]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_file.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
68a9f5e7 40#include "xfs_iomap.h"
0613f16c 41#include "xfs_reflink.h"
1da177e4
LT
42
43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
66114cad 46#include <linux/backing-dev.h>
1da177e4 47
f0f37e2f 48static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 49
dda35b8f 50/*
68a9f5e7
CH
51 * Clear the specified ranges to zero through either the pagecache or DAX.
52 * Holes and unwritten extents will be left as-is as they already are zeroed.
dda35b8f 53 */
ef9d8733 54int
7bb41db3 55xfs_zero_range(
68a9f5e7 56 struct xfs_inode *ip,
7bb41db3
CH
57 xfs_off_t pos,
58 xfs_off_t count,
59 bool *did_zero)
dda35b8f 60{
459f0fbc 61 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
dda35b8f
CH
62}
63
8add71ca
CH
64int
65xfs_update_prealloc_flags(
66 struct xfs_inode *ip,
67 enum xfs_prealloc_flags flags)
68{
69 struct xfs_trans *tp;
70 int error;
71
253f4911
CH
72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 0, 0, 0, &tp);
74 if (error)
8add71ca 75 return error;
8add71ca
CH
76
77 xfs_ilock(ip, XFS_ILOCK_EXCL);
78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79
80 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
81 VFS_I(ip)->i_mode &= ~S_ISUID;
82 if (VFS_I(ip)->i_mode & S_IXGRP)
83 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 }
86
87 if (flags & XFS_PREALLOC_SET)
88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 if (flags & XFS_PREALLOC_CLEAR)
90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91
92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 if (flags & XFS_PREALLOC_SYNC)
94 xfs_trans_set_sync(tp);
70393313 95 return xfs_trans_commit(tp);
8add71ca
CH
96}
97
1da2f2db
CH
98/*
99 * Fsync operations on directories are much simpler than on regular files,
100 * as there is no file data to flush, and thus also no need for explicit
101 * cache flush operations, and there are no non-transaction metadata updates
102 * on directories either.
103 */
104STATIC int
105xfs_dir_fsync(
106 struct file *file,
107 loff_t start,
108 loff_t end,
109 int datasync)
110{
111 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
112 struct xfs_mount *mp = ip->i_mount;
113 xfs_lsn_t lsn = 0;
114
115 trace_xfs_dir_fsync(ip);
116
117 xfs_ilock(ip, XFS_ILOCK_SHARED);
118 if (xfs_ipincount(ip))
119 lsn = ip->i_itemp->ili_last_lsn;
120 xfs_iunlock(ip, XFS_ILOCK_SHARED);
121
122 if (!lsn)
123 return 0;
2451337d 124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
125}
126
fd3200be
CH
127STATIC int
128xfs_file_fsync(
129 struct file *file,
02c24a82
JB
130 loff_t start,
131 loff_t end,
fd3200be
CH
132 int datasync)
133{
7ea80859
CH
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
a27a263b 136 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
137 int error = 0;
138 int log_flushed = 0;
b1037058 139 xfs_lsn_t lsn = 0;
fd3200be 140
cca28fb8 141 trace_xfs_file_fsync(ip);
fd3200be 142
1b180274 143 error = file_write_and_wait_range(file, start, end);
02c24a82
JB
144 if (error)
145 return error;
146
a27a263b 147 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 148 return -EIO;
fd3200be
CH
149
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
151
2291dab2
DC
152 /*
153 * If we have an RT and/or log subvolume we need to make sure to flush
154 * the write cache the device used for file data first. This is to
155 * ensure newly written file data make it to disk before logging the new
156 * inode size in case of an extending write.
157 */
158 if (XFS_IS_REALTIME_INODE(ip))
159 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 xfs_blkdev_issue_flush(mp->m_ddev_targp);
a27a263b 162
fd3200be 163 /*
fc0561ce
DC
164 * All metadata updates are logged, which means that we just have to
165 * flush the log up to the latest LSN that touched the inode. If we have
166 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 * log force before we clear the ili_fsync_fields field. This ensures
168 * that we don't get a racing sync operation that does not wait for the
169 * metadata to hit the journal before returning. If we race with
170 * clearing the ili_fsync_fields, then all that will happen is the log
171 * force will do nothing as the lsn will already be on disk. We can't
172 * race with setting ili_fsync_fields because that is done under
173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 * until after the ili_fsync_fields is cleared.
fd3200be
CH
175 */
176 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
177 if (xfs_ipincount(ip)) {
178 if (!datasync ||
fc0561ce 179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
180 lsn = ip->i_itemp->ili_last_lsn;
181 }
fd3200be 182
fc0561ce 183 if (lsn) {
b1037058 184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
185 ip->i_itemp->ili_fsync_fields = 0;
186 }
187 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 188
a27a263b
CH
189 /*
190 * If we only have a single device, and the log force about was
191 * a no-op we might have to flush the data device cache here.
192 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 * an already allocated file and thus do not have any metadata to
194 * commit.
195 */
2291dab2
DC
196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 mp->m_logdev_targp == mp->m_ddev_targp)
a27a263b 198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 199
2451337d 200 return error;
fd3200be
CH
201}
202
00258e36 203STATIC ssize_t
bbc5a740 204xfs_file_dio_aio_read(
dda35b8f 205 struct kiocb *iocb,
b4f5d2c6 206 struct iov_iter *to)
dda35b8f 207{
acdda3aa 208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
bbc5a740 209 size_t count = iov_iter_count(to);
acdda3aa 210 ssize_t ret;
dda35b8f 211
bbc5a740 212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 213
f1285ff0
CH
214 if (!count)
215 return 0; /* skip atime */
dda35b8f 216
a447d7cd
CH
217 file_accessed(iocb->ki_filp);
218
65523218 219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
acdda3aa 220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
65523218 221 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
acdda3aa 222
16d4d435
CH
223 return ret;
224}
225
f021bd07 226static noinline ssize_t
16d4d435
CH
227xfs_file_dax_read(
228 struct kiocb *iocb,
229 struct iov_iter *to)
230{
6c31f495 231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
232 size_t count = iov_iter_count(to);
233 ssize_t ret = 0;
234
235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236
237 if (!count)
238 return 0; /* skip atime */
239
29a5d29e
GR
240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
241 if (iocb->ki_flags & IOCB_NOWAIT)
242 return -EAGAIN;
243 xfs_ilock(ip, XFS_IOLOCK_SHARED);
244 }
11c59c92 245 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
65523218 246 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 247
f1285ff0 248 file_accessed(iocb->ki_filp);
bbc5a740
CH
249 return ret;
250}
251
252STATIC ssize_t
253xfs_file_buffered_aio_read(
254 struct kiocb *iocb,
255 struct iov_iter *to)
256{
257 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
258 ssize_t ret;
259
260 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 261
65523218 262 xfs_ilock(ip, XFS_IOLOCK_SHARED);
b4f5d2c6 263 ret = generic_file_read_iter(iocb, to);
65523218 264 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
265
266 return ret;
267}
268
269STATIC ssize_t
270xfs_file_read_iter(
271 struct kiocb *iocb,
272 struct iov_iter *to)
273{
16d4d435
CH
274 struct inode *inode = file_inode(iocb->ki_filp);
275 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
276 ssize_t ret = 0;
277
278 XFS_STATS_INC(mp, xs_read_calls);
279
280 if (XFS_FORCED_SHUTDOWN(mp))
281 return -EIO;
282
16d4d435
CH
283 if (IS_DAX(inode))
284 ret = xfs_file_dax_read(iocb, to);
285 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 286 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 287 else
bbc5a740 288 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 289
dda35b8f 290 if (ret > 0)
ff6d6af2 291 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
292 return ret;
293}
294
dda35b8f 295/*
193aec10
CH
296 * Zero any on disk space between the current EOF and the new, larger EOF.
297 *
298 * This handles the normal case of zeroing the remainder of the last block in
299 * the file and the unusual case of zeroing blocks out beyond the size of the
300 * file. This second case only happens with fixed size extents and when the
301 * system crashes before the inode size was updated but after blocks were
302 * allocated.
303 *
304 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 305 */
dda35b8f
CH
306int /* error (positive) */
307xfs_zero_eof(
193aec10
CH
308 struct xfs_inode *ip,
309 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
310 xfs_fsize_t isize, /* current inode size */
311 bool *did_zeroing)
dda35b8f 312{
193aec10 313 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
314 ASSERT(offset > isize);
315
0a50f162 316 trace_xfs_zero_eof(ip, isize, offset - isize);
570b6211 317 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
dda35b8f
CH
318}
319
4d8d1581
DC
320/*
321 * Common pre-write limit and setup checks.
322 *
5bf1f262
CH
323 * Called with the iolocked held either shared and exclusive according to
324 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
325 * if called for a direct write beyond i_size.
4d8d1581
DC
326 */
327STATIC ssize_t
328xfs_file_aio_write_checks(
99733fa3
AV
329 struct kiocb *iocb,
330 struct iov_iter *from,
4d8d1581
DC
331 int *iolock)
332{
99733fa3 333 struct file *file = iocb->ki_filp;
4d8d1581
DC
334 struct inode *inode = file->f_mapping->host;
335 struct xfs_inode *ip = XFS_I(inode);
3309dd04 336 ssize_t error = 0;
99733fa3 337 size_t count = iov_iter_count(from);
3136e8bb 338 bool drained_dio = false;
4d8d1581 339
7271d243 340restart:
3309dd04
AV
341 error = generic_write_checks(iocb, from);
342 if (error <= 0)
4d8d1581 343 return error;
4d8d1581 344
65523218 345 error = xfs_break_layouts(inode, iolock);
781355c6
CH
346 if (error)
347 return error;
348
65523218
CH
349 /*
350 * For changing security info in file_remove_privs() we need i_rwsem
351 * exclusively.
352 */
a6de82ca 353 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 354 xfs_iunlock(ip, *iolock);
a6de82ca 355 *iolock = XFS_IOLOCK_EXCL;
65523218 356 xfs_ilock(ip, *iolock);
a6de82ca
JK
357 goto restart;
358 }
4d8d1581
DC
359 /*
360 * If the offset is beyond the size of the file, we need to zero any
361 * blocks that fall between the existing EOF and the start of this
2813d682 362 * write. If zeroing is needed and we are currently holding the
467f7899
CH
363 * iolock shared, we need to update it to exclusive which implies
364 * having to redo all checks before.
b9d59846
DC
365 *
366 * We need to serialise against EOF updates that occur in IO
367 * completions here. We want to make sure that nobody is changing the
368 * size while we do this check until we have placed an IO barrier (i.e.
369 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
370 * The spinlock effectively forms a memory barrier once we have the
371 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
372 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 373 */
b9d59846 374 spin_lock(&ip->i_flags_lock);
99733fa3 375 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
376 bool zero = false;
377
b9d59846 378 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
379 if (!drained_dio) {
380 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 381 xfs_iunlock(ip, *iolock);
3136e8bb 382 *iolock = XFS_IOLOCK_EXCL;
65523218 383 xfs_ilock(ip, *iolock);
3136e8bb
BF
384 iov_iter_reexpand(from, count);
385 }
40c63fbc
DC
386 /*
387 * We now have an IO submission barrier in place, but
388 * AIO can do EOF updates during IO completion and hence
389 * we now need to wait for all of them to drain. Non-AIO
390 * DIO will have drained before we are given the
391 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
392 * no-op.
393 */
394 inode_dio_wait(inode);
3136e8bb 395 drained_dio = true;
7271d243
DC
396 goto restart;
397 }
99733fa3 398 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
399 if (error)
400 return error;
b9d59846
DC
401 } else
402 spin_unlock(&ip->i_flags_lock);
4d8d1581 403
8a9c9980
CH
404 /*
405 * Updating the timestamps will grab the ilock again from
406 * xfs_fs_dirty_inode, so we have to call it after dropping the
407 * lock above. Eventually we should look into a way to avoid
408 * the pointless lock roundtrip.
409 */
c3b2da31
JB
410 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
411 error = file_update_time(file);
412 if (error)
413 return error;
414 }
8a9c9980 415
4d8d1581
DC
416 /*
417 * If we're writing the file then make sure to clear the setuid and
418 * setgid bits if the process is not being run by root. This keeps
419 * people from modifying setuid and setgid binaries.
420 */
a6de82ca
JK
421 if (!IS_NOSEC(inode))
422 return file_remove_privs(file);
423 return 0;
4d8d1581
DC
424}
425
acdda3aa
CH
426static int
427xfs_dio_write_end_io(
428 struct kiocb *iocb,
429 ssize_t size,
430 unsigned flags)
431{
432 struct inode *inode = file_inode(iocb->ki_filp);
433 struct xfs_inode *ip = XFS_I(inode);
434 loff_t offset = iocb->ki_pos;
435 bool update_size = false;
436 int error = 0;
437
438 trace_xfs_end_io_direct_write(ip, offset, size);
439
440 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
441 return -EIO;
442
443 if (size <= 0)
444 return size;
445
446 /*
447 * We need to update the in-core inode size here so that we don't end up
448 * with the on-disk inode size being outside the in-core inode size. We
449 * have no other method of updating EOF for AIO, so always do it here
450 * if necessary.
451 *
452 * We need to lock the test/set EOF update as we can be racing with
453 * other IO completions here to update the EOF. Failing to serialise
454 * here can result in EOF moving backwards and Bad Things Happen when
455 * that occurs.
456 */
457 spin_lock(&ip->i_flags_lock);
458 if (offset + size > i_size_read(inode)) {
459 i_size_write(inode, offset + size);
460 update_size = true;
461 }
462 spin_unlock(&ip->i_flags_lock);
463
464 if (flags & IOMAP_DIO_COW) {
465 error = xfs_reflink_end_cow(ip, offset, size);
466 if (error)
467 return error;
468 }
469
470 if (flags & IOMAP_DIO_UNWRITTEN)
471 error = xfs_iomap_write_unwritten(ip, offset, size);
472 else if (update_size)
473 error = xfs_setfilesize(ip, offset, size);
474
475 return error;
476}
477
f0d26e86
DC
478/*
479 * xfs_file_dio_aio_write - handle direct IO writes
480 *
481 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 482 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
483 * follow locking changes and looping.
484 *
eda77982
DC
485 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
486 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
487 * pages are flushed out.
488 *
489 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
490 * allowing them to be done in parallel with reads and other direct IO writes.
491 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
492 * needs to do sub-block zeroing and that requires serialisation against other
493 * direct IOs to the same block. In this case we need to serialise the
494 * submission of the unaligned IOs so that we don't get racing block zeroing in
495 * the dio layer. To avoid the problem with aio, we also need to wait for
496 * outstanding IOs to complete so that unwritten extent conversion is completed
497 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 498 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 499 *
f0d26e86
DC
500 * Returns with locks held indicated by @iolock and errors indicated by
501 * negative return values.
502 */
503STATIC ssize_t
504xfs_file_dio_aio_write(
505 struct kiocb *iocb,
b3188919 506 struct iov_iter *from)
f0d26e86
DC
507{
508 struct file *file = iocb->ki_filp;
509 struct address_space *mapping = file->f_mapping;
510 struct inode *inode = mapping->host;
511 struct xfs_inode *ip = XFS_I(inode);
512 struct xfs_mount *mp = ip->i_mount;
513 ssize_t ret = 0;
eda77982 514 int unaligned_io = 0;
d0606464 515 int iolock;
b3188919 516 size_t count = iov_iter_count(from);
acdda3aa 517 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
f0d26e86
DC
518 mp->m_rtdev_targp : mp->m_ddev_targp;
519
7c71ee78 520 /* DIO must be aligned to device logical sector size */
16d4d435 521 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 522 return -EINVAL;
f0d26e86 523
7271d243 524 /*
0ee7a3f6
CH
525 * Don't take the exclusive iolock here unless the I/O is unaligned to
526 * the file system block size. We don't need to consider the EOF
527 * extension case here because xfs_file_aio_write_checks() will relock
528 * the inode as necessary for EOF zeroing cases and fill out the new
529 * inode size as appropriate.
7271d243 530 */
0ee7a3f6
CH
531 if ((iocb->ki_pos & mp->m_blockmask) ||
532 ((iocb->ki_pos + count) & mp->m_blockmask)) {
533 unaligned_io = 1;
54a4ef8a
CH
534
535 /*
536 * We can't properly handle unaligned direct I/O to reflink
537 * files yet, as we can't unshare a partial block.
538 */
539 if (xfs_is_reflink_inode(ip)) {
540 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
541 return -EREMCHG;
542 }
d0606464 543 iolock = XFS_IOLOCK_EXCL;
0ee7a3f6 544 } else {
d0606464 545 iolock = XFS_IOLOCK_SHARED;
c58cb165 546 }
f0d26e86 547
29a5d29e
GR
548 if (!xfs_ilock_nowait(ip, iolock)) {
549 if (iocb->ki_flags & IOCB_NOWAIT)
550 return -EAGAIN;
551 xfs_ilock(ip, iolock);
552 }
0ee7a3f6 553
99733fa3 554 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 555 if (ret)
d0606464 556 goto out;
99733fa3 557 count = iov_iter_count(from);
f0d26e86 558
eda77982
DC
559 /*
560 * If we are doing unaligned IO, wait for all other IO to drain,
0ee7a3f6
CH
561 * otherwise demote the lock if we had to take the exclusive lock
562 * for other reasons in xfs_file_aio_write_checks.
eda77982 563 */
29a5d29e
GR
564 if (unaligned_io) {
565 /* If we are going to wait for other DIO to finish, bail */
566 if (iocb->ki_flags & IOCB_NOWAIT) {
567 if (atomic_read(&inode->i_dio_count))
568 return -EAGAIN;
569 } else {
570 inode_dio_wait(inode);
571 }
572 } else if (iolock == XFS_IOLOCK_EXCL) {
65523218 573 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 574 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
575 }
576
3176c3e0 577 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
acdda3aa 578 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
d0606464 579out:
65523218 580 xfs_iunlock(ip, iolock);
d0606464 581
6b698ede 582 /*
16d4d435
CH
583 * No fallback to buffered IO on errors for XFS, direct IO will either
584 * complete fully or fail.
6b698ede 585 */
16d4d435
CH
586 ASSERT(ret < 0 || ret == count);
587 return ret;
588}
589
f021bd07 590static noinline ssize_t
16d4d435
CH
591xfs_file_dax_write(
592 struct kiocb *iocb,
593 struct iov_iter *from)
594{
6c31f495 595 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 596 struct xfs_inode *ip = XFS_I(inode);
17879e8f 597 int iolock = XFS_IOLOCK_EXCL;
6c31f495
CH
598 ssize_t ret, error = 0;
599 size_t count;
600 loff_t pos;
16d4d435 601
29a5d29e
GR
602 if (!xfs_ilock_nowait(ip, iolock)) {
603 if (iocb->ki_flags & IOCB_NOWAIT)
604 return -EAGAIN;
605 xfs_ilock(ip, iolock);
606 }
607
16d4d435
CH
608 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
609 if (ret)
610 goto out;
611
6c31f495
CH
612 pos = iocb->ki_pos;
613 count = iov_iter_count(from);
8b2180b3 614
6c31f495 615 trace_xfs_file_dax_write(ip, count, pos);
11c59c92 616 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
6c31f495
CH
617 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
618 i_size_write(inode, iocb->ki_pos);
619 error = xfs_setfilesize(ip, pos, ret);
16d4d435 620 }
16d4d435 621out:
65523218 622 xfs_iunlock(ip, iolock);
6c31f495 623 return error ? error : ret;
f0d26e86
DC
624}
625
00258e36 626STATIC ssize_t
637bbc75 627xfs_file_buffered_aio_write(
dda35b8f 628 struct kiocb *iocb,
b3188919 629 struct iov_iter *from)
dda35b8f
CH
630{
631 struct file *file = iocb->ki_filp;
632 struct address_space *mapping = file->f_mapping;
633 struct inode *inode = mapping->host;
00258e36 634 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
635 ssize_t ret;
636 int enospc = 0;
c3155097 637 int iolock;
dda35b8f 638
c3155097
BF
639write_retry:
640 iolock = XFS_IOLOCK_EXCL;
65523218 641 xfs_ilock(ip, iolock);
dda35b8f 642
99733fa3 643 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 644 if (ret)
d0606464 645 goto out;
dda35b8f
CH
646
647 /* We can write back this queue in page reclaim */
de1414a6 648 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 649
3176c3e0 650 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 651 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 652 if (likely(ret >= 0))
99733fa3 653 iocb->ki_pos += ret;
dc06f398 654
637bbc75 655 /*
dc06f398
BF
656 * If we hit a space limit, try to free up some lingering preallocated
657 * space before returning an error. In the case of ENOSPC, first try to
658 * write back all dirty inodes to free up some of the excess reserved
659 * metadata space. This reduces the chances that the eofblocks scan
660 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
661 * also behaves as a filter to prevent too many eofblocks scans from
662 * running at the same time.
637bbc75 663 */
dc06f398 664 if (ret == -EDQUOT && !enospc) {
c3155097 665 xfs_iunlock(ip, iolock);
dc06f398
BF
666 enospc = xfs_inode_free_quota_eofblocks(ip);
667 if (enospc)
668 goto write_retry;
83104d44
DW
669 enospc = xfs_inode_free_quota_cowblocks(ip);
670 if (enospc)
671 goto write_retry;
c3155097 672 iolock = 0;
dc06f398
BF
673 } else if (ret == -ENOSPC && !enospc) {
674 struct xfs_eofblocks eofb = {0};
675
637bbc75 676 enospc = 1;
9aa05000 677 xfs_flush_inodes(ip->i_mount);
c3155097
BF
678
679 xfs_iunlock(ip, iolock);
dc06f398
BF
680 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
681 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
cf2cb784 682 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
9aa05000 683 goto write_retry;
dda35b8f 684 }
d0606464 685
dda35b8f 686 current->backing_dev_info = NULL;
d0606464 687out:
c3155097
BF
688 if (iolock)
689 xfs_iunlock(ip, iolock);
637bbc75
DC
690 return ret;
691}
692
693STATIC ssize_t
bf97f3bc 694xfs_file_write_iter(
637bbc75 695 struct kiocb *iocb,
bf97f3bc 696 struct iov_iter *from)
637bbc75
DC
697{
698 struct file *file = iocb->ki_filp;
699 struct address_space *mapping = file->f_mapping;
700 struct inode *inode = mapping->host;
701 struct xfs_inode *ip = XFS_I(inode);
702 ssize_t ret;
bf97f3bc 703 size_t ocount = iov_iter_count(from);
637bbc75 704
ff6d6af2 705 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 706
637bbc75
DC
707 if (ocount == 0)
708 return 0;
709
bf97f3bc
AV
710 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
711 return -EIO;
637bbc75 712
16d4d435
CH
713 if (IS_DAX(inode))
714 ret = xfs_file_dax_write(iocb, from);
0613f16c
DW
715 else if (iocb->ki_flags & IOCB_DIRECT) {
716 /*
717 * Allow a directio write to fall back to a buffered
718 * write *only* in the case that we're doing a reflink
719 * CoW. In all other directio scenarios we do not
720 * allow an operation to fall back to buffered mode.
721 */
bf97f3bc 722 ret = xfs_file_dio_aio_write(iocb, from);
0613f16c
DW
723 if (ret == -EREMCHG)
724 goto buffered;
725 } else {
726buffered:
bf97f3bc 727 ret = xfs_file_buffered_aio_write(iocb, from);
0613f16c 728 }
dda35b8f 729
d0606464 730 if (ret > 0) {
ff6d6af2 731 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
dda35b8f 732
d0606464 733 /* Handle various SYNC-type writes */
e2592217 734 ret = generic_write_sync(iocb, ret);
dda35b8f 735 }
a363f0c2 736 return ret;
dda35b8f
CH
737}
738
a904b1ca
NJ
739#define XFS_FALLOC_FL_SUPPORTED \
740 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
741 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 742 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 743
2fe17c10
CH
744STATIC long
745xfs_file_fallocate(
83aee9e4
CH
746 struct file *file,
747 int mode,
748 loff_t offset,
749 loff_t len)
2fe17c10 750{
83aee9e4
CH
751 struct inode *inode = file_inode(file);
752 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 753 long error;
8add71ca 754 enum xfs_prealloc_flags flags = 0;
781355c6 755 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 756 loff_t new_size = 0;
a904b1ca 757 bool do_file_insert = 0;
2fe17c10 758
83aee9e4
CH
759 if (!S_ISREG(inode->i_mode))
760 return -EINVAL;
a904b1ca 761 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
762 return -EOPNOTSUPP;
763
781355c6 764 xfs_ilock(ip, iolock);
65523218 765 error = xfs_break_layouts(inode, &iolock);
781355c6
CH
766 if (error)
767 goto out_unlock;
768
e8e9ad42
DC
769 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
770 iolock |= XFS_MMAPLOCK_EXCL;
771
83aee9e4
CH
772 if (mode & FALLOC_FL_PUNCH_HOLE) {
773 error = xfs_free_file_space(ip, offset, len);
774 if (error)
775 goto out_unlock;
e1d8fb88 776 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
93407472 777 unsigned int blksize_mask = i_blocksize(inode) - 1;
e1d8fb88
NJ
778
779 if (offset & blksize_mask || len & blksize_mask) {
2451337d 780 error = -EINVAL;
e1d8fb88
NJ
781 goto out_unlock;
782 }
783
23fffa92
LC
784 /*
785 * There is no need to overlap collapse range with EOF,
786 * in which case it is effectively a truncate operation
787 */
788 if (offset + len >= i_size_read(inode)) {
2451337d 789 error = -EINVAL;
23fffa92
LC
790 goto out_unlock;
791 }
792
e1d8fb88
NJ
793 new_size = i_size_read(inode) - len;
794
795 error = xfs_collapse_file_space(ip, offset, len);
796 if (error)
797 goto out_unlock;
a904b1ca 798 } else if (mode & FALLOC_FL_INSERT_RANGE) {
93407472 799 unsigned int blksize_mask = i_blocksize(inode) - 1;
a904b1ca
NJ
800
801 new_size = i_size_read(inode) + len;
802 if (offset & blksize_mask || len & blksize_mask) {
803 error = -EINVAL;
804 goto out_unlock;
805 }
806
807 /* check the new inode size does not wrap through zero */
808 if (new_size > inode->i_sb->s_maxbytes) {
809 error = -EFBIG;
810 goto out_unlock;
811 }
812
813 /* Offset should be less than i_size */
814 if (offset >= i_size_read(inode)) {
815 error = -EINVAL;
816 goto out_unlock;
817 }
818 do_file_insert = 1;
83aee9e4 819 } else {
8add71ca
CH
820 flags |= XFS_PREALLOC_SET;
821
83aee9e4
CH
822 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
823 offset + len > i_size_read(inode)) {
824 new_size = offset + len;
2451337d 825 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
826 if (error)
827 goto out_unlock;
828 }
2fe17c10 829
376ba313
LC
830 if (mode & FALLOC_FL_ZERO_RANGE)
831 error = xfs_zero_file_space(ip, offset, len);
98cc2db5
DW
832 else {
833 if (mode & FALLOC_FL_UNSHARE_RANGE) {
834 error = xfs_reflink_unshare(ip, offset, len);
835 if (error)
836 goto out_unlock;
837 }
376ba313
LC
838 error = xfs_alloc_file_space(ip, offset, len,
839 XFS_BMAPI_PREALLOC);
98cc2db5 840 }
2fe17c10
CH
841 if (error)
842 goto out_unlock;
843 }
844
83aee9e4 845 if (file->f_flags & O_DSYNC)
8add71ca
CH
846 flags |= XFS_PREALLOC_SYNC;
847
848 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
849 if (error)
850 goto out_unlock;
851
852 /* Change file size if needed */
853 if (new_size) {
854 struct iattr iattr;
855
856 iattr.ia_valid = ATTR_SIZE;
857 iattr.ia_size = new_size;
69bca807 858 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
a904b1ca
NJ
859 if (error)
860 goto out_unlock;
2fe17c10
CH
861 }
862
a904b1ca
NJ
863 /*
864 * Perform hole insertion now that the file size has been
865 * updated so that if we crash during the operation we don't
866 * leave shifted extents past EOF and hence losing access to
867 * the data that is contained within them.
868 */
869 if (do_file_insert)
870 error = xfs_insert_file_space(ip, offset, len);
871
2fe17c10 872out_unlock:
781355c6 873 xfs_iunlock(ip, iolock);
2451337d 874 return error;
2fe17c10
CH
875}
876
9fe26045
DW
877STATIC int
878xfs_file_clone_range(
879 struct file *file_in,
880 loff_t pos_in,
881 struct file *file_out,
882 loff_t pos_out,
883 u64 len)
884{
5faaf4fa 885 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
cc714660
DW
886 len, false);
887}
888
cc714660
DW
889STATIC ssize_t
890xfs_file_dedupe_range(
891 struct file *src_file,
892 u64 loff,
893 u64 len,
894 struct file *dst_file,
895 u64 dst_loff)
896{
897 int error;
898
5faaf4fa 899 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
cc714660
DW
900 len, true);
901 if (error)
902 return error;
903 return len;
9fe26045 904}
2fe17c10 905
1da177e4 906STATIC int
3562fd45 907xfs_file_open(
1da177e4 908 struct inode *inode,
f999a5bf 909 struct file *file)
1da177e4 910{
f999a5bf 911 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 912 return -EFBIG;
f999a5bf
CH
913 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
914 return -EIO;
29a5d29e 915 file->f_mode |= FMODE_AIO_NOWAIT;
f999a5bf
CH
916 return 0;
917}
918
919STATIC int
920xfs_dir_open(
921 struct inode *inode,
922 struct file *file)
923{
924 struct xfs_inode *ip = XFS_I(inode);
925 int mode;
926 int error;
927
928 error = xfs_file_open(inode, file);
929 if (error)
930 return error;
931
932 /*
933 * If there are any blocks, read-ahead block 0 as we're almost
934 * certain to have the next operation be a read there.
935 */
309ecac8 936 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 937 if (ip->i_d.di_nextents > 0)
7a652bbe 938 error = xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf 939 xfs_iunlock(ip, mode);
7a652bbe 940 return error;
1da177e4
LT
941}
942
1da177e4 943STATIC int
3562fd45 944xfs_file_release(
1da177e4
LT
945 struct inode *inode,
946 struct file *filp)
947{
2451337d 948 return xfs_release(XFS_I(inode));
1da177e4
LT
949}
950
1da177e4 951STATIC int
3562fd45 952xfs_file_readdir(
b8227554
AV
953 struct file *file,
954 struct dir_context *ctx)
1da177e4 955{
b8227554 956 struct inode *inode = file_inode(file);
739bfb2a 957 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
958 size_t bufsize;
959
960 /*
961 * The Linux API doesn't pass down the total size of the buffer
962 * we read into down to the filesystem. With the filldir concept
963 * it's not needed for correct information, but the XFS dir2 leaf
964 * code wants an estimate of the buffer size to calculate it's
965 * readahead window and size the buffers used for mapping to
966 * physical blocks.
967 *
968 * Try to give it an estimate that's good enough, maybe at some
969 * point we can change the ->readdir prototype to include the
a9cc799e 970 * buffer size. For now we use the current glibc buffer size.
051e7cd4 971 */
a9cc799e 972 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 973
acb9553c 974 return xfs_readdir(NULL, ip, ctx, bufsize);
3fe3e6b1
JL
975}
976
977STATIC loff_t
978xfs_file_llseek(
979 struct file *file,
980 loff_t offset,
59f9c004 981 int whence)
3fe3e6b1 982{
9b2970aa
CH
983 struct inode *inode = file->f_mapping->host;
984
985 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
986 return -EIO;
987
59f9c004 988 switch (whence) {
9b2970aa 989 default:
59f9c004 990 return generic_file_llseek(file, offset, whence);
3fe3e6b1 991 case SEEK_HOLE:
9b2970aa
CH
992 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
993 break;
49c69591 994 case SEEK_DATA:
9b2970aa
CH
995 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
996 break;
3fe3e6b1 997 }
9b2970aa
CH
998
999 if (offset < 0)
1000 return offset;
1001 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1002}
1003
de0e8c20
DC
1004/*
1005 * Locking for serialisation of IO during page faults. This results in a lock
1006 * ordering of:
1007 *
1008 * mmap_sem (MM)
6b698ede 1009 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1010 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1011 * page_lock (MM)
1012 * i_lock (XFS - extent map serialisation)
de0e8c20 1013 */
de0e8c20 1014
075a924d
DC
1015/*
1016 * mmap()d file has taken write protection fault and is being made writable. We
1017 * can set the page state up correctly for a writable page, which means we can
1018 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1019 * mapping.
de0e8c20
DC
1020 */
1021STATIC int
075a924d 1022xfs_filemap_page_mkwrite(
de0e8c20
DC
1023 struct vm_fault *vmf)
1024{
11bac800 1025 struct inode *inode = file_inode(vmf->vma->vm_file);
ec56b1f1 1026 int ret;
de0e8c20 1027
6b698ede 1028 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
de0e8c20 1029
6b698ede 1030 sb_start_pagefault(inode->i_sb);
11bac800 1031 file_update_time(vmf->vma->vm_file);
6b698ede 1032 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
de0e8c20 1033
6b698ede 1034 if (IS_DAX(inode)) {
c791ace1 1035 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
6b698ede 1036 } else {
11bac800 1037 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
6b698ede
DC
1038 ret = block_page_mkwrite_return(ret);
1039 }
1040
1041 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1042 sb_end_pagefault(inode->i_sb);
1043
1044 return ret;
de0e8c20
DC
1045}
1046
075a924d 1047STATIC int
6b698ede 1048xfs_filemap_fault(
075a924d
DC
1049 struct vm_fault *vmf)
1050{
11bac800 1051 struct inode *inode = file_inode(vmf->vma->vm_file);
6b698ede 1052 int ret;
ec56b1f1 1053
b2442c5a 1054 trace_xfs_filemap_fault(XFS_I(inode));
075a924d 1055
6b698ede 1056 /* DAX can shortcut the normal fault path on write faults! */
b2442c5a 1057 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
11bac800 1058 return xfs_filemap_page_mkwrite(vmf);
075a924d 1059
b2442c5a 1060 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
acdda3aa 1061 if (IS_DAX(inode))
c791ace1 1062 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
acdda3aa 1063 else
11bac800 1064 ret = filemap_fault(vmf);
b2442c5a 1065 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
075a924d 1066
6b698ede
DC
1067 return ret;
1068}
1069
13ad4fe3
DC
1070/*
1071 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1072 * both read and write faults. Hence we need to handle both cases. There is no
a2d58167 1073 * ->huge_mkwrite callout for huge pages, so we have a single function here to
13ad4fe3
DC
1074 * handle both cases here. @flags carries the information on the type of fault
1075 * occuring.
1076 */
acd76e74 1077STATIC int
a2d58167 1078xfs_filemap_huge_fault(
c791ace1
DJ
1079 struct vm_fault *vmf,
1080 enum page_entry_size pe_size)
acd76e74 1081{
f4200391 1082 struct inode *inode = file_inode(vmf->vma->vm_file);
acd76e74
MW
1083 struct xfs_inode *ip = XFS_I(inode);
1084 int ret;
1085
1086 if (!IS_DAX(inode))
1087 return VM_FAULT_FALLBACK;
1088
a2d58167 1089 trace_xfs_filemap_huge_fault(ip);
acd76e74 1090
d8a849e1 1091 if (vmf->flags & FAULT_FLAG_WRITE) {
13ad4fe3 1092 sb_start_pagefault(inode->i_sb);
f4200391 1093 file_update_time(vmf->vma->vm_file);
13ad4fe3
DC
1094 }
1095
acd76e74 1096 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
c791ace1 1097 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
acd76e74 1098 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
acd76e74 1099
d8a849e1 1100 if (vmf->flags & FAULT_FLAG_WRITE)
13ad4fe3 1101 sb_end_pagefault(inode->i_sb);
acd76e74
MW
1102
1103 return ret;
1104}
1105
3af49285
DC
1106/*
1107 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1108 * updates on write faults. In reality, it's need to serialise against
5eb88dca
RZ
1109 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1110 * to ensure we serialise the fault barrier in place.
3af49285
DC
1111 */
1112static int
1113xfs_filemap_pfn_mkwrite(
3af49285
DC
1114 struct vm_fault *vmf)
1115{
1116
11bac800 1117 struct inode *inode = file_inode(vmf->vma->vm_file);
3af49285
DC
1118 struct xfs_inode *ip = XFS_I(inode);
1119 int ret = VM_FAULT_NOPAGE;
1120 loff_t size;
1121
1122 trace_xfs_filemap_pfn_mkwrite(ip);
1123
1124 sb_start_pagefault(inode->i_sb);
11bac800 1125 file_update_time(vmf->vma->vm_file);
3af49285
DC
1126
1127 /* check if the faulting page hasn't raced with truncate */
1128 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1129 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1130 if (vmf->pgoff >= size)
1131 ret = VM_FAULT_SIGBUS;
5eb88dca 1132 else if (IS_DAX(inode))
11bac800 1133 ret = dax_pfn_mkwrite(vmf);
3af49285
DC
1134 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1135 sb_end_pagefault(inode->i_sb);
acd76e74 1136 return ret;
3af49285 1137
acd76e74
MW
1138}
1139
6b698ede
DC
1140static const struct vm_operations_struct xfs_file_vm_ops = {
1141 .fault = xfs_filemap_fault,
a2d58167 1142 .huge_fault = xfs_filemap_huge_fault,
6b698ede
DC
1143 .map_pages = filemap_map_pages,
1144 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1145 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1146};
1147
1148STATIC int
1149xfs_file_mmap(
1150 struct file *filp,
1151 struct vm_area_struct *vma)
1152{
1153 file_accessed(filp);
1154 vma->vm_ops = &xfs_file_vm_ops;
1155 if (IS_DAX(file_inode(filp)))
acd76e74 1156 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
6b698ede 1157 return 0;
075a924d
DC
1158}
1159
4b6f5d20 1160const struct file_operations xfs_file_operations = {
3fe3e6b1 1161 .llseek = xfs_file_llseek,
b4f5d2c6 1162 .read_iter = xfs_file_read_iter,
bf97f3bc 1163 .write_iter = xfs_file_write_iter,
82c156f8 1164 .splice_read = generic_file_splice_read,
8d020765 1165 .splice_write = iter_file_splice_write,
3562fd45 1166 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1167#ifdef CONFIG_COMPAT
3562fd45 1168 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1169#endif
3562fd45
NS
1170 .mmap = xfs_file_mmap,
1171 .open = xfs_file_open,
1172 .release = xfs_file_release,
1173 .fsync = xfs_file_fsync,
dbe6ec81 1174 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1175 .fallocate = xfs_file_fallocate,
9fe26045 1176 .clone_file_range = xfs_file_clone_range,
cc714660 1177 .dedupe_file_range = xfs_file_dedupe_range,
1da177e4
LT
1178};
1179
4b6f5d20 1180const struct file_operations xfs_dir_file_operations = {
f999a5bf 1181 .open = xfs_dir_open,
1da177e4 1182 .read = generic_read_dir,
3b0a3c1a 1183 .iterate_shared = xfs_file_readdir,
59af1584 1184 .llseek = generic_file_llseek,
3562fd45 1185 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1186#ifdef CONFIG_COMPAT
3562fd45 1187 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1188#endif
1da2f2db 1189 .fsync = xfs_dir_fsync,
1da177e4 1190};