]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_buf_item.c
xfs: introduce xlog_copy_iovec
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_buf_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
239880ef
DC
20#include "xfs_log_format.h"
21#include "xfs_trans_resv.h"
a844f451 22#include "xfs_bit.h"
1da177e4 23#include "xfs_sb.h"
da353b0d 24#include "xfs_ag.h"
1da177e4 25#include "xfs_mount.h"
239880ef 26#include "xfs_trans.h"
a844f451 27#include "xfs_buf_item.h"
1da177e4 28#include "xfs_trans_priv.h"
1da177e4 29#include "xfs_error.h"
0b1b213f 30#include "xfs_trace.h"
239880ef 31#include "xfs_log.h"
1da177e4
LT
32
33
34kmem_zone_t *xfs_buf_item_zone;
35
7bfa31d8
CH
36static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37{
38 return container_of(lip, struct xfs_buf_log_item, bli_item);
39}
40
c90821a2 41STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
1da177e4 42
166d1368
DC
43static inline int
44xfs_buf_log_format_size(
45 struct xfs_buf_log_format *blfp)
46{
47 return offsetof(struct xfs_buf_log_format, blf_data_map) +
48 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
49}
50
1da177e4
LT
51/*
52 * This returns the number of log iovecs needed to log the
53 * given buf log item.
54 *
55 * It calculates this as 1 iovec for the buf log format structure
56 * and 1 for each stretch of non-contiguous chunks to be logged.
57 * Contiguous chunks are logged in a single iovec.
58 *
59 * If the XFS_BLI_STALE flag has been set, then log nothing.
60 */
166d1368 61STATIC void
372cc85e
DC
62xfs_buf_item_size_segment(
63 struct xfs_buf_log_item *bip,
166d1368
DC
64 struct xfs_buf_log_format *blfp,
65 int *nvecs,
66 int *nbytes)
1da177e4 67{
7bfa31d8 68 struct xfs_buf *bp = bip->bli_buf;
7bfa31d8
CH
69 int next_bit;
70 int last_bit;
1da177e4 71
372cc85e
DC
72 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
73 if (last_bit == -1)
166d1368 74 return;
372cc85e
DC
75
76 /*
77 * initial count for a dirty buffer is 2 vectors - the format structure
78 * and the first dirty region.
79 */
166d1368
DC
80 *nvecs += 2;
81 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
1da177e4 82
1da177e4
LT
83 while (last_bit != -1) {
84 /*
85 * This takes the bit number to start looking from and
86 * returns the next set bit from there. It returns -1
87 * if there are no more bits set or the start bit is
88 * beyond the end of the bitmap.
89 */
372cc85e
DC
90 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
91 last_bit + 1);
1da177e4
LT
92 /*
93 * If we run out of bits, leave the loop,
94 * else if we find a new set of bits bump the number of vecs,
95 * else keep scanning the current set of bits.
96 */
97 if (next_bit == -1) {
372cc85e 98 break;
1da177e4
LT
99 } else if (next_bit != last_bit + 1) {
100 last_bit = next_bit;
166d1368 101 (*nvecs)++;
c1155410
DC
102 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
103 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
104 XFS_BLF_CHUNK)) {
1da177e4 105 last_bit = next_bit;
166d1368 106 (*nvecs)++;
1da177e4
LT
107 } else {
108 last_bit++;
109 }
166d1368 110 *nbytes += XFS_BLF_CHUNK;
1da177e4 111 }
1da177e4
LT
112}
113
114/*
372cc85e
DC
115 * This returns the number of log iovecs needed to log the given buf log item.
116 *
117 * It calculates this as 1 iovec for the buf log format structure and 1 for each
118 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
119 * in a single iovec.
120 *
121 * Discontiguous buffers need a format structure per region that that is being
122 * logged. This makes the changes in the buffer appear to log recovery as though
123 * they came from separate buffers, just like would occur if multiple buffers
124 * were used instead of a single discontiguous buffer. This enables
125 * discontiguous buffers to be in-memory constructs, completely transparent to
126 * what ends up on disk.
127 *
128 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
129 * format structures.
1da177e4 130 */
166d1368 131STATIC void
372cc85e 132xfs_buf_item_size(
166d1368
DC
133 struct xfs_log_item *lip,
134 int *nvecs,
135 int *nbytes)
1da177e4 136{
7bfa31d8 137 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
372cc85e
DC
138 int i;
139
140 ASSERT(atomic_read(&bip->bli_refcount) > 0);
141 if (bip->bli_flags & XFS_BLI_STALE) {
142 /*
143 * The buffer is stale, so all we need to log
144 * is the buf log format structure with the
145 * cancel flag in it.
146 */
147 trace_xfs_buf_item_size_stale(bip);
b9438173 148 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
166d1368
DC
149 *nvecs += bip->bli_format_count;
150 for (i = 0; i < bip->bli_format_count; i++) {
151 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
152 }
153 return;
372cc85e
DC
154 }
155
156 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
157
5f6bed76
DC
158 if (bip->bli_flags & XFS_BLI_ORDERED) {
159 /*
160 * The buffer has been logged just to order it.
161 * It is not being included in the transaction
162 * commit, so no vectors are used at all.
163 */
164 trace_xfs_buf_item_size_ordered(bip);
166d1368
DC
165 *nvecs = XFS_LOG_VEC_ORDERED;
166 return;
5f6bed76
DC
167 }
168
372cc85e
DC
169 /*
170 * the vector count is based on the number of buffer vectors we have
171 * dirty bits in. This will only be greater than one when we have a
172 * compound buffer with more than one segment dirty. Hence for compound
173 * buffers we need to track which segment the dirty bits correspond to,
174 * and when we move from one segment to the next increment the vector
175 * count for the extra buf log format structure that will need to be
176 * written.
177 */
372cc85e 178 for (i = 0; i < bip->bli_format_count; i++) {
166d1368
DC
179 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
180 nvecs, nbytes);
372cc85e 181 }
372cc85e 182 trace_xfs_buf_item_size(bip);
372cc85e
DC
183}
184
1234351c 185static inline void
7aeb7222 186xfs_buf_item_copy_iovec(
1234351c 187 struct xfs_log_iovec **vecp,
7aeb7222
CH
188 struct xfs_buf *bp,
189 uint offset,
190 int first_bit,
191 uint nbits)
192{
193 offset += first_bit * XFS_BLF_CHUNK;
1234351c
CH
194 xlog_copy_iovec(vecp, XLOG_REG_TYPE_BCHUNK,
195 xfs_buf_offset(bp, offset),
196 nbits * XFS_BLF_CHUNK);
7aeb7222
CH
197}
198
199static inline bool
200xfs_buf_item_straddle(
201 struct xfs_buf *bp,
202 uint offset,
203 int next_bit,
204 int last_bit)
205{
206 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
207 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
208 XFS_BLF_CHUNK);
209}
210
1234351c 211static void
372cc85e
DC
212xfs_buf_item_format_segment(
213 struct xfs_buf_log_item *bip,
1234351c 214 struct xfs_log_iovec **vecp,
372cc85e
DC
215 uint offset,
216 struct xfs_buf_log_format *blfp)
217{
7bfa31d8 218 struct xfs_buf *bp = bip->bli_buf;
1da177e4
LT
219 uint base_size;
220 uint nvecs;
1da177e4
LT
221 int first_bit;
222 int last_bit;
223 int next_bit;
224 uint nbits;
1da177e4 225
372cc85e 226 /* copy the flags across from the base format item */
b9438173 227 blfp->blf_flags = bip->__bli_format.blf_flags;
1da177e4
LT
228
229 /*
77c1a08f
DC
230 * Base size is the actual size of the ondisk structure - it reflects
231 * the actual size of the dirty bitmap rather than the size of the in
232 * memory structure.
1da177e4 233 */
166d1368 234 base_size = xfs_buf_log_format_size(blfp);
820a554f
MT
235
236 nvecs = 0;
237 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
238 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
239 /*
240 * If the map is not be dirty in the transaction, mark
241 * the size as zero and do not advance the vector pointer.
242 */
243 goto out;
244 }
245
1234351c 246 xlog_copy_iovec(vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
1da177e4
LT
247 nvecs = 1;
248
249 if (bip->bli_flags & XFS_BLI_STALE) {
250 /*
251 * The buffer is stale, so all we need to log
252 * is the buf log format structure with the
253 * cancel flag in it.
254 */
0b1b213f 255 trace_xfs_buf_item_format_stale(bip);
372cc85e 256 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
820a554f 257 goto out;
1da177e4
LT
258 }
259
5f6bed76 260
1da177e4
LT
261 /*
262 * Fill in an iovec for each set of contiguous chunks.
263 */
1da177e4
LT
264 last_bit = first_bit;
265 nbits = 1;
266 for (;;) {
267 /*
268 * This takes the bit number to start looking from and
269 * returns the next set bit from there. It returns -1
270 * if there are no more bits set or the start bit is
271 * beyond the end of the bitmap.
272 */
372cc85e
DC
273 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
274 (uint)last_bit + 1);
1da177e4 275 /*
7aeb7222
CH
276 * If we run out of bits fill in the last iovec and get out of
277 * the loop. Else if we start a new set of bits then fill in
278 * the iovec for the series we were looking at and start
279 * counting the bits in the new one. Else we're still in the
280 * same set of bits so just keep counting and scanning.
1da177e4
LT
281 */
282 if (next_bit == -1) {
7aeb7222
CH
283 xfs_buf_item_copy_iovec(vecp, bp, offset,
284 first_bit, nbits);
1da177e4
LT
285 nvecs++;
286 break;
7aeb7222
CH
287 } else if (next_bit != last_bit + 1 ||
288 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
1234351c
CH
289 xfs_buf_item_copy_iovec(vecp, bp, offset,
290 first_bit, nbits);
709da6a6 291 nvecs++;
1da177e4
LT
292 first_bit = next_bit;
293 last_bit = next_bit;
294 nbits = 1;
295 } else {
296 last_bit++;
297 nbits++;
298 }
299 }
820a554f
MT
300out:
301 blfp->blf_size = nvecs;
372cc85e
DC
302}
303
304/*
305 * This is called to fill in the vector of log iovecs for the
306 * given log buf item. It fills the first entry with a buf log
307 * format structure, and the rest point to contiguous chunks
308 * within the buffer.
309 */
310STATIC void
311xfs_buf_item_format(
312 struct xfs_log_item *lip,
313 struct xfs_log_iovec *vecp)
314{
315 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
316 struct xfs_buf *bp = bip->bli_buf;
317 uint offset = 0;
318 int i;
319
320 ASSERT(atomic_read(&bip->bli_refcount) > 0);
321 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
322 (bip->bli_flags & XFS_BLI_STALE));
323
324 /*
325 * If it is an inode buffer, transfer the in-memory state to the
ddf6ad01
DC
326 * format flags and clear the in-memory state.
327 *
328 * For buffer based inode allocation, we do not transfer
372cc85e
DC
329 * this state if the inode buffer allocation has not yet been committed
330 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
331 * correct replay of the inode allocation.
ddf6ad01
DC
332 *
333 * For icreate item based inode allocation, the buffers aren't written
334 * to the journal during allocation, and hence we should always tag the
335 * buffer as an inode buffer so that the correct unlinked list replay
336 * occurs during recovery.
372cc85e
DC
337 */
338 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
ddf6ad01
DC
339 if (xfs_sb_version_hascrc(&lip->li_mountp->m_sb) ||
340 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
372cc85e 341 xfs_log_item_in_current_chkpt(lip)))
b9438173 342 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
372cc85e
DC
343 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
344 }
345
5f6bed76
DC
346 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
347 XFS_BLI_ORDERED) {
348 /*
349 * The buffer has been logged just to order it. It is not being
350 * included in the transaction commit, so don't format it.
351 */
352 trace_xfs_buf_item_format_ordered(bip);
353 return;
354 }
355
372cc85e 356 for (i = 0; i < bip->bli_format_count; i++) {
1234351c
CH
357 xfs_buf_item_format_segment(bip, &vecp, offset,
358 &bip->bli_formats[i]);
372cc85e
DC
359 offset += bp->b_maps[i].bm_len;
360 }
1da177e4
LT
361
362 /*
363 * Check to make sure everything is consistent.
364 */
0b1b213f 365 trace_xfs_buf_item_format(bip);
1da177e4
LT
366}
367
368/*
64fc35de 369 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 370 * so it cannot be written out.
64fc35de
DC
371 *
372 * We also always take a reference to the buffer log item here so that the bli
373 * is held while the item is pinned in memory. This means that we can
374 * unconditionally drop the reference count a transaction holds when the
375 * transaction is completed.
1da177e4 376 */
ba0f32d4 377STATIC void
1da177e4 378xfs_buf_item_pin(
7bfa31d8 379 struct xfs_log_item *lip)
1da177e4 380{
7bfa31d8 381 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 382
1da177e4
LT
383 ASSERT(atomic_read(&bip->bli_refcount) > 0);
384 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
5f6bed76 385 (bip->bli_flags & XFS_BLI_ORDERED) ||
1da177e4 386 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 387
0b1b213f 388 trace_xfs_buf_item_pin(bip);
4d16e924
CH
389
390 atomic_inc(&bip->bli_refcount);
391 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
392}
393
1da177e4
LT
394/*
395 * This is called to unpin the buffer associated with the buf log
396 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
397 *
398 * Also drop the reference to the buf item for the current transaction.
399 * If the XFS_BLI_STALE flag is set and we are the last reference,
400 * then free up the buf log item and unlock the buffer.
9412e318
CH
401 *
402 * If the remove flag is set we are called from uncommit in the
403 * forced-shutdown path. If that is true and the reference count on
404 * the log item is going to drop to zero we need to free the item's
405 * descriptor in the transaction.
1da177e4 406 */
ba0f32d4 407STATIC void
1da177e4 408xfs_buf_item_unpin(
7bfa31d8 409 struct xfs_log_item *lip,
9412e318 410 int remove)
1da177e4 411{
7bfa31d8 412 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
9412e318 413 xfs_buf_t *bp = bip->bli_buf;
7bfa31d8 414 struct xfs_ail *ailp = lip->li_ailp;
8e123850 415 int stale = bip->bli_flags & XFS_BLI_STALE;
7bfa31d8 416 int freed;
1da177e4 417
adadbeef 418 ASSERT(bp->b_fspriv == bip);
1da177e4 419 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 420
0b1b213f 421 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
422
423 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
424
425 if (atomic_dec_and_test(&bp->b_pin_count))
426 wake_up_all(&bp->b_waiters);
7bfa31d8 427
1da177e4
LT
428 if (freed && stale) {
429 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 430 ASSERT(xfs_buf_islocked(bp));
1da177e4 431 ASSERT(XFS_BUF_ISSTALE(bp));
b9438173 432 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 433
0b1b213f
CH
434 trace_xfs_buf_item_unpin_stale(bip);
435
9412e318
CH
436 if (remove) {
437 /*
e34a314c
DC
438 * If we are in a transaction context, we have to
439 * remove the log item from the transaction as we are
440 * about to release our reference to the buffer. If we
441 * don't, the unlock that occurs later in
442 * xfs_trans_uncommit() will try to reference the
9412e318
CH
443 * buffer which we no longer have a hold on.
444 */
e34a314c
DC
445 if (lip->li_desc)
446 xfs_trans_del_item(lip);
9412e318
CH
447
448 /*
449 * Since the transaction no longer refers to the buffer,
450 * the buffer should no longer refer to the transaction.
451 */
bf9d9013 452 bp->b_transp = NULL;
9412e318
CH
453 }
454
1da177e4
LT
455 /*
456 * If we get called here because of an IO error, we may
783a2f65 457 * or may not have the item on the AIL. xfs_trans_ail_delete()
1da177e4 458 * will take care of that situation.
783a2f65 459 * xfs_trans_ail_delete() drops the AIL lock.
1da177e4
LT
460 */
461 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
c90821a2 462 xfs_buf_do_callbacks(bp);
adadbeef 463 bp->b_fspriv = NULL;
cb669ca5 464 bp->b_iodone = NULL;
1da177e4 465 } else {
783a2f65 466 spin_lock(&ailp->xa_lock);
04913fdd 467 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 468 xfs_buf_item_relse(bp);
adadbeef 469 ASSERT(bp->b_fspriv == NULL);
1da177e4
LT
470 }
471 xfs_buf_relse(bp);
960c60af 472 } else if (freed && remove) {
137fff09
DC
473 /*
474 * There are currently two references to the buffer - the active
475 * LRU reference and the buf log item. What we are about to do
476 * here - simulate a failed IO completion - requires 3
477 * references.
478 *
479 * The LRU reference is removed by the xfs_buf_stale() call. The
480 * buf item reference is removed by the xfs_buf_iodone()
481 * callback that is run by xfs_buf_do_callbacks() during ioend
482 * processing (via the bp->b_iodone callback), and then finally
483 * the ioend processing will drop the IO reference if the buffer
484 * is marked XBF_ASYNC.
485 *
486 * Hence we need to take an additional reference here so that IO
487 * completion processing doesn't free the buffer prematurely.
488 */
960c60af 489 xfs_buf_lock(bp);
137fff09
DC
490 xfs_buf_hold(bp);
491 bp->b_flags |= XBF_ASYNC;
960c60af
CH
492 xfs_buf_ioerror(bp, EIO);
493 XFS_BUF_UNDONE(bp);
494 xfs_buf_stale(bp);
495 xfs_buf_ioend(bp, 0);
1da177e4
LT
496 }
497}
498
ba0f32d4 499STATIC uint
43ff2122
CH
500xfs_buf_item_push(
501 struct xfs_log_item *lip,
502 struct list_head *buffer_list)
1da177e4 503{
7bfa31d8
CH
504 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
505 struct xfs_buf *bp = bip->bli_buf;
43ff2122 506 uint rval = XFS_ITEM_SUCCESS;
1da177e4 507
811e64c7 508 if (xfs_buf_ispinned(bp))
1da177e4 509 return XFS_ITEM_PINNED;
5337fe9b
BF
510 if (!xfs_buf_trylock(bp)) {
511 /*
512 * If we have just raced with a buffer being pinned and it has
513 * been marked stale, we could end up stalling until someone else
514 * issues a log force to unpin the stale buffer. Check for the
515 * race condition here so xfsaild recognizes the buffer is pinned
516 * and queues a log force to move it along.
517 */
518 if (xfs_buf_ispinned(bp))
519 return XFS_ITEM_PINNED;
1da177e4 520 return XFS_ITEM_LOCKED;
5337fe9b 521 }
1da177e4 522
1da177e4 523 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
524
525 trace_xfs_buf_item_push(bip);
526
527 if (!xfs_buf_delwri_queue(bp, buffer_list))
528 rval = XFS_ITEM_FLUSHING;
529 xfs_buf_unlock(bp);
530 return rval;
1da177e4
LT
531}
532
533/*
64fc35de
DC
534 * Release the buffer associated with the buf log item. If there is no dirty
535 * logged data associated with the buffer recorded in the buf log item, then
536 * free the buf log item and remove the reference to it in the buffer.
1da177e4 537 *
64fc35de
DC
538 * This call ignores the recursion count. It is only called when the buffer
539 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 540 *
64fc35de
DC
541 * We unconditionally drop the transaction's reference to the log item. If the
542 * item was logged, then another reference was taken when it was pinned, so we
543 * can safely drop the transaction reference now. This also allows us to avoid
544 * potential races with the unpin code freeing the bli by not referencing the
545 * bli after we've dropped the reference count.
546 *
547 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
548 * if necessary but do not unlock the buffer. This is for support of
549 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
550 * free the item.
1da177e4 551 */
ba0f32d4 552STATIC void
1da177e4 553xfs_buf_item_unlock(
7bfa31d8 554 struct xfs_log_item *lip)
1da177e4 555{
7bfa31d8
CH
556 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
557 struct xfs_buf *bp = bip->bli_buf;
5f6bed76
DC
558 bool clean;
559 bool aborted;
560 int flags;
1da177e4 561
64fc35de 562 /* Clear the buffer's association with this transaction. */
bf9d9013 563 bp->b_transp = NULL;
1da177e4
LT
564
565 /*
64fc35de
DC
566 * If this is a transaction abort, don't return early. Instead, allow
567 * the brelse to happen. Normally it would be done for stale
568 * (cancelled) buffers at unpin time, but we'll never go through the
569 * pin/unpin cycle if we abort inside commit.
1da177e4 570 */
5f6bed76 571 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
1da177e4 572 /*
5f6bed76
DC
573 * Before possibly freeing the buf item, copy the per-transaction state
574 * so we can reference it safely later after clearing it from the
575 * buffer log item.
64fc35de 576 */
5f6bed76
DC
577 flags = bip->bli_flags;
578 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
64fc35de
DC
579
580 /*
581 * If the buf item is marked stale, then don't do anything. We'll
582 * unlock the buffer and free the buf item when the buffer is unpinned
583 * for the last time.
1da177e4 584 */
5f6bed76 585 if (flags & XFS_BLI_STALE) {
0b1b213f 586 trace_xfs_buf_item_unlock_stale(bip);
b9438173 587 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
64fc35de
DC
588 if (!aborted) {
589 atomic_dec(&bip->bli_refcount);
1da177e4 590 return;
64fc35de 591 }
1da177e4
LT
592 }
593
0b1b213f 594 trace_xfs_buf_item_unlock(bip);
1da177e4
LT
595
596 /*
64fc35de 597 * If the buf item isn't tracking any data, free it, otherwise drop the
3b19034d
DC
598 * reference we hold to it. If we are aborting the transaction, this may
599 * be the only reference to the buf item, so we free it anyway
600 * regardless of whether it is dirty or not. A dirty abort implies a
601 * shutdown, anyway.
5f6bed76
DC
602 *
603 * Ordered buffers are dirty but may have no recorded changes, so ensure
604 * we only release clean items here.
1da177e4 605 */
5f6bed76
DC
606 clean = (flags & XFS_BLI_DIRTY) ? false : true;
607 if (clean) {
608 int i;
609 for (i = 0; i < bip->bli_format_count; i++) {
610 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
611 bip->bli_formats[i].blf_map_size)) {
612 clean = false;
613 break;
614 }
c883d0c4
MT
615 }
616 }
46f9d2eb
DC
617
618 /*
619 * Clean buffers, by definition, cannot be in the AIL. However, aborted
620 * buffers may be dirty and hence in the AIL. Therefore if we are
621 * aborting a buffer and we've just taken the last refernce away, we
622 * have to check if it is in the AIL before freeing it. We need to free
623 * it in this case, because an aborted transaction has already shut the
624 * filesystem down and this is the last chance we will have to do so.
625 */
626 if (atomic_dec_and_test(&bip->bli_refcount)) {
627 if (clean)
628 xfs_buf_item_relse(bp);
629 else if (aborted) {
630 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
631 if (lip->li_flags & XFS_LI_IN_AIL) {
48852358 632 spin_lock(&lip->li_ailp->xa_lock);
46f9d2eb
DC
633 xfs_trans_ail_delete(lip->li_ailp, lip,
634 SHUTDOWN_LOG_IO_ERROR);
635 }
3b19034d
DC
636 xfs_buf_item_relse(bp);
637 }
46f9d2eb 638 }
1da177e4 639
5f6bed76 640 if (!(flags & XFS_BLI_HOLD))
1da177e4 641 xfs_buf_relse(bp);
1da177e4
LT
642}
643
644/*
645 * This is called to find out where the oldest active copy of the
646 * buf log item in the on disk log resides now that the last log
647 * write of it completed at the given lsn.
648 * We always re-log all the dirty data in a buffer, so usually the
649 * latest copy in the on disk log is the only one that matters. For
650 * those cases we simply return the given lsn.
651 *
652 * The one exception to this is for buffers full of newly allocated
653 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
654 * flag set, indicating that only the di_next_unlinked fields from the
655 * inodes in the buffers will be replayed during recovery. If the
656 * original newly allocated inode images have not yet been flushed
657 * when the buffer is so relogged, then we need to make sure that we
658 * keep the old images in the 'active' portion of the log. We do this
659 * by returning the original lsn of that transaction here rather than
660 * the current one.
661 */
ba0f32d4 662STATIC xfs_lsn_t
1da177e4 663xfs_buf_item_committed(
7bfa31d8 664 struct xfs_log_item *lip,
1da177e4
LT
665 xfs_lsn_t lsn)
666{
7bfa31d8
CH
667 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
668
0b1b213f
CH
669 trace_xfs_buf_item_committed(bip);
670
7bfa31d8
CH
671 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
672 return lip->li_lsn;
673 return lsn;
1da177e4
LT
674}
675
ba0f32d4 676STATIC void
7bfa31d8
CH
677xfs_buf_item_committing(
678 struct xfs_log_item *lip,
679 xfs_lsn_t commit_lsn)
1da177e4
LT
680{
681}
682
683/*
684 * This is the ops vector shared by all buf log items.
685 */
272e42b2 686static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
687 .iop_size = xfs_buf_item_size,
688 .iop_format = xfs_buf_item_format,
689 .iop_pin = xfs_buf_item_pin,
690 .iop_unpin = xfs_buf_item_unpin,
7bfa31d8
CH
691 .iop_unlock = xfs_buf_item_unlock,
692 .iop_committed = xfs_buf_item_committed,
693 .iop_push = xfs_buf_item_push,
7bfa31d8 694 .iop_committing = xfs_buf_item_committing
1da177e4
LT
695};
696
372cc85e
DC
697STATIC int
698xfs_buf_item_get_format(
699 struct xfs_buf_log_item *bip,
700 int count)
701{
702 ASSERT(bip->bli_formats == NULL);
703 bip->bli_format_count = count;
704
705 if (count == 1) {
b9438173 706 bip->bli_formats = &bip->__bli_format;
372cc85e
DC
707 return 0;
708 }
709
710 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
711 KM_SLEEP);
712 if (!bip->bli_formats)
713 return ENOMEM;
714 return 0;
715}
716
717STATIC void
718xfs_buf_item_free_format(
719 struct xfs_buf_log_item *bip)
720{
b9438173 721 if (bip->bli_formats != &bip->__bli_format) {
372cc85e
DC
722 kmem_free(bip->bli_formats);
723 bip->bli_formats = NULL;
724 }
725}
1da177e4
LT
726
727/*
728 * Allocate a new buf log item to go with the given buffer.
729 * Set the buffer's b_fsprivate field to point to the new
730 * buf log item. If there are other item's attached to the
731 * buffer (see xfs_buf_attach_iodone() below), then put the
732 * buf log item at the front.
733 */
734void
735xfs_buf_item_init(
736 xfs_buf_t *bp,
737 xfs_mount_t *mp)
738{
adadbeef 739 xfs_log_item_t *lip = bp->b_fspriv;
1da177e4
LT
740 xfs_buf_log_item_t *bip;
741 int chunks;
742 int map_size;
372cc85e
DC
743 int error;
744 int i;
1da177e4
LT
745
746 /*
747 * Check to see if there is already a buf log item for
748 * this buffer. If there is, it is guaranteed to be
749 * the first. If we do already have one, there is
750 * nothing to do here so return.
751 */
ebad861b 752 ASSERT(bp->b_target->bt_mount == mp);
adadbeef
CH
753 if (lip != NULL && lip->li_type == XFS_LI_BUF)
754 return;
1da177e4 755
372cc85e 756 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
43f5efc5 757 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 758 bip->bli_buf = bp;
e1f5dbd7 759 xfs_buf_hold(bp);
372cc85e
DC
760
761 /*
762 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
763 * can be divided into. Make sure not to truncate any pieces.
764 * map_size is the size of the bitmap needed to describe the
765 * chunks of the buffer.
766 *
767 * Discontiguous buffer support follows the layout of the underlying
768 * buffer. This makes the implementation as simple as possible.
769 */
770 error = xfs_buf_item_get_format(bip, bp->b_map_count);
771 ASSERT(error == 0);
772
773 for (i = 0; i < bip->bli_format_count; i++) {
774 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
775 XFS_BLF_CHUNK);
776 map_size = DIV_ROUND_UP(chunks, NBWORD);
777
778 bip->bli_formats[i].blf_type = XFS_LI_BUF;
779 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
780 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
781 bip->bli_formats[i].blf_map_size = map_size;
782 }
1da177e4
LT
783
784#ifdef XFS_TRANS_DEBUG
785 /*
786 * Allocate the arrays for tracking what needs to be logged
787 * and what our callers request to be logged. bli_orig
788 * holds a copy of the original, clean buffer for comparison
789 * against, and bli_logged keeps a 1 bit flag per byte in
790 * the buffer to indicate which bytes the callers have asked
791 * to have logged.
792 */
aa0e8833
DC
793 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
794 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
795 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
1da177e4
LT
796#endif
797
798 /*
799 * Put the buf item into the list of items attached to the
800 * buffer at the front.
801 */
adadbeef
CH
802 if (bp->b_fspriv)
803 bip->bli_item.li_bio_list = bp->b_fspriv;
804 bp->b_fspriv = bip;
1da177e4
LT
805}
806
807
808/*
809 * Mark bytes first through last inclusive as dirty in the buf
810 * item's bitmap.
811 */
632b89e8 812static void
372cc85e
DC
813xfs_buf_item_log_segment(
814 struct xfs_buf_log_item *bip,
1da177e4 815 uint first,
372cc85e
DC
816 uint last,
817 uint *map)
1da177e4
LT
818{
819 uint first_bit;
820 uint last_bit;
821 uint bits_to_set;
822 uint bits_set;
823 uint word_num;
824 uint *wordp;
825 uint bit;
826 uint end_bit;
827 uint mask;
828
1da177e4
LT
829 /*
830 * Convert byte offsets to bit numbers.
831 */
c1155410
DC
832 first_bit = first >> XFS_BLF_SHIFT;
833 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
834
835 /*
836 * Calculate the total number of bits to be set.
837 */
838 bits_to_set = last_bit - first_bit + 1;
839
840 /*
841 * Get a pointer to the first word in the bitmap
842 * to set a bit in.
843 */
844 word_num = first_bit >> BIT_TO_WORD_SHIFT;
372cc85e 845 wordp = &map[word_num];
1da177e4
LT
846
847 /*
848 * Calculate the starting bit in the first word.
849 */
850 bit = first_bit & (uint)(NBWORD - 1);
851
852 /*
853 * First set any bits in the first word of our range.
854 * If it starts at bit 0 of the word, it will be
855 * set below rather than here. That is what the variable
856 * bit tells us. The variable bits_set tracks the number
857 * of bits that have been set so far. End_bit is the number
858 * of the last bit to be set in this word plus one.
859 */
860 if (bit) {
861 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
862 mask = ((1 << (end_bit - bit)) - 1) << bit;
863 *wordp |= mask;
864 wordp++;
865 bits_set = end_bit - bit;
866 } else {
867 bits_set = 0;
868 }
869
870 /*
871 * Now set bits a whole word at a time that are between
872 * first_bit and last_bit.
873 */
874 while ((bits_to_set - bits_set) >= NBWORD) {
875 *wordp |= 0xffffffff;
876 bits_set += NBWORD;
877 wordp++;
878 }
879
880 /*
881 * Finally, set any bits left to be set in one last partial word.
882 */
883 end_bit = bits_to_set - bits_set;
884 if (end_bit) {
885 mask = (1 << end_bit) - 1;
886 *wordp |= mask;
887 }
1da177e4
LT
888}
889
372cc85e
DC
890/*
891 * Mark bytes first through last inclusive as dirty in the buf
892 * item's bitmap.
893 */
894void
895xfs_buf_item_log(
896 xfs_buf_log_item_t *bip,
897 uint first,
898 uint last)
899{
900 int i;
901 uint start;
902 uint end;
903 struct xfs_buf *bp = bip->bli_buf;
904
372cc85e
DC
905 /*
906 * walk each buffer segment and mark them dirty appropriately.
907 */
908 start = 0;
909 for (i = 0; i < bip->bli_format_count; i++) {
910 if (start > last)
911 break;
912 end = start + BBTOB(bp->b_maps[i].bm_len);
913 if (first > end) {
914 start += BBTOB(bp->b_maps[i].bm_len);
915 continue;
916 }
917 if (first < start)
918 first = start;
919 if (end > last)
920 end = last;
921
922 xfs_buf_item_log_segment(bip, first, end,
923 &bip->bli_formats[i].blf_data_map[0]);
924
925 start += bp->b_maps[i].bm_len;
926 }
927}
928
1da177e4
LT
929
930/*
5f6bed76 931 * Return 1 if the buffer has been logged or ordered in a transaction (at any
1da177e4
LT
932 * point, not just the current transaction) and 0 if not.
933 */
934uint
935xfs_buf_item_dirty(
936 xfs_buf_log_item_t *bip)
937{
938 return (bip->bli_flags & XFS_BLI_DIRTY);
939}
940
e1f5dbd7
LM
941STATIC void
942xfs_buf_item_free(
943 xfs_buf_log_item_t *bip)
944{
945#ifdef XFS_TRANS_DEBUG
946 kmem_free(bip->bli_orig);
947 kmem_free(bip->bli_logged);
948#endif /* XFS_TRANS_DEBUG */
949
372cc85e 950 xfs_buf_item_free_format(bip);
e1f5dbd7
LM
951 kmem_zone_free(xfs_buf_item_zone, bip);
952}
953
1da177e4
LT
954/*
955 * This is called when the buf log item is no longer needed. It should
956 * free the buf log item associated with the given buffer and clear
957 * the buffer's pointer to the buf log item. If there are no more
958 * items in the list, clear the b_iodone field of the buffer (see
959 * xfs_buf_attach_iodone() below).
960 */
961void
962xfs_buf_item_relse(
963 xfs_buf_t *bp)
964{
5f6bed76 965 xfs_buf_log_item_t *bip = bp->b_fspriv;
1da177e4 966
0b1b213f 967 trace_xfs_buf_item_relse(bp, _RET_IP_);
5f6bed76 968 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
0b1b213f 969
adadbeef 970 bp->b_fspriv = bip->bli_item.li_bio_list;
cb669ca5
CH
971 if (bp->b_fspriv == NULL)
972 bp->b_iodone = NULL;
adadbeef 973
e1f5dbd7
LM
974 xfs_buf_rele(bp);
975 xfs_buf_item_free(bip);
1da177e4
LT
976}
977
978
979/*
980 * Add the given log item with its callback to the list of callbacks
981 * to be called when the buffer's I/O completes. If it is not set
982 * already, set the buffer's b_iodone() routine to be
983 * xfs_buf_iodone_callbacks() and link the log item into the list of
984 * items rooted at b_fsprivate. Items are always added as the second
985 * entry in the list if there is a first, because the buf item code
986 * assumes that the buf log item is first.
987 */
988void
989xfs_buf_attach_iodone(
990 xfs_buf_t *bp,
991 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
992 xfs_log_item_t *lip)
993{
994 xfs_log_item_t *head_lip;
995
0c842ad4 996 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
997
998 lip->li_cb = cb;
adadbeef
CH
999 head_lip = bp->b_fspriv;
1000 if (head_lip) {
1da177e4
LT
1001 lip->li_bio_list = head_lip->li_bio_list;
1002 head_lip->li_bio_list = lip;
1003 } else {
adadbeef 1004 bp->b_fspriv = lip;
1da177e4
LT
1005 }
1006
cb669ca5
CH
1007 ASSERT(bp->b_iodone == NULL ||
1008 bp->b_iodone == xfs_buf_iodone_callbacks);
1009 bp->b_iodone = xfs_buf_iodone_callbacks;
1da177e4
LT
1010}
1011
c90821a2
DC
1012/*
1013 * We can have many callbacks on a buffer. Running the callbacks individually
1014 * can cause a lot of contention on the AIL lock, so we allow for a single
1015 * callback to be able to scan the remaining lip->li_bio_list for other items
1016 * of the same type and callback to be processed in the first call.
1017 *
1018 * As a result, the loop walking the callback list below will also modify the
1019 * list. it removes the first item from the list and then runs the callback.
1020 * The loop then restarts from the new head of the list. This allows the
1021 * callback to scan and modify the list attached to the buffer and we don't
1022 * have to care about maintaining a next item pointer.
1023 */
1da177e4
LT
1024STATIC void
1025xfs_buf_do_callbacks(
c90821a2 1026 struct xfs_buf *bp)
1da177e4 1027{
c90821a2 1028 struct xfs_log_item *lip;
1da177e4 1029
adadbeef
CH
1030 while ((lip = bp->b_fspriv) != NULL) {
1031 bp->b_fspriv = lip->li_bio_list;
1da177e4
LT
1032 ASSERT(lip->li_cb != NULL);
1033 /*
1034 * Clear the next pointer so we don't have any
1035 * confusion if the item is added to another buf.
1036 * Don't touch the log item after calling its
1037 * callback, because it could have freed itself.
1038 */
1039 lip->li_bio_list = NULL;
1040 lip->li_cb(bp, lip);
1da177e4
LT
1041 }
1042}
1043
1044/*
1045 * This is the iodone() function for buffers which have had callbacks
1046 * attached to them by xfs_buf_attach_iodone(). It should remove each
1047 * log item from the buffer's list and call the callback of each in turn.
1048 * When done, the buffer's fsprivate field is set to NULL and the buffer
1049 * is unlocked with a call to iodone().
1050 */
1051void
1052xfs_buf_iodone_callbacks(
bfc60177 1053 struct xfs_buf *bp)
1da177e4 1054{
bfc60177
CH
1055 struct xfs_log_item *lip = bp->b_fspriv;
1056 struct xfs_mount *mp = lip->li_mountp;
1057 static ulong lasttime;
1058 static xfs_buftarg_t *lasttarg;
1da177e4 1059
5a52c2a5 1060 if (likely(!xfs_buf_geterror(bp)))
bfc60177 1061 goto do_callbacks;
1da177e4 1062
bfc60177
CH
1063 /*
1064 * If we've already decided to shutdown the filesystem because of
1065 * I/O errors, there's no point in giving this a retry.
1066 */
1067 if (XFS_FORCED_SHUTDOWN(mp)) {
c867cb61 1068 xfs_buf_stale(bp);
c867cb61 1069 XFS_BUF_DONE(bp);
bfc60177
CH
1070 trace_xfs_buf_item_iodone(bp, _RET_IP_);
1071 goto do_callbacks;
1072 }
1da177e4 1073
49074c06 1074 if (bp->b_target != lasttarg ||
bfc60177
CH
1075 time_after(jiffies, (lasttime + 5*HZ))) {
1076 lasttime = jiffies;
b38505b0 1077 xfs_buf_ioerror_alert(bp, __func__);
bfc60177 1078 }
49074c06 1079 lasttarg = bp->b_target;
1da177e4 1080
bfc60177 1081 /*
25985edc 1082 * If the write was asynchronous then no one will be looking for the
bfc60177
CH
1083 * error. Clear the error state and write the buffer out again.
1084 *
43ff2122
CH
1085 * XXX: This helps against transient write errors, but we need to find
1086 * a way to shut the filesystem down if the writes keep failing.
1087 *
1088 * In practice we'll shut the filesystem down soon as non-transient
1089 * erorrs tend to affect the whole device and a failing log write
1090 * will make us give up. But we really ought to do better here.
bfc60177
CH
1091 */
1092 if (XFS_BUF_ISASYNC(bp)) {
43ff2122
CH
1093 ASSERT(bp->b_iodone != NULL);
1094
1095 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1096
5a52c2a5 1097 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
bfc60177
CH
1098
1099 if (!XFS_BUF_ISSTALE(bp)) {
43ff2122 1100 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
a2dcf5df 1101 xfs_buf_iorequest(bp);
43ff2122
CH
1102 } else {
1103 xfs_buf_relse(bp);
1da177e4 1104 }
43ff2122 1105
1da177e4
LT
1106 return;
1107 }
0b1b213f 1108
bfc60177
CH
1109 /*
1110 * If the write of the buffer was synchronous, we want to make
1111 * sure to return the error to the caller of xfs_bwrite().
1112 */
c867cb61 1113 xfs_buf_stale(bp);
1da177e4 1114 XFS_BUF_DONE(bp);
0b1b213f
CH
1115
1116 trace_xfs_buf_error_relse(bp, _RET_IP_);
1117
bfc60177 1118do_callbacks:
c90821a2 1119 xfs_buf_do_callbacks(bp);
adadbeef 1120 bp->b_fspriv = NULL;
cb669ca5 1121 bp->b_iodone = NULL;
bfc60177 1122 xfs_buf_ioend(bp, 0);
1da177e4
LT
1123}
1124
1da177e4
LT
1125/*
1126 * This is the iodone() function for buffers which have been
1127 * logged. It is called when they are eventually flushed out.
1128 * It should remove the buf item from the AIL, and free the buf item.
1129 * It is called by xfs_buf_iodone_callbacks() above which will take
1130 * care of cleaning up the buffer itself.
1131 */
1da177e4
LT
1132void
1133xfs_buf_iodone(
ca30b2a7
CH
1134 struct xfs_buf *bp,
1135 struct xfs_log_item *lip)
1da177e4 1136{
ca30b2a7 1137 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 1138
ca30b2a7 1139 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 1140
e1f5dbd7 1141 xfs_buf_rele(bp);
1da177e4
LT
1142
1143 /*
1144 * If we are forcibly shutting down, this may well be
1145 * off the AIL already. That's because we simulate the
1146 * log-committed callbacks to unpin these buffers. Or we may never
1147 * have put this item on AIL because of the transaction was
783a2f65 1148 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1149 *
1150 * Either way, AIL is useless if we're forcing a shutdown.
1151 */
fc1829f3 1152 spin_lock(&ailp->xa_lock);
04913fdd 1153 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
ca30b2a7 1154 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1155}