]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_file.c
xfs: reduce the number of log forces from tail pushing
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
a844f451 20#include "xfs_bit.h"
1da177e4 21#include "xfs_log.h"
a844f451 22#include "xfs_inum.h"
1da177e4 23#include "xfs_sb.h"
a844f451 24#include "xfs_ag.h"
1da177e4 25#include "xfs_trans.h"
1da177e4
LT
26#include "xfs_mount.h"
27#include "xfs_bmap_btree.h"
1da177e4 28#include "xfs_alloc.h"
1da177e4
LT
29#include "xfs_dinode.h"
30#include "xfs_inode.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
1da177e4 33#include "xfs_error.h"
739bfb2a 34#include "xfs_vnodeops.h"
f999a5bf 35#include "xfs_da_btree.h"
ddcd856d 36#include "xfs_ioctl.h"
dda35b8f 37#include "xfs_trace.h"
1da177e4
LT
38
39#include <linux/dcache.h>
2fe17c10 40#include <linux/falloc.h>
1da177e4 41
f0f37e2f 42static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 43
487f84f3
DC
44/*
45 * Locking primitives for read and write IO paths to ensure we consistently use
46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
47 */
48static inline void
49xfs_rw_ilock(
50 struct xfs_inode *ip,
51 int type)
52{
53 if (type & XFS_IOLOCK_EXCL)
54 mutex_lock(&VFS_I(ip)->i_mutex);
55 xfs_ilock(ip, type);
56}
57
58static inline void
59xfs_rw_iunlock(
60 struct xfs_inode *ip,
61 int type)
62{
63 xfs_iunlock(ip, type);
64 if (type & XFS_IOLOCK_EXCL)
65 mutex_unlock(&VFS_I(ip)->i_mutex);
66}
67
68static inline void
69xfs_rw_ilock_demote(
70 struct xfs_inode *ip,
71 int type)
72{
73 xfs_ilock_demote(ip, type);
74 if (type & XFS_IOLOCK_EXCL)
75 mutex_unlock(&VFS_I(ip)->i_mutex);
76}
77
dda35b8f
CH
78/*
79 * xfs_iozero
80 *
81 * xfs_iozero clears the specified range of buffer supplied,
82 * and marks all the affected blocks as valid and modified. If
83 * an affected block is not allocated, it will be allocated. If
84 * an affected block is not completely overwritten, and is not
85 * valid before the operation, it will be read from disk before
86 * being partially zeroed.
87 */
88STATIC int
89xfs_iozero(
90 struct xfs_inode *ip, /* inode */
91 loff_t pos, /* offset in file */
92 size_t count) /* size of data to zero */
93{
94 struct page *page;
95 struct address_space *mapping;
96 int status;
97
98 mapping = VFS_I(ip)->i_mapping;
99 do {
100 unsigned offset, bytes;
101 void *fsdata;
102
103 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
104 bytes = PAGE_CACHE_SIZE - offset;
105 if (bytes > count)
106 bytes = count;
107
108 status = pagecache_write_begin(NULL, mapping, pos, bytes,
109 AOP_FLAG_UNINTERRUPTIBLE,
110 &page, &fsdata);
111 if (status)
112 break;
113
114 zero_user(page, offset, bytes);
115
116 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
117 page, fsdata);
118 WARN_ON(status <= 0); /* can't return less than zero! */
119 pos += bytes;
120 count -= bytes;
121 status = 0;
122 } while (count);
123
124 return (-status);
125}
126
fd3200be
CH
127STATIC int
128xfs_file_fsync(
129 struct file *file,
02c24a82
JB
130 loff_t start,
131 loff_t end,
fd3200be
CH
132 int datasync)
133{
7ea80859
CH
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
a27a263b 136 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
137 struct xfs_trans *tp;
138 int error = 0;
139 int log_flushed = 0;
b1037058 140 xfs_lsn_t lsn = 0;
fd3200be 141
cca28fb8 142 trace_xfs_file_fsync(ip);
fd3200be 143
02c24a82
JB
144 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
145 if (error)
146 return error;
147
a27a263b 148 if (XFS_FORCED_SHUTDOWN(mp))
fd3200be
CH
149 return -XFS_ERROR(EIO);
150
151 xfs_iflags_clear(ip, XFS_ITRUNCATED);
152
a27a263b
CH
153 if (mp->m_flags & XFS_MOUNT_BARRIER) {
154 /*
155 * If we have an RT and/or log subvolume we need to make sure
156 * to flush the write cache the device used for file data
157 * first. This is to ensure newly written file data make
158 * it to disk before logging the new inode size in case of
159 * an extending write.
160 */
161 if (XFS_IS_REALTIME_INODE(ip))
162 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
163 else if (mp->m_logdev_targp != mp->m_ddev_targp)
164 xfs_blkdev_issue_flush(mp->m_ddev_targp);
165 }
166
fd3200be
CH
167 /*
168 * We always need to make sure that the required inode state is safe on
169 * disk. The inode might be clean but we still might need to force the
170 * log because of committed transactions that haven't hit the disk yet.
171 * Likewise, there could be unflushed non-transactional changes to the
172 * inode core that have to go to disk and this requires us to issue
173 * a synchronous transaction to capture these changes correctly.
174 *
175 * This code relies on the assumption that if the i_update_core field
176 * of the inode is clear and the inode is unpinned then it is clean
177 * and no action is required.
178 */
179 xfs_ilock(ip, XFS_ILOCK_SHARED);
180
66d834ea
CH
181 /*
182 * First check if the VFS inode is marked dirty. All the dirtying
183 * of non-transactional updates no goes through mark_inode_dirty*,
184 * which allows us to distinguish beteeen pure timestamp updates
185 * and i_size updates which need to be caught for fdatasync.
186 * After that also theck for the dirty state in the XFS inode, which
187 * might gets cleared when the inode gets written out via the AIL
188 * or xfs_iflush_cluster.
189 */
7ea80859
CH
190 if (((inode->i_state & I_DIRTY_DATASYNC) ||
191 ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
66d834ea 192 ip->i_update_core) {
fd3200be
CH
193 /*
194 * Kick off a transaction to log the inode core to get the
195 * updates. The sync transaction will also force the log.
196 */
197 xfs_iunlock(ip, XFS_ILOCK_SHARED);
a27a263b 198 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
fd3200be 199 error = xfs_trans_reserve(tp, 0,
a27a263b 200 XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
fd3200be
CH
201 if (error) {
202 xfs_trans_cancel(tp, 0);
203 return -error;
204 }
205 xfs_ilock(ip, XFS_ILOCK_EXCL);
206
207 /*
208 * Note - it's possible that we might have pushed ourselves out
209 * of the way during trans_reserve which would flush the inode.
210 * But there's no guarantee that the inode buffer has actually
211 * gone out yet (it's delwri). Plus the buffer could be pinned
212 * anyway if it's part of an inode in another recent
213 * transaction. So we play it safe and fire off the
214 * transaction anyway.
215 */
ddc3415a 216 xfs_trans_ijoin(tp, ip, 0);
fd3200be 217 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
b1037058 218 error = xfs_trans_commit(tp, 0);
fd3200be 219
b1037058 220 lsn = ip->i_itemp->ili_last_lsn;
fd3200be
CH
221 xfs_iunlock(ip, XFS_ILOCK_EXCL);
222 } else {
223 /*
224 * Timestamps/size haven't changed since last inode flush or
225 * inode transaction commit. That means either nothing got
226 * written or a transaction committed which caught the updates.
227 * If the latter happened and the transaction hasn't hit the
228 * disk yet, the inode will be still be pinned. If it is,
229 * force the log.
230 */
b1037058
CH
231 if (xfs_ipincount(ip))
232 lsn = ip->i_itemp->ili_last_lsn;
024910cb 233 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be
CH
234 }
235
b1037058
CH
236 if (!error && lsn)
237 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
238
a27a263b
CH
239 /*
240 * If we only have a single device, and the log force about was
241 * a no-op we might have to flush the data device cache here.
242 * This can only happen for fdatasync/O_DSYNC if we were overwriting
243 * an already allocated file and thus do not have any metadata to
244 * commit.
245 */
246 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
247 mp->m_logdev_targp == mp->m_ddev_targp &&
248 !XFS_IS_REALTIME_INODE(ip) &&
249 !log_flushed)
250 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be
CH
251
252 return -error;
253}
254
00258e36
CH
255STATIC ssize_t
256xfs_file_aio_read(
dda35b8f
CH
257 struct kiocb *iocb,
258 const struct iovec *iovp,
00258e36
CH
259 unsigned long nr_segs,
260 loff_t pos)
dda35b8f
CH
261{
262 struct file *file = iocb->ki_filp;
263 struct inode *inode = file->f_mapping->host;
00258e36
CH
264 struct xfs_inode *ip = XFS_I(inode);
265 struct xfs_mount *mp = ip->i_mount;
dda35b8f
CH
266 size_t size = 0;
267 ssize_t ret = 0;
00258e36 268 int ioflags = 0;
dda35b8f
CH
269 xfs_fsize_t n;
270 unsigned long seg;
271
dda35b8f
CH
272 XFS_STATS_INC(xs_read_calls);
273
00258e36
CH
274 BUG_ON(iocb->ki_pos != pos);
275
276 if (unlikely(file->f_flags & O_DIRECT))
277 ioflags |= IO_ISDIRECT;
278 if (file->f_mode & FMODE_NOCMTIME)
279 ioflags |= IO_INVIS;
280
dda35b8f 281 /* START copy & waste from filemap.c */
00258e36 282 for (seg = 0; seg < nr_segs; seg++) {
dda35b8f
CH
283 const struct iovec *iv = &iovp[seg];
284
285 /*
286 * If any segment has a negative length, or the cumulative
287 * length ever wraps negative then return -EINVAL.
288 */
289 size += iv->iov_len;
290 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
291 return XFS_ERROR(-EINVAL);
292 }
293 /* END copy & waste from filemap.c */
294
295 if (unlikely(ioflags & IO_ISDIRECT)) {
296 xfs_buftarg_t *target =
297 XFS_IS_REALTIME_INODE(ip) ?
298 mp->m_rtdev_targp : mp->m_ddev_targp;
00258e36 299 if ((iocb->ki_pos & target->bt_smask) ||
dda35b8f 300 (size & target->bt_smask)) {
00258e36
CH
301 if (iocb->ki_pos == ip->i_size)
302 return 0;
dda35b8f
CH
303 return -XFS_ERROR(EINVAL);
304 }
305 }
306
00258e36
CH
307 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
308 if (n <= 0 || size == 0)
dda35b8f
CH
309 return 0;
310
311 if (n < size)
312 size = n;
313
314 if (XFS_FORCED_SHUTDOWN(mp))
315 return -EIO;
316
0c38a251
DC
317 /*
318 * Locking is a bit tricky here. If we take an exclusive lock
319 * for direct IO, we effectively serialise all new concurrent
320 * read IO to this file and block it behind IO that is currently in
321 * progress because IO in progress holds the IO lock shared. We only
322 * need to hold the lock exclusive to blow away the page cache, so
323 * only take lock exclusively if the page cache needs invalidation.
324 * This allows the normal direct IO case of no page cache pages to
325 * proceeed concurrently without serialisation.
326 */
327 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
328 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
329 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
330 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
331
00258e36
CH
332 if (inode->i_mapping->nrpages) {
333 ret = -xfs_flushinval_pages(ip,
334 (iocb->ki_pos & PAGE_CACHE_MASK),
335 -1, FI_REMAPF_LOCKED);
487f84f3
DC
336 if (ret) {
337 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
338 return ret;
339 }
00258e36 340 }
487f84f3 341 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 342 }
dda35b8f 343
00258e36 344 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
dda35b8f 345
00258e36 346 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
dda35b8f
CH
347 if (ret > 0)
348 XFS_STATS_ADD(xs_read_bytes, ret);
349
487f84f3 350 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
351 return ret;
352}
353
00258e36
CH
354STATIC ssize_t
355xfs_file_splice_read(
dda35b8f
CH
356 struct file *infilp,
357 loff_t *ppos,
358 struct pipe_inode_info *pipe,
359 size_t count,
00258e36 360 unsigned int flags)
dda35b8f 361{
00258e36 362 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 363 int ioflags = 0;
dda35b8f
CH
364 ssize_t ret;
365
366 XFS_STATS_INC(xs_read_calls);
00258e36
CH
367
368 if (infilp->f_mode & FMODE_NOCMTIME)
369 ioflags |= IO_INVIS;
370
dda35b8f
CH
371 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
372 return -EIO;
373
487f84f3 374 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 375
dda35b8f
CH
376 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
377
378 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
379 if (ret > 0)
380 XFS_STATS_ADD(xs_read_bytes, ret);
381
487f84f3 382 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
383 return ret;
384}
385
edafb6da
DC
386STATIC void
387xfs_aio_write_isize_update(
388 struct inode *inode,
389 loff_t *ppos,
390 ssize_t bytes_written)
391{
392 struct xfs_inode *ip = XFS_I(inode);
393 xfs_fsize_t isize = i_size_read(inode);
394
395 if (bytes_written > 0)
396 XFS_STATS_ADD(xs_write_bytes, bytes_written);
397
398 if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
399 *ppos > isize))
400 *ppos = isize;
401
402 if (*ppos > ip->i_size) {
487f84f3 403 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
edafb6da
DC
404 if (*ppos > ip->i_size)
405 ip->i_size = *ppos;
487f84f3 406 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
edafb6da
DC
407 }
408}
409
4c5cfd1b
DC
410/*
411 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
25985edc 412 * part of the I/O may have been written to disk before the error occurred. In
4c5cfd1b
DC
413 * this case the on-disk file size may have been adjusted beyond the in-memory
414 * file size and now needs to be truncated back.
415 */
416STATIC void
417xfs_aio_write_newsize_update(
7271d243
DC
418 struct xfs_inode *ip,
419 xfs_fsize_t new_size)
4c5cfd1b 420{
7271d243 421 if (new_size == ip->i_new_size) {
487f84f3 422 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
7271d243
DC
423 if (new_size == ip->i_new_size)
424 ip->i_new_size = 0;
4c5cfd1b
DC
425 if (ip->i_d.di_size > ip->i_size)
426 ip->i_d.di_size = ip->i_size;
487f84f3 427 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
4c5cfd1b
DC
428 }
429}
430
487f84f3
DC
431/*
432 * xfs_file_splice_write() does not use xfs_rw_ilock() because
433 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
434 * couuld cause lock inversions between the aio_write path and the splice path
435 * if someone is doing concurrent splice(2) based writes and write(2) based
436 * writes to the same inode. The only real way to fix this is to re-implement
437 * the generic code here with correct locking orders.
438 */
00258e36
CH
439STATIC ssize_t
440xfs_file_splice_write(
dda35b8f
CH
441 struct pipe_inode_info *pipe,
442 struct file *outfilp,
443 loff_t *ppos,
444 size_t count,
00258e36 445 unsigned int flags)
dda35b8f 446{
dda35b8f 447 struct inode *inode = outfilp->f_mapping->host;
00258e36 448 struct xfs_inode *ip = XFS_I(inode);
edafb6da 449 xfs_fsize_t new_size;
00258e36
CH
450 int ioflags = 0;
451 ssize_t ret;
dda35b8f
CH
452
453 XFS_STATS_INC(xs_write_calls);
00258e36
CH
454
455 if (outfilp->f_mode & FMODE_NOCMTIME)
456 ioflags |= IO_INVIS;
457
dda35b8f
CH
458 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
459 return -EIO;
460
461 xfs_ilock(ip, XFS_IOLOCK_EXCL);
462
dda35b8f
CH
463 new_size = *ppos + count;
464
465 xfs_ilock(ip, XFS_ILOCK_EXCL);
466 if (new_size > ip->i_size)
467 ip->i_new_size = new_size;
468 xfs_iunlock(ip, XFS_ILOCK_EXCL);
469
470 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
471
472 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
dda35b8f 473
edafb6da 474 xfs_aio_write_isize_update(inode, ppos, ret);
7271d243 475 xfs_aio_write_newsize_update(ip, new_size);
dda35b8f
CH
476 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
477 return ret;
478}
479
480/*
481 * This routine is called to handle zeroing any space in the last
482 * block of the file that is beyond the EOF. We do this since the
483 * size is being increased without writing anything to that block
484 * and we don't want anyone to read the garbage on the disk.
485 */
486STATIC int /* error (positive) */
487xfs_zero_last_block(
488 xfs_inode_t *ip,
489 xfs_fsize_t offset,
490 xfs_fsize_t isize)
491{
492 xfs_fileoff_t last_fsb;
493 xfs_mount_t *mp = ip->i_mount;
494 int nimaps;
495 int zero_offset;
496 int zero_len;
497 int error = 0;
498 xfs_bmbt_irec_t imap;
499
500 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
501
502 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
503 if (zero_offset == 0) {
504 /*
505 * There are no extra bytes in the last block on disk to
506 * zero, so return.
507 */
508 return 0;
509 }
510
511 last_fsb = XFS_B_TO_FSBT(mp, isize);
512 nimaps = 1;
5c8ed202
DC
513 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
514 if (error)
dda35b8f 515 return error;
dda35b8f
CH
516 ASSERT(nimaps > 0);
517 /*
518 * If the block underlying isize is just a hole, then there
519 * is nothing to zero.
520 */
521 if (imap.br_startblock == HOLESTARTBLOCK) {
522 return 0;
523 }
524 /*
525 * Zero the part of the last block beyond the EOF, and write it
526 * out sync. We need to drop the ilock while we do this so we
527 * don't deadlock when the buffer cache calls back to us.
528 */
529 xfs_iunlock(ip, XFS_ILOCK_EXCL);
530
531 zero_len = mp->m_sb.sb_blocksize - zero_offset;
532 if (isize + zero_len > offset)
533 zero_len = offset - isize;
534 error = xfs_iozero(ip, isize, zero_len);
535
536 xfs_ilock(ip, XFS_ILOCK_EXCL);
537 ASSERT(error >= 0);
538 return error;
539}
540
541/*
542 * Zero any on disk space between the current EOF and the new,
543 * larger EOF. This handles the normal case of zeroing the remainder
544 * of the last block in the file and the unusual case of zeroing blocks
545 * out beyond the size of the file. This second case only happens
546 * with fixed size extents and when the system crashes before the inode
547 * size was updated but after blocks were allocated. If fill is set,
548 * then any holes in the range are filled and zeroed. If not, the holes
549 * are left alone as holes.
550 */
551
552int /* error (positive) */
553xfs_zero_eof(
554 xfs_inode_t *ip,
555 xfs_off_t offset, /* starting I/O offset */
556 xfs_fsize_t isize) /* current inode size */
557{
558 xfs_mount_t *mp = ip->i_mount;
559 xfs_fileoff_t start_zero_fsb;
560 xfs_fileoff_t end_zero_fsb;
561 xfs_fileoff_t zero_count_fsb;
562 xfs_fileoff_t last_fsb;
563 xfs_fileoff_t zero_off;
564 xfs_fsize_t zero_len;
565 int nimaps;
566 int error = 0;
567 xfs_bmbt_irec_t imap;
568
569 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
570 ASSERT(offset > isize);
571
572 /*
573 * First handle zeroing the block on which isize resides.
574 * We only zero a part of that block so it is handled specially.
575 */
576 error = xfs_zero_last_block(ip, offset, isize);
577 if (error) {
578 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
579 return error;
580 }
581
582 /*
583 * Calculate the range between the new size and the old
584 * where blocks needing to be zeroed may exist. To get the
585 * block where the last byte in the file currently resides,
586 * we need to subtract one from the size and truncate back
587 * to a block boundary. We subtract 1 in case the size is
588 * exactly on a block boundary.
589 */
590 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
591 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
592 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
593 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
594 if (last_fsb == end_zero_fsb) {
595 /*
596 * The size was only incremented on its last block.
597 * We took care of that above, so just return.
598 */
599 return 0;
600 }
601
602 ASSERT(start_zero_fsb <= end_zero_fsb);
603 while (start_zero_fsb <= end_zero_fsb) {
604 nimaps = 1;
605 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
5c8ed202
DC
606 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
607 &imap, &nimaps, 0);
dda35b8f
CH
608 if (error) {
609 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
610 return error;
611 }
612 ASSERT(nimaps > 0);
613
614 if (imap.br_state == XFS_EXT_UNWRITTEN ||
615 imap.br_startblock == HOLESTARTBLOCK) {
616 /*
617 * This loop handles initializing pages that were
618 * partially initialized by the code below this
619 * loop. It basically zeroes the part of the page
620 * that sits on a hole and sets the page as P_HOLE
621 * and calls remapf if it is a mapped file.
622 */
623 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
624 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
625 continue;
626 }
627
628 /*
629 * There are blocks we need to zero.
630 * Drop the inode lock while we're doing the I/O.
631 * We'll still have the iolock to protect us.
632 */
633 xfs_iunlock(ip, XFS_ILOCK_EXCL);
634
635 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
636 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
637
638 if ((zero_off + zero_len) > offset)
639 zero_len = offset - zero_off;
640
641 error = xfs_iozero(ip, zero_off, zero_len);
642 if (error) {
643 goto out_lock;
644 }
645
646 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
647 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
648
649 xfs_ilock(ip, XFS_ILOCK_EXCL);
650 }
651
652 return 0;
653
654out_lock:
655 xfs_ilock(ip, XFS_ILOCK_EXCL);
656 ASSERT(error >= 0);
657 return error;
658}
659
4d8d1581
DC
660/*
661 * Common pre-write limit and setup checks.
662 *
663 * Returns with iolock held according to @iolock.
664 */
665STATIC ssize_t
666xfs_file_aio_write_checks(
667 struct file *file,
668 loff_t *pos,
669 size_t *count,
7271d243 670 xfs_fsize_t *new_sizep,
4d8d1581
DC
671 int *iolock)
672{
673 struct inode *inode = file->f_mapping->host;
674 struct xfs_inode *ip = XFS_I(inode);
675 xfs_fsize_t new_size;
676 int error = 0;
677
c58cb165 678 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
7271d243
DC
679 *new_sizep = 0;
680restart:
4d8d1581
DC
681 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
682 if (error) {
683 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
684 *iolock = 0;
685 return error;
686 }
687
4d8d1581
DC
688 if (likely(!(file->f_mode & FMODE_NOCMTIME)))
689 file_update_time(file);
690
691 /*
692 * If the offset is beyond the size of the file, we need to zero any
693 * blocks that fall between the existing EOF and the start of this
7271d243
DC
694 * write. There is no need to issue zeroing if another in-flght IO ends
695 * at or before this one If zeronig is needed and we are currently
696 * holding the iolock shared, we need to update it to exclusive which
697 * involves dropping all locks and relocking to maintain correct locking
698 * order. If we do this, restart the function to ensure all checks and
699 * values are still valid.
4d8d1581 700 */
7271d243
DC
701 if ((ip->i_new_size && *pos > ip->i_new_size) ||
702 (!ip->i_new_size && *pos > ip->i_size)) {
703 if (*iolock == XFS_IOLOCK_SHARED) {
704 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
705 *iolock = XFS_IOLOCK_EXCL;
706 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
707 goto restart;
708 }
4d8d1581 709 error = -xfs_zero_eof(ip, *pos, ip->i_size);
7271d243
DC
710 }
711
712 /*
713 * If this IO extends beyond EOF, we may need to update ip->i_new_size.
714 * We have already zeroed space beyond EOF (if necessary). Only update
715 * ip->i_new_size if this IO ends beyond any other in-flight writes.
716 */
717 new_size = *pos + *count;
718 if (new_size > ip->i_size) {
719 if (new_size > ip->i_new_size)
720 ip->i_new_size = new_size;
721 *new_sizep = new_size;
722 }
4d8d1581
DC
723
724 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
725 if (error)
726 return error;
727
728 /*
729 * If we're writing the file then make sure to clear the setuid and
730 * setgid bits if the process is not being run by root. This keeps
731 * people from modifying setuid and setgid binaries.
732 */
733 return file_remove_suid(file);
734
735}
736
f0d26e86
DC
737/*
738 * xfs_file_dio_aio_write - handle direct IO writes
739 *
740 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 741 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
742 * follow locking changes and looping.
743 *
eda77982
DC
744 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
745 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
746 * pages are flushed out.
747 *
748 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
749 * allowing them to be done in parallel with reads and other direct IO writes.
750 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
751 * needs to do sub-block zeroing and that requires serialisation against other
752 * direct IOs to the same block. In this case we need to serialise the
753 * submission of the unaligned IOs so that we don't get racing block zeroing in
754 * the dio layer. To avoid the problem with aio, we also need to wait for
755 * outstanding IOs to complete so that unwritten extent conversion is completed
756 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 757 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 758 *
f0d26e86
DC
759 * Returns with locks held indicated by @iolock and errors indicated by
760 * negative return values.
761 */
762STATIC ssize_t
763xfs_file_dio_aio_write(
764 struct kiocb *iocb,
765 const struct iovec *iovp,
766 unsigned long nr_segs,
767 loff_t pos,
768 size_t ocount,
7271d243 769 xfs_fsize_t *new_size,
f0d26e86
DC
770 int *iolock)
771{
772 struct file *file = iocb->ki_filp;
773 struct address_space *mapping = file->f_mapping;
774 struct inode *inode = mapping->host;
775 struct xfs_inode *ip = XFS_I(inode);
776 struct xfs_mount *mp = ip->i_mount;
777 ssize_t ret = 0;
f0d26e86 778 size_t count = ocount;
eda77982 779 int unaligned_io = 0;
f0d26e86
DC
780 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
781 mp->m_rtdev_targp : mp->m_ddev_targp;
782
783 *iolock = 0;
784 if ((pos & target->bt_smask) || (count & target->bt_smask))
785 return -XFS_ERROR(EINVAL);
786
eda77982
DC
787 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
788 unaligned_io = 1;
789
7271d243
DC
790 /*
791 * We don't need to take an exclusive lock unless there page cache needs
792 * to be invalidated or unaligned IO is being executed. We don't need to
793 * consider the EOF extension case here because
794 * xfs_file_aio_write_checks() will relock the inode as necessary for
795 * EOF zeroing cases and fill out the new inode size as appropriate.
796 */
797 if (unaligned_io || mapping->nrpages)
f0d26e86
DC
798 *iolock = XFS_IOLOCK_EXCL;
799 else
800 *iolock = XFS_IOLOCK_SHARED;
c58cb165
CH
801 xfs_rw_ilock(ip, *iolock);
802
803 /*
804 * Recheck if there are cached pages that need invalidate after we got
805 * the iolock to protect against other threads adding new pages while
806 * we were waiting for the iolock.
807 */
808 if (mapping->nrpages && *iolock == XFS_IOLOCK_SHARED) {
809 xfs_rw_iunlock(ip, *iolock);
810 *iolock = XFS_IOLOCK_EXCL;
811 xfs_rw_ilock(ip, *iolock);
812 }
f0d26e86 813
7271d243 814 ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock);
4d8d1581 815 if (ret)
f0d26e86
DC
816 return ret;
817
818 if (mapping->nrpages) {
f0d26e86
DC
819 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
820 FI_REMAPF_LOCKED);
821 if (ret)
822 return ret;
823 }
824
eda77982
DC
825 /*
826 * If we are doing unaligned IO, wait for all other IO to drain,
827 * otherwise demote the lock if we had to flush cached pages
828 */
829 if (unaligned_io)
4a06fd26 830 inode_dio_wait(inode);
eda77982 831 else if (*iolock == XFS_IOLOCK_EXCL) {
f0d26e86
DC
832 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
833 *iolock = XFS_IOLOCK_SHARED;
834 }
835
836 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
837 ret = generic_file_direct_write(iocb, iovp,
838 &nr_segs, pos, &iocb->ki_pos, count, ocount);
839
840 /* No fallback to buffered IO on errors for XFS. */
841 ASSERT(ret < 0 || ret == count);
842 return ret;
843}
844
00258e36 845STATIC ssize_t
637bbc75 846xfs_file_buffered_aio_write(
dda35b8f
CH
847 struct kiocb *iocb,
848 const struct iovec *iovp,
00258e36 849 unsigned long nr_segs,
637bbc75
DC
850 loff_t pos,
851 size_t ocount,
7271d243 852 xfs_fsize_t *new_size,
637bbc75 853 int *iolock)
dda35b8f
CH
854{
855 struct file *file = iocb->ki_filp;
856 struct address_space *mapping = file->f_mapping;
857 struct inode *inode = mapping->host;
00258e36 858 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
859 ssize_t ret;
860 int enospc = 0;
637bbc75 861 size_t count = ocount;
dda35b8f 862
637bbc75 863 *iolock = XFS_IOLOCK_EXCL;
c58cb165 864 xfs_rw_ilock(ip, *iolock);
dda35b8f 865
7271d243 866 ret = xfs_file_aio_write_checks(file, &pos, &count, new_size, iolock);
4d8d1581 867 if (ret)
637bbc75 868 return ret;
dda35b8f
CH
869
870 /* We can write back this queue in page reclaim */
871 current->backing_dev_info = mapping->backing_dev_info;
872
dda35b8f 873write_retry:
637bbc75
DC
874 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
875 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
876 pos, &iocb->ki_pos, count, ret);
877 /*
878 * if we just got an ENOSPC, flush the inode now we aren't holding any
879 * page locks and retry *once*
880 */
881 if (ret == -ENOSPC && !enospc) {
882 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
883 if (ret)
884 return ret;
885 enospc = 1;
886 goto write_retry;
dda35b8f 887 }
dda35b8f 888 current->backing_dev_info = NULL;
637bbc75
DC
889 return ret;
890}
891
892STATIC ssize_t
893xfs_file_aio_write(
894 struct kiocb *iocb,
895 const struct iovec *iovp,
896 unsigned long nr_segs,
897 loff_t pos)
898{
899 struct file *file = iocb->ki_filp;
900 struct address_space *mapping = file->f_mapping;
901 struct inode *inode = mapping->host;
902 struct xfs_inode *ip = XFS_I(inode);
903 ssize_t ret;
904 int iolock;
905 size_t ocount = 0;
7271d243 906 xfs_fsize_t new_size = 0;
637bbc75
DC
907
908 XFS_STATS_INC(xs_write_calls);
909
910 BUG_ON(iocb->ki_pos != pos);
911
912 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
913 if (ret)
914 return ret;
915
916 if (ocount == 0)
917 return 0;
918
919 xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
920
921 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
922 return -EIO;
923
924 if (unlikely(file->f_flags & O_DIRECT))
925 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
7271d243 926 ocount, &new_size, &iolock);
637bbc75
DC
927 else
928 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
7271d243 929 ocount, &new_size, &iolock);
dda35b8f 930
edafb6da 931 xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
dda35b8f 932
dda35b8f 933 if (ret <= 0)
637bbc75 934 goto out_unlock;
dda35b8f 935
dda35b8f
CH
936 /* Handle various SYNC-type writes */
937 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
938 loff_t end = pos + ret - 1;
340a0a01 939 int error;
dda35b8f 940
487f84f3 941 xfs_rw_iunlock(ip, iolock);
340a0a01 942 error = xfs_file_fsync(file, pos, end,
02c24a82 943 (file->f_flags & __O_SYNC) ? 0 : 1);
487f84f3 944 xfs_rw_ilock(ip, iolock);
340a0a01
MT
945 if (error)
946 ret = error;
dda35b8f
CH
947 }
948
637bbc75 949out_unlock:
7271d243 950 xfs_aio_write_newsize_update(ip, new_size);
487f84f3 951 xfs_rw_iunlock(ip, iolock);
a363f0c2 952 return ret;
dda35b8f
CH
953}
954
2fe17c10
CH
955STATIC long
956xfs_file_fallocate(
957 struct file *file,
958 int mode,
959 loff_t offset,
960 loff_t len)
961{
962 struct inode *inode = file->f_path.dentry->d_inode;
963 long error;
964 loff_t new_size = 0;
965 xfs_flock64_t bf;
966 xfs_inode_t *ip = XFS_I(inode);
967 int cmd = XFS_IOC_RESVSP;
82878897 968 int attr_flags = XFS_ATTR_NOLOCK;
2fe17c10
CH
969
970 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
971 return -EOPNOTSUPP;
972
973 bf.l_whence = 0;
974 bf.l_start = offset;
975 bf.l_len = len;
976
977 xfs_ilock(ip, XFS_IOLOCK_EXCL);
978
979 if (mode & FALLOC_FL_PUNCH_HOLE)
980 cmd = XFS_IOC_UNRESVSP;
981
982 /* check the new inode size is valid before allocating */
983 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
984 offset + len > i_size_read(inode)) {
985 new_size = offset + len;
986 error = inode_newsize_ok(inode, new_size);
987 if (error)
988 goto out_unlock;
989 }
990
82878897
DC
991 if (file->f_flags & O_DSYNC)
992 attr_flags |= XFS_ATTR_SYNC;
993
994 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
2fe17c10
CH
995 if (error)
996 goto out_unlock;
997
998 /* Change file size if needed */
999 if (new_size) {
1000 struct iattr iattr;
1001
1002 iattr.ia_valid = ATTR_SIZE;
1003 iattr.ia_size = new_size;
c4ed4243 1004 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
2fe17c10
CH
1005 }
1006
1007out_unlock:
1008 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1009 return error;
1010}
1011
1012
1da177e4 1013STATIC int
3562fd45 1014xfs_file_open(
1da177e4 1015 struct inode *inode,
f999a5bf 1016 struct file *file)
1da177e4 1017{
f999a5bf 1018 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 1019 return -EFBIG;
f999a5bf
CH
1020 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1021 return -EIO;
1022 return 0;
1023}
1024
1025STATIC int
1026xfs_dir_open(
1027 struct inode *inode,
1028 struct file *file)
1029{
1030 struct xfs_inode *ip = XFS_I(inode);
1031 int mode;
1032 int error;
1033
1034 error = xfs_file_open(inode, file);
1035 if (error)
1036 return error;
1037
1038 /*
1039 * If there are any blocks, read-ahead block 0 as we're almost
1040 * certain to have the next operation be a read there.
1041 */
1042 mode = xfs_ilock_map_shared(ip);
1043 if (ip->i_d.di_nextents > 0)
1044 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
1045 xfs_iunlock(ip, mode);
1046 return 0;
1da177e4
LT
1047}
1048
1da177e4 1049STATIC int
3562fd45 1050xfs_file_release(
1da177e4
LT
1051 struct inode *inode,
1052 struct file *filp)
1053{
739bfb2a 1054 return -xfs_release(XFS_I(inode));
1da177e4
LT
1055}
1056
1da177e4 1057STATIC int
3562fd45 1058xfs_file_readdir(
1da177e4
LT
1059 struct file *filp,
1060 void *dirent,
1061 filldir_t filldir)
1062{
051e7cd4 1063 struct inode *inode = filp->f_path.dentry->d_inode;
739bfb2a 1064 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1065 int error;
1066 size_t bufsize;
1067
1068 /*
1069 * The Linux API doesn't pass down the total size of the buffer
1070 * we read into down to the filesystem. With the filldir concept
1071 * it's not needed for correct information, but the XFS dir2 leaf
1072 * code wants an estimate of the buffer size to calculate it's
1073 * readahead window and size the buffers used for mapping to
1074 * physical blocks.
1075 *
1076 * Try to give it an estimate that's good enough, maybe at some
1077 * point we can change the ->readdir prototype to include the
a9cc799e 1078 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1079 */
a9cc799e 1080 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 1081
739bfb2a 1082 error = xfs_readdir(ip, dirent, bufsize,
051e7cd4
CH
1083 (xfs_off_t *)&filp->f_pos, filldir);
1084 if (error)
1085 return -error;
1086 return 0;
1da177e4
LT
1087}
1088
1da177e4 1089STATIC int
3562fd45 1090xfs_file_mmap(
1da177e4
LT
1091 struct file *filp,
1092 struct vm_area_struct *vma)
1093{
3562fd45 1094 vma->vm_ops = &xfs_file_vm_ops;
d0217ac0 1095 vma->vm_flags |= VM_CAN_NONLINEAR;
6fac0cb4 1096
fbc1462b 1097 file_accessed(filp);
1da177e4
LT
1098 return 0;
1099}
1100
4f57dbc6
DC
1101/*
1102 * mmap()d file has taken write protection fault and is being made
1103 * writable. We can set the page state up correctly for a writable
1104 * page, which means we can do correct delalloc accounting (ENOSPC
1105 * checking!) and unwritten extent mapping.
1106 */
1107STATIC int
1108xfs_vm_page_mkwrite(
1109 struct vm_area_struct *vma,
c2ec175c 1110 struct vm_fault *vmf)
4f57dbc6 1111{
c2ec175c 1112 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
1113}
1114
4b6f5d20 1115const struct file_operations xfs_file_operations = {
1da177e4
LT
1116 .llseek = generic_file_llseek,
1117 .read = do_sync_read,
bb3f724e 1118 .write = do_sync_write,
3562fd45
NS
1119 .aio_read = xfs_file_aio_read,
1120 .aio_write = xfs_file_aio_write,
1b895840
NS
1121 .splice_read = xfs_file_splice_read,
1122 .splice_write = xfs_file_splice_write,
3562fd45 1123 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1124#ifdef CONFIG_COMPAT
3562fd45 1125 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1126#endif
3562fd45
NS
1127 .mmap = xfs_file_mmap,
1128 .open = xfs_file_open,
1129 .release = xfs_file_release,
1130 .fsync = xfs_file_fsync,
2fe17c10 1131 .fallocate = xfs_file_fallocate,
1da177e4
LT
1132};
1133
4b6f5d20 1134const struct file_operations xfs_dir_file_operations = {
f999a5bf 1135 .open = xfs_dir_open,
1da177e4 1136 .read = generic_read_dir,
3562fd45 1137 .readdir = xfs_file_readdir,
59af1584 1138 .llseek = generic_file_llseek,
3562fd45 1139 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1140#ifdef CONFIG_COMPAT
3562fd45 1141 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1142#endif
3562fd45 1143 .fsync = xfs_file_fsync,
1da177e4
LT
1144};
1145
f0f37e2f 1146static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 1147 .fault = filemap_fault,
4f57dbc6 1148 .page_mkwrite = xfs_vm_page_mkwrite,
6fac0cb4 1149};