]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_file.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
1da177e4 40
a27bb332 41#include <linux/aio.h>
1da177e4 42#include <linux/dcache.h>
2fe17c10 43#include <linux/falloc.h>
d126d43f 44#include <linux/pagevec.h>
1da177e4 45
f0f37e2f 46static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 47
487f84f3
DC
48/*
49 * Locking primitives for read and write IO paths to ensure we consistently use
50 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
51 */
52static inline void
53xfs_rw_ilock(
54 struct xfs_inode *ip,
55 int type)
56{
57 if (type & XFS_IOLOCK_EXCL)
58 mutex_lock(&VFS_I(ip)->i_mutex);
59 xfs_ilock(ip, type);
60}
61
62static inline void
63xfs_rw_iunlock(
64 struct xfs_inode *ip,
65 int type)
66{
67 xfs_iunlock(ip, type);
68 if (type & XFS_IOLOCK_EXCL)
69 mutex_unlock(&VFS_I(ip)->i_mutex);
70}
71
72static inline void
73xfs_rw_ilock_demote(
74 struct xfs_inode *ip,
75 int type)
76{
77 xfs_ilock_demote(ip, type);
78 if (type & XFS_IOLOCK_EXCL)
79 mutex_unlock(&VFS_I(ip)->i_mutex);
80}
81
dda35b8f
CH
82/*
83 * xfs_iozero
84 *
85 * xfs_iozero clears the specified range of buffer supplied,
86 * and marks all the affected blocks as valid and modified. If
87 * an affected block is not allocated, it will be allocated. If
88 * an affected block is not completely overwritten, and is not
89 * valid before the operation, it will be read from disk before
90 * being partially zeroed.
91 */
ef9d8733 92int
dda35b8f
CH
93xfs_iozero(
94 struct xfs_inode *ip, /* inode */
95 loff_t pos, /* offset in file */
96 size_t count) /* size of data to zero */
97{
98 struct page *page;
99 struct address_space *mapping;
100 int status;
101
102 mapping = VFS_I(ip)->i_mapping;
103 do {
104 unsigned offset, bytes;
105 void *fsdata;
106
107 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
108 bytes = PAGE_CACHE_SIZE - offset;
109 if (bytes > count)
110 bytes = count;
111
112 status = pagecache_write_begin(NULL, mapping, pos, bytes,
113 AOP_FLAG_UNINTERRUPTIBLE,
114 &page, &fsdata);
115 if (status)
116 break;
117
118 zero_user(page, offset, bytes);
119
120 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
121 page, fsdata);
122 WARN_ON(status <= 0); /* can't return less than zero! */
123 pos += bytes;
124 count -= bytes;
125 status = 0;
126 } while (count);
127
128 return (-status);
129}
130
8add71ca
CH
131int
132xfs_update_prealloc_flags(
133 struct xfs_inode *ip,
134 enum xfs_prealloc_flags flags)
135{
136 struct xfs_trans *tp;
137 int error;
138
139 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
140 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
141 if (error) {
142 xfs_trans_cancel(tp, 0);
143 return error;
144 }
145
146 xfs_ilock(ip, XFS_ILOCK_EXCL);
147 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
148
149 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
150 ip->i_d.di_mode &= ~S_ISUID;
151 if (ip->i_d.di_mode & S_IXGRP)
152 ip->i_d.di_mode &= ~S_ISGID;
153 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
154 }
155
156 if (flags & XFS_PREALLOC_SET)
157 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
158 if (flags & XFS_PREALLOC_CLEAR)
159 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
160
161 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
162 if (flags & XFS_PREALLOC_SYNC)
163 xfs_trans_set_sync(tp);
164 return xfs_trans_commit(tp, 0);
165}
166
1da2f2db
CH
167/*
168 * Fsync operations on directories are much simpler than on regular files,
169 * as there is no file data to flush, and thus also no need for explicit
170 * cache flush operations, and there are no non-transaction metadata updates
171 * on directories either.
172 */
173STATIC int
174xfs_dir_fsync(
175 struct file *file,
176 loff_t start,
177 loff_t end,
178 int datasync)
179{
180 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
181 struct xfs_mount *mp = ip->i_mount;
182 xfs_lsn_t lsn = 0;
183
184 trace_xfs_dir_fsync(ip);
185
186 xfs_ilock(ip, XFS_ILOCK_SHARED);
187 if (xfs_ipincount(ip))
188 lsn = ip->i_itemp->ili_last_lsn;
189 xfs_iunlock(ip, XFS_ILOCK_SHARED);
190
191 if (!lsn)
192 return 0;
2451337d 193 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
194}
195
fd3200be
CH
196STATIC int
197xfs_file_fsync(
198 struct file *file,
02c24a82
JB
199 loff_t start,
200 loff_t end,
fd3200be
CH
201 int datasync)
202{
7ea80859
CH
203 struct inode *inode = file->f_mapping->host;
204 struct xfs_inode *ip = XFS_I(inode);
a27a263b 205 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
206 int error = 0;
207 int log_flushed = 0;
b1037058 208 xfs_lsn_t lsn = 0;
fd3200be 209
cca28fb8 210 trace_xfs_file_fsync(ip);
fd3200be 211
02c24a82
JB
212 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
213 if (error)
214 return error;
215
a27a263b 216 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 217 return -EIO;
fd3200be
CH
218
219 xfs_iflags_clear(ip, XFS_ITRUNCATED);
220
a27a263b
CH
221 if (mp->m_flags & XFS_MOUNT_BARRIER) {
222 /*
223 * If we have an RT and/or log subvolume we need to make sure
224 * to flush the write cache the device used for file data
225 * first. This is to ensure newly written file data make
226 * it to disk before logging the new inode size in case of
227 * an extending write.
228 */
229 if (XFS_IS_REALTIME_INODE(ip))
230 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
231 else if (mp->m_logdev_targp != mp->m_ddev_targp)
232 xfs_blkdev_issue_flush(mp->m_ddev_targp);
233 }
234
fd3200be 235 /*
8a9c9980
CH
236 * All metadata updates are logged, which means that we just have
237 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
238 */
239 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
240 if (xfs_ipincount(ip)) {
241 if (!datasync ||
242 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
243 lsn = ip->i_itemp->ili_last_lsn;
244 }
8a9c9980 245 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 246
8a9c9980 247 if (lsn)
b1037058
CH
248 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
249
a27a263b
CH
250 /*
251 * If we only have a single device, and the log force about was
252 * a no-op we might have to flush the data device cache here.
253 * This can only happen for fdatasync/O_DSYNC if we were overwriting
254 * an already allocated file and thus do not have any metadata to
255 * commit.
256 */
257 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
258 mp->m_logdev_targp == mp->m_ddev_targp &&
259 !XFS_IS_REALTIME_INODE(ip) &&
260 !log_flushed)
261 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 262
2451337d 263 return error;
fd3200be
CH
264}
265
00258e36 266STATIC ssize_t
b4f5d2c6 267xfs_file_read_iter(
dda35b8f 268 struct kiocb *iocb,
b4f5d2c6 269 struct iov_iter *to)
dda35b8f
CH
270{
271 struct file *file = iocb->ki_filp;
272 struct inode *inode = file->f_mapping->host;
00258e36
CH
273 struct xfs_inode *ip = XFS_I(inode);
274 struct xfs_mount *mp = ip->i_mount;
b4f5d2c6 275 size_t size = iov_iter_count(to);
dda35b8f 276 ssize_t ret = 0;
00258e36 277 int ioflags = 0;
dda35b8f 278 xfs_fsize_t n;
b4f5d2c6 279 loff_t pos = iocb->ki_pos;
dda35b8f 280
dda35b8f
CH
281 XFS_STATS_INC(xs_read_calls);
282
00258e36 283 if (unlikely(file->f_flags & O_DIRECT))
b92cc59f 284 ioflags |= XFS_IO_ISDIRECT;
00258e36 285 if (file->f_mode & FMODE_NOCMTIME)
b92cc59f 286 ioflags |= XFS_IO_INVIS;
00258e36 287
b92cc59f 288 if (unlikely(ioflags & XFS_IO_ISDIRECT)) {
dda35b8f
CH
289 xfs_buftarg_t *target =
290 XFS_IS_REALTIME_INODE(ip) ?
291 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
292 /* DIO must be aligned to device logical sector size */
293 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 294 if (pos == i_size_read(inode))
00258e36 295 return 0;
b474c7ae 296 return -EINVAL;
dda35b8f
CH
297 }
298 }
299
fb595814 300 n = mp->m_super->s_maxbytes - pos;
00258e36 301 if (n <= 0 || size == 0)
dda35b8f
CH
302 return 0;
303
304 if (n < size)
305 size = n;
306
307 if (XFS_FORCED_SHUTDOWN(mp))
308 return -EIO;
309
0c38a251
DC
310 /*
311 * Locking is a bit tricky here. If we take an exclusive lock
312 * for direct IO, we effectively serialise all new concurrent
313 * read IO to this file and block it behind IO that is currently in
314 * progress because IO in progress holds the IO lock shared. We only
315 * need to hold the lock exclusive to blow away the page cache, so
316 * only take lock exclusively if the page cache needs invalidation.
317 * This allows the normal direct IO case of no page cache pages to
318 * proceeed concurrently without serialisation.
319 */
320 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b92cc59f 321 if ((ioflags & XFS_IO_ISDIRECT) && inode->i_mapping->nrpages) {
0c38a251 322 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
323 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
324
00258e36 325 if (inode->i_mapping->nrpages) {
8ff1e670 326 ret = filemap_write_and_wait_range(
fb595814 327 VFS_I(ip)->i_mapping,
7d4ea3ce 328 pos, pos + size - 1);
487f84f3
DC
329 if (ret) {
330 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
331 return ret;
332 }
85e584da
CM
333
334 /*
335 * Invalidate whole pages. This can return an error if
336 * we fail to invalidate a page, but this should never
337 * happen on XFS. Warn if it does fail.
338 */
339 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce
DC
340 pos >> PAGE_CACHE_SHIFT,
341 (pos + size - 1) >> PAGE_CACHE_SHIFT);
85e584da
CM
342 WARN_ON_ONCE(ret);
343 ret = 0;
00258e36 344 }
487f84f3 345 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 346 }
dda35b8f 347
fb595814 348 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 349
b4f5d2c6 350 ret = generic_file_read_iter(iocb, to);
dda35b8f
CH
351 if (ret > 0)
352 XFS_STATS_ADD(xs_read_bytes, ret);
353
487f84f3 354 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
355 return ret;
356}
357
00258e36
CH
358STATIC ssize_t
359xfs_file_splice_read(
dda35b8f
CH
360 struct file *infilp,
361 loff_t *ppos,
362 struct pipe_inode_info *pipe,
363 size_t count,
00258e36 364 unsigned int flags)
dda35b8f 365{
00258e36 366 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 367 int ioflags = 0;
dda35b8f
CH
368 ssize_t ret;
369
370 XFS_STATS_INC(xs_read_calls);
00258e36
CH
371
372 if (infilp->f_mode & FMODE_NOCMTIME)
b92cc59f 373 ioflags |= XFS_IO_INVIS;
00258e36 374
dda35b8f
CH
375 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
376 return -EIO;
377
487f84f3 378 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 379
dda35b8f
CH
380 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
381
382 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
383 if (ret > 0)
384 XFS_STATS_ADD(xs_read_bytes, ret);
385
487f84f3 386 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
387 return ret;
388}
389
dda35b8f 390/*
193aec10
CH
391 * This routine is called to handle zeroing any space in the last block of the
392 * file that is beyond the EOF. We do this since the size is being increased
393 * without writing anything to that block and we don't want to read the
394 * garbage on the disk.
dda35b8f
CH
395 */
396STATIC int /* error (positive) */
397xfs_zero_last_block(
193aec10
CH
398 struct xfs_inode *ip,
399 xfs_fsize_t offset,
5885ebda
DC
400 xfs_fsize_t isize,
401 bool *did_zeroing)
dda35b8f 402{
193aec10
CH
403 struct xfs_mount *mp = ip->i_mount;
404 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
405 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
406 int zero_len;
407 int nimaps = 1;
408 int error = 0;
409 struct xfs_bmbt_irec imap;
dda35b8f 410
193aec10 411 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 412 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 413 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 414 if (error)
dda35b8f 415 return error;
193aec10 416
dda35b8f 417 ASSERT(nimaps > 0);
193aec10 418
dda35b8f
CH
419 /*
420 * If the block underlying isize is just a hole, then there
421 * is nothing to zero.
422 */
193aec10 423 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 424 return 0;
dda35b8f
CH
425
426 zero_len = mp->m_sb.sb_blocksize - zero_offset;
427 if (isize + zero_len > offset)
428 zero_len = offset - isize;
5885ebda 429 *did_zeroing = true;
193aec10 430 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
431}
432
433/*
193aec10
CH
434 * Zero any on disk space between the current EOF and the new, larger EOF.
435 *
436 * This handles the normal case of zeroing the remainder of the last block in
437 * the file and the unusual case of zeroing blocks out beyond the size of the
438 * file. This second case only happens with fixed size extents and when the
439 * system crashes before the inode size was updated but after blocks were
440 * allocated.
441 *
442 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 443 */
dda35b8f
CH
444int /* error (positive) */
445xfs_zero_eof(
193aec10
CH
446 struct xfs_inode *ip,
447 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
448 xfs_fsize_t isize, /* current inode size */
449 bool *did_zeroing)
dda35b8f 450{
193aec10
CH
451 struct xfs_mount *mp = ip->i_mount;
452 xfs_fileoff_t start_zero_fsb;
453 xfs_fileoff_t end_zero_fsb;
454 xfs_fileoff_t zero_count_fsb;
455 xfs_fileoff_t last_fsb;
456 xfs_fileoff_t zero_off;
457 xfs_fsize_t zero_len;
458 int nimaps;
459 int error = 0;
460 struct xfs_bmbt_irec imap;
461
462 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
463 ASSERT(offset > isize);
464
465 /*
466 * First handle zeroing the block on which isize resides.
193aec10 467 *
dda35b8f
CH
468 * We only zero a part of that block so it is handled specially.
469 */
193aec10 470 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
5885ebda 471 error = xfs_zero_last_block(ip, offset, isize, did_zeroing);
193aec10
CH
472 if (error)
473 return error;
dda35b8f
CH
474 }
475
476 /*
193aec10
CH
477 * Calculate the range between the new size and the old where blocks
478 * needing to be zeroed may exist.
479 *
480 * To get the block where the last byte in the file currently resides,
481 * we need to subtract one from the size and truncate back to a block
482 * boundary. We subtract 1 in case the size is exactly on a block
483 * boundary.
dda35b8f
CH
484 */
485 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
486 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
487 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
488 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
489 if (last_fsb == end_zero_fsb) {
490 /*
491 * The size was only incremented on its last block.
492 * We took care of that above, so just return.
493 */
494 return 0;
495 }
496
497 ASSERT(start_zero_fsb <= end_zero_fsb);
498 while (start_zero_fsb <= end_zero_fsb) {
499 nimaps = 1;
500 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
501
502 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
503 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
504 &imap, &nimaps, 0);
193aec10
CH
505 xfs_iunlock(ip, XFS_ILOCK_EXCL);
506 if (error)
dda35b8f 507 return error;
193aec10 508
dda35b8f
CH
509 ASSERT(nimaps > 0);
510
511 if (imap.br_state == XFS_EXT_UNWRITTEN ||
512 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
513 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
514 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
515 continue;
516 }
517
518 /*
519 * There are blocks we need to zero.
dda35b8f 520 */
dda35b8f
CH
521 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
522 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
523
524 if ((zero_off + zero_len) > offset)
525 zero_len = offset - zero_off;
526
527 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
528 if (error)
529 return error;
dda35b8f 530
5885ebda 531 *did_zeroing = true;
dda35b8f
CH
532 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
533 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
534 }
535
536 return 0;
dda35b8f
CH
537}
538
4d8d1581
DC
539/*
540 * Common pre-write limit and setup checks.
541 *
5bf1f262
CH
542 * Called with the iolocked held either shared and exclusive according to
543 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
544 * if called for a direct write beyond i_size.
4d8d1581
DC
545 */
546STATIC ssize_t
547xfs_file_aio_write_checks(
548 struct file *file,
549 loff_t *pos,
550 size_t *count,
551 int *iolock)
552{
553 struct inode *inode = file->f_mapping->host;
554 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
555 int error = 0;
556
7271d243 557restart:
4d8d1581 558 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 559 if (error)
4d8d1581 560 return error;
4d8d1581 561
781355c6
CH
562 error = xfs_break_layouts(inode, iolock);
563 if (error)
564 return error;
565
4d8d1581
DC
566 /*
567 * If the offset is beyond the size of the file, we need to zero any
568 * blocks that fall between the existing EOF and the start of this
2813d682 569 * write. If zeroing is needed and we are currently holding the
467f7899
CH
570 * iolock shared, we need to update it to exclusive which implies
571 * having to redo all checks before.
4d8d1581 572 */
2813d682 573 if (*pos > i_size_read(inode)) {
5885ebda
DC
574 bool zero = false;
575
7271d243 576 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 577 xfs_rw_iunlock(ip, *iolock);
7271d243 578 *iolock = XFS_IOLOCK_EXCL;
467f7899 579 xfs_rw_ilock(ip, *iolock);
7271d243
DC
580 goto restart;
581 }
5885ebda 582 error = xfs_zero_eof(ip, *pos, i_size_read(inode), &zero);
467f7899
CH
583 if (error)
584 return error;
7271d243 585 }
4d8d1581 586
8a9c9980
CH
587 /*
588 * Updating the timestamps will grab the ilock again from
589 * xfs_fs_dirty_inode, so we have to call it after dropping the
590 * lock above. Eventually we should look into a way to avoid
591 * the pointless lock roundtrip.
592 */
c3b2da31
JB
593 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
594 error = file_update_time(file);
595 if (error)
596 return error;
597 }
8a9c9980 598
4d8d1581
DC
599 /*
600 * If we're writing the file then make sure to clear the setuid and
601 * setgid bits if the process is not being run by root. This keeps
602 * people from modifying setuid and setgid binaries.
603 */
604 return file_remove_suid(file);
4d8d1581
DC
605}
606
f0d26e86
DC
607/*
608 * xfs_file_dio_aio_write - handle direct IO writes
609 *
610 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 611 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
612 * follow locking changes and looping.
613 *
eda77982
DC
614 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
615 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
616 * pages are flushed out.
617 *
618 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
619 * allowing them to be done in parallel with reads and other direct IO writes.
620 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
621 * needs to do sub-block zeroing and that requires serialisation against other
622 * direct IOs to the same block. In this case we need to serialise the
623 * submission of the unaligned IOs so that we don't get racing block zeroing in
624 * the dio layer. To avoid the problem with aio, we also need to wait for
625 * outstanding IOs to complete so that unwritten extent conversion is completed
626 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 627 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 628 *
f0d26e86
DC
629 * Returns with locks held indicated by @iolock and errors indicated by
630 * negative return values.
631 */
632STATIC ssize_t
633xfs_file_dio_aio_write(
634 struct kiocb *iocb,
b3188919 635 struct iov_iter *from)
f0d26e86
DC
636{
637 struct file *file = iocb->ki_filp;
638 struct address_space *mapping = file->f_mapping;
639 struct inode *inode = mapping->host;
640 struct xfs_inode *ip = XFS_I(inode);
641 struct xfs_mount *mp = ip->i_mount;
642 ssize_t ret = 0;
eda77982 643 int unaligned_io = 0;
d0606464 644 int iolock;
b3188919
AV
645 size_t count = iov_iter_count(from);
646 loff_t pos = iocb->ki_pos;
f0d26e86
DC
647 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
648 mp->m_rtdev_targp : mp->m_ddev_targp;
649
7c71ee78
ES
650 /* DIO must be aligned to device logical sector size */
651 if ((pos | count) & target->bt_logical_sectormask)
b474c7ae 652 return -EINVAL;
f0d26e86 653
7c71ee78 654 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
655 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
656 unaligned_io = 1;
657
7271d243
DC
658 /*
659 * We don't need to take an exclusive lock unless there page cache needs
660 * to be invalidated or unaligned IO is being executed. We don't need to
661 * consider the EOF extension case here because
662 * xfs_file_aio_write_checks() will relock the inode as necessary for
663 * EOF zeroing cases and fill out the new inode size as appropriate.
664 */
665 if (unaligned_io || mapping->nrpages)
d0606464 666 iolock = XFS_IOLOCK_EXCL;
f0d26e86 667 else
d0606464
CH
668 iolock = XFS_IOLOCK_SHARED;
669 xfs_rw_ilock(ip, iolock);
c58cb165
CH
670
671 /*
672 * Recheck if there are cached pages that need invalidate after we got
673 * the iolock to protect against other threads adding new pages while
674 * we were waiting for the iolock.
675 */
d0606464
CH
676 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
677 xfs_rw_iunlock(ip, iolock);
678 iolock = XFS_IOLOCK_EXCL;
679 xfs_rw_ilock(ip, iolock);
c58cb165 680 }
f0d26e86 681
d0606464 682 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 683 if (ret)
d0606464 684 goto out;
b3188919 685 iov_iter_truncate(from, count);
f0d26e86
DC
686
687 if (mapping->nrpages) {
07d5035a 688 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
7d4ea3ce 689 pos, pos + count - 1);
f0d26e86 690 if (ret)
d0606464 691 goto out;
834ffca6
DC
692 /*
693 * Invalidate whole pages. This can return an error if
694 * we fail to invalidate a page, but this should never
695 * happen on XFS. Warn if it does fail.
696 */
697 ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
7d4ea3ce
DC
698 pos >> PAGE_CACHE_SHIFT,
699 (pos + count - 1) >> PAGE_CACHE_SHIFT);
834ffca6
DC
700 WARN_ON_ONCE(ret);
701 ret = 0;
f0d26e86
DC
702 }
703
eda77982
DC
704 /*
705 * If we are doing unaligned IO, wait for all other IO to drain,
706 * otherwise demote the lock if we had to flush cached pages
707 */
708 if (unaligned_io)
4a06fd26 709 inode_dio_wait(inode);
d0606464 710 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 711 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 712 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
713 }
714
715 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
b3188919 716 ret = generic_file_direct_write(iocb, from, pos);
f0d26e86 717
d0606464
CH
718out:
719 xfs_rw_iunlock(ip, iolock);
720
f0d26e86
DC
721 /* No fallback to buffered IO on errors for XFS. */
722 ASSERT(ret < 0 || ret == count);
723 return ret;
724}
725
00258e36 726STATIC ssize_t
637bbc75 727xfs_file_buffered_aio_write(
dda35b8f 728 struct kiocb *iocb,
b3188919 729 struct iov_iter *from)
dda35b8f
CH
730{
731 struct file *file = iocb->ki_filp;
732 struct address_space *mapping = file->f_mapping;
733 struct inode *inode = mapping->host;
00258e36 734 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
735 ssize_t ret;
736 int enospc = 0;
d0606464 737 int iolock = XFS_IOLOCK_EXCL;
b3188919
AV
738 loff_t pos = iocb->ki_pos;
739 size_t count = iov_iter_count(from);
dda35b8f 740
d0606464 741 xfs_rw_ilock(ip, iolock);
dda35b8f 742
d0606464 743 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 744 if (ret)
d0606464 745 goto out;
dda35b8f 746
b3188919 747 iov_iter_truncate(from, count);
dda35b8f 748 /* We can write back this queue in page reclaim */
de1414a6 749 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 750
dda35b8f 751write_retry:
637bbc75 752 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
b3188919 753 ret = generic_perform_write(file, from, pos);
0a64bc2c
AV
754 if (likely(ret >= 0))
755 iocb->ki_pos = pos + ret;
dc06f398 756
637bbc75 757 /*
dc06f398
BF
758 * If we hit a space limit, try to free up some lingering preallocated
759 * space before returning an error. In the case of ENOSPC, first try to
760 * write back all dirty inodes to free up some of the excess reserved
761 * metadata space. This reduces the chances that the eofblocks scan
762 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
763 * also behaves as a filter to prevent too many eofblocks scans from
764 * running at the same time.
637bbc75 765 */
dc06f398
BF
766 if (ret == -EDQUOT && !enospc) {
767 enospc = xfs_inode_free_quota_eofblocks(ip);
768 if (enospc)
769 goto write_retry;
770 } else if (ret == -ENOSPC && !enospc) {
771 struct xfs_eofblocks eofb = {0};
772
637bbc75 773 enospc = 1;
9aa05000 774 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
775 eofb.eof_scan_owner = ip->i_ino; /* for locking */
776 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
777 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 778 goto write_retry;
dda35b8f 779 }
d0606464 780
dda35b8f 781 current->backing_dev_info = NULL;
d0606464
CH
782out:
783 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
784 return ret;
785}
786
787STATIC ssize_t
bf97f3bc 788xfs_file_write_iter(
637bbc75 789 struct kiocb *iocb,
bf97f3bc 790 struct iov_iter *from)
637bbc75
DC
791{
792 struct file *file = iocb->ki_filp;
793 struct address_space *mapping = file->f_mapping;
794 struct inode *inode = mapping->host;
795 struct xfs_inode *ip = XFS_I(inode);
796 ssize_t ret;
bf97f3bc 797 size_t ocount = iov_iter_count(from);
637bbc75
DC
798
799 XFS_STATS_INC(xs_write_calls);
800
637bbc75
DC
801 if (ocount == 0)
802 return 0;
803
bf97f3bc
AV
804 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
805 return -EIO;
637bbc75
DC
806
807 if (unlikely(file->f_flags & O_DIRECT))
bf97f3bc 808 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 809 else
bf97f3bc 810 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 811
d0606464
CH
812 if (ret > 0) {
813 ssize_t err;
dda35b8f 814
d0606464 815 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 816
d0606464 817 /* Handle various SYNC-type writes */
d311d79d 818 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
819 if (err < 0)
820 ret = err;
dda35b8f 821 }
a363f0c2 822 return ret;
dda35b8f
CH
823}
824
2fe17c10
CH
825STATIC long
826xfs_file_fallocate(
83aee9e4
CH
827 struct file *file,
828 int mode,
829 loff_t offset,
830 loff_t len)
2fe17c10 831{
83aee9e4
CH
832 struct inode *inode = file_inode(file);
833 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 834 long error;
8add71ca 835 enum xfs_prealloc_flags flags = 0;
781355c6 836 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 837 loff_t new_size = 0;
2fe17c10 838
83aee9e4
CH
839 if (!S_ISREG(inode->i_mode))
840 return -EINVAL;
e1d8fb88 841 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
376ba313 842 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
843 return -EOPNOTSUPP;
844
781355c6
CH
845 xfs_ilock(ip, iolock);
846 error = xfs_break_layouts(inode, &iolock);
847 if (error)
848 goto out_unlock;
849
83aee9e4
CH
850 if (mode & FALLOC_FL_PUNCH_HOLE) {
851 error = xfs_free_file_space(ip, offset, len);
852 if (error)
853 goto out_unlock;
e1d8fb88
NJ
854 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
855 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
856
857 if (offset & blksize_mask || len & blksize_mask) {
2451337d 858 error = -EINVAL;
e1d8fb88
NJ
859 goto out_unlock;
860 }
861
23fffa92
LC
862 /*
863 * There is no need to overlap collapse range with EOF,
864 * in which case it is effectively a truncate operation
865 */
866 if (offset + len >= i_size_read(inode)) {
2451337d 867 error = -EINVAL;
23fffa92
LC
868 goto out_unlock;
869 }
870
e1d8fb88
NJ
871 new_size = i_size_read(inode) - len;
872
873 error = xfs_collapse_file_space(ip, offset, len);
874 if (error)
875 goto out_unlock;
83aee9e4 876 } else {
8add71ca
CH
877 flags |= XFS_PREALLOC_SET;
878
83aee9e4
CH
879 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
880 offset + len > i_size_read(inode)) {
881 new_size = offset + len;
2451337d 882 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
883 if (error)
884 goto out_unlock;
885 }
2fe17c10 886
376ba313
LC
887 if (mode & FALLOC_FL_ZERO_RANGE)
888 error = xfs_zero_file_space(ip, offset, len);
889 else
890 error = xfs_alloc_file_space(ip, offset, len,
891 XFS_BMAPI_PREALLOC);
2fe17c10
CH
892 if (error)
893 goto out_unlock;
894 }
895
83aee9e4 896 if (file->f_flags & O_DSYNC)
8add71ca
CH
897 flags |= XFS_PREALLOC_SYNC;
898
899 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
900 if (error)
901 goto out_unlock;
902
903 /* Change file size if needed */
904 if (new_size) {
905 struct iattr iattr;
906
907 iattr.ia_valid = ATTR_SIZE;
908 iattr.ia_size = new_size;
83aee9e4 909 error = xfs_setattr_size(ip, &iattr);
2fe17c10
CH
910 }
911
912out_unlock:
781355c6 913 xfs_iunlock(ip, iolock);
2451337d 914 return error;
2fe17c10
CH
915}
916
917
1da177e4 918STATIC int
3562fd45 919xfs_file_open(
1da177e4 920 struct inode *inode,
f999a5bf 921 struct file *file)
1da177e4 922{
f999a5bf 923 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 924 return -EFBIG;
f999a5bf
CH
925 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
926 return -EIO;
927 return 0;
928}
929
930STATIC int
931xfs_dir_open(
932 struct inode *inode,
933 struct file *file)
934{
935 struct xfs_inode *ip = XFS_I(inode);
936 int mode;
937 int error;
938
939 error = xfs_file_open(inode, file);
940 if (error)
941 return error;
942
943 /*
944 * If there are any blocks, read-ahead block 0 as we're almost
945 * certain to have the next operation be a read there.
946 */
309ecac8 947 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 948 if (ip->i_d.di_nextents > 0)
9df2dd0b 949 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
950 xfs_iunlock(ip, mode);
951 return 0;
1da177e4
LT
952}
953
1da177e4 954STATIC int
3562fd45 955xfs_file_release(
1da177e4
LT
956 struct inode *inode,
957 struct file *filp)
958{
2451337d 959 return xfs_release(XFS_I(inode));
1da177e4
LT
960}
961
1da177e4 962STATIC int
3562fd45 963xfs_file_readdir(
b8227554
AV
964 struct file *file,
965 struct dir_context *ctx)
1da177e4 966{
b8227554 967 struct inode *inode = file_inode(file);
739bfb2a 968 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
969 size_t bufsize;
970
971 /*
972 * The Linux API doesn't pass down the total size of the buffer
973 * we read into down to the filesystem. With the filldir concept
974 * it's not needed for correct information, but the XFS dir2 leaf
975 * code wants an estimate of the buffer size to calculate it's
976 * readahead window and size the buffers used for mapping to
977 * physical blocks.
978 *
979 * Try to give it an estimate that's good enough, maybe at some
980 * point we can change the ->readdir prototype to include the
a9cc799e 981 * buffer size. For now we use the current glibc buffer size.
051e7cd4 982 */
a9cc799e 983 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 984
8300475e 985 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
986}
987
1da177e4 988STATIC int
3562fd45 989xfs_file_mmap(
1da177e4
LT
990 struct file *filp,
991 struct vm_area_struct *vma)
992{
3562fd45 993 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 994
fbc1462b 995 file_accessed(filp);
1da177e4
LT
996 return 0;
997}
998
4f57dbc6
DC
999/*
1000 * mmap()d file has taken write protection fault and is being made
1001 * writable. We can set the page state up correctly for a writable
1002 * page, which means we can do correct delalloc accounting (ENOSPC
1003 * checking!) and unwritten extent mapping.
1004 */
1005STATIC int
1006xfs_vm_page_mkwrite(
1007 struct vm_area_struct *vma,
c2ec175c 1008 struct vm_fault *vmf)
4f57dbc6 1009{
c2ec175c 1010 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
1011}
1012
d126d43f
JL
1013/*
1014 * This type is designed to indicate the type of offset we would like
49c69591 1015 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1016 */
1017enum {
1018 HOLE_OFF = 0,
1019 DATA_OFF,
1020};
1021
1022/*
1023 * Lookup the desired type of offset from the given page.
1024 *
1025 * On success, return true and the offset argument will point to the
1026 * start of the region that was found. Otherwise this function will
1027 * return false and keep the offset argument unchanged.
1028 */
1029STATIC bool
1030xfs_lookup_buffer_offset(
1031 struct page *page,
1032 loff_t *offset,
1033 unsigned int type)
1034{
1035 loff_t lastoff = page_offset(page);
1036 bool found = false;
1037 struct buffer_head *bh, *head;
1038
1039 bh = head = page_buffers(page);
1040 do {
1041 /*
1042 * Unwritten extents that have data in the page
1043 * cache covering them can be identified by the
1044 * BH_Unwritten state flag. Pages with multiple
1045 * buffers might have a mix of holes, data and
1046 * unwritten extents - any buffer with valid
1047 * data in it should have BH_Uptodate flag set
1048 * on it.
1049 */
1050 if (buffer_unwritten(bh) ||
1051 buffer_uptodate(bh)) {
1052 if (type == DATA_OFF)
1053 found = true;
1054 } else {
1055 if (type == HOLE_OFF)
1056 found = true;
1057 }
1058
1059 if (found) {
1060 *offset = lastoff;
1061 break;
1062 }
1063 lastoff += bh->b_size;
1064 } while ((bh = bh->b_this_page) != head);
1065
1066 return found;
1067}
1068
1069/*
1070 * This routine is called to find out and return a data or hole offset
1071 * from the page cache for unwritten extents according to the desired
49c69591 1072 * type for xfs_seek_hole_data().
d126d43f
JL
1073 *
1074 * The argument offset is used to tell where we start to search from the
1075 * page cache. Map is used to figure out the end points of the range to
1076 * lookup pages.
1077 *
1078 * Return true if the desired type of offset was found, and the argument
1079 * offset is filled with that address. Otherwise, return false and keep
1080 * offset unchanged.
1081 */
1082STATIC bool
1083xfs_find_get_desired_pgoff(
1084 struct inode *inode,
1085 struct xfs_bmbt_irec *map,
1086 unsigned int type,
1087 loff_t *offset)
1088{
1089 struct xfs_inode *ip = XFS_I(inode);
1090 struct xfs_mount *mp = ip->i_mount;
1091 struct pagevec pvec;
1092 pgoff_t index;
1093 pgoff_t end;
1094 loff_t endoff;
1095 loff_t startoff = *offset;
1096 loff_t lastoff = startoff;
1097 bool found = false;
1098
1099 pagevec_init(&pvec, 0);
1100
1101 index = startoff >> PAGE_CACHE_SHIFT;
1102 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1103 end = endoff >> PAGE_CACHE_SHIFT;
1104 do {
1105 int want;
1106 unsigned nr_pages;
1107 unsigned int i;
1108
1109 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1110 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1111 want);
1112 /*
1113 * No page mapped into given range. If we are searching holes
1114 * and if this is the first time we got into the loop, it means
1115 * that the given offset is landed in a hole, return it.
1116 *
1117 * If we have already stepped through some block buffers to find
1118 * holes but they all contains data. In this case, the last
1119 * offset is already updated and pointed to the end of the last
1120 * mapped page, if it does not reach the endpoint to search,
1121 * that means there should be a hole between them.
1122 */
1123 if (nr_pages == 0) {
1124 /* Data search found nothing */
1125 if (type == DATA_OFF)
1126 break;
1127
1128 ASSERT(type == HOLE_OFF);
1129 if (lastoff == startoff || lastoff < endoff) {
1130 found = true;
1131 *offset = lastoff;
1132 }
1133 break;
1134 }
1135
1136 /*
1137 * At lease we found one page. If this is the first time we
1138 * step into the loop, and if the first page index offset is
1139 * greater than the given search offset, a hole was found.
1140 */
1141 if (type == HOLE_OFF && lastoff == startoff &&
1142 lastoff < page_offset(pvec.pages[0])) {
1143 found = true;
1144 break;
1145 }
1146
1147 for (i = 0; i < nr_pages; i++) {
1148 struct page *page = pvec.pages[i];
1149 loff_t b_offset;
1150
1151 /*
1152 * At this point, the page may be truncated or
1153 * invalidated (changing page->mapping to NULL),
1154 * or even swizzled back from swapper_space to tmpfs
1155 * file mapping. However, page->index will not change
1156 * because we have a reference on the page.
1157 *
1158 * Searching done if the page index is out of range.
1159 * If the current offset is not reaches the end of
1160 * the specified search range, there should be a hole
1161 * between them.
1162 */
1163 if (page->index > end) {
1164 if (type == HOLE_OFF && lastoff < endoff) {
1165 *offset = lastoff;
1166 found = true;
1167 }
1168 goto out;
1169 }
1170
1171 lock_page(page);
1172 /*
1173 * Page truncated or invalidated(page->mapping == NULL).
1174 * We can freely skip it and proceed to check the next
1175 * page.
1176 */
1177 if (unlikely(page->mapping != inode->i_mapping)) {
1178 unlock_page(page);
1179 continue;
1180 }
1181
1182 if (!page_has_buffers(page)) {
1183 unlock_page(page);
1184 continue;
1185 }
1186
1187 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1188 if (found) {
1189 /*
1190 * The found offset may be less than the start
1191 * point to search if this is the first time to
1192 * come here.
1193 */
1194 *offset = max_t(loff_t, startoff, b_offset);
1195 unlock_page(page);
1196 goto out;
1197 }
1198
1199 /*
1200 * We either searching data but nothing was found, or
1201 * searching hole but found a data buffer. In either
1202 * case, probably the next page contains the desired
1203 * things, update the last offset to it so.
1204 */
1205 lastoff = page_offset(page) + PAGE_SIZE;
1206 unlock_page(page);
1207 }
1208
1209 /*
1210 * The number of returned pages less than our desired, search
1211 * done. In this case, nothing was found for searching data,
1212 * but we found a hole behind the last offset.
1213 */
1214 if (nr_pages < want) {
1215 if (type == HOLE_OFF) {
1216 *offset = lastoff;
1217 found = true;
1218 }
1219 break;
1220 }
1221
1222 index = pvec.pages[i - 1]->index + 1;
1223 pagevec_release(&pvec);
1224 } while (index <= end);
1225
1226out:
1227 pagevec_release(&pvec);
1228 return found;
1229}
1230
3fe3e6b1 1231STATIC loff_t
49c69591 1232xfs_seek_hole_data(
3fe3e6b1 1233 struct file *file,
49c69591
ES
1234 loff_t start,
1235 int whence)
3fe3e6b1
JL
1236{
1237 struct inode *inode = file->f_mapping->host;
1238 struct xfs_inode *ip = XFS_I(inode);
1239 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1240 loff_t uninitialized_var(offset);
1241 xfs_fsize_t isize;
1242 xfs_fileoff_t fsbno;
1243 xfs_filblks_t end;
1244 uint lock;
1245 int error;
1246
49c69591
ES
1247 if (XFS_FORCED_SHUTDOWN(mp))
1248 return -EIO;
1249
309ecac8 1250 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1251
1252 isize = i_size_read(inode);
1253 if (start >= isize) {
2451337d 1254 error = -ENXIO;
3fe3e6b1
JL
1255 goto out_unlock;
1256 }
1257
3fe3e6b1
JL
1258 /*
1259 * Try to read extents from the first block indicated
1260 * by fsbno to the end block of the file.
1261 */
52f1acc8 1262 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1263 end = XFS_B_TO_FSB(mp, isize);
49c69591 1264
52f1acc8
JL
1265 for (;;) {
1266 struct xfs_bmbt_irec map[2];
1267 int nmap = 2;
1268 unsigned int i;
3fe3e6b1 1269
52f1acc8
JL
1270 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1271 XFS_BMAPI_ENTIRE);
1272 if (error)
1273 goto out_unlock;
3fe3e6b1 1274
52f1acc8
JL
1275 /* No extents at given offset, must be beyond EOF */
1276 if (nmap == 0) {
2451337d 1277 error = -ENXIO;
52f1acc8
JL
1278 goto out_unlock;
1279 }
1280
1281 for (i = 0; i < nmap; i++) {
1282 offset = max_t(loff_t, start,
1283 XFS_FSB_TO_B(mp, map[i].br_startoff));
1284
49c69591
ES
1285 /* Landed in the hole we wanted? */
1286 if (whence == SEEK_HOLE &&
1287 map[i].br_startblock == HOLESTARTBLOCK)
1288 goto out;
1289
1290 /* Landed in the data extent we wanted? */
1291 if (whence == SEEK_DATA &&
1292 (map[i].br_startblock == DELAYSTARTBLOCK ||
1293 (map[i].br_state == XFS_EXT_NORM &&
1294 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1295 goto out;
1296
1297 /*
49c69591
ES
1298 * Landed in an unwritten extent, try to search
1299 * for hole or data from page cache.
52f1acc8
JL
1300 */
1301 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1302 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1303 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1304 &offset))
52f1acc8
JL
1305 goto out;
1306 }
1307 }
1308
1309 /*
49c69591
ES
1310 * We only received one extent out of the two requested. This
1311 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1312 */
3fe3e6b1 1313 if (nmap == 1) {
49c69591
ES
1314 /*
1315 * If we were looking for a hole, set offset to
1316 * the end of the file (i.e., there is an implicit
1317 * hole at the end of any file).
1318 */
1319 if (whence == SEEK_HOLE) {
1320 offset = isize;
1321 break;
1322 }
1323 /*
1324 * If we were looking for data, it's nowhere to be found
1325 */
1326 ASSERT(whence == SEEK_DATA);
2451337d 1327 error = -ENXIO;
3fe3e6b1
JL
1328 goto out_unlock;
1329 }
1330
52f1acc8
JL
1331 ASSERT(i > 1);
1332
1333 /*
1334 * Nothing was found, proceed to the next round of search
49c69591 1335 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1336 */
1337 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1338 start = XFS_FSB_TO_B(mp, fsbno);
1339 if (start >= isize) {
49c69591
ES
1340 if (whence == SEEK_HOLE) {
1341 offset = isize;
1342 break;
1343 }
1344 ASSERT(whence == SEEK_DATA);
2451337d 1345 error = -ENXIO;
52f1acc8
JL
1346 goto out_unlock;
1347 }
3fe3e6b1
JL
1348 }
1349
b686d1f7
JL
1350out:
1351 /*
49c69591 1352 * If at this point we have found the hole we wanted, the returned
b686d1f7 1353 * offset may be bigger than the file size as it may be aligned to
49c69591 1354 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1355 * situation in particular.
1356 */
49c69591
ES
1357 if (whence == SEEK_HOLE)
1358 offset = min_t(loff_t, offset, isize);
46a1c2c7 1359 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1360
1361out_unlock:
01f4f327 1362 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1363
1364 if (error)
2451337d 1365 return error;
3fe3e6b1
JL
1366 return offset;
1367}
1368
1369STATIC loff_t
1370xfs_file_llseek(
1371 struct file *file,
1372 loff_t offset,
59f9c004 1373 int whence)
3fe3e6b1 1374{
59f9c004 1375 switch (whence) {
3fe3e6b1
JL
1376 case SEEK_END:
1377 case SEEK_CUR:
1378 case SEEK_SET:
59f9c004 1379 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1380 case SEEK_HOLE:
49c69591 1381 case SEEK_DATA:
59f9c004 1382 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1383 default:
1384 return -EINVAL;
1385 }
1386}
1387
4b6f5d20 1388const struct file_operations xfs_file_operations = {
3fe3e6b1 1389 .llseek = xfs_file_llseek,
b4f5d2c6 1390 .read = new_sync_read,
bf97f3bc 1391 .write = new_sync_write,
b4f5d2c6 1392 .read_iter = xfs_file_read_iter,
bf97f3bc 1393 .write_iter = xfs_file_write_iter,
1b895840 1394 .splice_read = xfs_file_splice_read,
8d020765 1395 .splice_write = iter_file_splice_write,
3562fd45 1396 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1397#ifdef CONFIG_COMPAT
3562fd45 1398 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1399#endif
3562fd45
NS
1400 .mmap = xfs_file_mmap,
1401 .open = xfs_file_open,
1402 .release = xfs_file_release,
1403 .fsync = xfs_file_fsync,
2fe17c10 1404 .fallocate = xfs_file_fallocate,
1da177e4
LT
1405};
1406
4b6f5d20 1407const struct file_operations xfs_dir_file_operations = {
f999a5bf 1408 .open = xfs_dir_open,
1da177e4 1409 .read = generic_read_dir,
b8227554 1410 .iterate = xfs_file_readdir,
59af1584 1411 .llseek = generic_file_llseek,
3562fd45 1412 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1413#ifdef CONFIG_COMPAT
3562fd45 1414 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1415#endif
1da2f2db 1416 .fsync = xfs_dir_fsync,
1da177e4
LT
1417};
1418
f0f37e2f 1419static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1420 .fault = filemap_fault,
f1820361 1421 .map_pages = filemap_map_pages,
4f57dbc6 1422 .page_mkwrite = xfs_vm_page_mkwrite,
6fac0cb4 1423};