]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_file.c
s390/crypto: Fix return code checking in cbc_paes_crypt()
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
68a9f5e7 40#include "xfs_iomap.h"
0613f16c 41#include "xfs_reflink.h"
1da177e4
LT
42
43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
66114cad 46#include <linux/backing-dev.h>
a39e596b 47#include <linux/mman.h>
1da177e4 48
f0f37e2f 49static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 50
dda35b8f 51/*
68a9f5e7
CH
52 * Clear the specified ranges to zero through either the pagecache or DAX.
53 * Holes and unwritten extents will be left as-is as they already are zeroed.
dda35b8f 54 */
ef9d8733 55int
7bb41db3 56xfs_zero_range(
68a9f5e7 57 struct xfs_inode *ip,
7bb41db3
CH
58 xfs_off_t pos,
59 xfs_off_t count,
60 bool *did_zero)
dda35b8f 61{
d20a5e38 62 return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops);
dda35b8f
CH
63}
64
8add71ca
CH
65int
66xfs_update_prealloc_flags(
67 struct xfs_inode *ip,
68 enum xfs_prealloc_flags flags)
69{
70 struct xfs_trans *tp;
71 int error;
72
253f4911
CH
73 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
74 0, 0, 0, &tp);
75 if (error)
8add71ca 76 return error;
8add71ca
CH
77
78 xfs_ilock(ip, XFS_ILOCK_EXCL);
79 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
80
81 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
82 VFS_I(ip)->i_mode &= ~S_ISUID;
83 if (VFS_I(ip)->i_mode & S_IXGRP)
84 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
85 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
86 }
87
88 if (flags & XFS_PREALLOC_SET)
89 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
90 if (flags & XFS_PREALLOC_CLEAR)
91 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
92
93 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
94 if (flags & XFS_PREALLOC_SYNC)
95 xfs_trans_set_sync(tp);
70393313 96 return xfs_trans_commit(tp);
8add71ca
CH
97}
98
1da2f2db
CH
99/*
100 * Fsync operations on directories are much simpler than on regular files,
101 * as there is no file data to flush, and thus also no need for explicit
102 * cache flush operations, and there are no non-transaction metadata updates
103 * on directories either.
104 */
105STATIC int
106xfs_dir_fsync(
107 struct file *file,
108 loff_t start,
109 loff_t end,
110 int datasync)
111{
112 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
113 struct xfs_mount *mp = ip->i_mount;
114 xfs_lsn_t lsn = 0;
115
116 trace_xfs_dir_fsync(ip);
117
118 xfs_ilock(ip, XFS_ILOCK_SHARED);
119 if (xfs_ipincount(ip))
120 lsn = ip->i_itemp->ili_last_lsn;
121 xfs_iunlock(ip, XFS_ILOCK_SHARED);
122
123 if (!lsn)
124 return 0;
2451337d 125 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
126}
127
fd3200be
CH
128STATIC int
129xfs_file_fsync(
130 struct file *file,
02c24a82
JB
131 loff_t start,
132 loff_t end,
fd3200be
CH
133 int datasync)
134{
7ea80859
CH
135 struct inode *inode = file->f_mapping->host;
136 struct xfs_inode *ip = XFS_I(inode);
a27a263b 137 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
138 int error = 0;
139 int log_flushed = 0;
b1037058 140 xfs_lsn_t lsn = 0;
fd3200be 141
cca28fb8 142 trace_xfs_file_fsync(ip);
fd3200be 143
1b180274 144 error = file_write_and_wait_range(file, start, end);
02c24a82
JB
145 if (error)
146 return error;
147
a27a263b 148 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 149 return -EIO;
fd3200be
CH
150
151 xfs_iflags_clear(ip, XFS_ITRUNCATED);
152
2291dab2
DC
153 /*
154 * If we have an RT and/or log subvolume we need to make sure to flush
155 * the write cache the device used for file data first. This is to
156 * ensure newly written file data make it to disk before logging the new
157 * inode size in case of an extending write.
158 */
159 if (XFS_IS_REALTIME_INODE(ip))
160 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
161 else if (mp->m_logdev_targp != mp->m_ddev_targp)
162 xfs_blkdev_issue_flush(mp->m_ddev_targp);
a27a263b 163
fd3200be 164 /*
fc0561ce
DC
165 * All metadata updates are logged, which means that we just have to
166 * flush the log up to the latest LSN that touched the inode. If we have
167 * concurrent fsync/fdatasync() calls, we need them to all block on the
168 * log force before we clear the ili_fsync_fields field. This ensures
169 * that we don't get a racing sync operation that does not wait for the
170 * metadata to hit the journal before returning. If we race with
171 * clearing the ili_fsync_fields, then all that will happen is the log
172 * force will do nothing as the lsn will already be on disk. We can't
173 * race with setting ili_fsync_fields because that is done under
174 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
175 * until after the ili_fsync_fields is cleared.
fd3200be
CH
176 */
177 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
178 if (xfs_ipincount(ip)) {
179 if (!datasync ||
fc0561ce 180 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
181 lsn = ip->i_itemp->ili_last_lsn;
182 }
fd3200be 183
fc0561ce 184 if (lsn) {
b1037058 185 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
186 ip->i_itemp->ili_fsync_fields = 0;
187 }
188 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 189
a27a263b
CH
190 /*
191 * If we only have a single device, and the log force about was
192 * a no-op we might have to flush the data device cache here.
193 * This can only happen for fdatasync/O_DSYNC if we were overwriting
194 * an already allocated file and thus do not have any metadata to
195 * commit.
196 */
2291dab2
DC
197 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
198 mp->m_logdev_targp == mp->m_ddev_targp)
a27a263b 199 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 200
2451337d 201 return error;
fd3200be
CH
202}
203
00258e36 204STATIC ssize_t
bbc5a740 205xfs_file_dio_aio_read(
dda35b8f 206 struct kiocb *iocb,
b4f5d2c6 207 struct iov_iter *to)
dda35b8f 208{
acdda3aa 209 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
bbc5a740 210 size_t count = iov_iter_count(to);
acdda3aa 211 ssize_t ret;
dda35b8f 212
bbc5a740 213 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 214
f1285ff0
CH
215 if (!count)
216 return 0; /* skip atime */
dda35b8f 217
a447d7cd
CH
218 file_accessed(iocb->ki_filp);
219
65523218 220 xfs_ilock(ip, XFS_IOLOCK_SHARED);
acdda3aa 221 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
65523218 222 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
acdda3aa 223
16d4d435
CH
224 return ret;
225}
226
f021bd07 227static noinline ssize_t
16d4d435
CH
228xfs_file_dax_read(
229 struct kiocb *iocb,
230 struct iov_iter *to)
231{
6c31f495 232 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
233 size_t count = iov_iter_count(to);
234 ssize_t ret = 0;
235
236 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
237
238 if (!count)
239 return 0; /* skip atime */
240
942491c9
CH
241 if (iocb->ki_flags & IOCB_NOWAIT) {
242 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
29a5d29e 243 return -EAGAIN;
942491c9 244 } else {
29a5d29e
GR
245 xfs_ilock(ip, XFS_IOLOCK_SHARED);
246 }
942491c9 247
11c59c92 248 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
65523218 249 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 250
f1285ff0 251 file_accessed(iocb->ki_filp);
bbc5a740
CH
252 return ret;
253}
254
255STATIC ssize_t
256xfs_file_buffered_aio_read(
257 struct kiocb *iocb,
258 struct iov_iter *to)
259{
260 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
261 ssize_t ret;
262
263 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 264
942491c9
CH
265 if (iocb->ki_flags & IOCB_NOWAIT) {
266 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
91f9943e 267 return -EAGAIN;
942491c9 268 } else {
91f9943e
CH
269 xfs_ilock(ip, XFS_IOLOCK_SHARED);
270 }
b4f5d2c6 271 ret = generic_file_read_iter(iocb, to);
65523218 272 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
273
274 return ret;
275}
276
277STATIC ssize_t
278xfs_file_read_iter(
279 struct kiocb *iocb,
280 struct iov_iter *to)
281{
16d4d435
CH
282 struct inode *inode = file_inode(iocb->ki_filp);
283 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
284 ssize_t ret = 0;
285
286 XFS_STATS_INC(mp, xs_read_calls);
287
288 if (XFS_FORCED_SHUTDOWN(mp))
289 return -EIO;
290
16d4d435
CH
291 if (IS_DAX(inode))
292 ret = xfs_file_dax_read(iocb, to);
293 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 294 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 295 else
bbc5a740 296 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 297
dda35b8f 298 if (ret > 0)
ff6d6af2 299 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
300 return ret;
301}
302
dda35b8f 303/*
193aec10
CH
304 * Zero any on disk space between the current EOF and the new, larger EOF.
305 *
306 * This handles the normal case of zeroing the remainder of the last block in
307 * the file and the unusual case of zeroing blocks out beyond the size of the
308 * file. This second case only happens with fixed size extents and when the
309 * system crashes before the inode size was updated but after blocks were
310 * allocated.
311 *
312 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 313 */
dda35b8f
CH
314int /* error (positive) */
315xfs_zero_eof(
193aec10
CH
316 struct xfs_inode *ip,
317 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
318 xfs_fsize_t isize, /* current inode size */
319 bool *did_zeroing)
dda35b8f 320{
193aec10 321 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
322 ASSERT(offset > isize);
323
0a50f162 324 trace_xfs_zero_eof(ip, isize, offset - isize);
570b6211 325 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
dda35b8f
CH
326}
327
4d8d1581
DC
328/*
329 * Common pre-write limit and setup checks.
330 *
5bf1f262
CH
331 * Called with the iolocked held either shared and exclusive according to
332 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
333 * if called for a direct write beyond i_size.
4d8d1581
DC
334 */
335STATIC ssize_t
336xfs_file_aio_write_checks(
99733fa3
AV
337 struct kiocb *iocb,
338 struct iov_iter *from,
4d8d1581
DC
339 int *iolock)
340{
99733fa3 341 struct file *file = iocb->ki_filp;
4d8d1581
DC
342 struct inode *inode = file->f_mapping->host;
343 struct xfs_inode *ip = XFS_I(inode);
3309dd04 344 ssize_t error = 0;
99733fa3 345 size_t count = iov_iter_count(from);
3136e8bb 346 bool drained_dio = false;
4d8d1581 347
7271d243 348restart:
3309dd04
AV
349 error = generic_write_checks(iocb, from);
350 if (error <= 0)
4d8d1581 351 return error;
4d8d1581 352
65523218 353 error = xfs_break_layouts(inode, iolock);
781355c6
CH
354 if (error)
355 return error;
356
65523218
CH
357 /*
358 * For changing security info in file_remove_privs() we need i_rwsem
359 * exclusively.
360 */
a6de82ca 361 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 362 xfs_iunlock(ip, *iolock);
a6de82ca 363 *iolock = XFS_IOLOCK_EXCL;
65523218 364 xfs_ilock(ip, *iolock);
a6de82ca
JK
365 goto restart;
366 }
4d8d1581
DC
367 /*
368 * If the offset is beyond the size of the file, we need to zero any
369 * blocks that fall between the existing EOF and the start of this
2813d682 370 * write. If zeroing is needed and we are currently holding the
467f7899
CH
371 * iolock shared, we need to update it to exclusive which implies
372 * having to redo all checks before.
b9d59846
DC
373 *
374 * We need to serialise against EOF updates that occur in IO
375 * completions here. We want to make sure that nobody is changing the
376 * size while we do this check until we have placed an IO barrier (i.e.
377 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
378 * The spinlock effectively forms a memory barrier once we have the
379 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
380 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 381 */
b9d59846 382 spin_lock(&ip->i_flags_lock);
99733fa3 383 if (iocb->ki_pos > i_size_read(inode)) {
b9d59846 384 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
385 if (!drained_dio) {
386 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 387 xfs_iunlock(ip, *iolock);
3136e8bb 388 *iolock = XFS_IOLOCK_EXCL;
65523218 389 xfs_ilock(ip, *iolock);
3136e8bb
BF
390 iov_iter_reexpand(from, count);
391 }
40c63fbc
DC
392 /*
393 * We now have an IO submission barrier in place, but
394 * AIO can do EOF updates during IO completion and hence
395 * we now need to wait for all of them to drain. Non-AIO
396 * DIO will have drained before we are given the
397 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
398 * no-op.
399 */
400 inode_dio_wait(inode);
3136e8bb 401 drained_dio = true;
7271d243
DC
402 goto restart;
403 }
64671baf 404 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), NULL);
467f7899
CH
405 if (error)
406 return error;
b9d59846
DC
407 } else
408 spin_unlock(&ip->i_flags_lock);
4d8d1581 409
8a9c9980
CH
410 /*
411 * Updating the timestamps will grab the ilock again from
412 * xfs_fs_dirty_inode, so we have to call it after dropping the
413 * lock above. Eventually we should look into a way to avoid
414 * the pointless lock roundtrip.
415 */
c3b2da31
JB
416 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
417 error = file_update_time(file);
418 if (error)
419 return error;
420 }
8a9c9980 421
4d8d1581
DC
422 /*
423 * If we're writing the file then make sure to clear the setuid and
424 * setgid bits if the process is not being run by root. This keeps
425 * people from modifying setuid and setgid binaries.
426 */
a6de82ca
JK
427 if (!IS_NOSEC(inode))
428 return file_remove_privs(file);
429 return 0;
4d8d1581
DC
430}
431
acdda3aa
CH
432static int
433xfs_dio_write_end_io(
434 struct kiocb *iocb,
435 ssize_t size,
436 unsigned flags)
437{
438 struct inode *inode = file_inode(iocb->ki_filp);
439 struct xfs_inode *ip = XFS_I(inode);
440 loff_t offset = iocb->ki_pos;
acdda3aa
CH
441 int error = 0;
442
443 trace_xfs_end_io_direct_write(ip, offset, size);
444
445 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
446 return -EIO;
447
448 if (size <= 0)
449 return size;
450
ee70daab
EG
451 if (flags & IOMAP_DIO_COW) {
452 error = xfs_reflink_end_cow(ip, offset, size);
453 if (error)
454 return error;
455 }
456
457 /*
458 * Unwritten conversion updates the in-core isize after extent
459 * conversion but before updating the on-disk size. Updating isize any
460 * earlier allows a racing dio read to find unwritten extents before
461 * they are converted.
462 */
463 if (flags & IOMAP_DIO_UNWRITTEN)
464 return xfs_iomap_write_unwritten(ip, offset, size, true);
465
acdda3aa
CH
466 /*
467 * We need to update the in-core inode size here so that we don't end up
468 * with the on-disk inode size being outside the in-core inode size. We
469 * have no other method of updating EOF for AIO, so always do it here
470 * if necessary.
471 *
472 * We need to lock the test/set EOF update as we can be racing with
473 * other IO completions here to update the EOF. Failing to serialise
474 * here can result in EOF moving backwards and Bad Things Happen when
475 * that occurs.
476 */
477 spin_lock(&ip->i_flags_lock);
478 if (offset + size > i_size_read(inode)) {
479 i_size_write(inode, offset + size);
ee70daab 480 spin_unlock(&ip->i_flags_lock);
acdda3aa 481 error = xfs_setfilesize(ip, offset, size);
ee70daab
EG
482 } else {
483 spin_unlock(&ip->i_flags_lock);
484 }
acdda3aa
CH
485
486 return error;
487}
488
f0d26e86
DC
489/*
490 * xfs_file_dio_aio_write - handle direct IO writes
491 *
492 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 493 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
494 * follow locking changes and looping.
495 *
eda77982
DC
496 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
497 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
498 * pages are flushed out.
499 *
500 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
501 * allowing them to be done in parallel with reads and other direct IO writes.
502 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
503 * needs to do sub-block zeroing and that requires serialisation against other
504 * direct IOs to the same block. In this case we need to serialise the
505 * submission of the unaligned IOs so that we don't get racing block zeroing in
506 * the dio layer. To avoid the problem with aio, we also need to wait for
507 * outstanding IOs to complete so that unwritten extent conversion is completed
508 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 509 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 510 *
f0d26e86
DC
511 * Returns with locks held indicated by @iolock and errors indicated by
512 * negative return values.
513 */
514STATIC ssize_t
515xfs_file_dio_aio_write(
516 struct kiocb *iocb,
b3188919 517 struct iov_iter *from)
f0d26e86
DC
518{
519 struct file *file = iocb->ki_filp;
520 struct address_space *mapping = file->f_mapping;
521 struct inode *inode = mapping->host;
522 struct xfs_inode *ip = XFS_I(inode);
523 struct xfs_mount *mp = ip->i_mount;
524 ssize_t ret = 0;
eda77982 525 int unaligned_io = 0;
d0606464 526 int iolock;
b3188919 527 size_t count = iov_iter_count(from);
acdda3aa 528 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
f0d26e86
DC
529 mp->m_rtdev_targp : mp->m_ddev_targp;
530
7c71ee78 531 /* DIO must be aligned to device logical sector size */
16d4d435 532 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 533 return -EINVAL;
f0d26e86 534
7271d243 535 /*
0ee7a3f6
CH
536 * Don't take the exclusive iolock here unless the I/O is unaligned to
537 * the file system block size. We don't need to consider the EOF
538 * extension case here because xfs_file_aio_write_checks() will relock
539 * the inode as necessary for EOF zeroing cases and fill out the new
540 * inode size as appropriate.
7271d243 541 */
0ee7a3f6
CH
542 if ((iocb->ki_pos & mp->m_blockmask) ||
543 ((iocb->ki_pos + count) & mp->m_blockmask)) {
544 unaligned_io = 1;
54a4ef8a
CH
545
546 /*
547 * We can't properly handle unaligned direct I/O to reflink
548 * files yet, as we can't unshare a partial block.
549 */
550 if (xfs_is_reflink_inode(ip)) {
551 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
552 return -EREMCHG;
553 }
d0606464 554 iolock = XFS_IOLOCK_EXCL;
0ee7a3f6 555 } else {
d0606464 556 iolock = XFS_IOLOCK_SHARED;
c58cb165 557 }
f0d26e86 558
942491c9
CH
559 if (iocb->ki_flags & IOCB_NOWAIT) {
560 if (!xfs_ilock_nowait(ip, iolock))
29a5d29e 561 return -EAGAIN;
942491c9 562 } else {
29a5d29e
GR
563 xfs_ilock(ip, iolock);
564 }
0ee7a3f6 565
99733fa3 566 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 567 if (ret)
d0606464 568 goto out;
99733fa3 569 count = iov_iter_count(from);
f0d26e86 570
eda77982
DC
571 /*
572 * If we are doing unaligned IO, wait for all other IO to drain,
0ee7a3f6
CH
573 * otherwise demote the lock if we had to take the exclusive lock
574 * for other reasons in xfs_file_aio_write_checks.
eda77982 575 */
29a5d29e
GR
576 if (unaligned_io) {
577 /* If we are going to wait for other DIO to finish, bail */
578 if (iocb->ki_flags & IOCB_NOWAIT) {
579 if (atomic_read(&inode->i_dio_count))
580 return -EAGAIN;
581 } else {
582 inode_dio_wait(inode);
583 }
584 } else if (iolock == XFS_IOLOCK_EXCL) {
65523218 585 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 586 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
587 }
588
3176c3e0 589 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
acdda3aa 590 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
d0606464 591out:
65523218 592 xfs_iunlock(ip, iolock);
d0606464 593
6b698ede 594 /*
16d4d435
CH
595 * No fallback to buffered IO on errors for XFS, direct IO will either
596 * complete fully or fail.
6b698ede 597 */
16d4d435
CH
598 ASSERT(ret < 0 || ret == count);
599 return ret;
600}
601
f021bd07 602static noinline ssize_t
16d4d435
CH
603xfs_file_dax_write(
604 struct kiocb *iocb,
605 struct iov_iter *from)
606{
6c31f495 607 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 608 struct xfs_inode *ip = XFS_I(inode);
17879e8f 609 int iolock = XFS_IOLOCK_EXCL;
6c31f495
CH
610 ssize_t ret, error = 0;
611 size_t count;
612 loff_t pos;
16d4d435 613
942491c9
CH
614 if (iocb->ki_flags & IOCB_NOWAIT) {
615 if (!xfs_ilock_nowait(ip, iolock))
29a5d29e 616 return -EAGAIN;
942491c9 617 } else {
29a5d29e
GR
618 xfs_ilock(ip, iolock);
619 }
620
16d4d435
CH
621 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
622 if (ret)
623 goto out;
624
6c31f495
CH
625 pos = iocb->ki_pos;
626 count = iov_iter_count(from);
8b2180b3 627
6c31f495 628 trace_xfs_file_dax_write(ip, count, pos);
11c59c92 629 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
6c31f495
CH
630 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
631 i_size_write(inode, iocb->ki_pos);
632 error = xfs_setfilesize(ip, pos, ret);
16d4d435 633 }
16d4d435 634out:
65523218 635 xfs_iunlock(ip, iolock);
6c31f495 636 return error ? error : ret;
f0d26e86
DC
637}
638
00258e36 639STATIC ssize_t
637bbc75 640xfs_file_buffered_aio_write(
dda35b8f 641 struct kiocb *iocb,
b3188919 642 struct iov_iter *from)
dda35b8f
CH
643{
644 struct file *file = iocb->ki_filp;
645 struct address_space *mapping = file->f_mapping;
646 struct inode *inode = mapping->host;
00258e36 647 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
648 ssize_t ret;
649 int enospc = 0;
c3155097 650 int iolock;
dda35b8f 651
91f9943e
CH
652 if (iocb->ki_flags & IOCB_NOWAIT)
653 return -EOPNOTSUPP;
654
c3155097
BF
655write_retry:
656 iolock = XFS_IOLOCK_EXCL;
65523218 657 xfs_ilock(ip, iolock);
dda35b8f 658
99733fa3 659 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 660 if (ret)
d0606464 661 goto out;
dda35b8f
CH
662
663 /* We can write back this queue in page reclaim */
de1414a6 664 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 665
3176c3e0 666 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 667 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 668 if (likely(ret >= 0))
99733fa3 669 iocb->ki_pos += ret;
dc06f398 670
637bbc75 671 /*
dc06f398
BF
672 * If we hit a space limit, try to free up some lingering preallocated
673 * space before returning an error. In the case of ENOSPC, first try to
674 * write back all dirty inodes to free up some of the excess reserved
675 * metadata space. This reduces the chances that the eofblocks scan
676 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
677 * also behaves as a filter to prevent too many eofblocks scans from
678 * running at the same time.
637bbc75 679 */
dc06f398 680 if (ret == -EDQUOT && !enospc) {
c3155097 681 xfs_iunlock(ip, iolock);
dc06f398
BF
682 enospc = xfs_inode_free_quota_eofblocks(ip);
683 if (enospc)
684 goto write_retry;
83104d44
DW
685 enospc = xfs_inode_free_quota_cowblocks(ip);
686 if (enospc)
687 goto write_retry;
c3155097 688 iolock = 0;
dc06f398
BF
689 } else if (ret == -ENOSPC && !enospc) {
690 struct xfs_eofblocks eofb = {0};
691
637bbc75 692 enospc = 1;
9aa05000 693 xfs_flush_inodes(ip->i_mount);
c3155097
BF
694
695 xfs_iunlock(ip, iolock);
dc06f398
BF
696 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
697 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
cf2cb784 698 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
9aa05000 699 goto write_retry;
dda35b8f 700 }
d0606464 701
dda35b8f 702 current->backing_dev_info = NULL;
d0606464 703out:
c3155097
BF
704 if (iolock)
705 xfs_iunlock(ip, iolock);
637bbc75
DC
706 return ret;
707}
708
709STATIC ssize_t
bf97f3bc 710xfs_file_write_iter(
637bbc75 711 struct kiocb *iocb,
bf97f3bc 712 struct iov_iter *from)
637bbc75
DC
713{
714 struct file *file = iocb->ki_filp;
715 struct address_space *mapping = file->f_mapping;
716 struct inode *inode = mapping->host;
717 struct xfs_inode *ip = XFS_I(inode);
718 ssize_t ret;
bf97f3bc 719 size_t ocount = iov_iter_count(from);
637bbc75 720
ff6d6af2 721 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 722
637bbc75
DC
723 if (ocount == 0)
724 return 0;
725
bf97f3bc
AV
726 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
727 return -EIO;
637bbc75 728
16d4d435
CH
729 if (IS_DAX(inode))
730 ret = xfs_file_dax_write(iocb, from);
0613f16c
DW
731 else if (iocb->ki_flags & IOCB_DIRECT) {
732 /*
733 * Allow a directio write to fall back to a buffered
734 * write *only* in the case that we're doing a reflink
735 * CoW. In all other directio scenarios we do not
736 * allow an operation to fall back to buffered mode.
737 */
bf97f3bc 738 ret = xfs_file_dio_aio_write(iocb, from);
0613f16c
DW
739 if (ret == -EREMCHG)
740 goto buffered;
741 } else {
742buffered:
bf97f3bc 743 ret = xfs_file_buffered_aio_write(iocb, from);
0613f16c 744 }
dda35b8f 745
d0606464 746 if (ret > 0) {
ff6d6af2 747 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
dda35b8f 748
d0606464 749 /* Handle various SYNC-type writes */
e2592217 750 ret = generic_write_sync(iocb, ret);
dda35b8f 751 }
a363f0c2 752 return ret;
dda35b8f
CH
753}
754
a904b1ca
NJ
755#define XFS_FALLOC_FL_SUPPORTED \
756 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
757 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 758 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 759
2fe17c10
CH
760STATIC long
761xfs_file_fallocate(
83aee9e4
CH
762 struct file *file,
763 int mode,
764 loff_t offset,
765 loff_t len)
2fe17c10 766{
83aee9e4
CH
767 struct inode *inode = file_inode(file);
768 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 769 long error;
8add71ca 770 enum xfs_prealloc_flags flags = 0;
781355c6 771 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 772 loff_t new_size = 0;
749f24f3 773 bool do_file_insert = false;
2fe17c10 774
83aee9e4
CH
775 if (!S_ISREG(inode->i_mode))
776 return -EINVAL;
a904b1ca 777 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
778 return -EOPNOTSUPP;
779
781355c6 780 xfs_ilock(ip, iolock);
65523218 781 error = xfs_break_layouts(inode, &iolock);
781355c6
CH
782 if (error)
783 goto out_unlock;
784
e8e9ad42
DC
785 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
786 iolock |= XFS_MMAPLOCK_EXCL;
787
83aee9e4
CH
788 if (mode & FALLOC_FL_PUNCH_HOLE) {
789 error = xfs_free_file_space(ip, offset, len);
790 if (error)
791 goto out_unlock;
e1d8fb88 792 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
93407472 793 unsigned int blksize_mask = i_blocksize(inode) - 1;
e1d8fb88
NJ
794
795 if (offset & blksize_mask || len & blksize_mask) {
2451337d 796 error = -EINVAL;
e1d8fb88
NJ
797 goto out_unlock;
798 }
799
23fffa92
LC
800 /*
801 * There is no need to overlap collapse range with EOF,
802 * in which case it is effectively a truncate operation
803 */
804 if (offset + len >= i_size_read(inode)) {
2451337d 805 error = -EINVAL;
23fffa92
LC
806 goto out_unlock;
807 }
808
e1d8fb88
NJ
809 new_size = i_size_read(inode) - len;
810
811 error = xfs_collapse_file_space(ip, offset, len);
812 if (error)
813 goto out_unlock;
a904b1ca 814 } else if (mode & FALLOC_FL_INSERT_RANGE) {
7119ef43
DW
815 unsigned int blksize_mask = i_blocksize(inode) - 1;
816 loff_t isize = i_size_read(inode);
a904b1ca 817
a904b1ca
NJ
818 if (offset & blksize_mask || len & blksize_mask) {
819 error = -EINVAL;
820 goto out_unlock;
821 }
822
7119ef43
DW
823 /*
824 * New inode size must not exceed ->s_maxbytes, accounting for
825 * possible signed overflow.
826 */
827 if (inode->i_sb->s_maxbytes - isize < len) {
a904b1ca
NJ
828 error = -EFBIG;
829 goto out_unlock;
830 }
7119ef43 831 new_size = isize + len;
a904b1ca
NJ
832
833 /* Offset should be less than i_size */
7119ef43 834 if (offset >= isize) {
a904b1ca
NJ
835 error = -EINVAL;
836 goto out_unlock;
837 }
749f24f3 838 do_file_insert = true;
83aee9e4 839 } else {
8add71ca
CH
840 flags |= XFS_PREALLOC_SET;
841
83aee9e4
CH
842 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
843 offset + len > i_size_read(inode)) {
844 new_size = offset + len;
2451337d 845 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
846 if (error)
847 goto out_unlock;
848 }
2fe17c10 849
376ba313
LC
850 if (mode & FALLOC_FL_ZERO_RANGE)
851 error = xfs_zero_file_space(ip, offset, len);
98cc2db5
DW
852 else {
853 if (mode & FALLOC_FL_UNSHARE_RANGE) {
854 error = xfs_reflink_unshare(ip, offset, len);
855 if (error)
856 goto out_unlock;
857 }
376ba313
LC
858 error = xfs_alloc_file_space(ip, offset, len,
859 XFS_BMAPI_PREALLOC);
98cc2db5 860 }
2fe17c10
CH
861 if (error)
862 goto out_unlock;
863 }
864
83aee9e4 865 if (file->f_flags & O_DSYNC)
8add71ca
CH
866 flags |= XFS_PREALLOC_SYNC;
867
868 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
869 if (error)
870 goto out_unlock;
871
872 /* Change file size if needed */
873 if (new_size) {
874 struct iattr iattr;
875
876 iattr.ia_valid = ATTR_SIZE;
877 iattr.ia_size = new_size;
69bca807 878 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
a904b1ca
NJ
879 if (error)
880 goto out_unlock;
2fe17c10
CH
881 }
882
a904b1ca
NJ
883 /*
884 * Perform hole insertion now that the file size has been
885 * updated so that if we crash during the operation we don't
886 * leave shifted extents past EOF and hence losing access to
887 * the data that is contained within them.
888 */
889 if (do_file_insert)
890 error = xfs_insert_file_space(ip, offset, len);
891
2fe17c10 892out_unlock:
781355c6 893 xfs_iunlock(ip, iolock);
2451337d 894 return error;
2fe17c10
CH
895}
896
9fe26045
DW
897STATIC int
898xfs_file_clone_range(
899 struct file *file_in,
900 loff_t pos_in,
901 struct file *file_out,
902 loff_t pos_out,
903 u64 len)
904{
5faaf4fa 905 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
cc714660
DW
906 len, false);
907}
908
cc714660
DW
909STATIC ssize_t
910xfs_file_dedupe_range(
911 struct file *src_file,
912 u64 loff,
913 u64 len,
914 struct file *dst_file,
915 u64 dst_loff)
916{
917 int error;
918
5faaf4fa 919 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
cc714660
DW
920 len, true);
921 if (error)
922 return error;
923 return len;
9fe26045 924}
2fe17c10 925
1da177e4 926STATIC int
3562fd45 927xfs_file_open(
1da177e4 928 struct inode *inode,
f999a5bf 929 struct file *file)
1da177e4 930{
f999a5bf 931 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 932 return -EFBIG;
f999a5bf
CH
933 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
934 return -EIO;
91f9943e 935 file->f_mode |= FMODE_NOWAIT;
f999a5bf
CH
936 return 0;
937}
938
939STATIC int
940xfs_dir_open(
941 struct inode *inode,
942 struct file *file)
943{
944 struct xfs_inode *ip = XFS_I(inode);
945 int mode;
946 int error;
947
948 error = xfs_file_open(inode, file);
949 if (error)
950 return error;
951
952 /*
953 * If there are any blocks, read-ahead block 0 as we're almost
954 * certain to have the next operation be a read there.
955 */
309ecac8 956 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 957 if (ip->i_d.di_nextents > 0)
7a652bbe 958 error = xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf 959 xfs_iunlock(ip, mode);
7a652bbe 960 return error;
1da177e4
LT
961}
962
1da177e4 963STATIC int
3562fd45 964xfs_file_release(
1da177e4
LT
965 struct inode *inode,
966 struct file *filp)
967{
2451337d 968 return xfs_release(XFS_I(inode));
1da177e4
LT
969}
970
1da177e4 971STATIC int
3562fd45 972xfs_file_readdir(
b8227554
AV
973 struct file *file,
974 struct dir_context *ctx)
1da177e4 975{
b8227554 976 struct inode *inode = file_inode(file);
739bfb2a 977 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
978 size_t bufsize;
979
980 /*
981 * The Linux API doesn't pass down the total size of the buffer
982 * we read into down to the filesystem. With the filldir concept
983 * it's not needed for correct information, but the XFS dir2 leaf
984 * code wants an estimate of the buffer size to calculate it's
985 * readahead window and size the buffers used for mapping to
986 * physical blocks.
987 *
988 * Try to give it an estimate that's good enough, maybe at some
989 * point we can change the ->readdir prototype to include the
a9cc799e 990 * buffer size. For now we use the current glibc buffer size.
051e7cd4 991 */
a5c46e5e 992 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
051e7cd4 993
acb9553c 994 return xfs_readdir(NULL, ip, ctx, bufsize);
3fe3e6b1
JL
995}
996
997STATIC loff_t
998xfs_file_llseek(
999 struct file *file,
1000 loff_t offset,
59f9c004 1001 int whence)
3fe3e6b1 1002{
9b2970aa
CH
1003 struct inode *inode = file->f_mapping->host;
1004
1005 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1006 return -EIO;
1007
59f9c004 1008 switch (whence) {
9b2970aa 1009 default:
59f9c004 1010 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1011 case SEEK_HOLE:
9b2970aa
CH
1012 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
1013 break;
49c69591 1014 case SEEK_DATA:
9b2970aa
CH
1015 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1016 break;
3fe3e6b1 1017 }
9b2970aa
CH
1018
1019 if (offset < 0)
1020 return offset;
1021 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1022}
1023
de0e8c20
DC
1024/*
1025 * Locking for serialisation of IO during page faults. This results in a lock
1026 * ordering of:
1027 *
1028 * mmap_sem (MM)
6b698ede 1029 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1030 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1031 * page_lock (MM)
1032 * i_lock (XFS - extent map serialisation)
de0e8c20 1033 */
d522d569
CH
1034static int
1035__xfs_filemap_fault(
1036 struct vm_fault *vmf,
1037 enum page_entry_size pe_size,
1038 bool write_fault)
de0e8c20 1039{
11bac800 1040 struct inode *inode = file_inode(vmf->vma->vm_file);
d522d569 1041 struct xfs_inode *ip = XFS_I(inode);
ec56b1f1 1042 int ret;
de0e8c20 1043
d522d569 1044 trace_xfs_filemap_fault(ip, pe_size, write_fault);
de0e8c20 1045
d522d569
CH
1046 if (write_fault) {
1047 sb_start_pagefault(inode->i_sb);
1048 file_update_time(vmf->vma->vm_file);
1049 }
de0e8c20 1050
d522d569 1051 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1052 if (IS_DAX(inode)) {
a39e596b
CH
1053 pfn_t pfn;
1054
1055 ret = dax_iomap_fault(vmf, pe_size, &pfn, &xfs_iomap_ops);
1056 if (ret & VM_FAULT_NEEDDSYNC)
1057 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
6b698ede 1058 } else {
d522d569
CH
1059 if (write_fault)
1060 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
1061 else
1062 ret = filemap_fault(vmf);
6b698ede 1063 }
6b698ede 1064 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b698ede 1065
d522d569
CH
1066 if (write_fault)
1067 sb_end_pagefault(inode->i_sb);
6b698ede 1068 return ret;
de0e8c20
DC
1069}
1070
d522d569 1071static int
6b698ede 1072xfs_filemap_fault(
075a924d
DC
1073 struct vm_fault *vmf)
1074{
6b698ede 1075 /* DAX can shortcut the normal fault path on write faults! */
d522d569
CH
1076 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1077 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1078 (vmf->flags & FAULT_FLAG_WRITE));
6b698ede
DC
1079}
1080
d522d569 1081static int
a2d58167 1082xfs_filemap_huge_fault(
c791ace1
DJ
1083 struct vm_fault *vmf,
1084 enum page_entry_size pe_size)
acd76e74 1085{
d522d569 1086 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
acd76e74
MW
1087 return VM_FAULT_FALLBACK;
1088
d522d569
CH
1089 /* DAX can shortcut the normal fault path on write faults! */
1090 return __xfs_filemap_fault(vmf, pe_size,
1091 (vmf->flags & FAULT_FLAG_WRITE));
1092}
acd76e74 1093
d522d569
CH
1094static int
1095xfs_filemap_page_mkwrite(
1096 struct vm_fault *vmf)
1097{
1098 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1099}
1100
3af49285 1101/*
7b565c9f
JK
1102 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1103 * on write faults. In reality, it needs to serialise against truncate and
1104 * prepare memory for writing so handle is as standard write fault.
3af49285
DC
1105 */
1106static int
1107xfs_filemap_pfn_mkwrite(
3af49285
DC
1108 struct vm_fault *vmf)
1109{
1110
7b565c9f 1111 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
acd76e74
MW
1112}
1113
6b698ede
DC
1114static const struct vm_operations_struct xfs_file_vm_ops = {
1115 .fault = xfs_filemap_fault,
a2d58167 1116 .huge_fault = xfs_filemap_huge_fault,
6b698ede
DC
1117 .map_pages = filemap_map_pages,
1118 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1119 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1120};
1121
1122STATIC int
1123xfs_file_mmap(
1124 struct file *filp,
1125 struct vm_area_struct *vma)
1126{
a39e596b
CH
1127 /*
1128 * We don't support synchronous mappings for non-DAX files. At least
1129 * until someone comes with a sensible use case.
1130 */
1131 if (!IS_DAX(file_inode(filp)) && (vma->vm_flags & VM_SYNC))
1132 return -EOPNOTSUPP;
1133
6b698ede
DC
1134 file_accessed(filp);
1135 vma->vm_ops = &xfs_file_vm_ops;
1136 if (IS_DAX(file_inode(filp)))
acd76e74 1137 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
6b698ede 1138 return 0;
075a924d
DC
1139}
1140
4b6f5d20 1141const struct file_operations xfs_file_operations = {
3fe3e6b1 1142 .llseek = xfs_file_llseek,
b4f5d2c6 1143 .read_iter = xfs_file_read_iter,
bf97f3bc 1144 .write_iter = xfs_file_write_iter,
82c156f8 1145 .splice_read = generic_file_splice_read,
8d020765 1146 .splice_write = iter_file_splice_write,
3562fd45 1147 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1148#ifdef CONFIG_COMPAT
3562fd45 1149 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1150#endif
3562fd45 1151 .mmap = xfs_file_mmap,
a39e596b 1152 .mmap_supported_flags = MAP_SYNC,
3562fd45
NS
1153 .open = xfs_file_open,
1154 .release = xfs_file_release,
1155 .fsync = xfs_file_fsync,
dbe6ec81 1156 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1157 .fallocate = xfs_file_fallocate,
9fe26045 1158 .clone_file_range = xfs_file_clone_range,
cc714660 1159 .dedupe_file_range = xfs_file_dedupe_range,
1da177e4
LT
1160};
1161
4b6f5d20 1162const struct file_operations xfs_dir_file_operations = {
f999a5bf 1163 .open = xfs_dir_open,
1da177e4 1164 .read = generic_read_dir,
3b0a3c1a 1165 .iterate_shared = xfs_file_readdir,
59af1584 1166 .llseek = generic_file_llseek,
3562fd45 1167 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1168#ifdef CONFIG_COMPAT
3562fd45 1169 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1170#endif
1da2f2db 1171 .fsync = xfs_dir_fsync,
1da177e4 1172};