]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_buf_item.c
xfs: use direct calls for dquot IO completion
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_buf_item.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
5467b34b 8#include "xfs_shared.h"
4fb6e8ad 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
1da177e4 13#include "xfs_mount.h"
239880ef 14#include "xfs_trans.h"
a844f451 15#include "xfs_buf_item.h"
aac855ab
DC
16#include "xfs_inode.h"
17#include "xfs_inode_item.h"
6f5de180
DC
18#include "xfs_quota.h"
19#include "xfs_dquot_item.h"
20#include "xfs_dquot.h"
1da177e4 21#include "xfs_trans_priv.h"
0b1b213f 22#include "xfs_trace.h"
239880ef 23#include "xfs_log.h"
1da177e4
LT
24
25
26kmem_zone_t *xfs_buf_item_zone;
27
7bfa31d8
CH
28static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
29{
30 return container_of(lip, struct xfs_buf_log_item, bli_item);
31}
32
c90821a2 33STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
1da177e4 34
8a6453a8
DW
35/* Is this log iovec plausibly large enough to contain the buffer log format? */
36bool
37xfs_buf_log_check_iovec(
38 struct xfs_log_iovec *iovec)
39{
40 struct xfs_buf_log_format *blfp = iovec->i_addr;
41 char *bmp_end;
42 char *item_end;
43
44 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len)
45 return false;
46
47 item_end = (char *)iovec->i_addr + iovec->i_len;
48 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size];
49 return bmp_end <= item_end;
50}
51
166d1368
DC
52static inline int
53xfs_buf_log_format_size(
54 struct xfs_buf_log_format *blfp)
55{
56 return offsetof(struct xfs_buf_log_format, blf_data_map) +
57 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
58}
59
1da177e4
LT
60/*
61 * This returns the number of log iovecs needed to log the
62 * given buf log item.
63 *
64 * It calculates this as 1 iovec for the buf log format structure
65 * and 1 for each stretch of non-contiguous chunks to be logged.
66 * Contiguous chunks are logged in a single iovec.
67 *
68 * If the XFS_BLI_STALE flag has been set, then log nothing.
69 */
166d1368 70STATIC void
372cc85e 71xfs_buf_item_size_segment(
70a20655
CM
72 struct xfs_buf_log_item *bip,
73 struct xfs_buf_log_format *blfp,
74 int *nvecs,
75 int *nbytes)
1da177e4 76{
70a20655
CM
77 struct xfs_buf *bp = bip->bli_buf;
78 int next_bit;
79 int last_bit;
1da177e4 80
372cc85e
DC
81 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
82 if (last_bit == -1)
166d1368 83 return;
372cc85e
DC
84
85 /*
86 * initial count for a dirty buffer is 2 vectors - the format structure
87 * and the first dirty region.
88 */
166d1368
DC
89 *nvecs += 2;
90 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK;
1da177e4 91
1da177e4
LT
92 while (last_bit != -1) {
93 /*
94 * This takes the bit number to start looking from and
95 * returns the next set bit from there. It returns -1
96 * if there are no more bits set or the start bit is
97 * beyond the end of the bitmap.
98 */
372cc85e
DC
99 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
100 last_bit + 1);
1da177e4
LT
101 /*
102 * If we run out of bits, leave the loop,
103 * else if we find a new set of bits bump the number of vecs,
104 * else keep scanning the current set of bits.
105 */
106 if (next_bit == -1) {
372cc85e 107 break;
1da177e4
LT
108 } else if (next_bit != last_bit + 1) {
109 last_bit = next_bit;
166d1368 110 (*nvecs)++;
c1155410
DC
111 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
112 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
113 XFS_BLF_CHUNK)) {
1da177e4 114 last_bit = next_bit;
166d1368 115 (*nvecs)++;
1da177e4
LT
116 } else {
117 last_bit++;
118 }
166d1368 119 *nbytes += XFS_BLF_CHUNK;
1da177e4 120 }
1da177e4
LT
121}
122
123/*
372cc85e
DC
124 * This returns the number of log iovecs needed to log the given buf log item.
125 *
126 * It calculates this as 1 iovec for the buf log format structure and 1 for each
127 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
128 * in a single iovec.
129 *
130 * Discontiguous buffers need a format structure per region that that is being
131 * logged. This makes the changes in the buffer appear to log recovery as though
132 * they came from separate buffers, just like would occur if multiple buffers
133 * were used instead of a single discontiguous buffer. This enables
134 * discontiguous buffers to be in-memory constructs, completely transparent to
135 * what ends up on disk.
136 *
137 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
138 * format structures.
1da177e4 139 */
166d1368 140STATIC void
372cc85e 141xfs_buf_item_size(
166d1368
DC
142 struct xfs_log_item *lip,
143 int *nvecs,
144 int *nbytes)
1da177e4 145{
7bfa31d8 146 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
372cc85e
DC
147 int i;
148
149 ASSERT(atomic_read(&bip->bli_refcount) > 0);
150 if (bip->bli_flags & XFS_BLI_STALE) {
151 /*
152 * The buffer is stale, so all we need to log
153 * is the buf log format structure with the
154 * cancel flag in it.
155 */
156 trace_xfs_buf_item_size_stale(bip);
b9438173 157 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
166d1368
DC
158 *nvecs += bip->bli_format_count;
159 for (i = 0; i < bip->bli_format_count; i++) {
160 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]);
161 }
162 return;
372cc85e
DC
163 }
164
165 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
166
5f6bed76
DC
167 if (bip->bli_flags & XFS_BLI_ORDERED) {
168 /*
169 * The buffer has been logged just to order it.
170 * It is not being included in the transaction
171 * commit, so no vectors are used at all.
172 */
173 trace_xfs_buf_item_size_ordered(bip);
166d1368
DC
174 *nvecs = XFS_LOG_VEC_ORDERED;
175 return;
5f6bed76
DC
176 }
177
372cc85e
DC
178 /*
179 * the vector count is based on the number of buffer vectors we have
180 * dirty bits in. This will only be greater than one when we have a
181 * compound buffer with more than one segment dirty. Hence for compound
182 * buffers we need to track which segment the dirty bits correspond to,
183 * and when we move from one segment to the next increment the vector
184 * count for the extra buf log format structure that will need to be
185 * written.
186 */
372cc85e 187 for (i = 0; i < bip->bli_format_count; i++) {
166d1368
DC
188 xfs_buf_item_size_segment(bip, &bip->bli_formats[i],
189 nvecs, nbytes);
372cc85e 190 }
372cc85e 191 trace_xfs_buf_item_size(bip);
372cc85e
DC
192}
193
1234351c 194static inline void
7aeb7222 195xfs_buf_item_copy_iovec(
bde7cff6 196 struct xfs_log_vec *lv,
1234351c 197 struct xfs_log_iovec **vecp,
7aeb7222
CH
198 struct xfs_buf *bp,
199 uint offset,
200 int first_bit,
201 uint nbits)
202{
203 offset += first_bit * XFS_BLF_CHUNK;
bde7cff6 204 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK,
1234351c
CH
205 xfs_buf_offset(bp, offset),
206 nbits * XFS_BLF_CHUNK);
7aeb7222
CH
207}
208
209static inline bool
210xfs_buf_item_straddle(
211 struct xfs_buf *bp,
212 uint offset,
213 int next_bit,
214 int last_bit)
215{
216 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) !=
217 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) +
218 XFS_BLF_CHUNK);
219}
220
1234351c 221static void
372cc85e
DC
222xfs_buf_item_format_segment(
223 struct xfs_buf_log_item *bip,
bde7cff6 224 struct xfs_log_vec *lv,
1234351c 225 struct xfs_log_iovec **vecp,
372cc85e
DC
226 uint offset,
227 struct xfs_buf_log_format *blfp)
228{
70a20655
CM
229 struct xfs_buf *bp = bip->bli_buf;
230 uint base_size;
231 int first_bit;
232 int last_bit;
233 int next_bit;
234 uint nbits;
1da177e4 235
372cc85e 236 /* copy the flags across from the base format item */
b9438173 237 blfp->blf_flags = bip->__bli_format.blf_flags;
1da177e4
LT
238
239 /*
77c1a08f
DC
240 * Base size is the actual size of the ondisk structure - it reflects
241 * the actual size of the dirty bitmap rather than the size of the in
242 * memory structure.
1da177e4 243 */
166d1368 244 base_size = xfs_buf_log_format_size(blfp);
820a554f 245
820a554f
MT
246 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
247 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
248 /*
249 * If the map is not be dirty in the transaction, mark
250 * the size as zero and do not advance the vector pointer.
251 */
bde7cff6 252 return;
820a554f
MT
253 }
254
bde7cff6
CH
255 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size);
256 blfp->blf_size = 1;
1da177e4
LT
257
258 if (bip->bli_flags & XFS_BLI_STALE) {
259 /*
260 * The buffer is stale, so all we need to log
261 * is the buf log format structure with the
262 * cancel flag in it.
263 */
0b1b213f 264 trace_xfs_buf_item_format_stale(bip);
372cc85e 265 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
bde7cff6 266 return;
1da177e4
LT
267 }
268
5f6bed76 269
1da177e4
LT
270 /*
271 * Fill in an iovec for each set of contiguous chunks.
272 */
1da177e4
LT
273 last_bit = first_bit;
274 nbits = 1;
275 for (;;) {
276 /*
277 * This takes the bit number to start looking from and
278 * returns the next set bit from there. It returns -1
279 * if there are no more bits set or the start bit is
280 * beyond the end of the bitmap.
281 */
372cc85e
DC
282 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
283 (uint)last_bit + 1);
1da177e4 284 /*
7aeb7222
CH
285 * If we run out of bits fill in the last iovec and get out of
286 * the loop. Else if we start a new set of bits then fill in
287 * the iovec for the series we were looking at and start
288 * counting the bits in the new one. Else we're still in the
289 * same set of bits so just keep counting and scanning.
1da177e4
LT
290 */
291 if (next_bit == -1) {
bde7cff6 292 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
7aeb7222 293 first_bit, nbits);
bde7cff6 294 blfp->blf_size++;
1da177e4 295 break;
7aeb7222
CH
296 } else if (next_bit != last_bit + 1 ||
297 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) {
bde7cff6 298 xfs_buf_item_copy_iovec(lv, vecp, bp, offset,
1234351c 299 first_bit, nbits);
bde7cff6 300 blfp->blf_size++;
1da177e4
LT
301 first_bit = next_bit;
302 last_bit = next_bit;
303 nbits = 1;
304 } else {
305 last_bit++;
306 nbits++;
307 }
308 }
372cc85e
DC
309}
310
311/*
312 * This is called to fill in the vector of log iovecs for the
313 * given log buf item. It fills the first entry with a buf log
314 * format structure, and the rest point to contiguous chunks
315 * within the buffer.
316 */
317STATIC void
318xfs_buf_item_format(
319 struct xfs_log_item *lip,
bde7cff6 320 struct xfs_log_vec *lv)
372cc85e
DC
321{
322 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
323 struct xfs_buf *bp = bip->bli_buf;
bde7cff6 324 struct xfs_log_iovec *vecp = NULL;
372cc85e
DC
325 uint offset = 0;
326 int i;
327
328 ASSERT(atomic_read(&bip->bli_refcount) > 0);
329 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
330 (bip->bli_flags & XFS_BLI_STALE));
0d612fb5
DC
331 ASSERT((bip->bli_flags & XFS_BLI_STALE) ||
332 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF
333 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF));
e9385cc6
BF
334 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) ||
335 (bip->bli_flags & XFS_BLI_STALE));
0d612fb5 336
372cc85e
DC
337
338 /*
339 * If it is an inode buffer, transfer the in-memory state to the
ddf6ad01
DC
340 * format flags and clear the in-memory state.
341 *
342 * For buffer based inode allocation, we do not transfer
372cc85e
DC
343 * this state if the inode buffer allocation has not yet been committed
344 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
345 * correct replay of the inode allocation.
ddf6ad01
DC
346 *
347 * For icreate item based inode allocation, the buffers aren't written
348 * to the journal during allocation, and hence we should always tag the
349 * buffer as an inode buffer so that the correct unlinked list replay
350 * occurs during recovery.
372cc85e
DC
351 */
352 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
b81b79f4 353 if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) ||
ddf6ad01 354 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
372cc85e 355 xfs_log_item_in_current_chkpt(lip)))
b9438173 356 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
372cc85e
DC
357 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
358 }
359
360 for (i = 0; i < bip->bli_format_count; i++) {
bde7cff6 361 xfs_buf_item_format_segment(bip, lv, &vecp, offset,
1234351c 362 &bip->bli_formats[i]);
a3916e52 363 offset += BBTOB(bp->b_maps[i].bm_len);
372cc85e 364 }
1da177e4
LT
365
366 /*
367 * Check to make sure everything is consistent.
368 */
0b1b213f 369 trace_xfs_buf_item_format(bip);
1da177e4
LT
370}
371
372/*
64fc35de 373 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 374 * so it cannot be written out.
64fc35de
DC
375 *
376 * We also always take a reference to the buffer log item here so that the bli
377 * is held while the item is pinned in memory. This means that we can
378 * unconditionally drop the reference count a transaction holds when the
379 * transaction is completed.
1da177e4 380 */
ba0f32d4 381STATIC void
1da177e4 382xfs_buf_item_pin(
7bfa31d8 383 struct xfs_log_item *lip)
1da177e4 384{
7bfa31d8 385 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 386
1da177e4
LT
387 ASSERT(atomic_read(&bip->bli_refcount) > 0);
388 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
5f6bed76 389 (bip->bli_flags & XFS_BLI_ORDERED) ||
1da177e4 390 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 391
0b1b213f 392 trace_xfs_buf_item_pin(bip);
4d16e924
CH
393
394 atomic_inc(&bip->bli_refcount);
395 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
396}
397
1da177e4
LT
398/*
399 * This is called to unpin the buffer associated with the buf log
400 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
401 *
402 * Also drop the reference to the buf item for the current transaction.
403 * If the XFS_BLI_STALE flag is set and we are the last reference,
404 * then free up the buf log item and unlock the buffer.
9412e318
CH
405 *
406 * If the remove flag is set we are called from uncommit in the
407 * forced-shutdown path. If that is true and the reference count on
408 * the log item is going to drop to zero we need to free the item's
409 * descriptor in the transaction.
1da177e4 410 */
ba0f32d4 411STATIC void
1da177e4 412xfs_buf_item_unpin(
7bfa31d8 413 struct xfs_log_item *lip,
9412e318 414 int remove)
1da177e4 415{
7bfa31d8 416 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
70a20655 417 xfs_buf_t *bp = bip->bli_buf;
70a20655
CM
418 int stale = bip->bli_flags & XFS_BLI_STALE;
419 int freed;
1da177e4 420
fb1755a6 421 ASSERT(bp->b_log_item == bip);
1da177e4 422 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 423
0b1b213f 424 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
425
426 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
427
428 if (atomic_dec_and_test(&bp->b_pin_count))
429 wake_up_all(&bp->b_waiters);
7bfa31d8 430
1da177e4
LT
431 if (freed && stale) {
432 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 433 ASSERT(xfs_buf_islocked(bp));
5cfd28b6 434 ASSERT(bp->b_flags & XBF_STALE);
b9438173 435 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 436
0b1b213f
CH
437 trace_xfs_buf_item_unpin_stale(bip);
438
9412e318
CH
439 if (remove) {
440 /*
e34a314c
DC
441 * If we are in a transaction context, we have to
442 * remove the log item from the transaction as we are
443 * about to release our reference to the buffer. If we
444 * don't, the unlock that occurs later in
445 * xfs_trans_uncommit() will try to reference the
9412e318
CH
446 * buffer which we no longer have a hold on.
447 */
e6631f85 448 if (!list_empty(&lip->li_trans))
e34a314c 449 xfs_trans_del_item(lip);
9412e318
CH
450
451 /*
452 * Since the transaction no longer refers to the buffer,
453 * the buffer should no longer refer to the transaction.
454 */
bf9d9013 455 bp->b_transp = NULL;
9412e318
CH
456 }
457
1da177e4 458 /*
849274c1
BF
459 * If we get called here because of an IO error, we may or may
460 * not have the item on the AIL. xfs_trans_ail_delete() will
461 * take care of that situation. xfs_trans_ail_delete() drops
462 * the AIL lock.
1da177e4
LT
463 */
464 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
aac855ab
DC
465 lip->li_cb(bp, lip);
466 xfs_iflush_done(bp);
fb1755a6 467 bp->b_log_item = NULL;
1da177e4 468 } else {
849274c1 469 xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 470 xfs_buf_item_relse(bp);
fb1755a6 471 ASSERT(bp->b_log_item == NULL);
1da177e4
LT
472 }
473 xfs_buf_relse(bp);
960c60af 474 } else if (freed && remove) {
137fff09 475 /*
54b3b1f6
BF
476 * The buffer must be locked and held by the caller to simulate
477 * an async I/O failure.
137fff09 478 */
960c60af 479 xfs_buf_lock(bp);
137fff09
DC
480 xfs_buf_hold(bp);
481 bp->b_flags |= XBF_ASYNC;
54b3b1f6 482 xfs_buf_ioend_fail(bp);
1da177e4
LT
483 }
484}
485
ba0f32d4 486STATIC uint
43ff2122
CH
487xfs_buf_item_push(
488 struct xfs_log_item *lip,
489 struct list_head *buffer_list)
1da177e4 490{
7bfa31d8
CH
491 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
492 struct xfs_buf *bp = bip->bli_buf;
43ff2122 493 uint rval = XFS_ITEM_SUCCESS;
1da177e4 494
811e64c7 495 if (xfs_buf_ispinned(bp))
1da177e4 496 return XFS_ITEM_PINNED;
5337fe9b
BF
497 if (!xfs_buf_trylock(bp)) {
498 /*
499 * If we have just raced with a buffer being pinned and it has
500 * been marked stale, we could end up stalling until someone else
501 * issues a log force to unpin the stale buffer. Check for the
502 * race condition here so xfsaild recognizes the buffer is pinned
503 * and queues a log force to move it along.
504 */
505 if (xfs_buf_ispinned(bp))
506 return XFS_ITEM_PINNED;
1da177e4 507 return XFS_ITEM_LOCKED;
5337fe9b 508 }
1da177e4 509
1da177e4 510 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
511
512 trace_xfs_buf_item_push(bip);
513
ac8809f9 514 /* has a previous flush failed due to IO errors? */
f9bccfcc
BF
515 if (bp->b_flags & XBF_WRITE_FAIL) {
516 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write",
517 "Failing async write on buffer block 0x%llx. Retrying async write.",
518 (long long)bp->b_bn);
ac8809f9
DC
519 }
520
43ff2122
CH
521 if (!xfs_buf_delwri_queue(bp, buffer_list))
522 rval = XFS_ITEM_FLUSHING;
523 xfs_buf_unlock(bp);
524 return rval;
1da177e4
LT
525}
526
95808459
BF
527/*
528 * Drop the buffer log item refcount and take appropriate action. This helper
529 * determines whether the bli must be freed or not, since a decrement to zero
530 * does not necessarily mean the bli is unused.
531 *
532 * Return true if the bli is freed, false otherwise.
533 */
534bool
535xfs_buf_item_put(
536 struct xfs_buf_log_item *bip)
537{
538 struct xfs_log_item *lip = &bip->bli_item;
539 bool aborted;
540 bool dirty;
541
542 /* drop the bli ref and return if it wasn't the last one */
543 if (!atomic_dec_and_test(&bip->bli_refcount))
544 return false;
545
546 /*
547 * We dropped the last ref and must free the item if clean or aborted.
548 * If the bli is dirty and non-aborted, the buffer was clean in the
549 * transaction but still awaiting writeback from previous changes. In
550 * that case, the bli is freed on buffer writeback completion.
551 */
552 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) ||
553 XFS_FORCED_SHUTDOWN(lip->li_mountp);
554 dirty = bip->bli_flags & XFS_BLI_DIRTY;
555 if (dirty && !aborted)
556 return false;
557
558 /*
559 * The bli is aborted or clean. An aborted item may be in the AIL
560 * regardless of dirty state. For example, consider an aborted
561 * transaction that invalidated a dirty bli and cleared the dirty
562 * state.
563 */
564 if (aborted)
2b3cf093 565 xfs_trans_ail_delete(lip, 0);
95808459
BF
566 xfs_buf_item_relse(bip->bli_buf);
567 return true;
568}
569
1da177e4 570/*
64fc35de
DC
571 * Release the buffer associated with the buf log item. If there is no dirty
572 * logged data associated with the buffer recorded in the buf log item, then
573 * free the buf log item and remove the reference to it in the buffer.
1da177e4 574 *
64fc35de
DC
575 * This call ignores the recursion count. It is only called when the buffer
576 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 577 *
64fc35de
DC
578 * We unconditionally drop the transaction's reference to the log item. If the
579 * item was logged, then another reference was taken when it was pinned, so we
580 * can safely drop the transaction reference now. This also allows us to avoid
581 * potential races with the unpin code freeing the bli by not referencing the
582 * bli after we've dropped the reference count.
583 *
584 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
585 * if necessary but do not unlock the buffer. This is for support of
586 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
587 * free the item.
1da177e4 588 */
ba0f32d4 589STATIC void
ddf92053 590xfs_buf_item_release(
7bfa31d8 591 struct xfs_log_item *lip)
1da177e4 592{
7bfa31d8
CH
593 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
594 struct xfs_buf *bp = bip->bli_buf;
95808459 595 bool released;
d9183105 596 bool hold = bip->bli_flags & XFS_BLI_HOLD;
d9183105 597 bool stale = bip->bli_flags & XFS_BLI_STALE;
7bf7a193 598#if defined(DEBUG) || defined(XFS_WARN)
d9183105 599 bool ordered = bip->bli_flags & XFS_BLI_ORDERED;
95808459 600 bool dirty = bip->bli_flags & XFS_BLI_DIRTY;
4d09807f
BF
601 bool aborted = test_bit(XFS_LI_ABORTED,
602 &lip->li_flags);
7bf7a193 603#endif
1da177e4 604
ddf92053 605 trace_xfs_buf_item_release(bip);
1da177e4
LT
606
607 /*
6453c65d
BF
608 * The bli dirty state should match whether the blf has logged segments
609 * except for ordered buffers, where only the bli should be dirty.
1da177e4 610 */
6453c65d
BF
611 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) ||
612 (ordered && dirty && !xfs_buf_item_dirty_format(bip)));
d9183105
BF
613 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
614
46f9d2eb 615 /*
d9183105
BF
616 * Clear the buffer's association with this transaction and
617 * per-transaction state from the bli, which has been copied above.
618 */
619 bp->b_transp = NULL;
620 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED);
621
622 /*
95808459
BF
623 * Unref the item and unlock the buffer unless held or stale. Stale
624 * buffers remain locked until final unpin unless the bli is freed by
625 * the unref call. The latter implies shutdown because buffer
626 * invalidation dirties the bli and transaction.
46f9d2eb 627 */
95808459
BF
628 released = xfs_buf_item_put(bip);
629 if (hold || (stale && !released))
d9183105 630 return;
4d09807f 631 ASSERT(!stale || aborted);
95808459 632 xfs_buf_relse(bp);
1da177e4
LT
633}
634
ddf92053
CH
635STATIC void
636xfs_buf_item_committing(
637 struct xfs_log_item *lip,
638 xfs_lsn_t commit_lsn)
639{
640 return xfs_buf_item_release(lip);
641}
642
1da177e4
LT
643/*
644 * This is called to find out where the oldest active copy of the
645 * buf log item in the on disk log resides now that the last log
646 * write of it completed at the given lsn.
647 * We always re-log all the dirty data in a buffer, so usually the
648 * latest copy in the on disk log is the only one that matters. For
649 * those cases we simply return the given lsn.
650 *
651 * The one exception to this is for buffers full of newly allocated
652 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
653 * flag set, indicating that only the di_next_unlinked fields from the
654 * inodes in the buffers will be replayed during recovery. If the
655 * original newly allocated inode images have not yet been flushed
656 * when the buffer is so relogged, then we need to make sure that we
657 * keep the old images in the 'active' portion of the log. We do this
658 * by returning the original lsn of that transaction here rather than
659 * the current one.
660 */
ba0f32d4 661STATIC xfs_lsn_t
1da177e4 662xfs_buf_item_committed(
7bfa31d8 663 struct xfs_log_item *lip,
1da177e4
LT
664 xfs_lsn_t lsn)
665{
7bfa31d8
CH
666 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
667
0b1b213f
CH
668 trace_xfs_buf_item_committed(bip);
669
7bfa31d8
CH
670 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
671 return lip->li_lsn;
672 return lsn;
1da177e4
LT
673}
674
272e42b2 675static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
676 .iop_size = xfs_buf_item_size,
677 .iop_format = xfs_buf_item_format,
678 .iop_pin = xfs_buf_item_pin,
679 .iop_unpin = xfs_buf_item_unpin,
ddf92053
CH
680 .iop_release = xfs_buf_item_release,
681 .iop_committing = xfs_buf_item_committing,
7bfa31d8
CH
682 .iop_committed = xfs_buf_item_committed,
683 .iop_push = xfs_buf_item_push,
1da177e4
LT
684};
685
c64dd49b 686STATIC void
372cc85e
DC
687xfs_buf_item_get_format(
688 struct xfs_buf_log_item *bip,
689 int count)
690{
691 ASSERT(bip->bli_formats == NULL);
692 bip->bli_format_count = count;
693
694 if (count == 1) {
b9438173 695 bip->bli_formats = &bip->__bli_format;
c64dd49b 696 return;
372cc85e
DC
697 }
698
699 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
707e0dda 700 0);
372cc85e
DC
701}
702
703STATIC void
704xfs_buf_item_free_format(
705 struct xfs_buf_log_item *bip)
706{
b9438173 707 if (bip->bli_formats != &bip->__bli_format) {
372cc85e
DC
708 kmem_free(bip->bli_formats);
709 bip->bli_formats = NULL;
710 }
711}
1da177e4
LT
712
713/*
714 * Allocate a new buf log item to go with the given buffer.
fb1755a6
CM
715 * Set the buffer's b_log_item field to point to the new
716 * buf log item.
1da177e4 717 */
f79af0b9 718int
1da177e4 719xfs_buf_item_init(
f79af0b9
DC
720 struct xfs_buf *bp,
721 struct xfs_mount *mp)
1da177e4 722{
fb1755a6 723 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4
LT
724 int chunks;
725 int map_size;
372cc85e 726 int i;
1da177e4
LT
727
728 /*
729 * Check to see if there is already a buf log item for
fb1755a6 730 * this buffer. If we do already have one, there is
1da177e4
LT
731 * nothing to do here so return.
732 */
dbd329f1 733 ASSERT(bp->b_mount == mp);
1a2ebf83 734 if (bip) {
fb1755a6 735 ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
1a2ebf83
DC
736 ASSERT(!bp->b_transp);
737 ASSERT(bip->bli_buf == bp);
f79af0b9 738 return 0;
fb1755a6 739 }
1da177e4 740
707e0dda 741 bip = kmem_zone_zalloc(xfs_buf_item_zone, 0);
43f5efc5 742 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 743 bip->bli_buf = bp;
372cc85e
DC
744
745 /*
746 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
747 * can be divided into. Make sure not to truncate any pieces.
748 * map_size is the size of the bitmap needed to describe the
749 * chunks of the buffer.
750 *
751 * Discontiguous buffer support follows the layout of the underlying
752 * buffer. This makes the implementation as simple as possible.
753 */
c64dd49b 754 xfs_buf_item_get_format(bip, bp->b_map_count);
372cc85e
DC
755
756 for (i = 0; i < bip->bli_format_count; i++) {
757 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
758 XFS_BLF_CHUNK);
759 map_size = DIV_ROUND_UP(chunks, NBWORD);
760
c3d5f0c2
DW
761 if (map_size > XFS_BLF_DATAMAP_SIZE) {
762 kmem_cache_free(xfs_buf_item_zone, bip);
763 xfs_err(mp,
764 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!",
765 map_size,
766 BBTOB(bp->b_maps[i].bm_len));
767 return -EFSCORRUPTED;
768 }
769
372cc85e
DC
770 bip->bli_formats[i].blf_type = XFS_LI_BUF;
771 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
772 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
773 bip->bli_formats[i].blf_map_size = map_size;
774 }
1da177e4 775
fb1755a6 776 bp->b_log_item = bip;
f79af0b9
DC
777 xfs_buf_hold(bp);
778 return 0;
1da177e4
LT
779}
780
781
782/*
783 * Mark bytes first through last inclusive as dirty in the buf
784 * item's bitmap.
785 */
632b89e8 786static void
372cc85e 787xfs_buf_item_log_segment(
1da177e4 788 uint first,
372cc85e
DC
789 uint last,
790 uint *map)
1da177e4
LT
791{
792 uint first_bit;
793 uint last_bit;
794 uint bits_to_set;
795 uint bits_set;
796 uint word_num;
797 uint *wordp;
798 uint bit;
799 uint end_bit;
800 uint mask;
801
c3d5f0c2
DW
802 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
803 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD);
804
1da177e4
LT
805 /*
806 * Convert byte offsets to bit numbers.
807 */
c1155410
DC
808 first_bit = first >> XFS_BLF_SHIFT;
809 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
810
811 /*
812 * Calculate the total number of bits to be set.
813 */
814 bits_to_set = last_bit - first_bit + 1;
815
816 /*
817 * Get a pointer to the first word in the bitmap
818 * to set a bit in.
819 */
820 word_num = first_bit >> BIT_TO_WORD_SHIFT;
372cc85e 821 wordp = &map[word_num];
1da177e4
LT
822
823 /*
824 * Calculate the starting bit in the first word.
825 */
826 bit = first_bit & (uint)(NBWORD - 1);
827
828 /*
829 * First set any bits in the first word of our range.
830 * If it starts at bit 0 of the word, it will be
831 * set below rather than here. That is what the variable
832 * bit tells us. The variable bits_set tracks the number
833 * of bits that have been set so far. End_bit is the number
834 * of the last bit to be set in this word plus one.
835 */
836 if (bit) {
9bb54cb5 837 end_bit = min(bit + bits_to_set, (uint)NBWORD);
79c350e4 838 mask = ((1U << (end_bit - bit)) - 1) << bit;
1da177e4
LT
839 *wordp |= mask;
840 wordp++;
841 bits_set = end_bit - bit;
842 } else {
843 bits_set = 0;
844 }
845
846 /*
847 * Now set bits a whole word at a time that are between
848 * first_bit and last_bit.
849 */
850 while ((bits_to_set - bits_set) >= NBWORD) {
12025460 851 *wordp = 0xffffffff;
1da177e4
LT
852 bits_set += NBWORD;
853 wordp++;
854 }
855
856 /*
857 * Finally, set any bits left to be set in one last partial word.
858 */
859 end_bit = bits_to_set - bits_set;
860 if (end_bit) {
79c350e4 861 mask = (1U << end_bit) - 1;
1da177e4
LT
862 *wordp |= mask;
863 }
1da177e4
LT
864}
865
372cc85e
DC
866/*
867 * Mark bytes first through last inclusive as dirty in the buf
868 * item's bitmap.
869 */
870void
871xfs_buf_item_log(
70a20655 872 struct xfs_buf_log_item *bip,
372cc85e
DC
873 uint first,
874 uint last)
875{
876 int i;
877 uint start;
878 uint end;
879 struct xfs_buf *bp = bip->bli_buf;
880
372cc85e
DC
881 /*
882 * walk each buffer segment and mark them dirty appropriately.
883 */
884 start = 0;
885 for (i = 0; i < bip->bli_format_count; i++) {
886 if (start > last)
887 break;
a3916e52
BF
888 end = start + BBTOB(bp->b_maps[i].bm_len) - 1;
889
890 /* skip to the map that includes the first byte to log */
372cc85e
DC
891 if (first > end) {
892 start += BBTOB(bp->b_maps[i].bm_len);
893 continue;
894 }
a3916e52
BF
895
896 /*
897 * Trim the range to this segment and mark it in the bitmap.
898 * Note that we must convert buffer offsets to segment relative
899 * offsets (e.g., the first byte of each segment is byte 0 of
900 * that segment).
901 */
372cc85e
DC
902 if (first < start)
903 first = start;
904 if (end > last)
905 end = last;
a3916e52 906 xfs_buf_item_log_segment(first - start, end - start,
372cc85e
DC
907 &bip->bli_formats[i].blf_data_map[0]);
908
a3916e52 909 start += BBTOB(bp->b_maps[i].bm_len);
372cc85e
DC
910 }
911}
912
1da177e4 913
6453c65d
BF
914/*
915 * Return true if the buffer has any ranges logged/dirtied by a transaction,
916 * false otherwise.
917 */
918bool
919xfs_buf_item_dirty_format(
920 struct xfs_buf_log_item *bip)
921{
922 int i;
923
924 for (i = 0; i < bip->bli_format_count; i++) {
925 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
926 bip->bli_formats[i].blf_map_size))
927 return true;
928 }
929
930 return false;
931}
932
e1f5dbd7
LM
933STATIC void
934xfs_buf_item_free(
70a20655 935 struct xfs_buf_log_item *bip)
e1f5dbd7 936{
372cc85e 937 xfs_buf_item_free_format(bip);
b1c5ebb2 938 kmem_free(bip->bli_item.li_lv_shadow);
377bcd5f 939 kmem_cache_free(xfs_buf_item_zone, bip);
e1f5dbd7
LM
940}
941
1da177e4 942/*
b01d1461 943 * xfs_buf_item_relse() is called when the buf log item is no longer needed.
1da177e4
LT
944 */
945void
946xfs_buf_item_relse(
947 xfs_buf_t *bp)
948{
fb1755a6 949 struct xfs_buf_log_item *bip = bp->b_log_item;
1da177e4 950
0b1b213f 951 trace_xfs_buf_item_relse(bp, _RET_IP_);
826f7e34 952 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags));
0b1b213f 953
fb1755a6 954 bp->b_log_item = NULL;
e1f5dbd7
LM
955 xfs_buf_rele(bp);
956 xfs_buf_item_free(bip);
1da177e4
LT
957}
958
959
960/*
961 * Add the given log item with its callback to the list of callbacks
b01d1461 962 * to be called when the buffer's I/O completes.
1da177e4
LT
963 */
964void
965xfs_buf_attach_iodone(
efe2330f
CH
966 struct xfs_buf *bp,
967 void (*cb)(struct xfs_buf *, struct xfs_log_item *),
968 struct xfs_log_item *lip)
1da177e4 969{
0c842ad4 970 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
971
972 lip->li_cb = cb;
643c8c05 973 list_add_tail(&lip->li_bio_list, &bp->b_li_list);
1da177e4
LT
974}
975
c90821a2
DC
976/*
977 * We can have many callbacks on a buffer. Running the callbacks individually
978 * can cause a lot of contention on the AIL lock, so we allow for a single
643c8c05
CM
979 * callback to be able to scan the remaining items in bp->b_li_list for other
980 * items of the same type and callback to be processed in the first call.
c90821a2
DC
981 *
982 * As a result, the loop walking the callback list below will also modify the
983 * list. it removes the first item from the list and then runs the callback.
643c8c05 984 * The loop then restarts from the new first item int the list. This allows the
c90821a2
DC
985 * callback to scan and modify the list attached to the buffer and we don't
986 * have to care about maintaining a next item pointer.
987 */
1da177e4
LT
988STATIC void
989xfs_buf_do_callbacks(
c90821a2 990 struct xfs_buf *bp)
1da177e4 991{
fb1755a6 992 struct xfs_buf_log_item *blip = bp->b_log_item;
c90821a2 993 struct xfs_log_item *lip;
1da177e4 994
fb1755a6
CM
995 /* If there is a buf_log_item attached, run its callback */
996 if (blip) {
997 lip = &blip->bli_item;
998 lip->li_cb(bp, lip);
999 }
1000
643c8c05
CM
1001 while (!list_empty(&bp->b_li_list)) {
1002 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1003 li_bio_list);
1004
1da177e4 1005 /*
643c8c05 1006 * Remove the item from the list, so we don't have any
1da177e4
LT
1007 * confusion if the item is added to another buf.
1008 * Don't touch the log item after calling its
1009 * callback, because it could have freed itself.
1010 */
643c8c05 1011 list_del_init(&lip->li_bio_list);
1da177e4 1012 lip->li_cb(bp, lip);
1da177e4
LT
1013 }
1014}
1015
0b80ae6e
CM
1016/*
1017 * Invoke the error state callback for each log item affected by the failed I/O.
1018 *
1019 * If a metadata buffer write fails with a non-permanent error, the buffer is
1020 * eventually resubmitted and so the completion callbacks are not run. The error
1021 * state may need to be propagated to the log items attached to the buffer,
1022 * however, so the next AIL push of the item knows hot to handle it correctly.
1023 */
1024STATIC void
1025xfs_buf_do_callbacks_fail(
1026 struct xfs_buf *bp)
1027{
643c8c05 1028 struct xfs_log_item *lip;
fb1755a6 1029 struct xfs_ail *ailp;
0b80ae6e 1030
fb1755a6
CM
1031 /*
1032 * Buffer log item errors are handled directly by xfs_buf_item_push()
1033 * and xfs_buf_iodone_callback_error, and they have no IO error
1034 * callbacks. Check only for items in b_li_list.
1035 */
643c8c05 1036 if (list_empty(&bp->b_li_list))
fb1755a6
CM
1037 return;
1038
643c8c05
CM
1039 lip = list_first_entry(&bp->b_li_list, struct xfs_log_item,
1040 li_bio_list);
fb1755a6 1041 ailp = lip->li_ailp;
57e80956 1042 spin_lock(&ailp->ail_lock);
643c8c05 1043 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
0b80ae6e
CM
1044 if (lip->li_ops->iop_error)
1045 lip->li_ops->iop_error(lip, bp);
1046 }
57e80956 1047 spin_unlock(&ailp->ail_lock);
0b80ae6e
CM
1048}
1049
df309390
CM
1050static bool
1051xfs_buf_iodone_callback_error(
bfc60177 1052 struct xfs_buf *bp)
1da177e4 1053{
fb1755a6 1054 struct xfs_buf_log_item *bip = bp->b_log_item;
643c8c05 1055 struct xfs_log_item *lip;
fb1755a6 1056 struct xfs_mount *mp;
bfc60177
CH
1057 static ulong lasttime;
1058 static xfs_buftarg_t *lasttarg;
df309390 1059 struct xfs_error_cfg *cfg;
1da177e4 1060
fb1755a6
CM
1061 /*
1062 * The failed buffer might not have a buf_log_item attached or the
1063 * log_item list might be empty. Get the mp from the available
1064 * xfs_log_item
1065 */
643c8c05
CM
1066 lip = list_first_entry_or_null(&bp->b_li_list, struct xfs_log_item,
1067 li_bio_list);
1068 mp = lip ? lip->li_mountp : bip->bli_item.li_mountp;
fb1755a6 1069
bfc60177
CH
1070 /*
1071 * If we've already decided to shutdown the filesystem because of
1072 * I/O errors, there's no point in giving this a retry.
1073 */
df309390
CM
1074 if (XFS_FORCED_SHUTDOWN(mp))
1075 goto out_stale;
1da177e4 1076
49074c06 1077 if (bp->b_target != lasttarg ||
bfc60177
CH
1078 time_after(jiffies, (lasttime + 5*HZ))) {
1079 lasttime = jiffies;
cdbcf82b 1080 xfs_buf_ioerror_alert(bp, __this_address);
bfc60177 1081 }
49074c06 1082 lasttarg = bp->b_target;
1da177e4 1083
df309390
CM
1084 /* synchronous writes will have callers process the error */
1085 if (!(bp->b_flags & XBF_ASYNC))
1086 goto out_stale;
1087
1088 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
df309390 1089
5539d367
ES
1090 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1091
bfc60177 1092 /*
25985edc 1093 * If the write was asynchronous then no one will be looking for the
df309390
CM
1094 * error. If this is the first failure of this type, clear the error
1095 * state and write the buffer out again. This means we always retry an
1096 * async write failure at least once, but we also need to set the buffer
1097 * up to behave correctly now for repeated failures.
bfc60177 1098 */
0b4db5df 1099 if (!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) ||
df309390 1100 bp->b_last_error != bp->b_error) {
0b4db5df 1101 bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
df309390 1102 bp->b_last_error = bp->b_error;
77169812
ES
1103 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1104 !bp->b_first_retry_time)
5539d367 1105 bp->b_first_retry_time = jiffies;
a5ea70d2 1106
df309390
CM
1107 xfs_buf_ioerror(bp, 0);
1108 xfs_buf_submit(bp);
1109 return true;
1110 }
43ff2122 1111
df309390
CM
1112 /*
1113 * Repeated failure on an async write. Take action according to the
1114 * error configuration we have been set up to use.
1115 */
a5ea70d2
CM
1116
1117 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1118 ++bp->b_retries > cfg->max_retries)
1119 goto permanent_error;
77169812 1120 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
a5ea70d2
CM
1121 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1122 goto permanent_error;
bfc60177 1123
e6b3bb78
CM
1124 /* At unmount we may treat errors differently */
1125 if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
1126 goto permanent_error;
1127
0b80ae6e
CM
1128 /*
1129 * Still a transient error, run IO completion failure callbacks and let
1130 * the higher layers retry the buffer.
1131 */
1132 xfs_buf_do_callbacks_fail(bp);
df309390
CM
1133 xfs_buf_ioerror(bp, 0);
1134 xfs_buf_relse(bp);
1135 return true;
0b1b213f 1136
bfc60177 1137 /*
df309390
CM
1138 * Permanent error - we need to trigger a shutdown if we haven't already
1139 * to indicate that inconsistency will result from this action.
bfc60177 1140 */
df309390
CM
1141permanent_error:
1142 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1143out_stale:
c867cb61 1144 xfs_buf_stale(bp);
b0388bf1 1145 bp->b_flags |= XBF_DONE;
0b1b213f 1146 trace_xfs_buf_error_relse(bp, _RET_IP_);
df309390
CM
1147 return false;
1148}
1149
aac855ab
DC
1150static inline bool
1151xfs_buf_had_callback_errors(
df309390
CM
1152 struct xfs_buf *bp)
1153{
f593bf14 1154
df309390 1155 /*
f593bf14
DC
1156 * If there is an error, process it. Some errors require us to run
1157 * callbacks after failure processing is done so we detect that and take
1158 * appropriate action.
df309390
CM
1159 */
1160 if (bp->b_error && xfs_buf_iodone_callback_error(bp))
aac855ab 1161 return true;
df309390
CM
1162
1163 /*
1164 * Successful IO or permanent error. Either way, we can clear the
1165 * retry state here in preparation for the next error that may occur.
1166 */
1167 bp->b_last_error = 0;
a5ea70d2 1168 bp->b_retries = 0;
4dd2eb63 1169 bp->b_first_retry_time = 0;
aac855ab
DC
1170 return false;
1171}
0b1b213f 1172
aac855ab
DC
1173static void
1174xfs_buf_run_callbacks(
1175 struct xfs_buf *bp)
1176{
1177
1178 if (xfs_buf_had_callback_errors(bp))
1179 return;
c90821a2 1180 xfs_buf_do_callbacks(bp);
fb1755a6 1181 bp->b_log_item = NULL;
f593bf14
DC
1182}
1183
1184/*
b01d1461 1185 * Inode buffer iodone callback function.
f593bf14
DC
1186 */
1187void
b01d1461 1188xfs_buf_inode_iodone(
f593bf14
DC
1189 struct xfs_buf *bp)
1190{
aac855ab
DC
1191 struct xfs_buf_log_item *blip = bp->b_log_item;
1192 struct xfs_log_item *lip;
1193
1194 if (xfs_buf_had_callback_errors(bp))
1195 return;
1196
1197 /* If there is a buf_log_item attached, run its callback */
1198 if (blip) {
1199 lip = &blip->bli_item;
1200 lip->li_cb(bp, lip);
1201 bp->b_log_item = NULL;
1202 }
1203
1204 xfs_iflush_done(bp);
b01d1461 1205 xfs_buf_ioend_finish(bp);
1da177e4
LT
1206}
1207
f593bf14 1208/*
b01d1461 1209 * Dquot buffer iodone callback function.
f593bf14
DC
1210 */
1211void
b01d1461 1212xfs_buf_dquot_iodone(
f593bf14
DC
1213 struct xfs_buf *bp)
1214{
6f5de180
DC
1215 struct xfs_buf_log_item *blip = bp->b_log_item;
1216 struct xfs_log_item *lip;
1217
1218 if (xfs_buf_had_callback_errors(bp))
1219 return;
1220
1221 /* a newly allocated dquot buffer might have a log item attached */
1222 if (blip) {
1223 lip = &blip->bli_item;
1224 lip->li_cb(bp, lip);
1225 bp->b_log_item = NULL;
1226 }
1227
1228 xfs_dquot_done(bp);
f593bf14
DC
1229 xfs_buf_ioend_finish(bp);
1230}
1231
0c7e5afb 1232/*
b01d1461 1233 * Dirty buffer iodone callback function.
0c7e5afb
DC
1234 */
1235void
b01d1461 1236xfs_buf_iodone(
0c7e5afb
DC
1237 struct xfs_buf *bp)
1238{
1239 xfs_buf_run_callbacks(bp);
1240 xfs_buf_ioend_finish(bp);
1241}
f593bf14 1242
1da177e4
LT
1243/*
1244 * This is the iodone() function for buffers which have been
1245 * logged. It is called when they are eventually flushed out.
1246 * It should remove the buf item from the AIL, and free the buf item.
1247 * It is called by xfs_buf_iodone_callbacks() above which will take
1248 * care of cleaning up the buffer itself.
1249 */
1da177e4 1250void
b01d1461 1251xfs_buf_item_iodone(
ca30b2a7
CH
1252 struct xfs_buf *bp,
1253 struct xfs_log_item *lip)
1da177e4 1254{
ca30b2a7 1255 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 1256
e1f5dbd7 1257 xfs_buf_rele(bp);
1da177e4
LT
1258
1259 /*
849274c1
BF
1260 * If we are forcibly shutting down, this may well be off the AIL
1261 * already. That's because we simulate the log-committed callbacks to
1262 * unpin these buffers. Or we may never have put this item on AIL
1263 * because of the transaction was aborted forcibly.
1264 * xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1265 *
1266 * Either way, AIL is useless if we're forcing a shutdown.
1267 */
849274c1 1268 xfs_trans_ail_delete(lip, SHUTDOWN_CORRUPT_INCORE);
ca30b2a7 1269 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1270}