]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_buf_item.c
xfs: open-code xfs_buf_item_dirty()
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_buf_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
4fb6e8ad 20#include "xfs_format.h"
239880ef
DC
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_sb.h"
1da177e4 25#include "xfs_mount.h"
239880ef 26#include "xfs_trans.h"
a844f451 27#include "xfs_buf_item.h"
1da177e4 28#include "xfs_trans_priv.h"
1da177e4 29#include "xfs_error.h"
0b1b213f 30#include "xfs_trace.h"
239880ef 31#include "xfs_log.h"
1618ea8c 32#include "xfs_inode.h"
1da177e4
LT
33
34
35kmem_zone_t *xfs_buf_item_zone;
36
7bfa31d8
CH
37static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
38{
39 return container_of(lip, struct xfs_buf_log_item, bli_item);
40}
41
c90821a2 42STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
1da177e4 43
166d1368
DC
44static inline int
45xfs_buf_log_format_size(
46 struct xfs_buf_log_format *blfp)
47{
48 return offsetof(struct xfs_buf_log_format, blf_data_map) +
49 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
50}
51
1da177e4
LT
52/*
53 * This returns the number of log iovecs needed to log the
54 * given buf log item.
55 *
56 * It calculates this as 1 iovec for the buf log format structure
57 * and 1 for each stretch of non-contiguous chunks to be logged.
58 * Contiguous chunks are logged in a single iovec.
59 *
60 * If the XFS_BLI_STALE flag has been set, then log nothing.
61 */
166d1368 62STATIC void
372cc85e
DC
63xfs_buf_item_size_segment(
64 struct xfs_buf_log_item *bip,
166d1368
DC
65 struct xfs_buf_log_format *blfp,
66 int *nvecs,
67 int *nbytes)
1da177e4 68{
7bfa31d8 69 struct xfs_buf *bp = bip->bli_buf;
7bfa31d8
CH
70 int next_bit;
71 int last_bit;
1da177e4 72
372cc85e
DC
73 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
74 if (last_bit == -1)
166d1368 75 return;
372cc85e
DC
76
77 /*
78 * initial count for a dirty buffer is 2 vectors - the format structure
79 * and the first dirty region.
80 */
166d1368
DC
81 *nvecs += 2;
82 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
1da177e4 83
1da177e4
LT
84 while (last_bit != -1) {
85 /*
86 * This takes the bit number to start looking from and
87 * returns the next set bit from there. It returns -1
88 * if there are no more bits set or the start bit is
89 * beyond the end of the bitmap.
90 */
372cc85e
DC
91 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
92 last_bit + 1);
1da177e4
LT
93 /*
94 * If we run out of bits, leave the loop,
95 * else if we find a new set of bits bump the number of vecs,
96 * else keep scanning the current set of bits.
97 */
98 if (next_bit == -1) {
372cc85e 99 break;
1da177e4
LT
100 } else if (next_bit != last_bit + 1) {
101 last_bit = next_bit;
166d1368 102 (*nvecs)++;
c1155410
DC
103 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
104 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
105 XFS_BLF_CHUNK)) {
1da177e4 106 last_bit = next_bit;
166d1368 107 (*nvecs)++;
1da177e4
LT
108 } else {
109 last_bit++;
110 }
166d1368 111 *nbytes += XFS_BLF_CHUNK;
1da177e4 112 }
1da177e4
LT
113}
114
115/*
372cc85e
DC
116 * This returns the number of log iovecs needed to log the given buf log item.
117 *
118 * It calculates this as 1 iovec for the buf log format structure and 1 for each
119 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
120 * in a single iovec.
121 *
122 * Discontiguous buffers need a format structure per region that that is being
123 * logged. This makes the changes in the buffer appear to log recovery as though
124 * they came from separate buffers, just like would occur if multiple buffers
125 * were used instead of a single discontiguous buffer. This enables
126 * discontiguous buffers to be in-memory constructs, completely transparent to
127 * what ends up on disk.
128 *
129 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
130 * format structures.
1da177e4 131 */
166d1368 132STATIC void
372cc85e 133xfs_buf_item_size(
166d1368
DC
134 struct xfs_log_item *lip,
135 int *nvecs,
136 int *nbytes)
1da177e4 137{
7bfa31d8 138 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
372cc85e
DC
139 int i;
140
141 ASSERT(atomic_read(&bip->bli_refcount) > 0);
142 if (bip->bli_flags & XFS_BLI_STALE) {
143 /*
144 * The buffer is stale, so all we need to log
145 * is the buf log format structure with the
146 * cancel flag in it.
147 */
148 trace_xfs_buf_item_size_stale(bip);
b9438173 149 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
166d1368
DC
150 *nvecs += bip->bli_format_count;
151 for (i = 0; i < bip->bli_format_count; i++) {
152 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
153 }
154 return;
372cc85e
DC
155 }
156
157 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
158
5f6bed76
DC
159 if (bip->bli_flags & XFS_BLI_ORDERED) {
160 /*
161 * The buffer has been logged just to order it.
162 * It is not being included in the transaction
163 * commit, so no vectors are used at all.
164 */
165 trace_xfs_buf_item_size_ordered(bip);
166d1368
DC
166 *nvecs = XFS_LOG_VEC_ORDERED;
167 return;
5f6bed76
DC
168 }
169
372cc85e
DC
170 /*
171 * the vector count is based on the number of buffer vectors we have
172 * dirty bits in. This will only be greater than one when we have a
173 * compound buffer with more than one segment dirty. Hence for compound
174 * buffers we need to track which segment the dirty bits correspond to,
175 * and when we move from one segment to the next increment the vector
176 * count for the extra buf log format structure that will need to be
177 * written.
178 */
372cc85e 179 for (i = 0; i < bip->bli_format_count; i++) {
166d1368
DC
180 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
181 nvecs, nbytes);
372cc85e 182 }
372cc85e 183 trace_xfs_buf_item_size(bip);
372cc85e
DC
184}
185
1234351c 186static inline void
7aeb7222 187xfs_buf_item_copy_iovec(
bde7cff6 188 struct xfs_log_vec *lv,
1234351c 189 struct xfs_log_iovec **vecp,
7aeb7222
CH
190 struct xfs_buf *bp,
191 uint offset,
192 int first_bit,
193 uint nbits)
194{
195 offset += first_bit * XFS_BLF_CHUNK;
bde7cff6 196 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
1234351c
CH
197 xfs_buf_offset(bp, offset),
198 nbits * XFS_BLF_CHUNK);
7aeb7222
CH
199}
200
201static inline bool
202xfs_buf_item_straddle(
203 struct xfs_buf *bp,
204 uint offset,
205 int next_bit,
206 int last_bit)
207{
208 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
209 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
210 XFS_BLF_CHUNK);
211}
212
1234351c 213static void
372cc85e
DC
214xfs_buf_item_format_segment(
215 struct xfs_buf_log_item *bip,
bde7cff6 216 struct xfs_log_vec *lv,
1234351c 217 struct xfs_log_iovec **vecp,
372cc85e
DC
218 uint offset,
219 struct xfs_buf_log_format *blfp)
220{
7bfa31d8 221 struct xfs_buf *bp = bip->bli_buf;
1da177e4 222 uint base_size;
1da177e4
LT
223 int first_bit;
224 int last_bit;
225 int next_bit;
226 uint nbits;
1da177e4 227
372cc85e 228 /* copy the flags across from the base format item */
b9438173 229 blfp->blf_flags = bip->__bli_format.blf_flags;
1da177e4
LT
230
231 /*
77c1a08f
DC
232 * Base size is the actual size of the ondisk structure - it reflects
233 * the actual size of the dirty bitmap rather than the size of the in
234 * memory structure.
1da177e4 235 */
166d1368 236 base_size = xfs_buf_log_format_size(blfp);
820a554f 237
820a554f
MT
238 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
239 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
240 /*
241 * If the map is not be dirty in the transaction, mark
242 * the size as zero and do not advance the vector pointer.
243 */
bde7cff6 244 return;
820a554f
MT
245 }
246
bde7cff6
CH
247 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
248 blfp->blf_size = 1;
1da177e4
LT
249
250 if (bip->bli_flags & XFS_BLI_STALE) {
251 /*
252 * The buffer is stale, so all we need to log
253 * is the buf log format structure with the
254 * cancel flag in it.
255 */
0b1b213f 256 trace_xfs_buf_item_format_stale(bip);
372cc85e 257 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
bde7cff6 258 return;
1da177e4
LT
259 }
260
5f6bed76 261
1da177e4
LT
262 /*
263 * Fill in an iovec for each set of contiguous chunks.
264 */
1da177e4
LT
265 last_bit = first_bit;
266 nbits = 1;
267 for (;;) {
268 /*
269 * This takes the bit number to start looking from and
270 * returns the next set bit from there. It returns -1
271 * if there are no more bits set or the start bit is
272 * beyond the end of the bitmap.
273 */
372cc85e
DC
274 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
275 (uint)last_bit + 1);
1da177e4 276 /*
7aeb7222
CH
277 * If we run out of bits fill in the last iovec and get out of
278 * the loop. Else if we start a new set of bits then fill in
279 * the iovec for the series we were looking at and start
280 * counting the bits in the new one. Else we're still in the
281 * same set of bits so just keep counting and scanning.
1da177e4
LT
282 */
283 if (next_bit == -1) {
bde7cff6 284 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
7aeb7222 285 first_bit, nbits);
bde7cff6 286 blfp->blf_size++;
1da177e4 287 break;
7aeb7222
CH
288 } else if (next_bit != last_bit + 1 ||
289 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
bde7cff6 290 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
1234351c 291 first_bit, nbits);
bde7cff6 292 blfp->blf_size++;
1da177e4
LT
293 first_bit = next_bit;
294 last_bit = next_bit;
295 nbits = 1;
296 } else {
297 last_bit++;
298 nbits++;
299 }
300 }
372cc85e
DC
301}
302
303/*
304 * This is called to fill in the vector of log iovecs for the
305 * given log buf item. It fills the first entry with a buf log
306 * format structure, and the rest point to contiguous chunks
307 * within the buffer.
308 */
309STATIC void
310xfs_buf_item_format(
311 struct xfs_log_item *lip,
bde7cff6 312 struct xfs_log_vec *lv)
372cc85e
DC
313{
314 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
315 struct xfs_buf *bp = bip->bli_buf;
bde7cff6 316 struct xfs_log_iovec *vecp = NULL;
372cc85e
DC
317 uint offset = 0;
318 int i;
319
320 ASSERT(atomic_read(&bip->bli_refcount) > 0);
321 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
322 (bip->bli_flags & XFS_BLI_STALE));
0d612fb5
DC
323 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
324 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
325 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
326
372cc85e
DC
327
328 /*
329 * If it is an inode buffer, transfer the in-memory state to the
ddf6ad01
DC
330 * format flags and clear the in-memory state.
331 *
332 * For buffer based inode allocation, we do not transfer
372cc85e
DC
333 * this state if the inode buffer allocation has not yet been committed
334 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
335 * correct replay of the inode allocation.
ddf6ad01
DC
336 *
337 * For icreate item based inode allocation, the buffers aren't written
338 * to the journal during allocation, and hence we should always tag the
339 * buffer as an inode buffer so that the correct unlinked list replay
340 * occurs during recovery.
372cc85e
DC
341 */
342 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
ddf6ad01
DC
343 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
344 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
372cc85e 345 xfs_log_item_in_current_chkpt(lip)))
b9438173 346 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
372cc85e
DC
347 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
348 }
349
5f6bed76
DC
350 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
351 XFS_BLI_ORDERED) {
352 /*
353 * The buffer has been logged just to order it. It is not being
354 * included in the transaction commit, so don't format it.
355 */
356 trace_xfs_buf_item_format_ordered(bip);
357 return;
358 }
359
372cc85e 360 for (i = 0; i < bip->bli_format_count; i++) {
bde7cff6 361 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
1234351c 362 &bip->bli_formats[i]);
a3916e52 363 offset += BBTOB(bp->b_maps[i].bm_len);
372cc85e 364 }
1da177e4
LT
365
366 /*
367 * Check to make sure everything is consistent.
368 */
0b1b213f 369 trace_xfs_buf_item_format(bip);
1da177e4
LT
370}
371
372/*
64fc35de 373 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 374 * so it cannot be written out.
64fc35de
DC
375 *
376 * We also always take a reference to the buffer log item here so that the bli
377 * is held while the item is pinned in memory. This means that we can
378 * unconditionally drop the reference count a transaction holds when the
379 * transaction is completed.
1da177e4 380 */
ba0f32d4 381STATIC void
1da177e4 382xfs_buf_item_pin(
7bfa31d8 383 struct xfs_log_item *lip)
1da177e4 384{
7bfa31d8 385 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 386
1da177e4
LT
387 ASSERT(atomic_read(&bip->bli_refcount) > 0);
388 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
5f6bed76 389 (bip->bli_flags & XFS_BLI_ORDERED) ||
1da177e4 390 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 391
0b1b213f 392 trace_xfs_buf_item_pin(bip);
4d16e924
CH
393
394 atomic_inc(&bip->bli_refcount);
395 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
396}
397
1da177e4
LT
398/*
399 * This is called to unpin the buffer associated with the buf log
400 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
401 *
402 * Also drop the reference to the buf item for the current transaction.
403 * If the XFS_BLI_STALE flag is set and we are the last reference,
404 * then free up the buf log item and unlock the buffer.
9412e318
CH
405 *
406 * If the remove flag is set we are called from uncommit in the
407 * forced-shutdown path. If that is true and the reference count on
408 * the log item is going to drop to zero we need to free the item's
409 * descriptor in the transaction.
1da177e4 410 */
ba0f32d4 411STATIC void
1da177e4 412xfs_buf_item_unpin(
7bfa31d8 413 struct xfs_log_item *lip,
9412e318 414 int remove)
1da177e4 415{
7bfa31d8 416 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
9412e318 417 xfs_buf_t *bp = bip->bli_buf;
7bfa31d8 418 struct xfs_ail *ailp = lip->li_ailp;
8e123850 419 int stale = bip->bli_flags & XFS_BLI_STALE;
7bfa31d8 420 int freed;
1da177e4 421
adadbeef 422 ASSERT(bp->b_fspriv == bip);
1da177e4 423 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 424
0b1b213f 425 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
426
427 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
428
429 if (atomic_dec_and_test(&bp->b_pin_count))
430 wake_up_all(&bp->b_waiters);
7bfa31d8 431
1da177e4
LT
432 if (freed && stale) {
433 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 434 ASSERT(xfs_buf_islocked(bp));
5cfd28b6 435 ASSERT(bp->b_flags & XBF_STALE);
b9438173 436 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 437
0b1b213f
CH
438 trace_xfs_buf_item_unpin_stale(bip);
439
9412e318
CH
440 if (remove) {
441 /*
e34a314c
DC
442 * If we are in a transaction context, we have to
443 * remove the log item from the transaction as we are
444 * about to release our reference to the buffer. If we
445 * don't, the unlock that occurs later in
446 * xfs_trans_uncommit() will try to reference the
9412e318
CH
447 * buffer which we no longer have a hold on.
448 */
e34a314c
DC
449 if (lip->li_desc)
450 xfs_trans_del_item(lip);
9412e318
CH
451
452 /*
453 * Since the transaction no longer refers to the buffer,
454 * the buffer should no longer refer to the transaction.
455 */
bf9d9013 456 bp->b_transp = NULL;
9412e318
CH
457 }
458
1da177e4
LT
459 /*
460 * If we get called here because of an IO error, we may
783a2f65 461 * or may not have the item on the AIL. xfs_trans_ail_delete()
1da177e4 462 * will take care of that situation.
783a2f65 463 * xfs_trans_ail_delete() drops the AIL lock.
1da177e4
LT
464 */
465 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
c90821a2 466 xfs_buf_do_callbacks(bp);
adadbeef 467 bp->b_fspriv = NULL;
cb669ca5 468 bp->b_iodone = NULL;
1da177e4 469 } else {
783a2f65 470 spin_lock(&ailp->xa_lock);
04913fdd 471 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 472 xfs_buf_item_relse(bp);
adadbeef 473 ASSERT(bp->b_fspriv == NULL);
1da177e4
LT
474 }
475 xfs_buf_relse(bp);
960c60af 476 } else if (freed && remove) {
137fff09
DC
477 /*
478 * There are currently two references to the buffer - the active
479 * LRU reference and the buf log item. What we are about to do
480 * here - simulate a failed IO completion - requires 3
481 * references.
482 *
483 * The LRU reference is removed by the xfs_buf_stale() call. The
484 * buf item reference is removed by the xfs_buf_iodone()
485 * callback that is run by xfs_buf_do_callbacks() during ioend
486 * processing (via the bp->b_iodone callback), and then finally
487 * the ioend processing will drop the IO reference if the buffer
488 * is marked XBF_ASYNC.
489 *
490 * Hence we need to take an additional reference here so that IO
491 * completion processing doesn't free the buffer prematurely.
492 */
960c60af 493 xfs_buf_lock(bp);
137fff09
DC
494 xfs_buf_hold(bp);
495 bp->b_flags |= XBF_ASYNC;
2451337d 496 xfs_buf_ioerror(bp, -EIO);
b0388bf1 497 bp->b_flags &= ~XBF_DONE;
960c60af 498 xfs_buf_stale(bp);
e8aaba9a 499 xfs_buf_ioend(bp);
1da177e4
LT
500 }
501}
502
ac8809f9
DC
503/*
504 * Buffer IO error rate limiting. Limit it to no more than 10 messages per 30
505 * seconds so as to not spam logs too much on repeated detection of the same
506 * buffer being bad..
507 */
508
02cc1876 509static DEFINE_RATELIMIT_STATE(xfs_buf_write_fail_rl_state, 30 * HZ, 10);
ac8809f9 510
ba0f32d4 511STATIC uint
43ff2122
CH
512xfs_buf_item_push(
513 struct xfs_log_item *lip,
514 struct list_head *buffer_list)
1da177e4 515{
7bfa31d8
CH
516 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
517 struct xfs_buf *bp = bip->bli_buf;
43ff2122 518 uint rval = XFS_ITEM_SUCCESS;
1da177e4 519
811e64c7 520 if (xfs_buf_ispinned(bp))
1da177e4 521 return XFS_ITEM_PINNED;
5337fe9b
BF
522 if (!xfs_buf_trylock(bp)) {
523 /*
524 * If we have just raced with a buffer being pinned and it has
525 * been marked stale, we could end up stalling until someone else
526 * issues a log force to unpin the stale buffer. Check for the
527 * race condition here so xfsaild recognizes the buffer is pinned
528 * and queues a log force to move it along.
529 */
530 if (xfs_buf_ispinned(bp))
531 return XFS_ITEM_PINNED;
1da177e4 532 return XFS_ITEM_LOCKED;
5337fe9b 533 }
1da177e4 534
1da177e4 535 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
536
537 trace_xfs_buf_item_push(bip);
538
ac8809f9
DC
539 /* has a previous flush failed due to IO errors? */
540 if ((bp->b_flags & XBF_WRITE_FAIL) &&
fdadf267 541 ___ratelimit(&xfs_buf_write_fail_rl_state, "XFS: Failing async write")) {
ac8809f9 542 xfs_warn(bp->b_target->bt_mount,
fdadf267 543"Failing async write on buffer block 0x%llx. Retrying async write.",
ac8809f9
DC
544 (long long)bp->b_bn);
545 }
546
43ff2122
CH
547 if (!xfs_buf_delwri_queue(bp, buffer_list))
548 rval = XFS_ITEM_FLUSHING;
549 xfs_buf_unlock(bp);
550 return rval;
1da177e4
LT
551}
552
553/*
64fc35de
DC
554 * Release the buffer associated with the buf log item. If there is no dirty
555 * logged data associated with the buffer recorded in the buf log item, then
556 * free the buf log item and remove the reference to it in the buffer.
1da177e4 557 *
64fc35de
DC
558 * This call ignores the recursion count. It is only called when the buffer
559 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 560 *
64fc35de
DC
561 * We unconditionally drop the transaction's reference to the log item. If the
562 * item was logged, then another reference was taken when it was pinned, so we
563 * can safely drop the transaction reference now. This also allows us to avoid
564 * potential races with the unpin code freeing the bli by not referencing the
565 * bli after we've dropped the reference count.
566 *
567 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
568 * if necessary but do not unlock the buffer. This is for support of
569 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
570 * free the item.
1da177e4 571 */
ba0f32d4 572STATIC void
1da177e4 573xfs_buf_item_unlock(
7bfa31d8 574 struct xfs_log_item *lip)
1da177e4 575{
7bfa31d8
CH
576 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
577 struct xfs_buf *bp = bip->bli_buf;
5f6bed76
DC
578 bool clean;
579 bool aborted;
580 int flags;
1da177e4 581
64fc35de 582 /* Clear the buffer's association with this transaction. */
bf9d9013 583 bp->b_transp = NULL;
1da177e4
LT
584
585 /*
64fc35de
DC
586 * If this is a transaction abort, don't return early. Instead, allow
587 * the brelse to happen. Normally it would be done for stale
588 * (cancelled) buffers at unpin time, but we'll never go through the
589 * pin/unpin cycle if we abort inside commit.
1da177e4 590 */
5f6bed76 591 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
1da177e4 592 /*
5f6bed76
DC
593 * Before possibly freeing the buf item, copy the per-transaction state
594 * so we can reference it safely later after clearing it from the
595 * buffer log item.
64fc35de 596 */
5f6bed76
DC
597 flags = bip->bli_flags;
598 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
64fc35de
DC
599
600 /*
601 * If the buf item is marked stale, then don't do anything. We'll
602 * unlock the buffer and free the buf item when the buffer is unpinned
603 * for the last time.
1da177e4 604 */
5f6bed76 605 if (flags & XFS_BLI_STALE) {
0b1b213f 606 trace_xfs_buf_item_unlock_stale(bip);
b9438173 607 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
64fc35de
DC
608 if (!aborted) {
609 atomic_dec(&bip->bli_refcount);
1da177e4 610 return;
64fc35de 611 }
1da177e4
LT
612 }
613
0b1b213f 614 trace_xfs_buf_item_unlock(bip);
1da177e4
LT
615
616 /*
64fc35de 617 * If the buf item isn't tracking any data, free it, otherwise drop the
3b19034d
DC
618 * reference we hold to it. If we are aborting the transaction, this may
619 * be the only reference to the buf item, so we free it anyway
620 * regardless of whether it is dirty or not. A dirty abort implies a
621 * shutdown, anyway.
5f6bed76
DC
622 *
623 * Ordered buffers are dirty but may have no recorded changes, so ensure
624 * we only release clean items here.
1da177e4 625 */
5f6bed76
DC
626 clean = (flags & XFS_BLI_DIRTY) ? false : true;
627 if (clean) {
628 int i;
629 for (i = 0; i < bip->bli_format_count; i++) {
630 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
631 bip->bli_formats[i].blf_map_size)) {
632 clean = false;
633 break;
634 }
c883d0c4
MT
635 }
636 }
46f9d2eb
DC
637
638 /*
639 * Clean buffers, by definition, cannot be in the AIL. However, aborted
3d4b4a3e
BF
640 * buffers may be in the AIL regardless of dirty state. An aborted
641 * transaction that invalidates a buffer already in the AIL may have
642 * marked it stale and cleared the dirty state, for example.
643 *
644 * Therefore if we are aborting a buffer and we've just taken the last
645 * reference away, we have to check if it is in the AIL before freeing
646 * it. We need to free it in this case, because an aborted transaction
647 * has already shut the filesystem down and this is the last chance we
648 * will have to do so.
46f9d2eb
DC
649 */
650 if (atomic_dec_and_test(&bip->bli_refcount)) {
3d4b4a3e 651 if (aborted) {
46f9d2eb 652 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
146e54b7 653 xfs_trans_ail_remove(lip, SHUTDOWN_LOG_IO_ERROR);
3b19034d 654 xfs_buf_item_relse(bp);
3d4b4a3e
BF
655 } else if (clean)
656 xfs_buf_item_relse(bp);
46f9d2eb 657 }
1da177e4 658
5f6bed76 659 if (!(flags & XFS_BLI_HOLD))
1da177e4 660 xfs_buf_relse(bp);
1da177e4
LT
661}
662
663/*
664 * This is called to find out where the oldest active copy of the
665 * buf log item in the on disk log resides now that the last log
666 * write of it completed at the given lsn.
667 * We always re-log all the dirty data in a buffer, so usually the
668 * latest copy in the on disk log is the only one that matters. For
669 * those cases we simply return the given lsn.
670 *
671 * The one exception to this is for buffers full of newly allocated
672 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
673 * flag set, indicating that only the di_next_unlinked fields from the
674 * inodes in the buffers will be replayed during recovery. If the
675 * original newly allocated inode images have not yet been flushed
676 * when the buffer is so relogged, then we need to make sure that we
677 * keep the old images in the 'active' portion of the log. We do this
678 * by returning the original lsn of that transaction here rather than
679 * the current one.
680 */
ba0f32d4 681STATIC xfs_lsn_t
1da177e4 682xfs_buf_item_committed(
7bfa31d8 683 struct xfs_log_item *lip,
1da177e4
LT
684 xfs_lsn_t lsn)
685{
7bfa31d8
CH
686 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
687
0b1b213f
CH
688 trace_xfs_buf_item_committed(bip);
689
7bfa31d8
CH
690 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
691 return lip->li_lsn;
692 return lsn;
1da177e4
LT
693}
694
ba0f32d4 695STATIC void
7bfa31d8
CH
696xfs_buf_item_committing(
697 struct xfs_log_item *lip,
698 xfs_lsn_t commit_lsn)
1da177e4
LT
699{
700}
701
702/*
703 * This is the ops vector shared by all buf log items.
704 */
272e42b2 705static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
706 .iop_size = xfs_buf_item_size,
707 .iop_format = xfs_buf_item_format,
708 .iop_pin = xfs_buf_item_pin,
709 .iop_unpin = xfs_buf_item_unpin,
7bfa31d8
CH
710 .iop_unlock = xfs_buf_item_unlock,
711 .iop_committed = xfs_buf_item_committed,
712 .iop_push = xfs_buf_item_push,
7bfa31d8 713 .iop_committing = xfs_buf_item_committing
1da177e4
LT
714};
715
372cc85e
DC
716STATIC int
717xfs_buf_item_get_format(
718 struct xfs_buf_log_item *bip,
719 int count)
720{
721 ASSERT(bip->bli_formats == NULL);
722 bip->bli_format_count = count;
723
724 if (count == 1) {
b9438173 725 bip->bli_formats = &bip->__bli_format;
372cc85e
DC
726 return 0;
727 }
728
729 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
730 KM_SLEEP);
731 if (!bip->bli_formats)
2451337d 732 return -ENOMEM;
372cc85e
DC
733 return 0;
734}
735
736STATIC void
737xfs_buf_item_free_format(
738 struct xfs_buf_log_item *bip)
739{
b9438173 740 if (bip->bli_formats != &bip->__bli_format) {
372cc85e
DC
741 kmem_free(bip->bli_formats);
742 bip->bli_formats = NULL;
743 }
744}
1da177e4
LT
745
746/*
747 * Allocate a new buf log item to go with the given buffer.
748 * Set the buffer's b_fsprivate field to point to the new
749 * buf log item. If there are other item's attached to the
750 * buffer (see xfs_buf_attach_iodone() below), then put the
751 * buf log item at the front.
752 */
f79af0b9 753int
1da177e4 754xfs_buf_item_init(
f79af0b9
DC
755 struct xfs_buf *bp,
756 struct xfs_mount *mp)
1da177e4 757{
f79af0b9
DC
758 struct xfs_log_item *lip = bp->b_fspriv;
759 struct xfs_buf_log_item *bip;
1da177e4
LT
760 int chunks;
761 int map_size;
372cc85e
DC
762 int error;
763 int i;
1da177e4
LT
764
765 /*
766 * Check to see if there is already a buf log item for
767 * this buffer. If there is, it is guaranteed to be
768 * the first. If we do already have one, there is
769 * nothing to do here so return.
770 */
ebad861b 771 ASSERT(bp->b_target->bt_mount == mp);
adadbeef 772 if (lip != NULL && lip->li_type == XFS_LI_BUF)
f79af0b9 773 return 0;
1da177e4 774
372cc85e 775 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
43f5efc5 776 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 777 bip->bli_buf = bp;
372cc85e
DC
778
779 /*
780 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
781 * can be divided into. Make sure not to truncate any pieces.
782 * map_size is the size of the bitmap needed to describe the
783 * chunks of the buffer.
784 *
785 * Discontiguous buffer support follows the layout of the underlying
786 * buffer. This makes the implementation as simple as possible.
787 */
788 error = xfs_buf_item_get_format(bip, bp->b_map_count);
789 ASSERT(error == 0);
f79af0b9
DC
790 if (error) { /* to stop gcc throwing set-but-unused warnings */
791 kmem_zone_free(xfs_buf_item_zone, bip);
792 return error;
793 }
794
372cc85e
DC
795
796 for (i = 0; i < bip->bli_format_count; i++) {
797 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
798 XFS_BLF_CHUNK);
799 map_size = DIV_ROUND_UP(chunks, NBWORD);
800
801 bip->bli_formats[i].blf_type = XFS_LI_BUF;
802 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
803 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
804 bip->bli_formats[i].blf_map_size = map_size;
805 }
1da177e4 806
1da177e4
LT
807 /*
808 * Put the buf item into the list of items attached to the
809 * buffer at the front.
810 */
adadbeef
CH
811 if (bp->b_fspriv)
812 bip->bli_item.li_bio_list = bp->b_fspriv;
813 bp->b_fspriv = bip;
f79af0b9
DC
814 xfs_buf_hold(bp);
815 return 0;
1da177e4
LT
816}
817
818
819/*
820 * Mark bytes first through last inclusive as dirty in the buf
821 * item's bitmap.
822 */
632b89e8 823static void
372cc85e 824xfs_buf_item_log_segment(
1da177e4 825 uint first,
372cc85e
DC
826 uint last,
827 uint *map)
1da177e4
LT
828{
829 uint first_bit;
830 uint last_bit;
831 uint bits_to_set;
832 uint bits_set;
833 uint word_num;
834 uint *wordp;
835 uint bit;
836 uint end_bit;
837 uint mask;
838
1da177e4
LT
839 /*
840 * Convert byte offsets to bit numbers.
841 */
c1155410
DC
842 first_bit = first >> XFS_BLF_SHIFT;
843 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
844
845 /*
846 * Calculate the total number of bits to be set.
847 */
848 bits_to_set = last_bit - first_bit + 1;
849
850 /*
851 * Get a pointer to the first word in the bitmap
852 * to set a bit in.
853 */
854 word_num = first_bit >> BIT_TO_WORD_SHIFT;
372cc85e 855 wordp = &map[word_num];
1da177e4
LT
856
857 /*
858 * Calculate the starting bit in the first word.
859 */
860 bit = first_bit & (uint)(NBWORD - 1);
861
862 /*
863 * First set any bits in the first word of our range.
864 * If it starts at bit 0 of the word, it will be
865 * set below rather than here. That is what the variable
866 * bit tells us. The variable bits_set tracks the number
867 * of bits that have been set so far. End_bit is the number
868 * of the last bit to be set in this word plus one.
869 */
870 if (bit) {
871 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
79c350e4 872 mask = ((1U << (end_bit - bit)) - 1) << bit;
1da177e4
LT
873 *wordp |= mask;
874 wordp++;
875 bits_set = end_bit - bit;
876 } else {
877 bits_set = 0;
878 }
879
880 /*
881 * Now set bits a whole word at a time that are between
882 * first_bit and last_bit.
883 */
884 while ((bits_to_set - bits_set) >= NBWORD) {
885 *wordp |= 0xffffffff;
886 bits_set += NBWORD;
887 wordp++;
888 }
889
890 /*
891 * Finally, set any bits left to be set in one last partial word.
892 */
893 end_bit = bits_to_set - bits_set;
894 if (end_bit) {
79c350e4 895 mask = (1U << end_bit) - 1;
1da177e4
LT
896 *wordp |= mask;
897 }
1da177e4
LT
898}
899
372cc85e
DC
900/*
901 * Mark bytes first through last inclusive as dirty in the buf
902 * item's bitmap.
903 */
904void
905xfs_buf_item_log(
906 xfs_buf_log_item_t *bip,
907 uint first,
908 uint last)
909{
910 int i;
911 uint start;
912 uint end;
913 struct xfs_buf *bp = bip->bli_buf;
914
372cc85e
DC
915 /*
916 * walk each buffer segment and mark them dirty appropriately.
917 */
918 start = 0;
919 for (i = 0; i < bip->bli_format_count; i++) {
920 if (start > last)
921 break;
a3916e52
BF
922 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
923
924 /* skip to the map that includes the first byte to log */
372cc85e
DC
925 if (first > end) {
926 start += BBTOB(bp->b_maps[i].bm_len);
927 continue;
928 }
a3916e52
BF
929
930 /*
931 * Trim the range to this segment and mark it in the bitmap.
932 * Note that we must convert buffer offsets to segment relative
933 * offsets (e.g., the first byte of each segment is byte 0 of
934 * that segment).
935 */
372cc85e
DC
936 if (first < start)
937 first = start;
938 if (end > last)
939 end = last;
a3916e52 940 xfs_buf_item_log_segment(first - start, end - start,
372cc85e
DC
941 &bip->bli_formats[i].blf_data_map[0]);
942
a3916e52 943 start += BBTOB(bp->b_maps[i].bm_len);
372cc85e
DC
944 }
945}
946
1da177e4 947
e1f5dbd7
LM
948STATIC void
949xfs_buf_item_free(
950 xfs_buf_log_item_t *bip)
951{
372cc85e 952 xfs_buf_item_free_format(bip);
b1c5ebb2 953 kmem_free(bip->bli_item.li_lv_shadow);
e1f5dbd7
LM
954 kmem_zone_free(xfs_buf_item_zone, bip);
955}
956
1da177e4
LT
957/*
958 * This is called when the buf log item is no longer needed. It should
959 * free the buf log item associated with the given buffer and clear
960 * the buffer's pointer to the buf log item. If there are no more
961 * items in the list, clear the b_iodone field of the buffer (see
962 * xfs_buf_attach_iodone() below).
963 */
964void
965xfs_buf_item_relse(
966 xfs_buf_t *bp)
967{
5f6bed76 968 xfs_buf_log_item_t *bip = bp->b_fspriv;
1da177e4 969
0b1b213f 970 trace_xfs_buf_item_relse(bp, _RET_IP_);
5f6bed76 971 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
0b1b213f 972
adadbeef 973 bp->b_fspriv = bip->bli_item.li_bio_list;
cb669ca5
CH
974 if (bp->b_fspriv == NULL)
975 bp->b_iodone = NULL;
adadbeef 976
e1f5dbd7
LM
977 xfs_buf_rele(bp);
978 xfs_buf_item_free(bip);
1da177e4
LT
979}
980
981
982/*
983 * Add the given log item with its callback to the list of callbacks
984 * to be called when the buffer's I/O completes. If it is not set
985 * already, set the buffer's b_iodone() routine to be
986 * xfs_buf_iodone_callbacks() and link the log item into the list of
987 * items rooted at b_fsprivate. Items are always added as the second
988 * entry in the list if there is a first, because the buf item code
989 * assumes that the buf log item is first.
990 */
991void
992xfs_buf_attach_iodone(
993 xfs_buf_t *bp,
994 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
995 xfs_log_item_t *lip)
996{
997 xfs_log_item_t *head_lip;
998
0c842ad4 999 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
1000
1001 lip->li_cb = cb;
adadbeef
CH
1002 head_lip = bp->b_fspriv;
1003 if (head_lip) {
1da177e4
LT
1004 lip->li_bio_list = head_lip->li_bio_list;
1005 head_lip->li_bio_list = lip;
1006 } else {
adadbeef 1007 bp->b_fspriv = lip;
1da177e4
LT
1008 }
1009
cb669ca5
CH
1010 ASSERT(bp->b_iodone == NULL ||
1011 bp->b_iodone == xfs_buf_iodone_callbacks);
1012 bp->b_iodone = xfs_buf_iodone_callbacks;
1da177e4
LT
1013}
1014
c90821a2
DC
1015/*
1016 * We can have many callbacks on a buffer. Running the callbacks individually
1017 * can cause a lot of contention on the AIL lock, so we allow for a single
1018 * callback to be able to scan the remaining lip->li_bio_list for other items
1019 * of the same type and callback to be processed in the first call.
1020 *
1021 * As a result, the loop walking the callback list below will also modify the
1022 * list. it removes the first item from the list and then runs the callback.
1023 * The loop then restarts from the new head of the list. This allows the
1024 * callback to scan and modify the list attached to the buffer and we don't
1025 * have to care about maintaining a next item pointer.
1026 */
1da177e4
LT
1027STATIC void
1028xfs_buf_do_callbacks(
c90821a2 1029 struct xfs_buf *bp)
1da177e4 1030{
c90821a2 1031 struct xfs_log_item *lip;
1da177e4 1032
adadbeef
CH
1033 while ((lip = bp->b_fspriv) != NULL) {
1034 bp->b_fspriv = lip->li_bio_list;
1da177e4
LT
1035 ASSERT(lip->li_cb != NULL);
1036 /*
1037 * Clear the next pointer so we don't have any
1038 * confusion if the item is added to another buf.
1039 * Don't touch the log item after calling its
1040 * callback, because it could have freed itself.
1041 */
1042 lip->li_bio_list = NULL;
1043 lip->li_cb(bp, lip);
1da177e4
LT
1044 }
1045}
1046
1618ea8c
CM
1047/*
1048 * Invoke the error state callback for each log item affected by the failed I/O.
1049 *
1050 * If a metadata buffer write fails with a non-permanent error, the buffer is
1051 * eventually resubmitted and so the completion callbacks are not run. The error
1052 * state may need to be propagated to the log items attached to the buffer,
1053 * however, so the next AIL push of the item knows hot to handle it correctly.
1054 */
1055STATIC void
1056xfs_buf_do_callbacks_fail(
1057 struct xfs_buf *bp)
1058{
1059 struct xfs_log_item *next;
1060 struct xfs_log_item *lip = bp->b_fspriv;
1061 struct xfs_ail *ailp = lip->li_ailp;
1062
1063 spin_lock(&ailp->xa_lock);
1064 for (; lip; lip = next) {
1065 next = lip->li_bio_list;
1066 if (lip->li_ops->iop_error)
1067 lip->li_ops->iop_error(lip, bp);
1068 }
1069 spin_unlock(&ailp->xa_lock);
1070}
1071
df309390
CM
1072static bool
1073xfs_buf_iodone_callback_error(
bfc60177 1074 struct xfs_buf *bp)
1da177e4 1075{
bfc60177
CH
1076 struct xfs_log_item *lip = bp->b_fspriv;
1077 struct xfs_mount *mp = lip->li_mountp;
1078 static ulong lasttime;
1079 static xfs_buftarg_t *lasttarg;
df309390 1080 struct xfs_error_cfg *cfg;
1da177e4 1081
bfc60177
CH
1082 /*
1083 * If we've already decided to shutdown the filesystem because of
1084 * I/O errors, there's no point in giving this a retry.
1085 */
df309390
CM
1086 if (XFS_FORCED_SHUTDOWN(mp))
1087 goto out_stale;
1da177e4 1088
49074c06 1089 if (bp->b_target != lasttarg ||
bfc60177
CH
1090 time_after(jiffies, (lasttime + 5*HZ))) {
1091 lasttime = jiffies;
b38505b0 1092 xfs_buf_ioerror_alert(bp, __func__);
bfc60177 1093 }
49074c06 1094 lasttarg = bp->b_target;
1da177e4 1095
df309390
CM
1096 /* synchronous writes will have callers process the error */
1097 if (!(bp->b_flags & XBF_ASYNC))
1098 goto out_stale;
1099
1100 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1101 ASSERT(bp->b_iodone != NULL);
1102
5539d367
ES
1103 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1104
bfc60177 1105 /*
25985edc 1106 * If the write was asynchronous then no one will be looking for the
df309390
CM
1107 * error. If this is the first failure of this type, clear the error
1108 * state and write the buffer out again. This means we always retry an
1109 * async write failure at least once, but we also need to set the buffer
1110 * up to behave correctly now for repeated failures.
bfc60177 1111 */
0b4db5df 1112 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
df309390 1113 bp->b_last_error != bp->b_error) {
0b4db5df 1114 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
df309390 1115 bp->b_last_error = bp->b_error;
77169812
ES
1116 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1117 !bp->b_first_retry_time)
5539d367 1118 bp->b_first_retry_time = jiffies;
a5ea70d2 1119
df309390
CM
1120 xfs_buf_ioerror(bp, 0);
1121 xfs_buf_submit(bp);
1122 return true;
1123 }
43ff2122 1124
df309390
CM
1125 /*
1126 * Repeated failure on an async write. Take action according to the
1127 * error configuration we have been set up to use.
1128 */
a5ea70d2
CM
1129
1130 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1131 ++bp->b_retries > cfg->max_retries)
1132 goto permanent_error;
77169812 1133 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
a5ea70d2
CM
1134 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1135 goto permanent_error;
bfc60177 1136
e6b3bb78
CM
1137 /* At unmount we may treat errors differently */
1138 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1139 goto permanent_error;
1140
1618ea8c
CM
1141 /*
1142 * Still a transient error, run IO completion failure callbacks and let
1143 * the higher layers retry the buffer.
1144 */
1145 xfs_buf_do_callbacks_fail(bp);
df309390
CM
1146 xfs_buf_ioerror(bp, 0);
1147 xfs_buf_relse(bp);
1148 return true;
0b1b213f 1149
bfc60177 1150 /*
df309390
CM
1151 * Permanent error - we need to trigger a shutdown if we haven't already
1152 * to indicate that inconsistency will result from this action.
bfc60177 1153 */
df309390
CM
1154permanent_error:
1155 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1156out_stale:
c867cb61 1157 xfs_buf_stale(bp);
b0388bf1 1158 bp->b_flags |= XBF_DONE;
0b1b213f 1159 trace_xfs_buf_error_relse(bp, _RET_IP_);
df309390
CM
1160 return false;
1161}
1162
1163/*
1164 * This is the iodone() function for buffers which have had callbacks attached
1165 * to them by xfs_buf_attach_iodone(). We need to iterate the items on the
1166 * callback list, mark the buffer as having no more callbacks and then push the
1167 * buffer through IO completion processing.
1168 */
1169void
1170xfs_buf_iodone_callbacks(
1171 struct xfs_buf *bp)
1172{
1173 /*
1174 * If there is an error, process it. Some errors require us
1175 * to run callbacks after failure processing is done so we
1176 * detect that and take appropriate action.
1177 */
1178 if (bp->b_error && xfs_buf_iodone_callback_error(bp))
1179 return;
1180
1181 /*
1182 * Successful IO or permanent error. Either way, we can clear the
1183 * retry state here in preparation for the next error that may occur.
1184 */
1185 bp->b_last_error = 0;
a5ea70d2 1186 bp->b_retries = 0;
4dd2eb63 1187 bp->b_first_retry_time = 0;
0b1b213f 1188
c90821a2 1189 xfs_buf_do_callbacks(bp);
adadbeef 1190 bp->b_fspriv = NULL;
cb669ca5 1191 bp->b_iodone = NULL;
e8aaba9a 1192 xfs_buf_ioend(bp);
1da177e4
LT
1193}
1194
1da177e4
LT
1195/*
1196 * This is the iodone() function for buffers which have been
1197 * logged. It is called when they are eventually flushed out.
1198 * It should remove the buf item from the AIL, and free the buf item.
1199 * It is called by xfs_buf_iodone_callbacks() above which will take
1200 * care of cleaning up the buffer itself.
1201 */
1da177e4
LT
1202void
1203xfs_buf_iodone(
ca30b2a7
CH
1204 struct xfs_buf *bp,
1205 struct xfs_log_item *lip)
1da177e4 1206{
ca30b2a7 1207 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 1208
ca30b2a7 1209 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 1210
e1f5dbd7 1211 xfs_buf_rele(bp);
1da177e4
LT
1212
1213 /*
1214 * If we are forcibly shutting down, this may well be
1215 * off the AIL already. That's because we simulate the
1216 * log-committed callbacks to unpin these buffers. Or we may never
1217 * have put this item on AIL because of the transaction was
783a2f65 1218 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1219 *
1220 * Either way, AIL is useless if we're forcing a shutdown.
1221 */
fc1829f3 1222 spin_lock(&ailp->xa_lock);
04913fdd 1223 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
ca30b2a7 1224 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1225}
4f6d4e8f
CM
1226
1227/*
1228 * Requeue a failed buffer for writeback
1229 *
1230 * Return true if the buffer has been re-queued properly, false otherwise
1231 */
1232bool
1233xfs_buf_resubmit_failed_buffers(
1234 struct xfs_buf *bp,
1235 struct xfs_log_item *lip,
1236 struct list_head *buffer_list)
1237{
1238 struct xfs_log_item *next;
1239
1240 /*
1241 * Clear XFS_LI_FAILED flag from all items before resubmit
1242 *
1243 * XFS_LI_FAILED set/clear is protected by xa_lock, caller this
1244 * function already have it acquired
1245 */
1246 for (; lip; lip = next) {
1247 next = lip->li_bio_list;
1248 xfs_clear_li_failed(lip);
1249 }
1250
1251 /* Add this buffer back to the delayed write list */
1252 return xfs_buf_delwri_queue(bp, buffer_list);
1253}