]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_file.c
iov_iter_truncate()
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_sb.h"
a844f451 25#include "xfs_ag.h"
1da177e4 26#include "xfs_mount.h"
57062787
DC
27#include "xfs_da_format.h"
28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
239880ef 30#include "xfs_trans.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
c24b5dfa 33#include "xfs_bmap_util.h"
1da177e4 34#include "xfs_error.h"
2b9ab5ab 35#include "xfs_dir2.h"
c24b5dfa 36#include "xfs_dir2_priv.h"
ddcd856d 37#include "xfs_ioctl.h"
dda35b8f 38#include "xfs_trace.h"
239880ef 39#include "xfs_log.h"
a4fbe6ab 40#include "xfs_dinode.h"
1da177e4 41
a27bb332 42#include <linux/aio.h>
1da177e4 43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
1da177e4 46
f0f37e2f 47static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 48
487f84f3
DC
49/*
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 */
53static inline void
54xfs_rw_ilock(
55 struct xfs_inode *ip,
56 int type)
57{
58 if (type & XFS_IOLOCK_EXCL)
59 mutex_lock(&VFS_I(ip)->i_mutex);
60 xfs_ilock(ip, type);
61}
62
63static inline void
64xfs_rw_iunlock(
65 struct xfs_inode *ip,
66 int type)
67{
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
70 mutex_unlock(&VFS_I(ip)->i_mutex);
71}
72
73static inline void
74xfs_rw_ilock_demote(
75 struct xfs_inode *ip,
76 int type)
77{
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
80 mutex_unlock(&VFS_I(ip)->i_mutex);
81}
82
dda35b8f
CH
83/*
84 * xfs_iozero
85 *
86 * xfs_iozero clears the specified range of buffer supplied,
87 * and marks all the affected blocks as valid and modified. If
88 * an affected block is not allocated, it will be allocated. If
89 * an affected block is not completely overwritten, and is not
90 * valid before the operation, it will be read from disk before
91 * being partially zeroed.
92 */
ef9d8733 93int
dda35b8f
CH
94xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
98{
99 struct page *page;
100 struct address_space *mapping;
101 int status;
102
103 mapping = VFS_I(ip)->i_mapping;
104 do {
105 unsigned offset, bytes;
106 void *fsdata;
107
108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
109 bytes = PAGE_CACHE_SIZE - offset;
110 if (bytes > count)
111 bytes = count;
112
113 status = pagecache_write_begin(NULL, mapping, pos, bytes,
114 AOP_FLAG_UNINTERRUPTIBLE,
115 &page, &fsdata);
116 if (status)
117 break;
118
119 zero_user(page, offset, bytes);
120
121 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
122 page, fsdata);
123 WARN_ON(status <= 0); /* can't return less than zero! */
124 pos += bytes;
125 count -= bytes;
126 status = 0;
127 } while (count);
128
129 return (-status);
130}
131
1da2f2db
CH
132/*
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
137 */
138STATIC int
139xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
144{
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
148
149 trace_xfs_dir_fsync(ip);
150
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
155
156 if (!lsn)
157 return 0;
158 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
159}
160
fd3200be
CH
161STATIC int
162xfs_file_fsync(
163 struct file *file,
02c24a82
JB
164 loff_t start,
165 loff_t end,
fd3200be
CH
166 int datasync)
167{
7ea80859
CH
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
a27a263b 170 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
171 int error = 0;
172 int log_flushed = 0;
b1037058 173 xfs_lsn_t lsn = 0;
fd3200be 174
cca28fb8 175 trace_xfs_file_fsync(ip);
fd3200be 176
02c24a82
JB
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
180
a27a263b 181 if (XFS_FORCED_SHUTDOWN(mp))
fd3200be
CH
182 return -XFS_ERROR(EIO);
183
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
185
a27a263b
CH
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
187 /*
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
193 */
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
198 }
199
fd3200be 200 /*
8a9c9980
CH
201 * All metadata updates are logged, which means that we just have
202 * to flush the log up to the latest LSN that touched the inode.
fd3200be
CH
203 */
204 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
205 if (xfs_ipincount(ip)) {
206 if (!datasync ||
207 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
208 lsn = ip->i_itemp->ili_last_lsn;
209 }
8a9c9980 210 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be 211
8a9c9980 212 if (lsn)
b1037058
CH
213 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
214
a27a263b
CH
215 /*
216 * If we only have a single device, and the log force about was
217 * a no-op we might have to flush the data device cache here.
218 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 * an already allocated file and thus do not have any metadata to
220 * commit.
221 */
222 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
223 mp->m_logdev_targp == mp->m_ddev_targp &&
224 !XFS_IS_REALTIME_INODE(ip) &&
225 !log_flushed)
226 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be
CH
227
228 return -error;
229}
230
00258e36
CH
231STATIC ssize_t
232xfs_file_aio_read(
dda35b8f
CH
233 struct kiocb *iocb,
234 const struct iovec *iovp,
00258e36
CH
235 unsigned long nr_segs,
236 loff_t pos)
dda35b8f
CH
237{
238 struct file *file = iocb->ki_filp;
239 struct inode *inode = file->f_mapping->host;
00258e36
CH
240 struct xfs_inode *ip = XFS_I(inode);
241 struct xfs_mount *mp = ip->i_mount;
dda35b8f
CH
242 size_t size = 0;
243 ssize_t ret = 0;
00258e36 244 int ioflags = 0;
dda35b8f 245 xfs_fsize_t n;
dda35b8f 246
dda35b8f
CH
247 XFS_STATS_INC(xs_read_calls);
248
00258e36
CH
249 BUG_ON(iocb->ki_pos != pos);
250
251 if (unlikely(file->f_flags & O_DIRECT))
252 ioflags |= IO_ISDIRECT;
253 if (file->f_mode & FMODE_NOCMTIME)
254 ioflags |= IO_INVIS;
255
cb66a7a1 256 size = iov_length(iovp, nr_segs);
dda35b8f
CH
257
258 if (unlikely(ioflags & IO_ISDIRECT)) {
259 xfs_buftarg_t *target =
260 XFS_IS_REALTIME_INODE(ip) ?
261 mp->m_rtdev_targp : mp->m_ddev_targp;
7c71ee78
ES
262 /* DIO must be aligned to device logical sector size */
263 if ((pos | size) & target->bt_logical_sectormask) {
fb595814 264 if (pos == i_size_read(inode))
00258e36 265 return 0;
dda35b8f
CH
266 return -XFS_ERROR(EINVAL);
267 }
268 }
269
fb595814 270 n = mp->m_super->s_maxbytes - pos;
00258e36 271 if (n <= 0 || size == 0)
dda35b8f
CH
272 return 0;
273
274 if (n < size)
275 size = n;
276
277 if (XFS_FORCED_SHUTDOWN(mp))
278 return -EIO;
279
0c38a251
DC
280 /*
281 * Locking is a bit tricky here. If we take an exclusive lock
282 * for direct IO, we effectively serialise all new concurrent
283 * read IO to this file and block it behind IO that is currently in
284 * progress because IO in progress holds the IO lock shared. We only
285 * need to hold the lock exclusive to blow away the page cache, so
286 * only take lock exclusively if the page cache needs invalidation.
287 * This allows the normal direct IO case of no page cache pages to
288 * proceeed concurrently without serialisation.
289 */
290 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
291 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
292 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
293 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
294
00258e36 295 if (inode->i_mapping->nrpages) {
fb595814
DC
296 ret = -filemap_write_and_wait_range(
297 VFS_I(ip)->i_mapping,
298 pos, -1);
487f84f3
DC
299 if (ret) {
300 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
301 return ret;
302 }
fb595814 303 truncate_pagecache_range(VFS_I(ip), pos, -1);
00258e36 304 }
487f84f3 305 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 306 }
dda35b8f 307
fb595814 308 trace_xfs_file_read(ip, size, pos, ioflags);
dda35b8f 309
fb595814 310 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
dda35b8f
CH
311 if (ret > 0)
312 XFS_STATS_ADD(xs_read_bytes, ret);
313
487f84f3 314 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
315 return ret;
316}
317
00258e36
CH
318STATIC ssize_t
319xfs_file_splice_read(
dda35b8f
CH
320 struct file *infilp,
321 loff_t *ppos,
322 struct pipe_inode_info *pipe,
323 size_t count,
00258e36 324 unsigned int flags)
dda35b8f 325{
00258e36 326 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 327 int ioflags = 0;
dda35b8f
CH
328 ssize_t ret;
329
330 XFS_STATS_INC(xs_read_calls);
00258e36
CH
331
332 if (infilp->f_mode & FMODE_NOCMTIME)
333 ioflags |= IO_INVIS;
334
dda35b8f
CH
335 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
336 return -EIO;
337
487f84f3 338 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 339
dda35b8f
CH
340 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
341
342 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
343 if (ret > 0)
344 XFS_STATS_ADD(xs_read_bytes, ret);
345
487f84f3 346 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
347 return ret;
348}
349
487f84f3
DC
350/*
351 * xfs_file_splice_write() does not use xfs_rw_ilock() because
352 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
353 * couuld cause lock inversions between the aio_write path and the splice path
354 * if someone is doing concurrent splice(2) based writes and write(2) based
355 * writes to the same inode. The only real way to fix this is to re-implement
356 * the generic code here with correct locking orders.
357 */
00258e36
CH
358STATIC ssize_t
359xfs_file_splice_write(
dda35b8f
CH
360 struct pipe_inode_info *pipe,
361 struct file *outfilp,
362 loff_t *ppos,
363 size_t count,
00258e36 364 unsigned int flags)
dda35b8f 365{
dda35b8f 366 struct inode *inode = outfilp->f_mapping->host;
00258e36 367 struct xfs_inode *ip = XFS_I(inode);
00258e36
CH
368 int ioflags = 0;
369 ssize_t ret;
dda35b8f
CH
370
371 XFS_STATS_INC(xs_write_calls);
00258e36
CH
372
373 if (outfilp->f_mode & FMODE_NOCMTIME)
374 ioflags |= IO_INVIS;
375
dda35b8f
CH
376 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
377 return -EIO;
378
379 xfs_ilock(ip, XFS_IOLOCK_EXCL);
380
dda35b8f
CH
381 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
382
383 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
ce7ae151
CH
384 if (ret > 0)
385 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 386
dda35b8f
CH
387 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
388 return ret;
389}
390
391/*
193aec10
CH
392 * This routine is called to handle zeroing any space in the last block of the
393 * file that is beyond the EOF. We do this since the size is being increased
394 * without writing anything to that block and we don't want to read the
395 * garbage on the disk.
dda35b8f
CH
396 */
397STATIC int /* error (positive) */
398xfs_zero_last_block(
193aec10
CH
399 struct xfs_inode *ip,
400 xfs_fsize_t offset,
401 xfs_fsize_t isize)
dda35b8f 402{
193aec10
CH
403 struct xfs_mount *mp = ip->i_mount;
404 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
405 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
406 int zero_len;
407 int nimaps = 1;
408 int error = 0;
409 struct xfs_bmbt_irec imap;
dda35b8f 410
193aec10 411 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202 412 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
193aec10 413 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5c8ed202 414 if (error)
dda35b8f 415 return error;
193aec10 416
dda35b8f 417 ASSERT(nimaps > 0);
193aec10 418
dda35b8f
CH
419 /*
420 * If the block underlying isize is just a hole, then there
421 * is nothing to zero.
422 */
193aec10 423 if (imap.br_startblock == HOLESTARTBLOCK)
dda35b8f 424 return 0;
dda35b8f
CH
425
426 zero_len = mp->m_sb.sb_blocksize - zero_offset;
427 if (isize + zero_len > offset)
428 zero_len = offset - isize;
193aec10 429 return xfs_iozero(ip, isize, zero_len);
dda35b8f
CH
430}
431
432/*
193aec10
CH
433 * Zero any on disk space between the current EOF and the new, larger EOF.
434 *
435 * This handles the normal case of zeroing the remainder of the last block in
436 * the file and the unusual case of zeroing blocks out beyond the size of the
437 * file. This second case only happens with fixed size extents and when the
438 * system crashes before the inode size was updated but after blocks were
439 * allocated.
440 *
441 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 442 */
dda35b8f
CH
443int /* error (positive) */
444xfs_zero_eof(
193aec10
CH
445 struct xfs_inode *ip,
446 xfs_off_t offset, /* starting I/O offset */
447 xfs_fsize_t isize) /* current inode size */
dda35b8f 448{
193aec10
CH
449 struct xfs_mount *mp = ip->i_mount;
450 xfs_fileoff_t start_zero_fsb;
451 xfs_fileoff_t end_zero_fsb;
452 xfs_fileoff_t zero_count_fsb;
453 xfs_fileoff_t last_fsb;
454 xfs_fileoff_t zero_off;
455 xfs_fsize_t zero_len;
456 int nimaps;
457 int error = 0;
458 struct xfs_bmbt_irec imap;
459
460 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
461 ASSERT(offset > isize);
462
463 /*
464 * First handle zeroing the block on which isize resides.
193aec10 465 *
dda35b8f
CH
466 * We only zero a part of that block so it is handled specially.
467 */
193aec10
CH
468 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
469 error = xfs_zero_last_block(ip, offset, isize);
470 if (error)
471 return error;
dda35b8f
CH
472 }
473
474 /*
193aec10
CH
475 * Calculate the range between the new size and the old where blocks
476 * needing to be zeroed may exist.
477 *
478 * To get the block where the last byte in the file currently resides,
479 * we need to subtract one from the size and truncate back to a block
480 * boundary. We subtract 1 in case the size is exactly on a block
481 * boundary.
dda35b8f
CH
482 */
483 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
484 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
485 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
486 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
487 if (last_fsb == end_zero_fsb) {
488 /*
489 * The size was only incremented on its last block.
490 * We took care of that above, so just return.
491 */
492 return 0;
493 }
494
495 ASSERT(start_zero_fsb <= end_zero_fsb);
496 while (start_zero_fsb <= end_zero_fsb) {
497 nimaps = 1;
498 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
193aec10
CH
499
500 xfs_ilock(ip, XFS_ILOCK_EXCL);
5c8ed202
DC
501 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
502 &imap, &nimaps, 0);
193aec10
CH
503 xfs_iunlock(ip, XFS_ILOCK_EXCL);
504 if (error)
dda35b8f 505 return error;
193aec10 506
dda35b8f
CH
507 ASSERT(nimaps > 0);
508
509 if (imap.br_state == XFS_EXT_UNWRITTEN ||
510 imap.br_startblock == HOLESTARTBLOCK) {
dda35b8f
CH
511 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
512 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
513 continue;
514 }
515
516 /*
517 * There are blocks we need to zero.
dda35b8f 518 */
dda35b8f
CH
519 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
520 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
521
522 if ((zero_off + zero_len) > offset)
523 zero_len = offset - zero_off;
524
525 error = xfs_iozero(ip, zero_off, zero_len);
193aec10
CH
526 if (error)
527 return error;
dda35b8f
CH
528
529 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
530 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
dda35b8f
CH
531 }
532
533 return 0;
dda35b8f
CH
534}
535
4d8d1581
DC
536/*
537 * Common pre-write limit and setup checks.
538 *
5bf1f262
CH
539 * Called with the iolocked held either shared and exclusive according to
540 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
541 * if called for a direct write beyond i_size.
4d8d1581
DC
542 */
543STATIC ssize_t
544xfs_file_aio_write_checks(
545 struct file *file,
546 loff_t *pos,
547 size_t *count,
548 int *iolock)
549{
550 struct inode *inode = file->f_mapping->host;
551 struct xfs_inode *ip = XFS_I(inode);
4d8d1581
DC
552 int error = 0;
553
7271d243 554restart:
4d8d1581 555 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
467f7899 556 if (error)
4d8d1581 557 return error;
4d8d1581 558
4d8d1581
DC
559 /*
560 * If the offset is beyond the size of the file, we need to zero any
561 * blocks that fall between the existing EOF and the start of this
2813d682 562 * write. If zeroing is needed and we are currently holding the
467f7899
CH
563 * iolock shared, we need to update it to exclusive which implies
564 * having to redo all checks before.
4d8d1581 565 */
2813d682 566 if (*pos > i_size_read(inode)) {
7271d243 567 if (*iolock == XFS_IOLOCK_SHARED) {
467f7899 568 xfs_rw_iunlock(ip, *iolock);
7271d243 569 *iolock = XFS_IOLOCK_EXCL;
467f7899 570 xfs_rw_ilock(ip, *iolock);
7271d243
DC
571 goto restart;
572 }
ce7ae151 573 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
467f7899
CH
574 if (error)
575 return error;
7271d243 576 }
4d8d1581 577
8a9c9980
CH
578 /*
579 * Updating the timestamps will grab the ilock again from
580 * xfs_fs_dirty_inode, so we have to call it after dropping the
581 * lock above. Eventually we should look into a way to avoid
582 * the pointless lock roundtrip.
583 */
c3b2da31
JB
584 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
585 error = file_update_time(file);
586 if (error)
587 return error;
588 }
8a9c9980 589
4d8d1581
DC
590 /*
591 * If we're writing the file then make sure to clear the setuid and
592 * setgid bits if the process is not being run by root. This keeps
593 * people from modifying setuid and setgid binaries.
594 */
595 return file_remove_suid(file);
4d8d1581
DC
596}
597
f0d26e86
DC
598/*
599 * xfs_file_dio_aio_write - handle direct IO writes
600 *
601 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 602 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
603 * follow locking changes and looping.
604 *
eda77982
DC
605 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
606 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
607 * pages are flushed out.
608 *
609 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
610 * allowing them to be done in parallel with reads and other direct IO writes.
611 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
612 * needs to do sub-block zeroing and that requires serialisation against other
613 * direct IOs to the same block. In this case we need to serialise the
614 * submission of the unaligned IOs so that we don't get racing block zeroing in
615 * the dio layer. To avoid the problem with aio, we also need to wait for
616 * outstanding IOs to complete so that unwritten extent conversion is completed
617 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 618 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 619 *
f0d26e86
DC
620 * Returns with locks held indicated by @iolock and errors indicated by
621 * negative return values.
622 */
623STATIC ssize_t
624xfs_file_dio_aio_write(
625 struct kiocb *iocb,
626 const struct iovec *iovp,
627 unsigned long nr_segs,
628 loff_t pos,
0c949334 629 size_t count)
f0d26e86
DC
630{
631 struct file *file = iocb->ki_filp;
632 struct address_space *mapping = file->f_mapping;
633 struct inode *inode = mapping->host;
634 struct xfs_inode *ip = XFS_I(inode);
635 struct xfs_mount *mp = ip->i_mount;
636 ssize_t ret = 0;
eda77982 637 int unaligned_io = 0;
d0606464 638 int iolock;
f0d26e86
DC
639 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
640 mp->m_rtdev_targp : mp->m_ddev_targp;
f8579f86 641 struct iov_iter from;
f0d26e86 642
7c71ee78
ES
643 /* DIO must be aligned to device logical sector size */
644 if ((pos | count) & target->bt_logical_sectormask)
f0d26e86
DC
645 return -XFS_ERROR(EINVAL);
646
0c949334
AV
647 iov_iter_init(&from, WRITE, iovp, nr_segs, count);
648
7c71ee78 649 /* "unaligned" here means not aligned to a filesystem block */
eda77982
DC
650 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
651 unaligned_io = 1;
652
7271d243
DC
653 /*
654 * We don't need to take an exclusive lock unless there page cache needs
655 * to be invalidated or unaligned IO is being executed. We don't need to
656 * consider the EOF extension case here because
657 * xfs_file_aio_write_checks() will relock the inode as necessary for
658 * EOF zeroing cases and fill out the new inode size as appropriate.
659 */
660 if (unaligned_io || mapping->nrpages)
d0606464 661 iolock = XFS_IOLOCK_EXCL;
f0d26e86 662 else
d0606464
CH
663 iolock = XFS_IOLOCK_SHARED;
664 xfs_rw_ilock(ip, iolock);
c58cb165
CH
665
666 /*
667 * Recheck if there are cached pages that need invalidate after we got
668 * the iolock to protect against other threads adding new pages while
669 * we were waiting for the iolock.
670 */
d0606464
CH
671 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
672 xfs_rw_iunlock(ip, iolock);
673 iolock = XFS_IOLOCK_EXCL;
674 xfs_rw_ilock(ip, iolock);
c58cb165 675 }
f0d26e86 676
d0606464 677 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 678 if (ret)
d0606464 679 goto out;
0c949334 680 iov_iter_truncate(&from, count);
f0d26e86
DC
681
682 if (mapping->nrpages) {
07d5035a 683 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
fb595814 684 pos, -1);
f0d26e86 685 if (ret)
d0606464 686 goto out;
fb595814 687 truncate_pagecache_range(VFS_I(ip), pos, -1);
f0d26e86
DC
688 }
689
eda77982
DC
690 /*
691 * If we are doing unaligned IO, wait for all other IO to drain,
692 * otherwise demote the lock if we had to flush cached pages
693 */
694 if (unaligned_io)
4a06fd26 695 inode_dio_wait(inode);
d0606464 696 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 697 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 698 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
699 }
700
701 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
0c949334 702 ret = generic_file_direct_write(iocb, &from, pos);
f0d26e86 703
d0606464
CH
704out:
705 xfs_rw_iunlock(ip, iolock);
706
f0d26e86
DC
707 /* No fallback to buffered IO on errors for XFS. */
708 ASSERT(ret < 0 || ret == count);
709 return ret;
710}
711
00258e36 712STATIC ssize_t
637bbc75 713xfs_file_buffered_aio_write(
dda35b8f
CH
714 struct kiocb *iocb,
715 const struct iovec *iovp,
00258e36 716 unsigned long nr_segs,
637bbc75 717 loff_t pos,
0a64bc2c 718 size_t count)
dda35b8f
CH
719{
720 struct file *file = iocb->ki_filp;
721 struct address_space *mapping = file->f_mapping;
722 struct inode *inode = mapping->host;
00258e36 723 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
724 ssize_t ret;
725 int enospc = 0;
d0606464 726 int iolock = XFS_IOLOCK_EXCL;
0a64bc2c 727 struct iov_iter from;
dda35b8f 728
d0606464 729 xfs_rw_ilock(ip, iolock);
dda35b8f 730
d0606464 731 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
4d8d1581 732 if (ret)
d0606464 733 goto out;
dda35b8f 734
71d8e532 735 iov_iter_init(&from, WRITE, iovp, nr_segs, count);
dda35b8f
CH
736 /* We can write back this queue in page reclaim */
737 current->backing_dev_info = mapping->backing_dev_info;
738
dda35b8f 739write_retry:
637bbc75 740 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
0a64bc2c
AV
741 ret = generic_perform_write(file, &from, pos);
742 if (likely(ret >= 0))
743 iocb->ki_pos = pos + ret;
637bbc75 744 /*
9aa05000
DC
745 * If we just got an ENOSPC, try to write back all dirty inodes to
746 * convert delalloc space to free up some of the excess reserved
747 * metadata space.
637bbc75
DC
748 */
749 if (ret == -ENOSPC && !enospc) {
637bbc75 750 enospc = 1;
9aa05000
DC
751 xfs_flush_inodes(ip->i_mount);
752 goto write_retry;
dda35b8f 753 }
d0606464 754
dda35b8f 755 current->backing_dev_info = NULL;
d0606464
CH
756out:
757 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
758 return ret;
759}
760
761STATIC ssize_t
762xfs_file_aio_write(
763 struct kiocb *iocb,
764 const struct iovec *iovp,
765 unsigned long nr_segs,
766 loff_t pos)
767{
768 struct file *file = iocb->ki_filp;
769 struct address_space *mapping = file->f_mapping;
770 struct inode *inode = mapping->host;
771 struct xfs_inode *ip = XFS_I(inode);
772 ssize_t ret;
637bbc75
DC
773 size_t ocount = 0;
774
775 XFS_STATS_INC(xs_write_calls);
776
777 BUG_ON(iocb->ki_pos != pos);
778
cb66a7a1 779 ocount = iov_length(iovp, nr_segs);
637bbc75
DC
780 if (ocount == 0)
781 return 0;
782
d9457dc0
JK
783 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
784 ret = -EIO;
785 goto out;
786 }
637bbc75
DC
787
788 if (unlikely(file->f_flags & O_DIRECT))
d0606464 789 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
637bbc75
DC
790 else
791 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
d0606464 792 ocount);
dda35b8f 793
d0606464
CH
794 if (ret > 0) {
795 ssize_t err;
dda35b8f 796
d0606464 797 XFS_STATS_ADD(xs_write_bytes, ret);
dda35b8f 798
d0606464 799 /* Handle various SYNC-type writes */
d311d79d 800 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
d0606464
CH
801 if (err < 0)
802 ret = err;
dda35b8f
CH
803 }
804
d9457dc0 805out:
a363f0c2 806 return ret;
dda35b8f
CH
807}
808
2fe17c10
CH
809STATIC long
810xfs_file_fallocate(
83aee9e4
CH
811 struct file *file,
812 int mode,
813 loff_t offset,
814 loff_t len)
2fe17c10 815{
83aee9e4
CH
816 struct inode *inode = file_inode(file);
817 struct xfs_inode *ip = XFS_I(inode);
818 struct xfs_trans *tp;
819 long error;
820 loff_t new_size = 0;
2fe17c10 821
83aee9e4
CH
822 if (!S_ISREG(inode->i_mode))
823 return -EINVAL;
e1d8fb88 824 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
376ba313 825 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
826 return -EOPNOTSUPP;
827
2fe17c10 828 xfs_ilock(ip, XFS_IOLOCK_EXCL);
83aee9e4
CH
829 if (mode & FALLOC_FL_PUNCH_HOLE) {
830 error = xfs_free_file_space(ip, offset, len);
831 if (error)
832 goto out_unlock;
e1d8fb88
NJ
833 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
834 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
835
836 if (offset & blksize_mask || len & blksize_mask) {
837 error = -EINVAL;
838 goto out_unlock;
839 }
840
23fffa92
LC
841 /*
842 * There is no need to overlap collapse range with EOF,
843 * in which case it is effectively a truncate operation
844 */
845 if (offset + len >= i_size_read(inode)) {
846 error = -EINVAL;
847 goto out_unlock;
848 }
849
e1d8fb88
NJ
850 new_size = i_size_read(inode) - len;
851
852 error = xfs_collapse_file_space(ip, offset, len);
853 if (error)
854 goto out_unlock;
83aee9e4
CH
855 } else {
856 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
857 offset + len > i_size_read(inode)) {
858 new_size = offset + len;
859 error = -inode_newsize_ok(inode, new_size);
860 if (error)
861 goto out_unlock;
862 }
2fe17c10 863
376ba313
LC
864 if (mode & FALLOC_FL_ZERO_RANGE)
865 error = xfs_zero_file_space(ip, offset, len);
866 else
867 error = xfs_alloc_file_space(ip, offset, len,
868 XFS_BMAPI_PREALLOC);
2fe17c10
CH
869 if (error)
870 goto out_unlock;
871 }
872
83aee9e4
CH
873 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
874 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
875 if (error) {
876 xfs_trans_cancel(tp, 0);
877 goto out_unlock;
878 }
879
880 xfs_ilock(ip, XFS_ILOCK_EXCL);
881 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
882 ip->i_d.di_mode &= ~S_ISUID;
883 if (ip->i_d.di_mode & S_IXGRP)
884 ip->i_d.di_mode &= ~S_ISGID;
82878897 885
e1d8fb88 886 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
83aee9e4
CH
887 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
888
889 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
890 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
891
892 if (file->f_flags & O_DSYNC)
893 xfs_trans_set_sync(tp);
894 error = xfs_trans_commit(tp, 0);
2fe17c10
CH
895 if (error)
896 goto out_unlock;
897
898 /* Change file size if needed */
899 if (new_size) {
900 struct iattr iattr;
901
902 iattr.ia_valid = ATTR_SIZE;
903 iattr.ia_size = new_size;
83aee9e4 904 error = xfs_setattr_size(ip, &iattr);
2fe17c10
CH
905 }
906
907out_unlock:
908 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
83aee9e4 909 return -error;
2fe17c10
CH
910}
911
912
1da177e4 913STATIC int
3562fd45 914xfs_file_open(
1da177e4 915 struct inode *inode,
f999a5bf 916 struct file *file)
1da177e4 917{
f999a5bf 918 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 919 return -EFBIG;
f999a5bf
CH
920 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
921 return -EIO;
922 return 0;
923}
924
925STATIC int
926xfs_dir_open(
927 struct inode *inode,
928 struct file *file)
929{
930 struct xfs_inode *ip = XFS_I(inode);
931 int mode;
932 int error;
933
934 error = xfs_file_open(inode, file);
935 if (error)
936 return error;
937
938 /*
939 * If there are any blocks, read-ahead block 0 as we're almost
940 * certain to have the next operation be a read there.
941 */
309ecac8 942 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 943 if (ip->i_d.di_nextents > 0)
33363fee 944 xfs_dir3_data_readahead(NULL, ip, 0, -1);
f999a5bf
CH
945 xfs_iunlock(ip, mode);
946 return 0;
1da177e4
LT
947}
948
1da177e4 949STATIC int
3562fd45 950xfs_file_release(
1da177e4
LT
951 struct inode *inode,
952 struct file *filp)
953{
739bfb2a 954 return -xfs_release(XFS_I(inode));
1da177e4
LT
955}
956
1da177e4 957STATIC int
3562fd45 958xfs_file_readdir(
b8227554
AV
959 struct file *file,
960 struct dir_context *ctx)
1da177e4 961{
b8227554 962 struct inode *inode = file_inode(file);
739bfb2a 963 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
964 int error;
965 size_t bufsize;
966
967 /*
968 * The Linux API doesn't pass down the total size of the buffer
969 * we read into down to the filesystem. With the filldir concept
970 * it's not needed for correct information, but the XFS dir2 leaf
971 * code wants an estimate of the buffer size to calculate it's
972 * readahead window and size the buffers used for mapping to
973 * physical blocks.
974 *
975 * Try to give it an estimate that's good enough, maybe at some
976 * point we can change the ->readdir prototype to include the
a9cc799e 977 * buffer size. For now we use the current glibc buffer size.
051e7cd4 978 */
a9cc799e 979 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 980
b8227554 981 error = xfs_readdir(ip, ctx, bufsize);
051e7cd4
CH
982 if (error)
983 return -error;
984 return 0;
1da177e4
LT
985}
986
1da177e4 987STATIC int
3562fd45 988xfs_file_mmap(
1da177e4
LT
989 struct file *filp,
990 struct vm_area_struct *vma)
991{
3562fd45 992 vma->vm_ops = &xfs_file_vm_ops;
6fac0cb4 993
fbc1462b 994 file_accessed(filp);
1da177e4
LT
995 return 0;
996}
997
4f57dbc6
DC
998/*
999 * mmap()d file has taken write protection fault and is being made
1000 * writable. We can set the page state up correctly for a writable
1001 * page, which means we can do correct delalloc accounting (ENOSPC
1002 * checking!) and unwritten extent mapping.
1003 */
1004STATIC int
1005xfs_vm_page_mkwrite(
1006 struct vm_area_struct *vma,
c2ec175c 1007 struct vm_fault *vmf)
4f57dbc6 1008{
c2ec175c 1009 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
1010}
1011
d126d43f
JL
1012/*
1013 * This type is designed to indicate the type of offset we would like
1014 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
1015 */
1016enum {
1017 HOLE_OFF = 0,
1018 DATA_OFF,
1019};
1020
1021/*
1022 * Lookup the desired type of offset from the given page.
1023 *
1024 * On success, return true and the offset argument will point to the
1025 * start of the region that was found. Otherwise this function will
1026 * return false and keep the offset argument unchanged.
1027 */
1028STATIC bool
1029xfs_lookup_buffer_offset(
1030 struct page *page,
1031 loff_t *offset,
1032 unsigned int type)
1033{
1034 loff_t lastoff = page_offset(page);
1035 bool found = false;
1036 struct buffer_head *bh, *head;
1037
1038 bh = head = page_buffers(page);
1039 do {
1040 /*
1041 * Unwritten extents that have data in the page
1042 * cache covering them can be identified by the
1043 * BH_Unwritten state flag. Pages with multiple
1044 * buffers might have a mix of holes, data and
1045 * unwritten extents - any buffer with valid
1046 * data in it should have BH_Uptodate flag set
1047 * on it.
1048 */
1049 if (buffer_unwritten(bh) ||
1050 buffer_uptodate(bh)) {
1051 if (type == DATA_OFF)
1052 found = true;
1053 } else {
1054 if (type == HOLE_OFF)
1055 found = true;
1056 }
1057
1058 if (found) {
1059 *offset = lastoff;
1060 break;
1061 }
1062 lastoff += bh->b_size;
1063 } while ((bh = bh->b_this_page) != head);
1064
1065 return found;
1066}
1067
1068/*
1069 * This routine is called to find out and return a data or hole offset
1070 * from the page cache for unwritten extents according to the desired
1071 * type for xfs_seek_data() or xfs_seek_hole().
1072 *
1073 * The argument offset is used to tell where we start to search from the
1074 * page cache. Map is used to figure out the end points of the range to
1075 * lookup pages.
1076 *
1077 * Return true if the desired type of offset was found, and the argument
1078 * offset is filled with that address. Otherwise, return false and keep
1079 * offset unchanged.
1080 */
1081STATIC bool
1082xfs_find_get_desired_pgoff(
1083 struct inode *inode,
1084 struct xfs_bmbt_irec *map,
1085 unsigned int type,
1086 loff_t *offset)
1087{
1088 struct xfs_inode *ip = XFS_I(inode);
1089 struct xfs_mount *mp = ip->i_mount;
1090 struct pagevec pvec;
1091 pgoff_t index;
1092 pgoff_t end;
1093 loff_t endoff;
1094 loff_t startoff = *offset;
1095 loff_t lastoff = startoff;
1096 bool found = false;
1097
1098 pagevec_init(&pvec, 0);
1099
1100 index = startoff >> PAGE_CACHE_SHIFT;
1101 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1102 end = endoff >> PAGE_CACHE_SHIFT;
1103 do {
1104 int want;
1105 unsigned nr_pages;
1106 unsigned int i;
1107
1108 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1109 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1110 want);
1111 /*
1112 * No page mapped into given range. If we are searching holes
1113 * and if this is the first time we got into the loop, it means
1114 * that the given offset is landed in a hole, return it.
1115 *
1116 * If we have already stepped through some block buffers to find
1117 * holes but they all contains data. In this case, the last
1118 * offset is already updated and pointed to the end of the last
1119 * mapped page, if it does not reach the endpoint to search,
1120 * that means there should be a hole between them.
1121 */
1122 if (nr_pages == 0) {
1123 /* Data search found nothing */
1124 if (type == DATA_OFF)
1125 break;
1126
1127 ASSERT(type == HOLE_OFF);
1128 if (lastoff == startoff || lastoff < endoff) {
1129 found = true;
1130 *offset = lastoff;
1131 }
1132 break;
1133 }
1134
1135 /*
1136 * At lease we found one page. If this is the first time we
1137 * step into the loop, and if the first page index offset is
1138 * greater than the given search offset, a hole was found.
1139 */
1140 if (type == HOLE_OFF && lastoff == startoff &&
1141 lastoff < page_offset(pvec.pages[0])) {
1142 found = true;
1143 break;
1144 }
1145
1146 for (i = 0; i < nr_pages; i++) {
1147 struct page *page = pvec.pages[i];
1148 loff_t b_offset;
1149
1150 /*
1151 * At this point, the page may be truncated or
1152 * invalidated (changing page->mapping to NULL),
1153 * or even swizzled back from swapper_space to tmpfs
1154 * file mapping. However, page->index will not change
1155 * because we have a reference on the page.
1156 *
1157 * Searching done if the page index is out of range.
1158 * If the current offset is not reaches the end of
1159 * the specified search range, there should be a hole
1160 * between them.
1161 */
1162 if (page->index > end) {
1163 if (type == HOLE_OFF && lastoff < endoff) {
1164 *offset = lastoff;
1165 found = true;
1166 }
1167 goto out;
1168 }
1169
1170 lock_page(page);
1171 /*
1172 * Page truncated or invalidated(page->mapping == NULL).
1173 * We can freely skip it and proceed to check the next
1174 * page.
1175 */
1176 if (unlikely(page->mapping != inode->i_mapping)) {
1177 unlock_page(page);
1178 continue;
1179 }
1180
1181 if (!page_has_buffers(page)) {
1182 unlock_page(page);
1183 continue;
1184 }
1185
1186 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1187 if (found) {
1188 /*
1189 * The found offset may be less than the start
1190 * point to search if this is the first time to
1191 * come here.
1192 */
1193 *offset = max_t(loff_t, startoff, b_offset);
1194 unlock_page(page);
1195 goto out;
1196 }
1197
1198 /*
1199 * We either searching data but nothing was found, or
1200 * searching hole but found a data buffer. In either
1201 * case, probably the next page contains the desired
1202 * things, update the last offset to it so.
1203 */
1204 lastoff = page_offset(page) + PAGE_SIZE;
1205 unlock_page(page);
1206 }
1207
1208 /*
1209 * The number of returned pages less than our desired, search
1210 * done. In this case, nothing was found for searching data,
1211 * but we found a hole behind the last offset.
1212 */
1213 if (nr_pages < want) {
1214 if (type == HOLE_OFF) {
1215 *offset = lastoff;
1216 found = true;
1217 }
1218 break;
1219 }
1220
1221 index = pvec.pages[i - 1]->index + 1;
1222 pagevec_release(&pvec);
1223 } while (index <= end);
1224
1225out:
1226 pagevec_release(&pvec);
1227 return found;
1228}
1229
3fe3e6b1
JL
1230STATIC loff_t
1231xfs_seek_data(
1232 struct file *file,
834ab122 1233 loff_t start)
3fe3e6b1
JL
1234{
1235 struct inode *inode = file->f_mapping->host;
1236 struct xfs_inode *ip = XFS_I(inode);
1237 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1
JL
1238 loff_t uninitialized_var(offset);
1239 xfs_fsize_t isize;
1240 xfs_fileoff_t fsbno;
1241 xfs_filblks_t end;
1242 uint lock;
1243 int error;
1244
309ecac8 1245 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1246
1247 isize = i_size_read(inode);
1248 if (start >= isize) {
1249 error = ENXIO;
1250 goto out_unlock;
1251 }
1252
3fe3e6b1
JL
1253 /*
1254 * Try to read extents from the first block indicated
1255 * by fsbno to the end block of the file.
1256 */
52f1acc8 1257 fsbno = XFS_B_TO_FSBT(mp, start);
3fe3e6b1 1258 end = XFS_B_TO_FSB(mp, isize);
52f1acc8
JL
1259 for (;;) {
1260 struct xfs_bmbt_irec map[2];
1261 int nmap = 2;
1262 unsigned int i;
3fe3e6b1 1263
52f1acc8
JL
1264 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1265 XFS_BMAPI_ENTIRE);
1266 if (error)
1267 goto out_unlock;
3fe3e6b1 1268
52f1acc8
JL
1269 /* No extents at given offset, must be beyond EOF */
1270 if (nmap == 0) {
1271 error = ENXIO;
1272 goto out_unlock;
1273 }
1274
1275 for (i = 0; i < nmap; i++) {
1276 offset = max_t(loff_t, start,
1277 XFS_FSB_TO_B(mp, map[i].br_startoff));
1278
1279 /* Landed in a data extent */
1280 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1281 (map[i].br_state == XFS_EXT_NORM &&
1282 !isnullstartblock(map[i].br_startblock)))
1283 goto out;
1284
1285 /*
1286 * Landed in an unwritten extent, try to search data
1287 * from page cache.
1288 */
1289 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1290 if (xfs_find_get_desired_pgoff(inode, &map[i],
1291 DATA_OFF, &offset))
1292 goto out;
1293 }
1294 }
1295
1296 /*
1297 * map[0] is hole or its an unwritten extent but
1298 * without data in page cache. Probably means that
1299 * we are reading after EOF if nothing in map[1].
1300 */
3fe3e6b1
JL
1301 if (nmap == 1) {
1302 error = ENXIO;
1303 goto out_unlock;
1304 }
1305
52f1acc8
JL
1306 ASSERT(i > 1);
1307
1308 /*
1309 * Nothing was found, proceed to the next round of search
1310 * if reading offset not beyond or hit EOF.
1311 */
1312 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1313 start = XFS_FSB_TO_B(mp, fsbno);
1314 if (start >= isize) {
1315 error = ENXIO;
1316 goto out_unlock;
1317 }
3fe3e6b1
JL
1318 }
1319
52f1acc8 1320out:
46a1c2c7 1321 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1322
1323out_unlock:
01f4f327 1324 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1325
1326 if (error)
1327 return -error;
1328 return offset;
1329}
1330
1331STATIC loff_t
1332xfs_seek_hole(
1333 struct file *file,
834ab122 1334 loff_t start)
3fe3e6b1
JL
1335{
1336 struct inode *inode = file->f_mapping->host;
1337 struct xfs_inode *ip = XFS_I(inode);
1338 struct xfs_mount *mp = ip->i_mount;
1339 loff_t uninitialized_var(offset);
3fe3e6b1
JL
1340 xfs_fsize_t isize;
1341 xfs_fileoff_t fsbno;
b686d1f7 1342 xfs_filblks_t end;
3fe3e6b1
JL
1343 uint lock;
1344 int error;
1345
1346 if (XFS_FORCED_SHUTDOWN(mp))
1347 return -XFS_ERROR(EIO);
1348
309ecac8 1349 lock = xfs_ilock_data_map_shared(ip);
3fe3e6b1
JL
1350
1351 isize = i_size_read(inode);
1352 if (start >= isize) {
1353 error = ENXIO;
1354 goto out_unlock;
1355 }
1356
1357 fsbno = XFS_B_TO_FSBT(mp, start);
b686d1f7
JL
1358 end = XFS_B_TO_FSB(mp, isize);
1359
1360 for (;;) {
1361 struct xfs_bmbt_irec map[2];
1362 int nmap = 2;
1363 unsigned int i;
1364
1365 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1366 XFS_BMAPI_ENTIRE);
1367 if (error)
1368 goto out_unlock;
1369
1370 /* No extents at given offset, must be beyond EOF */
1371 if (nmap == 0) {
1372 error = ENXIO;
1373 goto out_unlock;
1374 }
1375
1376 for (i = 0; i < nmap; i++) {
1377 offset = max_t(loff_t, start,
1378 XFS_FSB_TO_B(mp, map[i].br_startoff));
1379
1380 /* Landed in a hole */
1381 if (map[i].br_startblock == HOLESTARTBLOCK)
1382 goto out;
1383
1384 /*
1385 * Landed in an unwritten extent, try to search hole
1386 * from page cache.
1387 */
1388 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1389 if (xfs_find_get_desired_pgoff(inode, &map[i],
1390 HOLE_OFF, &offset))
1391 goto out;
1392 }
1393 }
3fe3e6b1 1394
3fe3e6b1 1395 /*
b686d1f7
JL
1396 * map[0] contains data or its unwritten but contains
1397 * data in page cache, probably means that we are
1398 * reading after EOF. We should fix offset to point
1399 * to the end of the file(i.e., there is an implicit
1400 * hole at the end of any file).
3fe3e6b1 1401 */
b686d1f7
JL
1402 if (nmap == 1) {
1403 offset = isize;
1404 break;
1405 }
1406
1407 ASSERT(i > 1);
1408
1409 /*
1410 * Both mappings contains data, proceed to the next round of
1411 * search if the current reading offset not beyond or hit EOF.
1412 */
1413 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1414 start = XFS_FSB_TO_B(mp, fsbno);
1415 if (start >= isize) {
1416 offset = isize;
1417 break;
1418 }
3fe3e6b1
JL
1419 }
1420
b686d1f7
JL
1421out:
1422 /*
1423 * At this point, we must have found a hole. However, the returned
1424 * offset may be bigger than the file size as it may be aligned to
1425 * page boundary for unwritten extents, we need to deal with this
1426 * situation in particular.
1427 */
1428 offset = min_t(loff_t, offset, isize);
46a1c2c7 1429 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1430
1431out_unlock:
01f4f327 1432 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1433
1434 if (error)
1435 return -error;
1436 return offset;
1437}
1438
1439STATIC loff_t
1440xfs_file_llseek(
1441 struct file *file,
1442 loff_t offset,
1443 int origin)
1444{
1445 switch (origin) {
1446 case SEEK_END:
1447 case SEEK_CUR:
1448 case SEEK_SET:
1449 return generic_file_llseek(file, offset, origin);
1450 case SEEK_DATA:
834ab122 1451 return xfs_seek_data(file, offset);
3fe3e6b1 1452 case SEEK_HOLE:
834ab122 1453 return xfs_seek_hole(file, offset);
3fe3e6b1
JL
1454 default:
1455 return -EINVAL;
1456 }
1457}
1458
4b6f5d20 1459const struct file_operations xfs_file_operations = {
3fe3e6b1 1460 .llseek = xfs_file_llseek,
1da177e4 1461 .read = do_sync_read,
bb3f724e 1462 .write = do_sync_write,
3562fd45
NS
1463 .aio_read = xfs_file_aio_read,
1464 .aio_write = xfs_file_aio_write,
1b895840
NS
1465 .splice_read = xfs_file_splice_read,
1466 .splice_write = xfs_file_splice_write,
3562fd45 1467 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1468#ifdef CONFIG_COMPAT
3562fd45 1469 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1470#endif
3562fd45
NS
1471 .mmap = xfs_file_mmap,
1472 .open = xfs_file_open,
1473 .release = xfs_file_release,
1474 .fsync = xfs_file_fsync,
2fe17c10 1475 .fallocate = xfs_file_fallocate,
1da177e4
LT
1476};
1477
4b6f5d20 1478const struct file_operations xfs_dir_file_operations = {
f999a5bf 1479 .open = xfs_dir_open,
1da177e4 1480 .read = generic_read_dir,
b8227554 1481 .iterate = xfs_file_readdir,
59af1584 1482 .llseek = generic_file_llseek,
3562fd45 1483 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1484#ifdef CONFIG_COMPAT
3562fd45 1485 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1486#endif
1da2f2db 1487 .fsync = xfs_dir_fsync,
1da177e4
LT
1488};
1489
f0f37e2f 1490static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1491 .fault = filemap_fault,
f1820361 1492 .map_pages = filemap_map_pages,
4f57dbc6 1493 .page_mkwrite = xfs_vm_page_mkwrite,
0b173bc4 1494 .remap_pages = generic_file_remap_pages,
6fac0cb4 1495};