xfs_buf *bp)
1331{
1332 struct blk_plug plug;
50bfcd0c
MC
1333 int op;
1334 int op_flags = 0;
3e85c868
DC
1335 int offset;
1336 int size;
1337 int i;
1338
c163f9a1
DC
1339 /*
1340 * Make sure we capture only current IO errors rather than stale errors
1341 * left over from previous use of the buffer (e.g. failed readahead).
1342 */
1343 bp->b_error = 0;
1344
3e85c868 1345 if (bp->b_flags & XBF_WRITE) {
50bfcd0c 1346 op = REQ_OP_WRITE;
1813dd64
DC
1347
1348 /*
1349 * Run the write verifier callback function if it exists. If
1350 * this function fails it will mark the buffer with an error and
1351 * the IO should not be dispatched.
1352 */
1353 if (bp->b_ops) {
1354 bp->b_ops->verify_write(bp);
1355 if (bp->b_error) {
dbd329f1 1356 xfs_force_shutdown(bp->b_mount,
1813dd64
DC
1357 SHUTDOWN_CORRUPT_INCORE);
1358 return;
1359 }
400b9d88 1360 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
dbd329f1 1361 struct xfs_mount *mp = bp->b_mount;
400b9d88
DC
1362
1363 /*
1364 * non-crc filesystems don't attach verifiers during
1365 * log recovery, so don't warn for such filesystems.
1366 */
1367 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1368 xfs_warn(mp,
c219b015 1369 "%s: no buf ops on daddr 0x%llx len %d",
400b9d88 1370 __func__, bp->b_bn, bp->b_length);
9c712a13
DW
1371 xfs_hex_dump(bp->b_addr,
1372 XFS_CORRUPTION_DUMP_LEN);
400b9d88
DC
1373 dump_stack();
1374 }
1813dd64 1375 }
3e85c868 1376 } else if (bp->b_flags & XBF_READ_AHEAD) {
50bfcd0c
MC
1377 op = REQ_OP_READ;
1378 op_flags = REQ_RAHEAD;
3e85c868 1379 } else {
50bfcd0c 1380 op = REQ_OP_READ;
3e85c868
DC
1381 }
1382
1383 /* we only use the buffer cache for meta-data */
50bfcd0c 1384 op_flags |= REQ_META;
3e85c868
DC
1385
1386 /*
1387 * Walk all the vectors issuing IO on them. Set up the initial offset
1388 * into the buffer and the desired IO size before we start -
1389 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1390 * subsequent call.
1391 */
1392 offset = bp->b_offset;
8124b9b6 1393 size = BBTOB(bp->b_length);
3e85c868
DC
1394 blk_start_plug(&plug);
1395 for (i = 0; i < bp->b_map_count; i++) {
50bfcd0c 1396 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
3e85c868
DC
1397 if (bp->b_error)
1398 break;
1399 if (size <= 0)
1400 break; /* all done */
1401 }
1402 blk_finish_plug(&plug);
1da177e4
LT
1403}
1404
595bff75 1405/*
bb00b6f1 1406 * Wait for I/O completion of a sync buffer and return the I/O error code.
595bff75 1407 */
eaebb515 1408static int
bb00b6f1 1409xfs_buf_iowait(
595bff75 1410 struct xfs_buf *bp)
1da177e4 1411{
bb00b6f1
BF
1412 ASSERT(!(bp->b_flags & XBF_ASYNC));
1413
1414 trace_xfs_buf_iowait(bp, _RET_IP_);
1415 wait_for_completion(&bp->b_iowait);
1416 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1417
1418 return bp->b_error;
1419}
1420
1421/*
1422 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1423 * the buffer lock ownership and the current reference to the IO. It is not
1424 * safe to reference the buffer after a call to this function unless the caller
1425 * holds an additional reference itself.
1426 */
1427int
1428__xfs_buf_submit(
1429 struct xfs_buf *bp,
1430 bool wait)
1431{
1432 int error = 0;
1433
595bff75 1434 trace_xfs_buf_submit(bp, _RET_IP_);
1da177e4 1435
43ff2122 1436 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
595bff75
DC
1437
1438 /* on shutdown we stale and complete the buffer immediately */
dbd329f1 1439 if (XFS_FORCED_SHUTDOWN(bp->b_mount)) {
595bff75
DC
1440 xfs_buf_ioerror(bp, -EIO);
1441 bp->b_flags &= ~XBF_DONE;
1442 xfs_buf_stale(bp);
465fa17f 1443 xfs_buf_ioend(bp);
eaebb515 1444 return -EIO;
595bff75 1445 }
1da177e4 1446
bb00b6f1
BF
1447 /*
1448 * Grab a reference so the buffer does not go away underneath us. For
1449 * async buffers, I/O completion drops the callers reference, which
1450 * could occur before submission returns.
1451 */
1452 xfs_buf_hold(bp);
1453
375ec69d 1454 if (bp->b_flags & XBF_WRITE)
ce8e922c 1455 xfs_buf_wait_unpin(bp);
e11bb805 1456
61be9c52
DC
1457 /* clear the internal error state to avoid spurious errors */
1458 bp->b_io_error = 0;
1459
8d6c1210 1460 /*
e11bb805
DC
1461 * Set the count to 1 initially, this will stop an I/O completion
1462 * callout which happens before we have started all the I/O from calling
1463 * xfs_buf_ioend too early.
1da177e4 1464 */
ce8e922c 1465 atomic_set(&bp->b_io_remaining, 1);
eaebb515
BF
1466 if (bp->b_flags & XBF_ASYNC)
1467 xfs_buf_ioacct_inc(bp);
ce8e922c 1468 _xfs_buf_ioapply(bp);
e11bb805 1469
8d6c1210 1470 /*
595bff75
DC
1471 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1472 * reference we took above. If we drop it to zero, run completion so
1473 * that we don't return to the caller with completion still pending.
8d6c1210 1474 */
e8aaba9a 1475 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
eaebb515 1476 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
e8aaba9a
DC
1477 xfs_buf_ioend(bp);
1478 else
1479 xfs_buf_ioend_async(bp);
1480 }
1da177e4 1481
6af88cda
BF
1482 if (wait)
1483 error = xfs_buf_iowait(bp);
bb00b6f1 1484
595bff75 1485 /*
6af88cda
BF
1486 * Release the hold that keeps the buffer referenced for the entire
1487 * I/O. Note that if the buffer is async, it is not safe to reference
1488 * after this release.
595bff75
DC
1489 */
1490 xfs_buf_rele(bp);
1491 return error;
1da177e4
LT
1492}
1493
88ee2df7 1494void *
ce8e922c 1495xfs_buf_offset(
88ee2df7 1496 struct xfs_buf *bp,
1da177e4
LT
1497 size_t offset)
1498{
1499 struct page *page;
1500
611c9946 1501 if (bp->b_addr)
62926044 1502 return bp->b_addr + offset;
1da177e4 1503
ce8e922c 1504 offset += bp->b_offset;
0e6e847f 1505 page = bp->b_pages[offset >> PAGE_SHIFT];
88ee2df7 1506 return page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1507}
1508
1da177e4 1509void
f9a196ee
CH
1510xfs_buf_zero(
1511 struct xfs_buf *bp,
1512 size_t boff,
1513 size_t bsize)
1da177e4 1514{
795cac72 1515 size_t bend;
1da177e4
LT
1516
1517 bend = boff + bsize;
1518 while (boff < bend) {
795cac72
DC
1519 struct page *page;
1520 int page_index, page_offset, csize;
1521
1522 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1523 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1524 page = bp->b_pages[page_index];
1525 csize = min_t(size_t, PAGE_SIZE - page_offset,
8124b9b6 1526 BBTOB(bp->b_length) - boff);
1da177e4 1527
795cac72 1528 ASSERT((csize + page_offset) <= PAGE_SIZE);
1da177e4 1529
f9a196ee 1530 memset(page_address(page) + page_offset, 0, csize);
1da177e4
LT
1531
1532 boff += csize;
1da177e4
LT
1533 }
1534}
1535
1536/*
ce8e922c 1537 * Handling of buffer targets (buftargs).
1da177e4
LT
1538 */
1539
1540/*
430cbeb8
DC
1541 * Wait for any bufs with callbacks that have been submitted but have not yet
1542 * returned. These buffers will have an elevated hold count, so wait on those
1543 * while freeing all the buffers only held by the LRU.
1da177e4 1544 */
e80dfa19
DC
1545static enum lru_status
1546xfs_buftarg_wait_rele(
1547 struct list_head *item,
3f97b163 1548 struct list_lru_one *lru,
e80dfa19
DC
1549 spinlock_t *lru_lock,
1550 void *arg)
1551
1da177e4 1552{
e80dfa19 1553 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
a4082357 1554 struct list_head *dispose = arg;
430cbeb8 1555
e80dfa19 1556 if (atomic_read(&bp->b_hold) > 1) {
a4082357 1557 /* need to wait, so skip it this pass */
e80dfa19 1558 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
a4082357 1559 return LRU_SKIP;
1da177e4 1560 }
a4082357
DC
1561 if (!spin_trylock(&bp->b_lock))
1562 return LRU_SKIP;
e80dfa19 1563
a4082357
DC
1564 /*
1565 * clear the LRU reference count so the buffer doesn't get
1566 * ignored in xfs_buf_rele().
1567 */
1568 atomic_set(&bp->b_lru_ref, 0);
1569 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1570 list_lru_isolate_move(lru, item, dispose);
a4082357
DC
1571 spin_unlock(&bp->b_lock);
1572 return LRU_REMOVED;
1da177e4
LT
1573}
1574
e80dfa19
DC
1575void
1576xfs_wait_buftarg(
1577 struct xfs_buftarg *btp)
1578{
a4082357
DC
1579 LIST_HEAD(dispose);
1580 int loop = 0;
1581
85bec546 1582 /*
9c7504aa
BF
1583 * First wait on the buftarg I/O count for all in-flight buffers to be
1584 * released. This is critical as new buffers do not make the LRU until
1585 * they are released.
1586 *
1587 * Next, flush the buffer workqueue to ensure all completion processing
1588 * has finished. Just waiting on buffer locks is not sufficient for
1589 * async IO as the reference count held over IO is not released until
1590 * after the buffer lock is dropped. Hence we need to ensure here that
1591 * all reference counts have been dropped before we start walking the
1592 * LRU list.
85bec546 1593 */
9c7504aa
BF
1594 while (percpu_counter_sum(&btp->bt_io_count))
1595 delay(100);
800b2694 1596 flush_workqueue(btp->bt_mount->m_buf_workqueue);
85bec546 1597
a4082357
DC
1598 /* loop until there is nothing left on the lru list. */
1599 while (list_lru_count(&btp->bt_lru)) {
e80dfa19 1600 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
a4082357
DC
1601 &dispose, LONG_MAX);
1602
1603 while (!list_empty(&dispose)) {
1604 struct xfs_buf *bp;
1605 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1606 list_del_init(&bp->b_lru);
ac8809f9
DC
1607 if (bp->b_flags & XBF_WRITE_FAIL) {
1608 xfs_alert(btp->bt_mount,
c219b015 1609"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
ac8809f9 1610 (long long)bp->b_bn);
f41febd2
JP
1611 xfs_alert(btp->bt_mount,
1612"Please run xfs_repair to determine the extent of the problem.");
ac8809f9 1613 }
a4082357
DC
1614 xfs_buf_rele(bp);
1615 }
1616 if (loop++ != 0)
1617 delay(100);
1618 }
e80dfa19
DC
1619}
1620
1621static enum lru_status
1622xfs_buftarg_isolate(
1623 struct list_head *item,
3f97b163 1624 struct list_lru_one *lru,
e80dfa19
DC
1625 spinlock_t *lru_lock,
1626 void *arg)
1627{
1628 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1629 struct list_head *dispose = arg;
1630
a4082357
DC
1631 /*
1632 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1633 * If we fail to get the lock, just skip it.
1634 */
1635 if (!spin_trylock(&bp->b_lock))
1636 return LRU_SKIP;
e80dfa19
DC
1637 /*
1638 * Decrement the b_lru_ref count unless the value is already
1639 * zero. If the value is already zero, we need to reclaim the
1640 * buffer, otherwise it gets another trip through the LRU.
1641 */
19957a18 1642 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
a4082357 1643 spin_unlock(&bp->b_lock);
e80dfa19 1644 return LRU_ROTATE;
a4082357 1645 }
e80dfa19 1646
a4082357 1647 bp->b_state |= XFS_BSTATE_DISPOSE;
3f97b163 1648 list_lru_isolate_move(lru, item, dispose);
a4082357 1649 spin_unlock(&bp->b_lock);
e80dfa19
DC
1650 return LRU_REMOVED;
1651}
1652
addbda40 1653static unsigned long
e80dfa19 1654xfs_buftarg_shrink_scan(
ff57ab21 1655 struct shrinker *shrink,
1495f230 1656 struct shrink_control *sc)
a6867a68 1657{
ff57ab21
DC
1658 struct xfs_buftarg *btp = container_of(shrink,
1659 struct xfs_buftarg, bt_shrinker);
430cbeb8 1660 LIST_HEAD(dispose);
addbda40 1661 unsigned long freed;
430cbeb8 1662
503c358c
VD
1663 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1664 xfs_buftarg_isolate, &dispose);
430cbeb8
DC
1665
1666 while (!list_empty(&dispose)) {
e80dfa19 1667 struct xfs_buf *bp;
430cbeb8
DC
1668 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1669 list_del_init(&bp->b_lru);
1670 xfs_buf_rele(bp);
1671 }
1672
e80dfa19
DC
1673 return freed;
1674}
1675
addbda40 1676static unsigned long
e80dfa19
DC
1677xfs_buftarg_shrink_count(
1678 struct shrinker *shrink,
1679 struct shrink_control *sc)
1680{
1681 struct xfs_buftarg *btp = container_of(shrink,
1682 struct xfs_buftarg, bt_shrinker);
503c358c 1683 return list_lru_shrink_count(&btp->bt_lru, sc);
a6867a68
DC
1684}
1685
1da177e4
LT
1686void
1687xfs_free_buftarg(
b7963133 1688 struct xfs_buftarg *btp)
1da177e4 1689{
ff57ab21 1690 unregister_shrinker(&btp->bt_shrinker);
9c7504aa
BF
1691 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1692 percpu_counter_destroy(&btp->bt_io_count);
f5e1dd34 1693 list_lru_destroy(&btp->bt_lru);
ff57ab21 1694
2291dab2 1695 xfs_blkdev_issue_flush(btp);
a6867a68 1696
f0e2d93c 1697 kmem_free(btp);
1da177e4
LT
1698}
1699
3fefdeee
ES
1700int
1701xfs_setsize_buftarg(
1da177e4 1702 xfs_buftarg_t *btp,
3fefdeee 1703 unsigned int sectorsize)
1da177e4 1704{
7c71ee78 1705 /* Set up metadata sector size info */
6da54179
ES
1706 btp->bt_meta_sectorsize = sectorsize;
1707 btp->bt_meta_sectormask = sectorsize - 1;
1da177e4 1708
ce8e922c 1709 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a 1710 xfs_warn(btp->bt_mount,
a1c6f057
DM
1711 "Cannot set_blocksize to %u on device %pg",
1712 sectorsize, btp->bt_bdev);
2451337d 1713 return -EINVAL;
1da177e4
LT
1714 }
1715
7c71ee78
ES
1716 /* Set up device logical sector size mask */
1717 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1718 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1719
1da177e4
LT
1720 return 0;
1721}
1722
1723/*
3fefdeee
ES
1724 * When allocating the initial buffer target we have not yet
1725 * read in the superblock, so don't know what sized sectors
1726 * are being used at this early stage. Play safe.
ce8e922c 1727 */
1da177e4
LT
1728STATIC int
1729xfs_setsize_buftarg_early(
1730 xfs_buftarg_t *btp,
1731 struct block_device *bdev)
1732{
a96c4151 1733 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1da177e4
LT
1734}
1735
1da177e4
LT
1736xfs_buftarg_t *
1737xfs_alloc_buftarg(
ebad861b 1738 struct xfs_mount *mp,
486aff5e
DW
1739 struct block_device *bdev,
1740 struct dax_device *dax_dev)
1da177e4
LT
1741{
1742 xfs_buftarg_t *btp;
1743
707e0dda 1744 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1da177e4 1745
ebad861b 1746 btp->bt_mount = mp;
ce8e922c
NS
1747 btp->bt_dev = bdev->bd_dev;
1748 btp->bt_bdev = bdev;
486aff5e 1749 btp->bt_daxdev = dax_dev;
0e6e847f 1750
1da177e4 1751 if (xfs_setsize_buftarg_early(btp, bdev))
d210a987 1752 goto error_free;
5ca302c8
GC
1753
1754 if (list_lru_init(&btp->bt_lru))
d210a987 1755 goto error_free;
5ca302c8 1756
9c7504aa 1757 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
d210a987 1758 goto error_lru;
9c7504aa 1759
e80dfa19
DC
1760 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1761 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
ff57ab21 1762 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
e80dfa19 1763 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
d210a987
MH
1764 if (register_shrinker(&btp->bt_shrinker))
1765 goto error_pcpu;
1da177e4
LT
1766 return btp;
1767
d210a987
MH
1768error_pcpu:
1769 percpu_counter_destroy(&btp->bt_io_count);
1770error_lru:
1771 list_lru_destroy(&btp->bt_lru);
1772error_free:
f0e2d93c 1773 kmem_free(btp);
1da177e4
LT
1774 return NULL;
1775}
1776
20e8a063
BF
1777/*
1778 * Cancel a delayed write list.
1779 *
1780 * Remove each buffer from the list, clear the delwri queue flag and drop the
1781 * associated buffer reference.
1782 */
1783void
1784xfs_buf_delwri_cancel(
1785 struct list_head *list)
1786{
1787 struct xfs_buf *bp;
1788
1789 while (!list_empty(list)) {
1790 bp = list_first_entry(list, struct xfs_buf, b_list);
1791
1792 xfs_buf_lock(bp);
1793 bp->b_flags &= ~_XBF_DELWRI_Q;
1794 list_del_init(&bp->b_list);
1795 xfs_buf_relse(bp);
1796 }
1797}
1798
1da177e4 1799/*
43ff2122
CH
1800 * Add a buffer to the delayed write list.
1801 *
1802 * This queues a buffer for writeout if it hasn't already been. Note that
1803 * neither this routine nor the buffer list submission functions perform
1804 * any internal synchronization. It is expected that the lists are thread-local
1805 * to the callers.
1806 *
1807 * Returns true if we queued up the buffer, or false if it already had
1808 * been on the buffer list.
1da177e4 1809 */
43ff2122 1810bool
ce8e922c 1811xfs_buf_delwri_queue(
43ff2122
CH
1812 struct xfs_buf *bp,
1813 struct list_head *list)
1da177e4 1814{
43ff2122 1815 ASSERT(xfs_buf_islocked(bp));
5a8ee6ba 1816 ASSERT(!(bp->b_flags & XBF_READ));
1da177e4 1817
43ff2122
CH
1818 /*
1819 * If the buffer is already marked delwri it already is queued up
1820 * by someone else for imediate writeout. Just ignore it in that
1821 * case.
1822 */
1823 if (bp->b_flags & _XBF_DELWRI_Q) {
1824 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1825 return false;
1da177e4 1826 }
1da177e4 1827
43ff2122 1828 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
d808f617
DC
1829
1830 /*
43ff2122
CH
1831 * If a buffer gets written out synchronously or marked stale while it
1832 * is on a delwri list we lazily remove it. To do this, the other party
1833 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1834 * It remains referenced and on the list. In a rare corner case it
1835 * might get readded to a delwri list after the synchronous writeout, in
1836 * which case we need just need to re-add the flag here.
d808f617 1837 */
43ff2122
CH
1838 bp->b_flags |= _XBF_DELWRI_Q;
1839 if (list_empty(&bp->b_list)) {
1840 atomic_inc(&bp->b_hold);
1841 list_add_tail(&bp->b_list, list);
585e6d88 1842 }
585e6d88 1843
43ff2122 1844 return true;
585e6d88
DC
1845}
1846
089716aa
DC
1847/*
1848 * Compare function is more complex than it needs to be because
1849 * the return value is only 32 bits and we are doing comparisons
1850 * on 64 bit values
1851 */
1852static int
1853xfs_buf_cmp(
1854 void *priv,
1855 struct list_head *a,
1856 struct list_head *b)
1857{
1858 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1859 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1860 xfs_daddr_t diff;
1861
f4b42421 1862 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
089716aa
DC
1863 if (diff < 0)
1864 return -1;
1865 if (diff > 0)
1866 return 1;
1867 return 0;
1868}
1869
26f1fe85 1870/*
e339dd8d
BF
1871 * Submit buffers for write. If wait_list is specified, the buffers are
1872 * submitted using sync I/O and placed on the wait list such that the caller can
1873 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1874 * at I/O completion time. In either case, buffers remain locked until I/O
1875 * completes and the buffer is released from the queue.
26f1fe85 1876 */
43ff2122 1877static int
26f1fe85 1878xfs_buf_delwri_submit_buffers(
43ff2122 1879 struct list_head *buffer_list,
26f1fe85 1880 struct list_head *wait_list)
1da177e4 1881{
43ff2122
CH
1882 struct xfs_buf *bp, *n;
1883 int pinned = 0;
26f1fe85 1884 struct blk_plug plug;
43ff2122 1885
26f1fe85 1886 list_sort(NULL, buffer_list, xfs_buf_cmp);
43ff2122 1887
26f1fe85 1888 blk_start_plug(&plug);
43ff2122 1889 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
26f1fe85 1890 if (!wait_list) {
43ff2122
CH
1891 if (xfs_buf_ispinned(bp)) {
1892 pinned++;
1893 continue;
1894 }
1895 if (!xfs_buf_trylock(bp))
1896 continue;
1897 } else {
1898 xfs_buf_lock(bp);
1899 }
978c7b2f 1900
43ff2122
CH
1901 /*
1902 * Someone else might have written the buffer synchronously or
1903 * marked it stale in the meantime. In that case only the
1904 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1905 * reference and remove it from the list here.
1906 */
1907 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1908 list_del_init(&bp->b_list);
1909 xfs_buf_relse(bp);
1910 continue;
1911 }
c9c12971 1912
43ff2122 1913 trace_xfs_buf_delwri_split(bp, _RET_IP_);
a1b7ea5d 1914
cf53e99d 1915 /*
e339dd8d
BF
1916 * If we have a wait list, each buffer (and associated delwri
1917 * queue reference) transfers to it and is submitted
1918 * synchronously. Otherwise, drop the buffer from the delwri
1919 * queue and submit async.
cf53e99d 1920 */
bbfeb614 1921 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
e339dd8d 1922 bp->b_flags |= XBF_WRITE;
26f1fe85 1923 if (wait_list) {
e339dd8d 1924 bp->b_flags &= ~XBF_ASYNC;
26f1fe85 1925 list_move_tail(&bp->b_list, wait_list);
e339dd8d
BF
1926 } else {
1927 bp->b_flags |= XBF_ASYNC;
ce8e922c 1928 list_del_init(&bp->b_list);
e339dd8d 1929 }
6af88cda 1930 __xfs_buf_submit(bp, false);
43ff2122
CH
1931 }
1932 blk_finish_plug(&plug);
1da177e4 1933
43ff2122 1934 return pinned;
1da177e4
LT
1935}
1936
1937/*
43ff2122
CH
1938 * Write out a buffer list asynchronously.
1939 *
1940 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1941 * out and not wait for I/O completion on any of the buffers. This interface
1942 * is only safely useable for callers that can track I/O completion by higher
1943 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1944 * function.
efc3289c
BF
1945 *
1946 * Note: this function will skip buffers it would block on, and in doing so
1947 * leaves them on @buffer_list so they can be retried on a later pass. As such,
1948 * it is up to the caller to ensure that the buffer list is fully submitted or
1949 * cancelled appropriately when they are finished with the list. Failure to
1950 * cancel or resubmit the list until it is empty will result in leaked buffers
1951 * at unmount time.
1da177e4
LT
1952 */
1953int
43ff2122
CH
1954xfs_buf_delwri_submit_nowait(
1955 struct list_head *buffer_list)
1da177e4 1956{
26f1fe85 1957 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
43ff2122 1958}
1da177e4 1959
43ff2122
CH
1960/*
1961 * Write out a buffer list synchronously.
1962 *
1963 * This will take the @buffer_list, write all buffers out and wait for I/O
1964 * completion on all of the buffers. @buffer_list is consumed by the function,
1965 * so callers must have some other way of tracking buffers if they require such
1966 * functionality.
1967 */
1968int
1969xfs_buf_delwri_submit(
1970 struct list_head *buffer_list)
1971{
26f1fe85 1972 LIST_HEAD (wait_list);
43ff2122
CH
1973 int error = 0, error2;
1974 struct xfs_buf *bp;
1da177e4 1975
26f1fe85 1976 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
1da177e4 1977
43ff2122 1978 /* Wait for IO to complete. */
26f1fe85
DC
1979 while (!list_empty(&wait_list)) {
1980 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
a1b7ea5d 1981
089716aa 1982 list_del_init(&bp->b_list);
cf53e99d 1983
e339dd8d
BF
1984 /*
1985 * Wait on the locked buffer, check for errors and unlock and
1986 * release the delwri queue reference.
1987 */
1988 error2 = xfs_buf_iowait(bp);
43ff2122
CH
1989 xfs_buf_relse(bp);
1990 if (!error)
1991 error = error2;
1da177e4
LT
1992 }
1993
43ff2122 1994 return error;
1da177e4
LT
1995}
1996
7912e7fe
BF
1997/*
1998 * Push a single buffer on a delwri queue.
1999 *
2000 * The purpose of this function is to submit a single buffer of a delwri queue
2001 * and return with the buffer still on the original queue. The waiting delwri
2002 * buffer submission infrastructure guarantees transfer of the delwri queue
2003 * buffer reference to a temporary wait list. We reuse this infrastructure to
2004 * transfer the buffer back to the original queue.
2005 *
2006 * Note the buffer transitions from the queued state, to the submitted and wait
2007 * listed state and back to the queued state during this call. The buffer
2008 * locking and queue management logic between _delwri_pushbuf() and
2009 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2010 * before returning.
2011 */
2012int
2013xfs_buf_delwri_pushbuf(
2014 struct xfs_buf *bp,
2015 struct list_head *buffer_list)
2016{
2017 LIST_HEAD (submit_list);
2018 int error;
2019
2020 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2021
2022 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2023
2024 /*
2025 * Isolate the buffer to a new local list so we can submit it for I/O
2026 * independently from the rest of the original list.
2027 */
2028 xfs_buf_lock(bp);
2029 list_move(&bp->b_list, &submit_list);
2030 xfs_buf_unlock(bp);
2031
2032 /*
2033 * Delwri submission clears the DELWRI_Q buffer flag and returns with
e339dd8d 2034 * the buffer on the wait list with the original reference. Rather than
7912e7fe
BF
2035 * bounce the buffer from a local wait list back to the original list
2036 * after I/O completion, reuse the original list as the wait list.
2037 */
2038 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2039
2040 /*
e339dd8d
BF
2041 * The buffer is now locked, under I/O and wait listed on the original
2042 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2043 * return with the buffer unlocked and on the original queue.
7912e7fe 2044 */
e339dd8d 2045 error = xfs_buf_iowait(bp);
7912e7fe
BF
2046 bp->b_flags |= _XBF_DELWRI_Q;
2047 xfs_buf_unlock(bp);
2048
2049 return error;
2050}
2051
04d8b284 2052int __init
ce8e922c 2053xfs_buf_init(void)
1da177e4 2054{
8758280f
NS
2055 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2056 KM_ZONE_HWALIGN, NULL);
ce8e922c 2057 if (!xfs_buf_zone)
0b1b213f 2058 goto out;
04d8b284 2059
23ea4032 2060 return 0;
1da177e4 2061
0b1b213f 2062 out:
8758280f 2063 return -ENOMEM;
1da177e4
LT
2064}
2065
1da177e4 2066void
ce8e922c 2067xfs_buf_terminate(void)
1da177e4 2068{
ce8e922c 2069 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2070}
7561d27e
BF
2071
2072void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2073{
7561d27e
BF
2074 /*
2075 * Set the lru reference count to 0 based on the error injection tag.
2076 * This allows userspace to disrupt buffer caching for debug/testing
2077 * purposes.
2078 */
dbd329f1 2079 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
7561d27e
BF
2080 lru_ref = 0;
2081
2082 atomic_set(&bp->b_lru_ref, lru_ref);
2083}
8473fee3
BF
2084
2085/*
2086 * Verify an on-disk magic value against the magic value specified in the
2087 * verifier structure. The verifier magic is in disk byte order so the caller is
2088 * expected to pass the value directly from disk.
2089 */
2090bool
2091xfs_verify_magic(
2092 struct xfs_buf *bp,
15baadf7 2093 __be32 dmagic)
8473fee3 2094{
dbd329f1 2095 struct xfs_mount *mp = bp->b_mount;
8473fee3
BF
2096 int idx;
2097
2098 idx = xfs_sb_version_hascrc(&mp->m_sb);
2099 if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx])))
2100 return false;
2101 return dmagic == bp->b_ops->magic[idx];
2102}
15baadf7
DW
2103/*
2104 * Verify an on-disk magic value against the magic value specified in the
2105 * verifier structure. The verifier magic is in disk byte order so the caller is
2106 * expected to pass the value directly from disk.
2107 */
2108bool
2109xfs_verify_magic16(
2110 struct xfs_buf *bp,
2111 __be16 dmagic)
2112{
dbd329f1 2113 struct xfs_mount *mp = bp->b_mount;
15baadf7
DW
2114 int idx;
2115
2116 idx = xfs_sb_version_hascrc(&mp->m_sb);
2117 if (unlikely(WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx])))
2118 return false;
2119 return dmagic == bp->b_ops->magic16[idx];
2120}