]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_buf_item.c
Merge tag 'ntb-4.13-bugfixes' of git://github.com/jonmason/ntb
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_buf_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
4fb6e8ad 20#include "xfs_format.h"
239880ef
DC
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_sb.h"
1da177e4 25#include "xfs_mount.h"
239880ef 26#include "xfs_trans.h"
a844f451 27#include "xfs_buf_item.h"
1da177e4 28#include "xfs_trans_priv.h"
1da177e4 29#include "xfs_error.h"
0b1b213f 30#include "xfs_trace.h"
239880ef 31#include "xfs_log.h"
1da177e4
LT
32
33
34kmem_zone_t *xfs_buf_item_zone;
35
7bfa31d8
CH
36static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37{
38 return container_of(lip, struct xfs_buf_log_item, bli_item);
39}
40
c90821a2 41STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
1da177e4 42
166d1368
DC
43static inline int
44xfs_buf_log_format_size(
45 struct xfs_buf_log_format *blfp)
46{
47 return offsetof(struct xfs_buf_log_format, blf_data_map) +
48 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
49}
50
1da177e4
LT
51/*
52 * This returns the number of log iovecs needed to log the
53 * given buf log item.
54 *
55 * It calculates this as 1 iovec for the buf log format structure
56 * and 1 for each stretch of non-contiguous chunks to be logged.
57 * Contiguous chunks are logged in a single iovec.
58 *
59 * If the XFS_BLI_STALE flag has been set, then log nothing.
60 */
166d1368 61STATIC void
372cc85e
DC
62xfs_buf_item_size_segment(
63 struct xfs_buf_log_item *bip,
166d1368
DC
64 struct xfs_buf_log_format *blfp,
65 int *nvecs,
66 int *nbytes)
1da177e4 67{
7bfa31d8 68 struct xfs_buf *bp = bip->bli_buf;
7bfa31d8
CH
69 int next_bit;
70 int last_bit;
1da177e4 71
372cc85e
DC
72 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
73 if (last_bit == -1)
166d1368 74 return;
372cc85e
DC
75
76 /*
77 * initial count for a dirty buffer is 2 vectors - the format structure
78 * and the first dirty region.
79 */
166d1368
DC
80 *nvecs += 2;
81 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
1da177e4 82
1da177e4
LT
83 while (last_bit != -1) {
84 /*
85 * This takes the bit number to start looking from and
86 * returns the next set bit from there. It returns -1
87 * if there are no more bits set or the start bit is
88 * beyond the end of the bitmap.
89 */
372cc85e
DC
90 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
91 last_bit + 1);
1da177e4
LT
92 /*
93 * If we run out of bits, leave the loop,
94 * else if we find a new set of bits bump the number of vecs,
95 * else keep scanning the current set of bits.
96 */
97 if (next_bit == -1) {
372cc85e 98 break;
1da177e4
LT
99 } else if (next_bit != last_bit + 1) {
100 last_bit = next_bit;
166d1368 101 (*nvecs)++;
c1155410
DC
102 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
103 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
104 XFS_BLF_CHUNK)) {
1da177e4 105 last_bit = next_bit;
166d1368 106 (*nvecs)++;
1da177e4
LT
107 } else {
108 last_bit++;
109 }
166d1368 110 *nbytes += XFS_BLF_CHUNK;
1da177e4 111 }
1da177e4
LT
112}
113
114/*
372cc85e
DC
115 * This returns the number of log iovecs needed to log the given buf log item.
116 *
117 * It calculates this as 1 iovec for the buf log format structure and 1 for each
118 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
119 * in a single iovec.
120 *
121 * Discontiguous buffers need a format structure per region that that is being
122 * logged. This makes the changes in the buffer appear to log recovery as though
123 * they came from separate buffers, just like would occur if multiple buffers
124 * were used instead of a single discontiguous buffer. This enables
125 * discontiguous buffers to be in-memory constructs, completely transparent to
126 * what ends up on disk.
127 *
128 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
129 * format structures.
1da177e4 130 */
166d1368 131STATIC void
372cc85e 132xfs_buf_item_size(
166d1368
DC
133 struct xfs_log_item *lip,
134 int *nvecs,
135 int *nbytes)
1da177e4 136{
7bfa31d8 137 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
372cc85e
DC
138 int i;
139
140 ASSERT(atomic_read(&bip->bli_refcount) > 0);
141 if (bip->bli_flags & XFS_BLI_STALE) {
142 /*
143 * The buffer is stale, so all we need to log
144 * is the buf log format structure with the
145 * cancel flag in it.
146 */
147 trace_xfs_buf_item_size_stale(bip);
b9438173 148 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
166d1368
DC
149 *nvecs += bip->bli_format_count;
150 for (i = 0; i < bip->bli_format_count; i++) {
151 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
152 }
153 return;
372cc85e
DC
154 }
155
156 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
157
5f6bed76
DC
158 if (bip->bli_flags & XFS_BLI_ORDERED) {
159 /*
160 * The buffer has been logged just to order it.
161 * It is not being included in the transaction
162 * commit, so no vectors are used at all.
163 */
164 trace_xfs_buf_item_size_ordered(bip);
166d1368
DC
165 *nvecs = XFS_LOG_VEC_ORDERED;
166 return;
5f6bed76
DC
167 }
168
372cc85e
DC
169 /*
170 * the vector count is based on the number of buffer vectors we have
171 * dirty bits in. This will only be greater than one when we have a
172 * compound buffer with more than one segment dirty. Hence for compound
173 * buffers we need to track which segment the dirty bits correspond to,
174 * and when we move from one segment to the next increment the vector
175 * count for the extra buf log format structure that will need to be
176 * written.
177 */
372cc85e 178 for (i = 0; i < bip->bli_format_count; i++) {
166d1368
DC
179 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
180 nvecs, nbytes);
372cc85e 181 }
372cc85e 182 trace_xfs_buf_item_size(bip);
372cc85e
DC
183}
184
1234351c 185static inline void
7aeb7222 186xfs_buf_item_copy_iovec(
bde7cff6 187 struct xfs_log_vec *lv,
1234351c 188 struct xfs_log_iovec **vecp,
7aeb7222
CH
189 struct xfs_buf *bp,
190 uint offset,
191 int first_bit,
192 uint nbits)
193{
194 offset += first_bit * XFS_BLF_CHUNK;
bde7cff6 195 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
1234351c
CH
196 xfs_buf_offset(bp, offset),
197 nbits * XFS_BLF_CHUNK);
7aeb7222
CH
198}
199
200static inline bool
201xfs_buf_item_straddle(
202 struct xfs_buf *bp,
203 uint offset,
204 int next_bit,
205 int last_bit)
206{
207 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
208 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
209 XFS_BLF_CHUNK);
210}
211
1234351c 212static void
372cc85e
DC
213xfs_buf_item_format_segment(
214 struct xfs_buf_log_item *bip,
bde7cff6 215 struct xfs_log_vec *lv,
1234351c 216 struct xfs_log_iovec **vecp,
372cc85e
DC
217 uint offset,
218 struct xfs_buf_log_format *blfp)
219{
7bfa31d8 220 struct xfs_buf *bp = bip->bli_buf;
1da177e4 221 uint base_size;
1da177e4
LT
222 int first_bit;
223 int last_bit;
224 int next_bit;
225 uint nbits;
1da177e4 226
372cc85e 227 /* copy the flags across from the base format item */
b9438173 228 blfp->blf_flags = bip->__bli_format.blf_flags;
1da177e4
LT
229
230 /*
77c1a08f
DC
231 * Base size is the actual size of the ondisk structure - it reflects
232 * the actual size of the dirty bitmap rather than the size of the in
233 * memory structure.
1da177e4 234 */
166d1368 235 base_size = xfs_buf_log_format_size(blfp);
820a554f 236
820a554f
MT
237 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
238 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
239 /*
240 * If the map is not be dirty in the transaction, mark
241 * the size as zero and do not advance the vector pointer.
242 */
bde7cff6 243 return;
820a554f
MT
244 }
245
bde7cff6
CH
246 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
247 blfp->blf_size = 1;
1da177e4
LT
248
249 if (bip->bli_flags & XFS_BLI_STALE) {
250 /*
251 * The buffer is stale, so all we need to log
252 * is the buf log format structure with the
253 * cancel flag in it.
254 */
0b1b213f 255 trace_xfs_buf_item_format_stale(bip);
372cc85e 256 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
bde7cff6 257 return;
1da177e4
LT
258 }
259
5f6bed76 260
1da177e4
LT
261 /*
262 * Fill in an iovec for each set of contiguous chunks.
263 */
1da177e4
LT
264 last_bit = first_bit;
265 nbits = 1;
266 for (;;) {
267 /*
268 * This takes the bit number to start looking from and
269 * returns the next set bit from there. It returns -1
270 * if there are no more bits set or the start bit is
271 * beyond the end of the bitmap.
272 */
372cc85e
DC
273 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
274 (uint)last_bit + 1);
1da177e4 275 /*
7aeb7222
CH
276 * If we run out of bits fill in the last iovec and get out of
277 * the loop. Else if we start a new set of bits then fill in
278 * the iovec for the series we were looking at and start
279 * counting the bits in the new one. Else we're still in the
280 * same set of bits so just keep counting and scanning.
1da177e4
LT
281 */
282 if (next_bit == -1) {
bde7cff6 283 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
7aeb7222 284 first_bit, nbits);
bde7cff6 285 blfp->blf_size++;
1da177e4 286 break;
7aeb7222
CH
287 } else if (next_bit != last_bit + 1 ||
288 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
bde7cff6 289 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
1234351c 290 first_bit, nbits);
bde7cff6 291 blfp->blf_size++;
1da177e4
LT
292 first_bit = next_bit;
293 last_bit = next_bit;
294 nbits = 1;
295 } else {
296 last_bit++;
297 nbits++;
298 }
299 }
372cc85e
DC
300}
301
302/*
303 * This is called to fill in the vector of log iovecs for the
304 * given log buf item. It fills the first entry with a buf log
305 * format structure, and the rest point to contiguous chunks
306 * within the buffer.
307 */
308STATIC void
309xfs_buf_item_format(
310 struct xfs_log_item *lip,
bde7cff6 311 struct xfs_log_vec *lv)
372cc85e
DC
312{
313 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
314 struct xfs_buf *bp = bip->bli_buf;
bde7cff6 315 struct xfs_log_iovec *vecp = NULL;
372cc85e
DC
316 uint offset = 0;
317 int i;
318
319 ASSERT(atomic_read(&bip->bli_refcount) > 0);
320 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
321 (bip->bli_flags & XFS_BLI_STALE));
0d612fb5
DC
322 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
323 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
324 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
325
372cc85e
DC
326
327 /*
328 * If it is an inode buffer, transfer the in-memory state to the
ddf6ad01
DC
329 * format flags and clear the in-memory state.
330 *
331 * For buffer based inode allocation, we do not transfer
372cc85e
DC
332 * this state if the inode buffer allocation has not yet been committed
333 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
334 * correct replay of the inode allocation.
ddf6ad01
DC
335 *
336 * For icreate item based inode allocation, the buffers aren't written
337 * to the journal during allocation, and hence we should always tag the
338 * buffer as an inode buffer so that the correct unlinked list replay
339 * occurs during recovery.
372cc85e
DC
340 */
341 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
ddf6ad01
DC
342 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
343 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
372cc85e 344 xfs_log_item_in_current_chkpt(lip)))
b9438173 345 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
372cc85e
DC
346 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
347 }
348
5f6bed76
DC
349 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
350 XFS_BLI_ORDERED) {
351 /*
352 * The buffer has been logged just to order it. It is not being
353 * included in the transaction commit, so don't format it.
354 */
355 trace_xfs_buf_item_format_ordered(bip);
356 return;
357 }
358
372cc85e 359 for (i = 0; i < bip->bli_format_count; i++) {
bde7cff6 360 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
1234351c 361 &bip->bli_formats[i]);
a3916e52 362 offset += BBTOB(bp->b_maps[i].bm_len);
372cc85e 363 }
1da177e4
LT
364
365 /*
366 * Check to make sure everything is consistent.
367 */
0b1b213f 368 trace_xfs_buf_item_format(bip);
1da177e4
LT
369}
370
371/*
64fc35de 372 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 373 * so it cannot be written out.
64fc35de
DC
374 *
375 * We also always take a reference to the buffer log item here so that the bli
376 * is held while the item is pinned in memory. This means that we can
377 * unconditionally drop the reference count a transaction holds when the
378 * transaction is completed.
1da177e4 379 */
ba0f32d4 380STATIC void
1da177e4 381xfs_buf_item_pin(
7bfa31d8 382 struct xfs_log_item *lip)
1da177e4 383{
7bfa31d8 384 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 385
1da177e4
LT
386 ASSERT(atomic_read(&bip->bli_refcount) > 0);
387 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
5f6bed76 388 (bip->bli_flags & XFS_BLI_ORDERED) ||
1da177e4 389 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 390
0b1b213f 391 trace_xfs_buf_item_pin(bip);
4d16e924
CH
392
393 atomic_inc(&bip->bli_refcount);
394 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
395}
396
1da177e4
LT
397/*
398 * This is called to unpin the buffer associated with the buf log
399 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
400 *
401 * Also drop the reference to the buf item for the current transaction.
402 * If the XFS_BLI_STALE flag is set and we are the last reference,
403 * then free up the buf log item and unlock the buffer.
9412e318
CH
404 *
405 * If the remove flag is set we are called from uncommit in the
406 * forced-shutdown path. If that is true and the reference count on
407 * the log item is going to drop to zero we need to free the item's
408 * descriptor in the transaction.
1da177e4 409 */
ba0f32d4 410STATIC void
1da177e4 411xfs_buf_item_unpin(
7bfa31d8 412 struct xfs_log_item *lip,
9412e318 413 int remove)
1da177e4 414{
7bfa31d8 415 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
9412e318 416 xfs_buf_t *bp = bip->bli_buf;
7bfa31d8 417 struct xfs_ail *ailp = lip->li_ailp;
8e123850 418 int stale = bip->bli_flags & XFS_BLI_STALE;
7bfa31d8 419 int freed;
1da177e4 420
adadbeef 421 ASSERT(bp->b_fspriv == bip);
1da177e4 422 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 423
0b1b213f 424 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
425
426 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
427
428 if (atomic_dec_and_test(&bp->b_pin_count))
429 wake_up_all(&bp->b_waiters);
7bfa31d8 430
1da177e4
LT
431 if (freed && stale) {
432 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 433 ASSERT(xfs_buf_islocked(bp));
5cfd28b6 434 ASSERT(bp->b_flags & XBF_STALE);
b9438173 435 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 436
0b1b213f
CH
437 trace_xfs_buf_item_unpin_stale(bip);
438
9412e318
CH
439 if (remove) {
440 /*
e34a314c
DC
441 * If we are in a transaction context, we have to
442 * remove the log item from the transaction as we are
443 * about to release our reference to the buffer. If we
444 * don't, the unlock that occurs later in
445 * xfs_trans_uncommit() will try to reference the
9412e318
CH
446 * buffer which we no longer have a hold on.
447 */
e34a314c
DC
448 if (lip->li_desc)
449 xfs_trans_del_item(lip);
9412e318
CH
450
451 /*
452 * Since the transaction no longer refers to the buffer,
453 * the buffer should no longer refer to the transaction.
454 */
bf9d9013 455 bp->b_transp = NULL;
9412e318
CH
456 }
457
1da177e4
LT
458 /*
459 * If we get called here because of an IO error, we may
783a2f65 460 * or may not have the item on the AIL. xfs_trans_ail_delete()
1da177e4 461 * will take care of that situation.
783a2f65 462 * xfs_trans_ail_delete() drops the AIL lock.
1da177e4
LT
463 */
464 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
c90821a2 465 xfs_buf_do_callbacks(bp);
adadbeef 466 bp->b_fspriv = NULL;
cb669ca5 467 bp->b_iodone = NULL;
1da177e4 468 } else {
783a2f65 469 spin_lock(&ailp->xa_lock);
04913fdd 470 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 471 xfs_buf_item_relse(bp);
adadbeef 472 ASSERT(bp->b_fspriv == NULL);
1da177e4
LT
473 }
474 xfs_buf_relse(bp);
960c60af 475 } else if (freed && remove) {
137fff09
DC
476 /*
477 * There are currently two references to the buffer - the active
478 * LRU reference and the buf log item. What we are about to do
479 * here - simulate a failed IO completion - requires 3
480 * references.
481 *
482 * The LRU reference is removed by the xfs_buf_stale() call. The
483 * buf item reference is removed by the xfs_buf_iodone()
484 * callback that is run by xfs_buf_do_callbacks() during ioend
485 * processing (via the bp->b_iodone callback), and then finally
486 * the ioend processing will drop the IO reference if the buffer
487 * is marked XBF_ASYNC.
488 *
489 * Hence we need to take an additional reference here so that IO
490 * completion processing doesn't free the buffer prematurely.
491 */
960c60af 492 xfs_buf_lock(bp);
137fff09
DC
493 xfs_buf_hold(bp);
494 bp->b_flags |= XBF_ASYNC;
2451337d 495 xfs_buf_ioerror(bp, -EIO);
b0388bf1 496 bp->b_flags &= ~XBF_DONE;
960c60af 497 xfs_buf_stale(bp);
e8aaba9a 498 xfs_buf_ioend(bp);
1da177e4
LT
499 }
500}
501
ac8809f9
DC
502/*
503 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
504 * seconds so as to not spam logs too much on repeated detection of the same
505 * buffer being bad..
506 */
507
02cc1876 508static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
ac8809f9 509
ba0f32d4 510STATIC uint
43ff2122
CH
511xfs_buf_item_push(
512 struct xfs_log_item *lip,
513 struct list_head *buffer_list)
1da177e4 514{
7bfa31d8
CH
515 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
516 struct xfs_buf *bp = bip->bli_buf;
43ff2122 517 uint rval = XFS_ITEM_SUCCESS;
1da177e4 518
811e64c7 519 if (xfs_buf_ispinned(bp))
1da177e4 520 return XFS_ITEM_PINNED;
5337fe9b
BF
521 if (!xfs_buf_trylock(bp)) {
522 /*
523 * If we have just raced with a buffer being pinned and it has
524 * been marked stale, we could end up stalling until someone else
525 * issues a log force to unpin the stale buffer. Check for the
526 * race condition here so xfsaild recognizes the buffer is pinned
527 * and queues a log force to move it along.
528 */
529 if (xfs_buf_ispinned(bp))
530 return XFS_ITEM_PINNED;
1da177e4 531 return XFS_ITEM_LOCKED;
5337fe9b 532 }
1da177e4 533
1da177e4 534 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
535
536 trace_xfs_buf_item_push(bip);
537
ac8809f9
DC
538 /* has a previous flush failed due to IO errors? */
539 if ((bp->b_flags & XBF_WRITE_FAIL) &&
fdadf267 540 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
ac8809f9 541 xfs_warn(bp->b_target->bt_mount,
fdadf267 542"Failing async write on buffer block 0x%llx. Retrying async write.",
ac8809f9
DC
543 (long long)bp->b_bn);
544 }
545
43ff2122
CH
546 if (!xfs_buf_delwri_queue(bp, buffer_list))
547 rval = XFS_ITEM_FLUSHING;
548 xfs_buf_unlock(bp);
549 return rval;
1da177e4
LT
550}
551
552/*
64fc35de
DC
553 * Release the buffer associated with the buf log item. If there is no dirty
554 * logged data associated with the buffer recorded in the buf log item, then
555 * free the buf log item and remove the reference to it in the buffer.
1da177e4 556 *
64fc35de
DC
557 * This call ignores the recursion count. It is only called when the buffer
558 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 559 *
64fc35de
DC
560 * We unconditionally drop the transaction's reference to the log item. If the
561 * item was logged, then another reference was taken when it was pinned, so we
562 * can safely drop the transaction reference now. This also allows us to avoid
563 * potential races with the unpin code freeing the bli by not referencing the
564 * bli after we've dropped the reference count.
565 *
566 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
567 * if necessary but do not unlock the buffer. This is for support of
568 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
569 * free the item.
1da177e4 570 */
ba0f32d4 571STATIC void
1da177e4 572xfs_buf_item_unlock(
7bfa31d8 573 struct xfs_log_item *lip)
1da177e4 574{
7bfa31d8
CH
575 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
576 struct xfs_buf *bp = bip->bli_buf;
5f6bed76
DC
577 bool clean;
578 bool aborted;
579 int flags;
1da177e4 580
64fc35de 581 /* Clear the buffer's association with this transaction. */
bf9d9013 582 bp->b_transp = NULL;
1da177e4
LT
583
584 /*
64fc35de
DC
585 * If this is a transaction abort, don't return early. Instead, allow
586 * the brelse to happen. Normally it would be done for stale
587 * (cancelled) buffers at unpin time, but we'll never go through the
588 * pin/unpin cycle if we abort inside commit.
1da177e4 589 */
5f6bed76 590 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
1da177e4 591 /*
5f6bed76
DC
592 * Before possibly freeing the buf item, copy the per-transaction state
593 * so we can reference it safely later after clearing it from the
594 * buffer log item.
64fc35de 595 */
5f6bed76
DC
596 flags = bip->bli_flags;
597 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
64fc35de
DC
598
599 /*
600 * If the buf item is marked stale, then don't do anything. We'll
601 * unlock the buffer and free the buf item when the buffer is unpinned
602 * for the last time.
1da177e4 603 */
5f6bed76 604 if (flags & XFS_BLI_STALE) {
0b1b213f 605 trace_xfs_buf_item_unlock_stale(bip);
b9438173 606 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
64fc35de
DC
607 if (!aborted) {
608 atomic_dec(&bip->bli_refcount);
1da177e4 609 return;
64fc35de 610 }
1da177e4
LT
611 }
612
0b1b213f 613 trace_xfs_buf_item_unlock(bip);
1da177e4
LT
614
615 /*
64fc35de 616 * If the buf item isn't tracking any data, free it, otherwise drop the
3b19034d
DC
617 * reference we hold to it. If we are aborting the transaction, this may
618 * be the only reference to the buf item, so we free it anyway
619 * regardless of whether it is dirty or not. A dirty abort implies a
620 * shutdown, anyway.
5f6bed76
DC
621 *
622 * Ordered buffers are dirty but may have no recorded changes, so ensure
623 * we only release clean items here.
1da177e4 624 */
5f6bed76
DC
625 clean = (flags & XFS_BLI_DIRTY) ? false : true;
626 if (clean) {
627 int i;
628 for (i = 0; i < bip->bli_format_count; i++) {
629 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
630 bip->bli_formats[i].blf_map_size)) {
631 clean = false;
632 break;
633 }
c883d0c4
MT
634 }
635 }
46f9d2eb
DC
636
637 /*
638 * Clean buffers, by definition, cannot be in the AIL. However, aborted
3d4b4a3e
BF
639 * buffers may be in the AIL regardless of dirty state. An aborted
640 * transaction that invalidates a buffer already in the AIL may have
641 * marked it stale and cleared the dirty state, for example.
642 *
643 * Therefore if we are aborting a buffer and we've just taken the last
644 * reference away, we have to check if it is in the AIL before freeing
645 * it. We need to free it in this case, because an aborted transaction
646 * has already shut the filesystem down and this is the last chance we
647 * will have to do so.
46f9d2eb
DC
648 */
649 if (atomic_dec_and_test(&bip->bli_refcount)) {
3d4b4a3e 650 if (aborted) {
46f9d2eb 651 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
146e54b7 652 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
3b19034d 653 xfs_buf_item_relse(bp);
3d4b4a3e
BF
654 } else if (clean)
655 xfs_buf_item_relse(bp);
46f9d2eb 656 }
1da177e4 657
5f6bed76 658 if (!(flags & XFS_BLI_HOLD))
1da177e4 659 xfs_buf_relse(bp);
1da177e4
LT
660}
661
662/*
663 * This is called to find out where the oldest active copy of the
664 * buf log item in the on disk log resides now that the last log
665 * write of it completed at the given lsn.
666 * We always re-log all the dirty data in a buffer, so usually the
667 * latest copy in the on disk log is the only one that matters. For
668 * those cases we simply return the given lsn.
669 *
670 * The one exception to this is for buffers full of newly allocated
671 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
672 * flag set, indicating that only the di_next_unlinked fields from the
673 * inodes in the buffers will be replayed during recovery. If the
674 * original newly allocated inode images have not yet been flushed
675 * when the buffer is so relogged, then we need to make sure that we
676 * keep the old images in the 'active' portion of the log. We do this
677 * by returning the original lsn of that transaction here rather than
678 * the current one.
679 */
ba0f32d4 680STATIC xfs_lsn_t
1da177e4 681xfs_buf_item_committed(
7bfa31d8 682 struct xfs_log_item *lip,
1da177e4
LT
683 xfs_lsn_t lsn)
684{
7bfa31d8
CH
685 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
686
0b1b213f
CH
687 trace_xfs_buf_item_committed(bip);
688
7bfa31d8
CH
689 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
690 return lip->li_lsn;
691 return lsn;
1da177e4
LT
692}
693
ba0f32d4 694STATIC void
7bfa31d8
CH
695xfs_buf_item_committing(
696 struct xfs_log_item *lip,
697 xfs_lsn_t commit_lsn)
1da177e4
LT
698{
699}
700
701/*
702 * This is the ops vector shared by all buf log items.
703 */
272e42b2 704static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
705 .iop_size = xfs_buf_item_size,
706 .iop_format = xfs_buf_item_format,
707 .iop_pin = xfs_buf_item_pin,
708 .iop_unpin = xfs_buf_item_unpin,
7bfa31d8
CH
709 .iop_unlock = xfs_buf_item_unlock,
710 .iop_committed = xfs_buf_item_committed,
711 .iop_push = xfs_buf_item_push,
7bfa31d8 712 .iop_committing = xfs_buf_item_committing
1da177e4
LT
713};
714
372cc85e
DC
715STATIC int
716xfs_buf_item_get_format(
717 struct xfs_buf_log_item *bip,
718 int count)
719{
720 ASSERT(bip->bli_formats == NULL);
721 bip->bli_format_count = count;
722
723 if (count == 1) {
b9438173 724 bip->bli_formats = &bip->__bli_format;
372cc85e
DC
725 return 0;
726 }
727
728 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
729 KM_SLEEP);
730 if (!bip->bli_formats)
2451337d 731 return -ENOMEM;
372cc85e
DC
732 return 0;
733}
734
735STATIC void
736xfs_buf_item_free_format(
737 struct xfs_buf_log_item *bip)
738{
b9438173 739 if (bip->bli_formats != &bip->__bli_format) {
372cc85e
DC
740 kmem_free(bip->bli_formats);
741 bip->bli_formats = NULL;
742 }
743}
1da177e4
LT
744
745/*
746 * Allocate a new buf log item to go with the given buffer.
747 * Set the buffer's b_fsprivate field to point to the new
748 * buf log item. If there are other item's attached to the
749 * buffer (see xfs_buf_attach_iodone() below), then put the
750 * buf log item at the front.
751 */
f79af0b9 752int
1da177e4 753xfs_buf_item_init(
f79af0b9
DC
754 struct xfs_buf *bp,
755 struct xfs_mount *mp)
1da177e4 756{
f79af0b9
DC
757 struct xfs_log_item *lip = bp->b_fspriv;
758 struct xfs_buf_log_item *bip;
1da177e4
LT
759 int chunks;
760 int map_size;
372cc85e
DC
761 int error;
762 int i;
1da177e4
LT
763
764 /*
765 * Check to see if there is already a buf log item for
766 * this buffer. If there is, it is guaranteed to be
767 * the first. If we do already have one, there is
768 * nothing to do here so return.
769 */
ebad861b 770 ASSERT(bp->b_target->bt_mount == mp);
adadbeef 771 if (lip != NULL && lip->li_type == XFS_LI_BUF)
f79af0b9 772 return 0;
1da177e4 773
372cc85e 774 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
43f5efc5 775 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 776 bip->bli_buf = bp;
372cc85e
DC
777
778 /*
779 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
780 * can be divided into. Make sure not to truncate any pieces.
781 * map_size is the size of the bitmap needed to describe the
782 * chunks of the buffer.
783 *
784 * Discontiguous buffer support follows the layout of the underlying
785 * buffer. This makes the implementation as simple as possible.
786 */
787 error = xfs_buf_item_get_format(bip, bp->b_map_count);
788 ASSERT(error == 0);
f79af0b9
DC
789 if (error) { /* to stop gcc throwing set-but-unused warnings */
790 kmem_zone_free(xfs_buf_item_zone, bip);
791 return error;
792 }
793
372cc85e
DC
794
795 for (i = 0; i < bip->bli_format_count; i++) {
796 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
797 XFS_BLF_CHUNK);
798 map_size = DIV_ROUND_UP(chunks, NBWORD);
799
800 bip->bli_formats[i].blf_type = XFS_LI_BUF;
801 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
802 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
803 bip->bli_formats[i].blf_map_size = map_size;
804 }
1da177e4 805
1da177e4
LT
806 /*
807 * Put the buf item into the list of items attached to the
808 * buffer at the front.
809 */
adadbeef
CH
810 if (bp->b_fspriv)
811 bip->bli_item.li_bio_list = bp->b_fspriv;
812 bp->b_fspriv = bip;
f79af0b9
DC
813 xfs_buf_hold(bp);
814 return 0;
1da177e4
LT
815}
816
817
818/*
819 * Mark bytes first through last inclusive as dirty in the buf
820 * item's bitmap.
821 */
632b89e8 822static void
372cc85e 823xfs_buf_item_log_segment(
1da177e4 824 uint first,
372cc85e
DC
825 uint last,
826 uint *map)
1da177e4
LT
827{
828 uint first_bit;
829 uint last_bit;
830 uint bits_to_set;
831 uint bits_set;
832 uint word_num;
833 uint *wordp;
834 uint bit;
835 uint end_bit;
836 uint mask;
837
1da177e4
LT
838 /*
839 * Convert byte offsets to bit numbers.
840 */
c1155410
DC
841 first_bit = first >> XFS_BLF_SHIFT;
842 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
843
844 /*
845 * Calculate the total number of bits to be set.
846 */
847 bits_to_set = last_bit - first_bit + 1;
848
849 /*
850 * Get a pointer to the first word in the bitmap
851 * to set a bit in.
852 */
853 word_num = first_bit >> BIT_TO_WORD_SHIFT;
372cc85e 854 wordp = &map[word_num];
1da177e4
LT
855
856 /*
857 * Calculate the starting bit in the first word.
858 */
859 bit = first_bit & (uint)(NBWORD - 1);
860
861 /*
862 * First set any bits in the first word of our range.
863 * If it starts at bit 0 of the word, it will be
864 * set below rather than here. That is what the variable
865 * bit tells us. The variable bits_set tracks the number
866 * of bits that have been set so far. End_bit is the number
867 * of the last bit to be set in this word plus one.
868 */
869 if (bit) {
870 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
79c350e4 871 mask = ((1U << (end_bit - bit)) - 1) << bit;
1da177e4
LT
872 *wordp |= mask;
873 wordp++;
874 bits_set = end_bit - bit;
875 } else {
876 bits_set = 0;
877 }
878
879 /*
880 * Now set bits a whole word at a time that are between
881 * first_bit and last_bit.
882 */
883 while ((bits_to_set - bits_set) >= NBWORD) {
884 *wordp |= 0xffffffff;
885 bits_set += NBWORD;
886 wordp++;
887 }
888
889 /*
890 * Finally, set any bits left to be set in one last partial word.
891 */
892 end_bit = bits_to_set - bits_set;
893 if (end_bit) {
79c350e4 894 mask = (1U << end_bit) - 1;
1da177e4
LT
895 *wordp |= mask;
896 }
1da177e4
LT
897}
898
372cc85e
DC
899/*
900 * Mark bytes first through last inclusive as dirty in the buf
901 * item's bitmap.
902 */
903void
904xfs_buf_item_log(
905 xfs_buf_log_item_t *bip,
906 uint first,
907 uint last)
908{
909 int i;
910 uint start;
911 uint end;
912 struct xfs_buf *bp = bip->bli_buf;
913
372cc85e
DC
914 /*
915 * walk each buffer segment and mark them dirty appropriately.
916 */
917 start = 0;
918 for (i = 0; i < bip->bli_format_count; i++) {
919 if (start > last)
920 break;
a3916e52
BF
921 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
922
923 /* skip to the map that includes the first byte to log */
372cc85e
DC
924 if (first > end) {
925 start += BBTOB(bp->b_maps[i].bm_len);
926 continue;
927 }
a3916e52
BF
928
929 /*
930 * Trim the range to this segment and mark it in the bitmap.
931 * Note that we must convert buffer offsets to segment relative
932 * offsets (e.g., the first byte of each segment is byte 0 of
933 * that segment).
934 */
372cc85e
DC
935 if (first < start)
936 first = start;
937 if (end > last)
938 end = last;
a3916e52 939 xfs_buf_item_log_segment(first - start, end - start,
372cc85e
DC
940 &bip->bli_formats[i].blf_data_map[0]);
941
a3916e52 942 start += BBTOB(bp->b_maps[i].bm_len);
372cc85e
DC
943 }
944}
945
1da177e4
LT
946
947/*
5f6bed76 948 * Return 1 if the buffer has been logged or ordered in a transaction (at any
1da177e4
LT
949 * point, not just the current transaction) and 0 if not.
950 */
951uint
952xfs_buf_item_dirty(
953 xfs_buf_log_item_t *bip)
954{
955 return (bip->bli_flags & XFS_BLI_DIRTY);
956}
957
e1f5dbd7
LM
958STATIC void
959xfs_buf_item_free(
960 xfs_buf_log_item_t *bip)
961{
372cc85e 962 xfs_buf_item_free_format(bip);
b1c5ebb2 963 kmem_free(bip->bli_item.li_lv_shadow);
e1f5dbd7
LM
964 kmem_zone_free(xfs_buf_item_zone, bip);
965}
966
1da177e4
LT
967/*
968 * This is called when the buf log item is no longer needed. It should
969 * free the buf log item associated with the given buffer and clear
970 * the buffer's pointer to the buf log item. If there are no more
971 * items in the list, clear the b_iodone field of the buffer (see
972 * xfs_buf_attach_iodone() below).
973 */
974void
975xfs_buf_item_relse(
976 xfs_buf_t *bp)
977{
5f6bed76 978 xfs_buf_log_item_t *bip = bp->b_fspriv;
1da177e4 979
0b1b213f 980 trace_xfs_buf_item_relse(bp, _RET_IP_);
5f6bed76 981 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
0b1b213f 982
adadbeef 983 bp->b_fspriv = bip->bli_item.li_bio_list;
cb669ca5
CH
984 if (bp->b_fspriv == NULL)
985 bp->b_iodone = NULL;
adadbeef 986
e1f5dbd7
LM
987 xfs_buf_rele(bp);
988 xfs_buf_item_free(bip);
1da177e4
LT
989}
990
991
992/*
993 * Add the given log item with its callback to the list of callbacks
994 * to be called when the buffer's I/O completes. If it is not set
995 * already, set the buffer's b_iodone() routine to be
996 * xfs_buf_iodone_callbacks() and link the log item into the list of
997 * items rooted at b_fsprivate. Items are always added as the second
998 * entry in the list if there is a first, because the buf item code
999 * assumes that the buf log item is first.
1000 */
1001void
1002xfs_buf_attach_iodone(
1003 xfs_buf_t *bp,
1004 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
1005 xfs_log_item_t *lip)
1006{
1007 xfs_log_item_t *head_lip;
1008
0c842ad4 1009 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
1010
1011 lip->li_cb = cb;
adadbeef
CH
1012 head_lip = bp->b_fspriv;
1013 if (head_lip) {
1da177e4
LT
1014 lip->li_bio_list = head_lip->li_bio_list;
1015 head_lip->li_bio_list = lip;
1016 } else {
adadbeef 1017 bp->b_fspriv = lip;
1da177e4
LT
1018 }
1019
cb669ca5
CH
1020 ASSERT(bp->b_iodone == NULL ||
1021 bp->b_iodone == xfs_buf_iodone_callbacks);
1022 bp->b_iodone = xfs_buf_iodone_callbacks;
1da177e4
LT
1023}
1024
c90821a2
DC
1025/*
1026 * We can have many callbacks on a buffer. Running the callbacks individually
1027 * can cause a lot of contention on the AIL lock, so we allow for a single
1028 * callback to be able to scan the remaining lip->li_bio_list for other items
1029 * of the same type and callback to be processed in the first call.
1030 *
1031 * As a result, the loop walking the callback list below will also modify the
1032 * list. it removes the first item from the list and then runs the callback.
1033 * The loop then restarts from the new head of the list. This allows the
1034 * callback to scan and modify the list attached to the buffer and we don't
1035 * have to care about maintaining a next item pointer.
1036 */
1da177e4
LT
1037STATIC void
1038xfs_buf_do_callbacks(
c90821a2 1039 struct xfs_buf *bp)
1da177e4 1040{
c90821a2 1041 struct xfs_log_item *lip;
1da177e4 1042
adadbeef
CH
1043 while ((lip = bp->b_fspriv) != NULL) {
1044 bp->b_fspriv = lip->li_bio_list;
1da177e4
LT
1045 ASSERT(lip->li_cb != NULL);
1046 /*
1047 * Clear the next pointer so we don't have any
1048 * confusion if the item is added to another buf.
1049 * Don't touch the log item after calling its
1050 * callback, because it could have freed itself.
1051 */
1052 lip->li_bio_list = NULL;
1053 lip->li_cb(bp, lip);
1da177e4
LT
1054 }
1055}
1056
df309390
CM
1057static bool
1058xfs_buf_iodone_callback_error(
bfc60177 1059 struct xfs_buf *bp)
1da177e4 1060{
bfc60177
CH
1061 struct xfs_log_item *lip = bp->b_fspriv;
1062 struct xfs_mount *mp = lip->li_mountp;
1063 static ulong lasttime;
1064 static xfs_buftarg_t *lasttarg;
df309390 1065 struct xfs_error_cfg *cfg;
1da177e4 1066
bfc60177
CH
1067 /*
1068 * If we've already decided to shutdown the filesystem because of
1069 * I/O errors, there's no point in giving this a retry.
1070 */
df309390
CM
1071 if (XFS_FORCED_SHUTDOWN(mp))
1072 goto out_stale;
1da177e4 1073
49074c06 1074 if (bp->b_target != lasttarg ||
bfc60177
CH
1075 time_after(jiffies, (lasttime + 5*HZ))) {
1076 lasttime = jiffies;
b38505b0 1077 xfs_buf_ioerror_alert(bp, __func__);
bfc60177 1078 }
49074c06 1079 lasttarg = bp->b_target;
1da177e4 1080
df309390
CM
1081 /* synchronous writes will have callers process the error */
1082 if (!(bp->b_flags & XBF_ASYNC))
1083 goto out_stale;
1084
1085 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1086 ASSERT(bp->b_iodone != NULL);
1087
5539d367
ES
1088 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1089
bfc60177 1090 /*
25985edc 1091 * If the write was asynchronous then no one will be looking for the
df309390
CM
1092 * error. If this is the first failure of this type, clear the error
1093 * state and write the buffer out again. This means we always retry an
1094 * async write failure at least once, but we also need to set the buffer
1095 * up to behave correctly now for repeated failures.
bfc60177 1096 */
0b4db5df 1097 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
df309390 1098 bp->b_last_error != bp->b_error) {
0b4db5df 1099 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
df309390 1100 bp->b_last_error = bp->b_error;
77169812
ES
1101 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1102 !bp->b_first_retry_time)
5539d367 1103 bp->b_first_retry_time = jiffies;
a5ea70d2 1104
df309390
CM
1105 xfs_buf_ioerror(bp, 0);
1106 xfs_buf_submit(bp);
1107 return true;
1108 }
43ff2122 1109
df309390
CM
1110 /*
1111 * Repeated failure on an async write. Take action according to the
1112 * error configuration we have been set up to use.
1113 */
a5ea70d2
CM
1114
1115 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1116 ++bp->b_retries > cfg->max_retries)
1117 goto permanent_error;
77169812 1118 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
a5ea70d2
CM
1119 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1120 goto permanent_error;
bfc60177 1121
e6b3bb78
CM
1122 /* At unmount we may treat errors differently */
1123 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1124 goto permanent_error;
1125
df309390
CM
1126 /* still a transient error, higher layers will retry */
1127 xfs_buf_ioerror(bp, 0);
1128 xfs_buf_relse(bp);
1129 return true;
0b1b213f 1130
bfc60177 1131 /*
df309390
CM
1132 * Permanent error - we need to trigger a shutdown if we haven't already
1133 * to indicate that inconsistency will result from this action.
bfc60177 1134 */
df309390
CM
1135permanent_error:
1136 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1137out_stale:
c867cb61 1138 xfs_buf_stale(bp);
b0388bf1 1139 bp->b_flags |= XBF_DONE;
0b1b213f 1140 trace_xfs_buf_error_relse(bp, _RET_IP_);
df309390
CM
1141 return false;
1142}
1143
1144/*
1145 * This is the iodone() function for buffers which have had callbacks attached
1146 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1147 * callback list, mark the buffer as having no more callbacks and then push the
1148 * buffer through IO completion processing.
1149 */
1150void
1151xfs_buf_iodone_callbacks(
1152 struct xfs_buf *bp)
1153{
1154 /*
1155 * If there is an error, process it. Some errors require us
1156 * to run callbacks after failure processing is done so we
1157 * detect that and take appropriate action.
1158 */
1159 if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1160 return;
1161
1162 /*
1163 * Successful IO or permanent error. Either way, we can clear the
1164 * retry state here in preparation for the next error that may occur.
1165 */
1166 bp->b_last_error = 0;
a5ea70d2 1167 bp->b_retries = 0;
4dd2eb63 1168 bp->b_first_retry_time = 0;
0b1b213f 1169
c90821a2 1170 xfs_buf_do_callbacks(bp);
adadbeef 1171 bp->b_fspriv = NULL;
cb669ca5 1172 bp->b_iodone = NULL;
e8aaba9a 1173 xfs_buf_ioend(bp);
1da177e4
LT
1174}
1175
1da177e4
LT
1176/*
1177 * This is the iodone() function for buffers which have been
1178 * logged. It is called when they are eventually flushed out.
1179 * It should remove the buf item from the AIL, and free the buf item.
1180 * It is called by xfs_buf_iodone_callbacks() above which will take
1181 * care of cleaning up the buffer itself.
1182 */
1da177e4
LT
1183void
1184xfs_buf_iodone(
ca30b2a7
CH
1185 struct xfs_buf *bp,
1186 struct xfs_log_item *lip)
1da177e4 1187{
ca30b2a7 1188 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 1189
ca30b2a7 1190 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 1191
e1f5dbd7 1192 xfs_buf_rele(bp);
1da177e4
LT
1193
1194 /*
1195 * If we are forcibly shutting down, this may well be
1196 * off the AIL already. That's because we simulate the
1197 * log-committed callbacks to unpin these buffers. Or we may never
1198 * have put this item on AIL because of the transaction was
783a2f65 1199 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1200 *
1201 * Either way, AIL is useless if we're forcing a shutdown.
1202 */
fc1829f3 1203 spin_lock(&ailp->xa_lock);
04913fdd 1204 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
ca30b2a7 1205 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1206}