]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_buf_item.c
xfs: Inode create item recovery
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_buf_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4
LT
22#include "xfs_log.h"
23#include "xfs_trans.h"
1da177e4 24#include "xfs_sb.h"
da353b0d 25#include "xfs_ag.h"
1da177e4 26#include "xfs_mount.h"
a844f451 27#include "xfs_buf_item.h"
1da177e4 28#include "xfs_trans_priv.h"
1da177e4 29#include "xfs_error.h"
0b1b213f 30#include "xfs_trace.h"
1da177e4
LT
31
32
33kmem_zone_t *xfs_buf_item_zone;
34
7bfa31d8
CH
35static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
36{
37 return container_of(lip, struct xfs_buf_log_item, bli_item);
38}
39
c90821a2 40STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
1da177e4
LT
41
42/*
43 * This returns the number of log iovecs needed to log the
44 * given buf log item.
45 *
46 * It calculates this as 1 iovec for the buf log format structure
47 * and 1 for each stretch of non-contiguous chunks to be logged.
48 * Contiguous chunks are logged in a single iovec.
49 *
50 * If the XFS_BLI_STALE flag has been set, then log nothing.
51 */
ba0f32d4 52STATIC uint
372cc85e
DC
53xfs_buf_item_size_segment(
54 struct xfs_buf_log_item *bip,
55 struct xfs_buf_log_format *blfp)
1da177e4 56{
7bfa31d8
CH
57 struct xfs_buf *bp = bip->bli_buf;
58 uint nvecs;
59 int next_bit;
60 int last_bit;
1da177e4 61
372cc85e
DC
62 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
63 if (last_bit == -1)
64 return 0;
65
66 /*
67 * initial count for a dirty buffer is 2 vectors - the format structure
68 * and the first dirty region.
69 */
70 nvecs = 2;
1da177e4 71
1da177e4
LT
72 while (last_bit != -1) {
73 /*
74 * This takes the bit number to start looking from and
75 * returns the next set bit from there. It returns -1
76 * if there are no more bits set or the start bit is
77 * beyond the end of the bitmap.
78 */
372cc85e
DC
79 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
80 last_bit + 1);
1da177e4
LT
81 /*
82 * If we run out of bits, leave the loop,
83 * else if we find a new set of bits bump the number of vecs,
84 * else keep scanning the current set of bits.
85 */
86 if (next_bit == -1) {
372cc85e 87 break;
1da177e4
LT
88 } else if (next_bit != last_bit + 1) {
89 last_bit = next_bit;
90 nvecs++;
c1155410
DC
91 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
92 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
93 XFS_BLF_CHUNK)) {
1da177e4
LT
94 last_bit = next_bit;
95 nvecs++;
96 } else {
97 last_bit++;
98 }
99 }
100
1da177e4
LT
101 return nvecs;
102}
103
104/*
372cc85e
DC
105 * This returns the number of log iovecs needed to log the given buf log item.
106 *
107 * It calculates this as 1 iovec for the buf log format structure and 1 for each
108 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
109 * in a single iovec.
110 *
111 * Discontiguous buffers need a format structure per region that that is being
112 * logged. This makes the changes in the buffer appear to log recovery as though
113 * they came from separate buffers, just like would occur if multiple buffers
114 * were used instead of a single discontiguous buffer. This enables
115 * discontiguous buffers to be in-memory constructs, completely transparent to
116 * what ends up on disk.
117 *
118 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
119 * format structures.
1da177e4 120 */
372cc85e
DC
121STATIC uint
122xfs_buf_item_size(
123 struct xfs_log_item *lip)
1da177e4 124{
7bfa31d8 125 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
372cc85e
DC
126 uint nvecs;
127 int i;
128
129 ASSERT(atomic_read(&bip->bli_refcount) > 0);
130 if (bip->bli_flags & XFS_BLI_STALE) {
131 /*
132 * The buffer is stale, so all we need to log
133 * is the buf log format structure with the
134 * cancel flag in it.
135 */
136 trace_xfs_buf_item_size_stale(bip);
b9438173 137 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
372cc85e
DC
138 return bip->bli_format_count;
139 }
140
141 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
142
5f6bed76
DC
143 if (bip->bli_flags & XFS_BLI_ORDERED) {
144 /*
145 * The buffer has been logged just to order it.
146 * It is not being included in the transaction
147 * commit, so no vectors are used at all.
148 */
149 trace_xfs_buf_item_size_ordered(bip);
150 return XFS_LOG_VEC_ORDERED;
151 }
152
372cc85e
DC
153 /*
154 * the vector count is based on the number of buffer vectors we have
155 * dirty bits in. This will only be greater than one when we have a
156 * compound buffer with more than one segment dirty. Hence for compound
157 * buffers we need to track which segment the dirty bits correspond to,
158 * and when we move from one segment to the next increment the vector
159 * count for the extra buf log format structure that will need to be
160 * written.
161 */
162 nvecs = 0;
163 for (i = 0; i < bip->bli_format_count; i++) {
164 nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
165 }
166
167 trace_xfs_buf_item_size(bip);
168 return nvecs;
169}
170
171static struct xfs_log_iovec *
172xfs_buf_item_format_segment(
173 struct xfs_buf_log_item *bip,
174 struct xfs_log_iovec *vecp,
175 uint offset,
176 struct xfs_buf_log_format *blfp)
177{
7bfa31d8 178 struct xfs_buf *bp = bip->bli_buf;
1da177e4
LT
179 uint base_size;
180 uint nvecs;
1da177e4
LT
181 int first_bit;
182 int last_bit;
183 int next_bit;
184 uint nbits;
185 uint buffer_offset;
186
372cc85e 187 /* copy the flags across from the base format item */
b9438173 188 blfp->blf_flags = bip->__bli_format.blf_flags;
1da177e4
LT
189
190 /*
77c1a08f
DC
191 * Base size is the actual size of the ondisk structure - it reflects
192 * the actual size of the dirty bitmap rather than the size of the in
193 * memory structure.
1da177e4 194 */
77c1a08f 195 base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
372cc85e 196 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
820a554f
MT
197
198 nvecs = 0;
199 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
200 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
201 /*
202 * If the map is not be dirty in the transaction, mark
203 * the size as zero and do not advance the vector pointer.
204 */
205 goto out;
206 }
207
372cc85e 208 vecp->i_addr = blfp;
1da177e4 209 vecp->i_len = base_size;
4139b3b3 210 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
1da177e4
LT
211 vecp++;
212 nvecs = 1;
213
214 if (bip->bli_flags & XFS_BLI_STALE) {
215 /*
216 * The buffer is stale, so all we need to log
217 * is the buf log format structure with the
218 * cancel flag in it.
219 */
0b1b213f 220 trace_xfs_buf_item_format_stale(bip);
372cc85e 221 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
820a554f 222 goto out;
1da177e4
LT
223 }
224
5f6bed76 225
1da177e4
LT
226 /*
227 * Fill in an iovec for each set of contiguous chunks.
228 */
820a554f 229
1da177e4
LT
230 last_bit = first_bit;
231 nbits = 1;
232 for (;;) {
233 /*
234 * This takes the bit number to start looking from and
235 * returns the next set bit from there. It returns -1
236 * if there are no more bits set or the start bit is
237 * beyond the end of the bitmap.
238 */
372cc85e
DC
239 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
240 (uint)last_bit + 1);
1da177e4
LT
241 /*
242 * If we run out of bits fill in the last iovec and get
243 * out of the loop.
244 * Else if we start a new set of bits then fill in the
245 * iovec for the series we were looking at and start
246 * counting the bits in the new one.
247 * Else we're still in the same set of bits so just
248 * keep counting and scanning.
249 */
250 if (next_bit == -1) {
372cc85e 251 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
1da177e4 252 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 253 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 254 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
255 nvecs++;
256 break;
257 } else if (next_bit != last_bit + 1) {
372cc85e 258 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
1da177e4 259 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 260 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 261 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
262 nvecs++;
263 vecp++;
264 first_bit = next_bit;
265 last_bit = next_bit;
266 nbits = 1;
372cc85e
DC
267 } else if (xfs_buf_offset(bp, offset +
268 (next_bit << XFS_BLF_SHIFT)) !=
269 (xfs_buf_offset(bp, offset +
270 (last_bit << XFS_BLF_SHIFT)) +
c1155410 271 XFS_BLF_CHUNK)) {
372cc85e 272 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
1da177e4 273 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 274 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 275 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
709da6a6 276 nvecs++;
1da177e4
LT
277 vecp++;
278 first_bit = next_bit;
279 last_bit = next_bit;
280 nbits = 1;
281 } else {
282 last_bit++;
283 nbits++;
284 }
285 }
820a554f
MT
286out:
287 blfp->blf_size = nvecs;
372cc85e
DC
288 return vecp;
289}
290
291/*
292 * This is called to fill in the vector of log iovecs for the
293 * given log buf item. It fills the first entry with a buf log
294 * format structure, and the rest point to contiguous chunks
295 * within the buffer.
296 */
297STATIC void
298xfs_buf_item_format(
299 struct xfs_log_item *lip,
300 struct xfs_log_iovec *vecp)
301{
302 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
303 struct xfs_buf *bp = bip->bli_buf;
304 uint offset = 0;
305 int i;
306
307 ASSERT(atomic_read(&bip->bli_refcount) > 0);
308 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
309 (bip->bli_flags & XFS_BLI_STALE));
310
311 /*
312 * If it is an inode buffer, transfer the in-memory state to the
313 * format flags and clear the in-memory state. We do not transfer
314 * this state if the inode buffer allocation has not yet been committed
315 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
316 * correct replay of the inode allocation.
317 */
318 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
319 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
320 xfs_log_item_in_current_chkpt(lip)))
b9438173 321 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
372cc85e
DC
322 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
323 }
324
5f6bed76
DC
325 if ((bip->bli_flags & (XFS_BLI_ORDERED|XFS_BLI_STALE)) ==
326 XFS_BLI_ORDERED) {
327 /*
328 * The buffer has been logged just to order it. It is not being
329 * included in the transaction commit, so don't format it.
330 */
331 trace_xfs_buf_item_format_ordered(bip);
332 return;
333 }
334
372cc85e
DC
335 for (i = 0; i < bip->bli_format_count; i++) {
336 vecp = xfs_buf_item_format_segment(bip, vecp, offset,
337 &bip->bli_formats[i]);
338 offset += bp->b_maps[i].bm_len;
339 }
1da177e4
LT
340
341 /*
342 * Check to make sure everything is consistent.
343 */
0b1b213f 344 trace_xfs_buf_item_format(bip);
1da177e4
LT
345}
346
347/*
64fc35de 348 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 349 * so it cannot be written out.
64fc35de
DC
350 *
351 * We also always take a reference to the buffer log item here so that the bli
352 * is held while the item is pinned in memory. This means that we can
353 * unconditionally drop the reference count a transaction holds when the
354 * transaction is completed.
1da177e4 355 */
ba0f32d4 356STATIC void
1da177e4 357xfs_buf_item_pin(
7bfa31d8 358 struct xfs_log_item *lip)
1da177e4 359{
7bfa31d8 360 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 361
1da177e4
LT
362 ASSERT(atomic_read(&bip->bli_refcount) > 0);
363 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
5f6bed76 364 (bip->bli_flags & XFS_BLI_ORDERED) ||
1da177e4 365 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 366
0b1b213f 367 trace_xfs_buf_item_pin(bip);
4d16e924
CH
368
369 atomic_inc(&bip->bli_refcount);
370 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
371}
372
1da177e4
LT
373/*
374 * This is called to unpin the buffer associated with the buf log
375 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
376 *
377 * Also drop the reference to the buf item for the current transaction.
378 * If the XFS_BLI_STALE flag is set and we are the last reference,
379 * then free up the buf log item and unlock the buffer.
9412e318
CH
380 *
381 * If the remove flag is set we are called from uncommit in the
382 * forced-shutdown path. If that is true and the reference count on
383 * the log item is going to drop to zero we need to free the item's
384 * descriptor in the transaction.
1da177e4 385 */
ba0f32d4 386STATIC void
1da177e4 387xfs_buf_item_unpin(
7bfa31d8 388 struct xfs_log_item *lip,
9412e318 389 int remove)
1da177e4 390{
7bfa31d8 391 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
9412e318 392 xfs_buf_t *bp = bip->bli_buf;
7bfa31d8 393 struct xfs_ail *ailp = lip->li_ailp;
8e123850 394 int stale = bip->bli_flags & XFS_BLI_STALE;
7bfa31d8 395 int freed;
1da177e4 396
adadbeef 397 ASSERT(bp->b_fspriv == bip);
1da177e4 398 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 399
0b1b213f 400 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
401
402 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
403
404 if (atomic_dec_and_test(&bp->b_pin_count))
405 wake_up_all(&bp->b_waiters);
7bfa31d8 406
1da177e4
LT
407 if (freed && stale) {
408 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 409 ASSERT(xfs_buf_islocked(bp));
1da177e4 410 ASSERT(XFS_BUF_ISSTALE(bp));
b9438173 411 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 412
0b1b213f
CH
413 trace_xfs_buf_item_unpin_stale(bip);
414
9412e318
CH
415 if (remove) {
416 /*
e34a314c
DC
417 * If we are in a transaction context, we have to
418 * remove the log item from the transaction as we are
419 * about to release our reference to the buffer. If we
420 * don't, the unlock that occurs later in
421 * xfs_trans_uncommit() will try to reference the
9412e318
CH
422 * buffer which we no longer have a hold on.
423 */
e34a314c
DC
424 if (lip->li_desc)
425 xfs_trans_del_item(lip);
9412e318
CH
426
427 /*
428 * Since the transaction no longer refers to the buffer,
429 * the buffer should no longer refer to the transaction.
430 */
bf9d9013 431 bp->b_transp = NULL;
9412e318
CH
432 }
433
1da177e4
LT
434 /*
435 * If we get called here because of an IO error, we may
783a2f65 436 * or may not have the item on the AIL. xfs_trans_ail_delete()
1da177e4 437 * will take care of that situation.
783a2f65 438 * xfs_trans_ail_delete() drops the AIL lock.
1da177e4
LT
439 */
440 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
c90821a2 441 xfs_buf_do_callbacks(bp);
adadbeef 442 bp->b_fspriv = NULL;
cb669ca5 443 bp->b_iodone = NULL;
1da177e4 444 } else {
783a2f65 445 spin_lock(&ailp->xa_lock);
04913fdd 446 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 447 xfs_buf_item_relse(bp);
adadbeef 448 ASSERT(bp->b_fspriv == NULL);
1da177e4
LT
449 }
450 xfs_buf_relse(bp);
960c60af 451 } else if (freed && remove) {
137fff09
DC
452 /*
453 * There are currently two references to the buffer - the active
454 * LRU reference and the buf log item. What we are about to do
455 * here - simulate a failed IO completion - requires 3
456 * references.
457 *
458 * The LRU reference is removed by the xfs_buf_stale() call. The
459 * buf item reference is removed by the xfs_buf_iodone()
460 * callback that is run by xfs_buf_do_callbacks() during ioend
461 * processing (via the bp->b_iodone callback), and then finally
462 * the ioend processing will drop the IO reference if the buffer
463 * is marked XBF_ASYNC.
464 *
465 * Hence we need to take an additional reference here so that IO
466 * completion processing doesn't free the buffer prematurely.
467 */
960c60af 468 xfs_buf_lock(bp);
137fff09
DC
469 xfs_buf_hold(bp);
470 bp->b_flags |= XBF_ASYNC;
960c60af
CH
471 xfs_buf_ioerror(bp, EIO);
472 XFS_BUF_UNDONE(bp);
473 xfs_buf_stale(bp);
474 xfs_buf_ioend(bp, 0);
1da177e4
LT
475 }
476}
477
ba0f32d4 478STATIC uint
43ff2122
CH
479xfs_buf_item_push(
480 struct xfs_log_item *lip,
481 struct list_head *buffer_list)
1da177e4 482{
7bfa31d8
CH
483 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
484 struct xfs_buf *bp = bip->bli_buf;
43ff2122 485 uint rval = XFS_ITEM_SUCCESS;
1da177e4 486
811e64c7 487 if (xfs_buf_ispinned(bp))
1da177e4 488 return XFS_ITEM_PINNED;
5337fe9b
BF
489 if (!xfs_buf_trylock(bp)) {
490 /*
491 * If we have just raced with a buffer being pinned and it has
492 * been marked stale, we could end up stalling until someone else
493 * issues a log force to unpin the stale buffer. Check for the
494 * race condition here so xfsaild recognizes the buffer is pinned
495 * and queues a log force to move it along.
496 */
497 if (xfs_buf_ispinned(bp))
498 return XFS_ITEM_PINNED;
1da177e4 499 return XFS_ITEM_LOCKED;
5337fe9b 500 }
1da177e4 501
1da177e4 502 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
503
504 trace_xfs_buf_item_push(bip);
505
506 if (!xfs_buf_delwri_queue(bp, buffer_list))
507 rval = XFS_ITEM_FLUSHING;
508 xfs_buf_unlock(bp);
509 return rval;
1da177e4
LT
510}
511
512/*
64fc35de
DC
513 * Release the buffer associated with the buf log item. If there is no dirty
514 * logged data associated with the buffer recorded in the buf log item, then
515 * free the buf log item and remove the reference to it in the buffer.
1da177e4 516 *
64fc35de
DC
517 * This call ignores the recursion count. It is only called when the buffer
518 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 519 *
64fc35de
DC
520 * We unconditionally drop the transaction's reference to the log item. If the
521 * item was logged, then another reference was taken when it was pinned, so we
522 * can safely drop the transaction reference now. This also allows us to avoid
523 * potential races with the unpin code freeing the bli by not referencing the
524 * bli after we've dropped the reference count.
525 *
526 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
527 * if necessary but do not unlock the buffer. This is for support of
528 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
529 * free the item.
1da177e4 530 */
ba0f32d4 531STATIC void
1da177e4 532xfs_buf_item_unlock(
7bfa31d8 533 struct xfs_log_item *lip)
1da177e4 534{
7bfa31d8
CH
535 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
536 struct xfs_buf *bp = bip->bli_buf;
5f6bed76
DC
537 bool clean;
538 bool aborted;
539 int flags;
1da177e4 540
64fc35de 541 /* Clear the buffer's association with this transaction. */
bf9d9013 542 bp->b_transp = NULL;
1da177e4
LT
543
544 /*
64fc35de
DC
545 * If this is a transaction abort, don't return early. Instead, allow
546 * the brelse to happen. Normally it would be done for stale
547 * (cancelled) buffers at unpin time, but we'll never go through the
548 * pin/unpin cycle if we abort inside commit.
1da177e4 549 */
5f6bed76 550 aborted = (lip->li_flags & XFS_LI_ABORTED) ? true : false;
1da177e4 551 /*
5f6bed76
DC
552 * Before possibly freeing the buf item, copy the per-transaction state
553 * so we can reference it safely later after clearing it from the
554 * buffer log item.
64fc35de 555 */
5f6bed76
DC
556 flags = bip->bli_flags;
557 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
64fc35de
DC
558
559 /*
560 * If the buf item is marked stale, then don't do anything. We'll
561 * unlock the buffer and free the buf item when the buffer is unpinned
562 * for the last time.
1da177e4 563 */
5f6bed76 564 if (flags & XFS_BLI_STALE) {
0b1b213f 565 trace_xfs_buf_item_unlock_stale(bip);
b9438173 566 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
64fc35de
DC
567 if (!aborted) {
568 atomic_dec(&bip->bli_refcount);
1da177e4 569 return;
64fc35de 570 }
1da177e4
LT
571 }
572
0b1b213f 573 trace_xfs_buf_item_unlock(bip);
1da177e4
LT
574
575 /*
64fc35de 576 * If the buf item isn't tracking any data, free it, otherwise drop the
3b19034d
DC
577 * reference we hold to it. If we are aborting the transaction, this may
578 * be the only reference to the buf item, so we free it anyway
579 * regardless of whether it is dirty or not. A dirty abort implies a
580 * shutdown, anyway.
5f6bed76
DC
581 *
582 * Ordered buffers are dirty but may have no recorded changes, so ensure
583 * we only release clean items here.
1da177e4 584 */
5f6bed76
DC
585 clean = (flags & XFS_BLI_DIRTY) ? false : true;
586 if (clean) {
587 int i;
588 for (i = 0; i < bip->bli_format_count; i++) {
589 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
590 bip->bli_formats[i].blf_map_size)) {
591 clean = false;
592 break;
593 }
c883d0c4
MT
594 }
595 }
596 if (clean)
1da177e4 597 xfs_buf_item_relse(bp);
3b19034d
DC
598 else if (aborted) {
599 if (atomic_dec_and_test(&bip->bli_refcount)) {
600 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
601 xfs_buf_item_relse(bp);
602 }
603 } else
64fc35de 604 atomic_dec(&bip->bli_refcount);
1da177e4 605
5f6bed76 606 if (!(flags & XFS_BLI_HOLD))
1da177e4 607 xfs_buf_relse(bp);
1da177e4
LT
608}
609
610/*
611 * This is called to find out where the oldest active copy of the
612 * buf log item in the on disk log resides now that the last log
613 * write of it completed at the given lsn.
614 * We always re-log all the dirty data in a buffer, so usually the
615 * latest copy in the on disk log is the only one that matters. For
616 * those cases we simply return the given lsn.
617 *
618 * The one exception to this is for buffers full of newly allocated
619 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
620 * flag set, indicating that only the di_next_unlinked fields from the
621 * inodes in the buffers will be replayed during recovery. If the
622 * original newly allocated inode images have not yet been flushed
623 * when the buffer is so relogged, then we need to make sure that we
624 * keep the old images in the 'active' portion of the log. We do this
625 * by returning the original lsn of that transaction here rather than
626 * the current one.
627 */
ba0f32d4 628STATIC xfs_lsn_t
1da177e4 629xfs_buf_item_committed(
7bfa31d8 630 struct xfs_log_item *lip,
1da177e4
LT
631 xfs_lsn_t lsn)
632{
7bfa31d8
CH
633 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
634
0b1b213f
CH
635 trace_xfs_buf_item_committed(bip);
636
7bfa31d8
CH
637 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
638 return lip->li_lsn;
639 return lsn;
1da177e4
LT
640}
641
ba0f32d4 642STATIC void
7bfa31d8
CH
643xfs_buf_item_committing(
644 struct xfs_log_item *lip,
645 xfs_lsn_t commit_lsn)
1da177e4
LT
646{
647}
648
649/*
650 * This is the ops vector shared by all buf log items.
651 */
272e42b2 652static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
653 .iop_size = xfs_buf_item_size,
654 .iop_format = xfs_buf_item_format,
655 .iop_pin = xfs_buf_item_pin,
656 .iop_unpin = xfs_buf_item_unpin,
7bfa31d8
CH
657 .iop_unlock = xfs_buf_item_unlock,
658 .iop_committed = xfs_buf_item_committed,
659 .iop_push = xfs_buf_item_push,
7bfa31d8 660 .iop_committing = xfs_buf_item_committing
1da177e4
LT
661};
662
372cc85e
DC
663STATIC int
664xfs_buf_item_get_format(
665 struct xfs_buf_log_item *bip,
666 int count)
667{
668 ASSERT(bip->bli_formats == NULL);
669 bip->bli_format_count = count;
670
671 if (count == 1) {
b9438173 672 bip->bli_formats = &bip->__bli_format;
372cc85e
DC
673 return 0;
674 }
675
676 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
677 KM_SLEEP);
678 if (!bip->bli_formats)
679 return ENOMEM;
680 return 0;
681}
682
683STATIC void
684xfs_buf_item_free_format(
685 struct xfs_buf_log_item *bip)
686{
b9438173 687 if (bip->bli_formats != &bip->__bli_format) {
372cc85e
DC
688 kmem_free(bip->bli_formats);
689 bip->bli_formats = NULL;
690 }
691}
1da177e4
LT
692
693/*
694 * Allocate a new buf log item to go with the given buffer.
695 * Set the buffer's b_fsprivate field to point to the new
696 * buf log item. If there are other item's attached to the
697 * buffer (see xfs_buf_attach_iodone() below), then put the
698 * buf log item at the front.
699 */
700void
701xfs_buf_item_init(
702 xfs_buf_t *bp,
703 xfs_mount_t *mp)
704{
adadbeef 705 xfs_log_item_t *lip = bp->b_fspriv;
1da177e4
LT
706 xfs_buf_log_item_t *bip;
707 int chunks;
708 int map_size;
372cc85e
DC
709 int error;
710 int i;
1da177e4
LT
711
712 /*
713 * Check to see if there is already a buf log item for
714 * this buffer. If there is, it is guaranteed to be
715 * the first. If we do already have one, there is
716 * nothing to do here so return.
717 */
ebad861b 718 ASSERT(bp->b_target->bt_mount == mp);
adadbeef
CH
719 if (lip != NULL && lip->li_type == XFS_LI_BUF)
720 return;
1da177e4 721
372cc85e 722 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
43f5efc5 723 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 724 bip->bli_buf = bp;
e1f5dbd7 725 xfs_buf_hold(bp);
372cc85e
DC
726
727 /*
728 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
729 * can be divided into. Make sure not to truncate any pieces.
730 * map_size is the size of the bitmap needed to describe the
731 * chunks of the buffer.
732 *
733 * Discontiguous buffer support follows the layout of the underlying
734 * buffer. This makes the implementation as simple as possible.
735 */
736 error = xfs_buf_item_get_format(bip, bp->b_map_count);
737 ASSERT(error == 0);
738
739 for (i = 0; i < bip->bli_format_count; i++) {
740 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
741 XFS_BLF_CHUNK);
742 map_size = DIV_ROUND_UP(chunks, NBWORD);
743
744 bip->bli_formats[i].blf_type = XFS_LI_BUF;
745 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
746 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
747 bip->bli_formats[i].blf_map_size = map_size;
748 }
1da177e4
LT
749
750#ifdef XFS_TRANS_DEBUG
751 /*
752 * Allocate the arrays for tracking what needs to be logged
753 * and what our callers request to be logged. bli_orig
754 * holds a copy of the original, clean buffer for comparison
755 * against, and bli_logged keeps a 1 bit flag per byte in
756 * the buffer to indicate which bytes the callers have asked
757 * to have logged.
758 */
aa0e8833
DC
759 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
760 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
761 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
1da177e4
LT
762#endif
763
764 /*
765 * Put the buf item into the list of items attached to the
766 * buffer at the front.
767 */
adadbeef
CH
768 if (bp->b_fspriv)
769 bip->bli_item.li_bio_list = bp->b_fspriv;
770 bp->b_fspriv = bip;
1da177e4
LT
771}
772
773
774/*
775 * Mark bytes first through last inclusive as dirty in the buf
776 * item's bitmap.
777 */
778void
372cc85e
DC
779xfs_buf_item_log_segment(
780 struct xfs_buf_log_item *bip,
1da177e4 781 uint first,
372cc85e
DC
782 uint last,
783 uint *map)
1da177e4
LT
784{
785 uint first_bit;
786 uint last_bit;
787 uint bits_to_set;
788 uint bits_set;
789 uint word_num;
790 uint *wordp;
791 uint bit;
792 uint end_bit;
793 uint mask;
794
1da177e4
LT
795 /*
796 * Convert byte offsets to bit numbers.
797 */
c1155410
DC
798 first_bit = first >> XFS_BLF_SHIFT;
799 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
800
801 /*
802 * Calculate the total number of bits to be set.
803 */
804 bits_to_set = last_bit - first_bit + 1;
805
806 /*
807 * Get a pointer to the first word in the bitmap
808 * to set a bit in.
809 */
810 word_num = first_bit >> BIT_TO_WORD_SHIFT;
372cc85e 811 wordp = &map[word_num];
1da177e4
LT
812
813 /*
814 * Calculate the starting bit in the first word.
815 */
816 bit = first_bit & (uint)(NBWORD - 1);
817
818 /*
819 * First set any bits in the first word of our range.
820 * If it starts at bit 0 of the word, it will be
821 * set below rather than here. That is what the variable
822 * bit tells us. The variable bits_set tracks the number
823 * of bits that have been set so far. End_bit is the number
824 * of the last bit to be set in this word plus one.
825 */
826 if (bit) {
827 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
828 mask = ((1 << (end_bit - bit)) - 1) << bit;
829 *wordp |= mask;
830 wordp++;
831 bits_set = end_bit - bit;
832 } else {
833 bits_set = 0;
834 }
835
836 /*
837 * Now set bits a whole word at a time that are between
838 * first_bit and last_bit.
839 */
840 while ((bits_to_set - bits_set) >= NBWORD) {
841 *wordp |= 0xffffffff;
842 bits_set += NBWORD;
843 wordp++;
844 }
845
846 /*
847 * Finally, set any bits left to be set in one last partial word.
848 */
849 end_bit = bits_to_set - bits_set;
850 if (end_bit) {
851 mask = (1 << end_bit) - 1;
852 *wordp |= mask;
853 }
1da177e4
LT
854}
855
372cc85e
DC
856/*
857 * Mark bytes first through last inclusive as dirty in the buf
858 * item's bitmap.
859 */
860void
861xfs_buf_item_log(
862 xfs_buf_log_item_t *bip,
863 uint first,
864 uint last)
865{
866 int i;
867 uint start;
868 uint end;
869 struct xfs_buf *bp = bip->bli_buf;
870
372cc85e
DC
871 /*
872 * walk each buffer segment and mark them dirty appropriately.
873 */
874 start = 0;
875 for (i = 0; i < bip->bli_format_count; i++) {
876 if (start > last)
877 break;
878 end = start + BBTOB(bp->b_maps[i].bm_len);
879 if (first > end) {
880 start += BBTOB(bp->b_maps[i].bm_len);
881 continue;
882 }
883 if (first < start)
884 first = start;
885 if (end > last)
886 end = last;
887
888 xfs_buf_item_log_segment(bip, first, end,
889 &bip->bli_formats[i].blf_data_map[0]);
890
891 start += bp->b_maps[i].bm_len;
892 }
893}
894
1da177e4
LT
895
896/*
5f6bed76 897 * Return 1 if the buffer has been logged or ordered in a transaction (at any
1da177e4
LT
898 * point, not just the current transaction) and 0 if not.
899 */
900uint
901xfs_buf_item_dirty(
902 xfs_buf_log_item_t *bip)
903{
904 return (bip->bli_flags & XFS_BLI_DIRTY);
905}
906
e1f5dbd7
LM
907STATIC void
908xfs_buf_item_free(
909 xfs_buf_log_item_t *bip)
910{
911#ifdef XFS_TRANS_DEBUG
912 kmem_free(bip->bli_orig);
913 kmem_free(bip->bli_logged);
914#endif /* XFS_TRANS_DEBUG */
915
372cc85e 916 xfs_buf_item_free_format(bip);
e1f5dbd7
LM
917 kmem_zone_free(xfs_buf_item_zone, bip);
918}
919
1da177e4
LT
920/*
921 * This is called when the buf log item is no longer needed. It should
922 * free the buf log item associated with the given buffer and clear
923 * the buffer's pointer to the buf log item. If there are no more
924 * items in the list, clear the b_iodone field of the buffer (see
925 * xfs_buf_attach_iodone() below).
926 */
927void
928xfs_buf_item_relse(
929 xfs_buf_t *bp)
930{
5f6bed76 931 xfs_buf_log_item_t *bip = bp->b_fspriv;
1da177e4 932
0b1b213f 933 trace_xfs_buf_item_relse(bp, _RET_IP_);
5f6bed76 934 ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
0b1b213f 935
adadbeef 936 bp->b_fspriv = bip->bli_item.li_bio_list;
cb669ca5
CH
937 if (bp->b_fspriv == NULL)
938 bp->b_iodone = NULL;
adadbeef 939
e1f5dbd7
LM
940 xfs_buf_rele(bp);
941 xfs_buf_item_free(bip);
1da177e4
LT
942}
943
944
945/*
946 * Add the given log item with its callback to the list of callbacks
947 * to be called when the buffer's I/O completes. If it is not set
948 * already, set the buffer's b_iodone() routine to be
949 * xfs_buf_iodone_callbacks() and link the log item into the list of
950 * items rooted at b_fsprivate. Items are always added as the second
951 * entry in the list if there is a first, because the buf item code
952 * assumes that the buf log item is first.
953 */
954void
955xfs_buf_attach_iodone(
956 xfs_buf_t *bp,
957 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
958 xfs_log_item_t *lip)
959{
960 xfs_log_item_t *head_lip;
961
0c842ad4 962 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
963
964 lip->li_cb = cb;
adadbeef
CH
965 head_lip = bp->b_fspriv;
966 if (head_lip) {
1da177e4
LT
967 lip->li_bio_list = head_lip->li_bio_list;
968 head_lip->li_bio_list = lip;
969 } else {
adadbeef 970 bp->b_fspriv = lip;
1da177e4
LT
971 }
972
cb669ca5
CH
973 ASSERT(bp->b_iodone == NULL ||
974 bp->b_iodone == xfs_buf_iodone_callbacks);
975 bp->b_iodone = xfs_buf_iodone_callbacks;
1da177e4
LT
976}
977
c90821a2
DC
978/*
979 * We can have many callbacks on a buffer. Running the callbacks individually
980 * can cause a lot of contention on the AIL lock, so we allow for a single
981 * callback to be able to scan the remaining lip->li_bio_list for other items
982 * of the same type and callback to be processed in the first call.
983 *
984 * As a result, the loop walking the callback list below will also modify the
985 * list. it removes the first item from the list and then runs the callback.
986 * The loop then restarts from the new head of the list. This allows the
987 * callback to scan and modify the list attached to the buffer and we don't
988 * have to care about maintaining a next item pointer.
989 */
1da177e4
LT
990STATIC void
991xfs_buf_do_callbacks(
c90821a2 992 struct xfs_buf *bp)
1da177e4 993{
c90821a2 994 struct xfs_log_item *lip;
1da177e4 995
adadbeef
CH
996 while ((lip = bp->b_fspriv) != NULL) {
997 bp->b_fspriv = lip->li_bio_list;
1da177e4
LT
998 ASSERT(lip->li_cb != NULL);
999 /*
1000 * Clear the next pointer so we don't have any
1001 * confusion if the item is added to another buf.
1002 * Don't touch the log item after calling its
1003 * callback, because it could have freed itself.
1004 */
1005 lip->li_bio_list = NULL;
1006 lip->li_cb(bp, lip);
1da177e4
LT
1007 }
1008}
1009
1010/*
1011 * This is the iodone() function for buffers which have had callbacks
1012 * attached to them by xfs_buf_attach_iodone(). It should remove each
1013 * log item from the buffer's list and call the callback of each in turn.
1014 * When done, the buffer's fsprivate field is set to NULL and the buffer
1015 * is unlocked with a call to iodone().
1016 */
1017void
1018xfs_buf_iodone_callbacks(
bfc60177 1019 struct xfs_buf *bp)
1da177e4 1020{
bfc60177
CH
1021 struct xfs_log_item *lip = bp->b_fspriv;
1022 struct xfs_mount *mp = lip->li_mountp;
1023 static ulong lasttime;
1024 static xfs_buftarg_t *lasttarg;
1da177e4 1025
5a52c2a5 1026 if (likely(!xfs_buf_geterror(bp)))
bfc60177 1027 goto do_callbacks;
1da177e4 1028
bfc60177
CH
1029 /*
1030 * If we've already decided to shutdown the filesystem because of
1031 * I/O errors, there's no point in giving this a retry.
1032 */
1033 if (XFS_FORCED_SHUTDOWN(mp)) {
c867cb61 1034 xfs_buf_stale(bp);
c867cb61 1035 XFS_BUF_DONE(bp);
bfc60177
CH
1036 trace_xfs_buf_item_iodone(bp, _RET_IP_);
1037 goto do_callbacks;
1038 }
1da177e4 1039
49074c06 1040 if (bp->b_target != lasttarg ||
bfc60177
CH
1041 time_after(jiffies, (lasttime + 5*HZ))) {
1042 lasttime = jiffies;
b38505b0 1043 xfs_buf_ioerror_alert(bp, __func__);
bfc60177 1044 }
49074c06 1045 lasttarg = bp->b_target;
1da177e4 1046
bfc60177 1047 /*
25985edc 1048 * If the write was asynchronous then no one will be looking for the
bfc60177
CH
1049 * error. Clear the error state and write the buffer out again.
1050 *
43ff2122
CH
1051 * XXX: This helps against transient write errors, but we need to find
1052 * a way to shut the filesystem down if the writes keep failing.
1053 *
1054 * In practice we'll shut the filesystem down soon as non-transient
1055 * erorrs tend to affect the whole device and a failing log write
1056 * will make us give up. But we really ought to do better here.
bfc60177
CH
1057 */
1058 if (XFS_BUF_ISASYNC(bp)) {
43ff2122
CH
1059 ASSERT(bp->b_iodone != NULL);
1060
1061 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1062
5a52c2a5 1063 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
bfc60177
CH
1064
1065 if (!XFS_BUF_ISSTALE(bp)) {
43ff2122 1066 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
a2dcf5df 1067 xfs_buf_iorequest(bp);
43ff2122
CH
1068 } else {
1069 xfs_buf_relse(bp);
1da177e4 1070 }
43ff2122 1071
1da177e4
LT
1072 return;
1073 }
0b1b213f 1074
bfc60177
CH
1075 /*
1076 * If the write of the buffer was synchronous, we want to make
1077 * sure to return the error to the caller of xfs_bwrite().
1078 */
c867cb61 1079 xfs_buf_stale(bp);
1da177e4 1080 XFS_BUF_DONE(bp);
0b1b213f
CH
1081
1082 trace_xfs_buf_error_relse(bp, _RET_IP_);
1083
bfc60177 1084do_callbacks:
c90821a2 1085 xfs_buf_do_callbacks(bp);
adadbeef 1086 bp->b_fspriv = NULL;
cb669ca5 1087 bp->b_iodone = NULL;
bfc60177 1088 xfs_buf_ioend(bp, 0);
1da177e4
LT
1089}
1090
1da177e4
LT
1091/*
1092 * This is the iodone() function for buffers which have been
1093 * logged. It is called when they are eventually flushed out.
1094 * It should remove the buf item from the AIL, and free the buf item.
1095 * It is called by xfs_buf_iodone_callbacks() above which will take
1096 * care of cleaning up the buffer itself.
1097 */
1da177e4
LT
1098void
1099xfs_buf_iodone(
ca30b2a7
CH
1100 struct xfs_buf *bp,
1101 struct xfs_log_item *lip)
1da177e4 1102{
ca30b2a7 1103 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 1104
ca30b2a7 1105 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 1106
e1f5dbd7 1107 xfs_buf_rele(bp);
1da177e4
LT
1108
1109 /*
1110 * If we are forcibly shutting down, this may well be
1111 * off the AIL already. That's because we simulate the
1112 * log-committed callbacks to unpin these buffers. Or we may never
1113 * have put this item on AIL because of the transaction was
783a2f65 1114 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1115 *
1116 * Either way, AIL is useless if we're forcing a shutdown.
1117 */
fc1829f3 1118 spin_lock(&ailp->xa_lock);
04913fdd 1119 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
ca30b2a7 1120 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1121}