]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_file.c
thp, dax: add thp_get_unmapped_area for pmd mappings
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
68a9f5e7 40#include "xfs_iomap.h"
1da177e4
LT
41
42#include <linux/dcache.h>
2fe17c10 43#include <linux/falloc.h>
d126d43f 44#include <linux/pagevec.h>
66114cad 45#include <linux/backing-dev.h>
1da177e4 46
f0f37e2f 47static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 48
487f84f3
DC
49/*
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
52 */
53static inline void
54xfs_rw_ilock(
55 struct xfs_inode *ip,
56 int type)
57{
58 if (type & XFS_IOLOCK_EXCL)
5955102c 59 inode_lock(VFS_I(ip));
487f84f3
DC
60 xfs_ilock(ip, type);
61}
62
63static inline void
64xfs_rw_iunlock(
65 struct xfs_inode *ip,
66 int type)
67{
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
5955102c 70 inode_unlock(VFS_I(ip));
487f84f3
DC
71}
72
73static inline void
74xfs_rw_ilock_demote(
75 struct xfs_inode *ip,
76 int type)
77{
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
5955102c 80 inode_unlock(VFS_I(ip));
487f84f3
DC
81}
82
dda35b8f 83/*
68a9f5e7
CH
84 * Clear the specified ranges to zero through either the pagecache or DAX.
85 * Holes and unwritten extents will be left as-is as they already are zeroed.
dda35b8f 86 */
ef9d8733 87int
7bb41db3 88xfs_zero_range(
68a9f5e7 89 struct xfs_inode *ip,
7bb41db3
CH
90 xfs_off_t pos,
91 xfs_off_t count,
92 bool *did_zero)
dda35b8f 93{
459f0fbc 94 return iomap_zero_range(VFS_I(ip), pos, count, NULL, &xfs_iomap_ops);
dda35b8f
CH
95}
96
8add71ca
CH
97int
98xfs_update_prealloc_flags(
99 struct xfs_inode *ip,
100 enum xfs_prealloc_flags flags)
101{
102 struct xfs_trans *tp;
103 int error;
104
253f4911
CH
105 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
106 0, 0, 0, &tp);
107 if (error)
8add71ca 108 return error;
8add71ca
CH
109
110 xfs_ilock(ip, XFS_ILOCK_EXCL);
111 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
112
113 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
114 VFS_I(ip)->i_mode &= ~S_ISUID;
115 if (VFS_I(ip)->i_mode & S_IXGRP)
116 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
118 }
119
120 if (flags & XFS_PREALLOC_SET)
121 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
122 if (flags & XFS_PREALLOC_CLEAR)
123 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
124
125 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
126 if (flags & XFS_PREALLOC_SYNC)
127 xfs_trans_set_sync(tp);
70393313 128 return xfs_trans_commit(tp);
8add71ca
CH
129}
130
1da2f2db
CH
131/*
132 * Fsync operations on directories are much simpler than on regular files,
133 * as there is no file data to flush, and thus also no need for explicit
134 * cache flush operations, and there are no non-transaction metadata updates
135 * on directories either.
136 */
137STATIC int
138xfs_dir_fsync(
139 struct file *file,
140 loff_t start,
141 loff_t end,
142 int datasync)
143{
144 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
145 struct xfs_mount *mp = ip->i_mount;
146 xfs_lsn_t lsn = 0;
147
148 trace_xfs_dir_fsync(ip);
149
150 xfs_ilock(ip, XFS_ILOCK_SHARED);
151 if (xfs_ipincount(ip))
152 lsn = ip->i_itemp->ili_last_lsn;
153 xfs_iunlock(ip, XFS_ILOCK_SHARED);
154
155 if (!lsn)
156 return 0;
2451337d 157 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
158}
159
fd3200be
CH
160STATIC int
161xfs_file_fsync(
162 struct file *file,
02c24a82
JB
163 loff_t start,
164 loff_t end,
fd3200be
CH
165 int datasync)
166{
7ea80859
CH
167 struct inode *inode = file->f_mapping->host;
168 struct xfs_inode *ip = XFS_I(inode);
a27a263b 169 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
170 int error = 0;
171 int log_flushed = 0;
b1037058 172 xfs_lsn_t lsn = 0;
fd3200be 173
cca28fb8 174 trace_xfs_file_fsync(ip);
fd3200be 175
02c24a82
JB
176 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
177 if (error)
178 return error;
179
a27a263b 180 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 181 return -EIO;
fd3200be
CH
182
183 xfs_iflags_clear(ip, XFS_ITRUNCATED);
184
a27a263b
CH
185 if (mp->m_flags & XFS_MOUNT_BARRIER) {
186 /*
187 * If we have an RT and/or log subvolume we need to make sure
188 * to flush the write cache the device used for file data
189 * first. This is to ensure newly written file data make
190 * it to disk before logging the new inode size in case of
191 * an extending write.
192 */
193 if (XFS_IS_REALTIME_INODE(ip))
194 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
195 else if (mp->m_logdev_targp != mp->m_ddev_targp)
196 xfs_blkdev_issue_flush(mp->m_ddev_targp);
197 }
198
fd3200be 199 /*
fc0561ce
DC
200 * All metadata updates are logged, which means that we just have to
201 * flush the log up to the latest LSN that touched the inode. If we have
202 * concurrent fsync/fdatasync() calls, we need them to all block on the
203 * log force before we clear the ili_fsync_fields field. This ensures
204 * that we don't get a racing sync operation that does not wait for the
205 * metadata to hit the journal before returning. If we race with
206 * clearing the ili_fsync_fields, then all that will happen is the log
207 * force will do nothing as the lsn will already be on disk. We can't
208 * race with setting ili_fsync_fields because that is done under
209 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
210 * until after the ili_fsync_fields is cleared.
fd3200be
CH
211 */
212 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
213 if (xfs_ipincount(ip)) {
214 if (!datasync ||
fc0561ce 215 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
216 lsn = ip->i_itemp->ili_last_lsn;
217 }
fd3200be 218
fc0561ce 219 if (lsn) {
b1037058 220 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
221 ip->i_itemp->ili_fsync_fields = 0;
222 }
223 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 224
a27a263b
CH
225 /*
226 * If we only have a single device, and the log force about was
227 * a no-op we might have to flush the data device cache here.
228 * This can only happen for fdatasync/O_DSYNC if we were overwriting
229 * an already allocated file and thus do not have any metadata to
230 * commit.
231 */
232 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
233 mp->m_logdev_targp == mp->m_ddev_targp &&
234 !XFS_IS_REALTIME_INODE(ip) &&
235 !log_flushed)
236 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 237
2451337d 238 return error;
fd3200be
CH
239}
240
00258e36 241STATIC ssize_t
bbc5a740 242xfs_file_dio_aio_read(
dda35b8f 243 struct kiocb *iocb,
b4f5d2c6 244 struct iov_iter *to)
dda35b8f 245{
bbc5a740
CH
246 struct address_space *mapping = iocb->ki_filp->f_mapping;
247 struct inode *inode = mapping->host;
00258e36 248 struct xfs_inode *ip = XFS_I(inode);
f1285ff0 249 loff_t isize = i_size_read(inode);
bbc5a740 250 size_t count = iov_iter_count(to);
f1285ff0 251 struct iov_iter data;
bbc5a740 252 struct xfs_buftarg *target;
dda35b8f 253 ssize_t ret = 0;
dda35b8f 254
bbc5a740 255 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 256
f1285ff0
CH
257 if (!count)
258 return 0; /* skip atime */
dda35b8f 259
bbc5a740
CH
260 if (XFS_IS_REALTIME_INODE(ip))
261 target = ip->i_mount->m_rtdev_targp;
262 else
263 target = ip->i_mount->m_ddev_targp;
dda35b8f 264
16d4d435
CH
265 /* DIO must be aligned to device logical sector size */
266 if ((iocb->ki_pos | count) & target->bt_logical_sectormask) {
267 if (iocb->ki_pos == isize)
268 return 0;
269 return -EINVAL;
dda35b8f 270 }
dda35b8f 271
a447d7cd
CH
272 file_accessed(iocb->ki_filp);
273
0c38a251 274 /*
3d751af2
BF
275 * Locking is a bit tricky here. If we take an exclusive lock for direct
276 * IO, we effectively serialise all new concurrent read IO to this file
277 * and block it behind IO that is currently in progress because IO in
278 * progress holds the IO lock shared. We only need to hold the lock
279 * exclusive to blow away the page cache, so only take lock exclusively
280 * if the page cache needs invalidation. This allows the normal direct
281 * IO case of no page cache pages to proceeed concurrently without
282 * serialisation.
0c38a251
DC
283 */
284 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
bbc5a740 285 if (mapping->nrpages) {
0c38a251 286 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
487f84f3
DC
287 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
288
3d751af2
BF
289 /*
290 * The generic dio code only flushes the range of the particular
291 * I/O. Because we take an exclusive lock here, this whole
292 * sequence is considerably more expensive for us. This has a
293 * noticeable performance impact for any file with cached pages,
294 * even when outside of the range of the particular I/O.
295 *
296 * Hence, amortize the cost of the lock against a full file
297 * flush and reduce the chances of repeated iolock cycles going
298 * forward.
299 */
bbc5a740
CH
300 if (mapping->nrpages) {
301 ret = filemap_write_and_wait(mapping);
487f84f3
DC
302 if (ret) {
303 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
304 return ret;
305 }
85e584da
CM
306
307 /*
308 * Invalidate whole pages. This can return an error if
309 * we fail to invalidate a page, but this should never
310 * happen on XFS. Warn if it does fail.
311 */
bbc5a740 312 ret = invalidate_inode_pages2(mapping);
85e584da
CM
313 WARN_ON_ONCE(ret);
314 ret = 0;
00258e36 315 }
487f84f3 316 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
0c38a251 317 }
dda35b8f 318
f1285ff0 319 data = *to;
16d4d435
CH
320 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
321 xfs_get_blocks_direct, NULL, NULL, 0);
322 if (ret > 0) {
323 iocb->ki_pos += ret;
324 iov_iter_advance(to, ret);
fa8d972d 325 }
16d4d435 326 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f 327
16d4d435
CH
328 return ret;
329}
330
f021bd07 331static noinline ssize_t
16d4d435
CH
332xfs_file_dax_read(
333 struct kiocb *iocb,
334 struct iov_iter *to)
335{
6c31f495 336 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
337 size_t count = iov_iter_count(to);
338 ssize_t ret = 0;
339
340 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
341
342 if (!count)
343 return 0; /* skip atime */
344
345 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
6c31f495 346 ret = iomap_dax_rw(iocb, to, &xfs_iomap_ops);
bbc5a740
CH
347 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
348
f1285ff0 349 file_accessed(iocb->ki_filp);
bbc5a740
CH
350 return ret;
351}
352
353STATIC ssize_t
354xfs_file_buffered_aio_read(
355 struct kiocb *iocb,
356 struct iov_iter *to)
357{
358 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
359 ssize_t ret;
360
361 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 362
bbc5a740 363 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
b4f5d2c6 364 ret = generic_file_read_iter(iocb, to);
bbc5a740
CH
365 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
366
367 return ret;
368}
369
370STATIC ssize_t
371xfs_file_read_iter(
372 struct kiocb *iocb,
373 struct iov_iter *to)
374{
16d4d435
CH
375 struct inode *inode = file_inode(iocb->ki_filp);
376 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
377 ssize_t ret = 0;
378
379 XFS_STATS_INC(mp, xs_read_calls);
380
381 if (XFS_FORCED_SHUTDOWN(mp))
382 return -EIO;
383
16d4d435
CH
384 if (IS_DAX(inode))
385 ret = xfs_file_dax_read(iocb, to);
386 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 387 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 388 else
bbc5a740 389 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 390
dda35b8f 391 if (ret > 0)
ff6d6af2 392 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
393 return ret;
394}
395
00258e36
CH
396STATIC ssize_t
397xfs_file_splice_read(
dda35b8f
CH
398 struct file *infilp,
399 loff_t *ppos,
400 struct pipe_inode_info *pipe,
401 size_t count,
00258e36 402 unsigned int flags)
dda35b8f 403{
00258e36 404 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
dda35b8f
CH
405 ssize_t ret;
406
ff6d6af2 407 XFS_STATS_INC(ip->i_mount, xs_read_calls);
00258e36 408
dda35b8f
CH
409 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
410 return -EIO;
411
3176c3e0 412 trace_xfs_file_splice_read(ip, count, *ppos);
dda35b8f 413
a6d7636e
DC
414 /*
415 * DAX inodes cannot ues the page cache for splice, so we have to push
416 * them through the VFS IO path. This means it goes through
417 * ->read_iter, which for us takes the XFS_IOLOCK_SHARED. Hence we
418 * cannot lock the splice operation at this level for DAX inodes.
419 */
420 if (IS_DAX(VFS_I(ip))) {
421 ret = default_file_splice_read(infilp, ppos, pipe, count,
422 flags);
423 goto out;
424 }
dda35b8f 425
a6d7636e
DC
426 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
427 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
487f84f3 428 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
a6d7636e
DC
429out:
430 if (ret > 0)
431 XFS_STATS_ADD(ip->i_mount, xs_read_bytes, ret);
dda35b8f
CH
432 return ret;
433}
434
dda35b8f 435/*
193aec10
CH
436 * Zero any on disk space between the current EOF and the new, larger EOF.
437 *
438 * This handles the normal case of zeroing the remainder of the last block in
439 * the file and the unusual case of zeroing blocks out beyond the size of the
440 * file. This second case only happens with fixed size extents and when the
441 * system crashes before the inode size was updated but after blocks were
442 * allocated.
443 *
444 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 445 */
dda35b8f
CH
446int /* error (positive) */
447xfs_zero_eof(
193aec10
CH
448 struct xfs_inode *ip,
449 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
450 xfs_fsize_t isize, /* current inode size */
451 bool *did_zeroing)
dda35b8f 452{
193aec10 453 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
454 ASSERT(offset > isize);
455
0a50f162 456 trace_xfs_zero_eof(ip, isize, offset - isize);
570b6211 457 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
dda35b8f
CH
458}
459
4d8d1581
DC
460/*
461 * Common pre-write limit and setup checks.
462 *
5bf1f262
CH
463 * Called with the iolocked held either shared and exclusive according to
464 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
465 * if called for a direct write beyond i_size.
4d8d1581
DC
466 */
467STATIC ssize_t
468xfs_file_aio_write_checks(
99733fa3
AV
469 struct kiocb *iocb,
470 struct iov_iter *from,
4d8d1581
DC
471 int *iolock)
472{
99733fa3 473 struct file *file = iocb->ki_filp;
4d8d1581
DC
474 struct inode *inode = file->f_mapping->host;
475 struct xfs_inode *ip = XFS_I(inode);
3309dd04 476 ssize_t error = 0;
99733fa3 477 size_t count = iov_iter_count(from);
3136e8bb 478 bool drained_dio = false;
4d8d1581 479
7271d243 480restart:
3309dd04
AV
481 error = generic_write_checks(iocb, from);
482 if (error <= 0)
4d8d1581 483 return error;
4d8d1581 484
21c3ea18 485 error = xfs_break_layouts(inode, iolock, true);
781355c6
CH
486 if (error)
487 return error;
488
a6de82ca
JK
489 /* For changing security info in file_remove_privs() we need i_mutex */
490 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
491 xfs_rw_iunlock(ip, *iolock);
492 *iolock = XFS_IOLOCK_EXCL;
493 xfs_rw_ilock(ip, *iolock);
494 goto restart;
495 }
4d8d1581
DC
496 /*
497 * If the offset is beyond the size of the file, we need to zero any
498 * blocks that fall between the existing EOF and the start of this
2813d682 499 * write. If zeroing is needed and we are currently holding the
467f7899
CH
500 * iolock shared, we need to update it to exclusive which implies
501 * having to redo all checks before.
b9d59846
DC
502 *
503 * We need to serialise against EOF updates that occur in IO
504 * completions here. We want to make sure that nobody is changing the
505 * size while we do this check until we have placed an IO barrier (i.e.
506 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
507 * The spinlock effectively forms a memory barrier once we have the
508 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
509 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 510 */
b9d59846 511 spin_lock(&ip->i_flags_lock);
99733fa3 512 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
513 bool zero = false;
514
b9d59846 515 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
516 if (!drained_dio) {
517 if (*iolock == XFS_IOLOCK_SHARED) {
518 xfs_rw_iunlock(ip, *iolock);
519 *iolock = XFS_IOLOCK_EXCL;
520 xfs_rw_ilock(ip, *iolock);
521 iov_iter_reexpand(from, count);
522 }
40c63fbc
DC
523 /*
524 * We now have an IO submission barrier in place, but
525 * AIO can do EOF updates during IO completion and hence
526 * we now need to wait for all of them to drain. Non-AIO
527 * DIO will have drained before we are given the
528 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
529 * no-op.
530 */
531 inode_dio_wait(inode);
3136e8bb 532 drained_dio = true;
7271d243
DC
533 goto restart;
534 }
99733fa3 535 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
536 if (error)
537 return error;
b9d59846
DC
538 } else
539 spin_unlock(&ip->i_flags_lock);
4d8d1581 540
8a9c9980
CH
541 /*
542 * Updating the timestamps will grab the ilock again from
543 * xfs_fs_dirty_inode, so we have to call it after dropping the
544 * lock above. Eventually we should look into a way to avoid
545 * the pointless lock roundtrip.
546 */
c3b2da31
JB
547 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
548 error = file_update_time(file);
549 if (error)
550 return error;
551 }
8a9c9980 552
4d8d1581
DC
553 /*
554 * If we're writing the file then make sure to clear the setuid and
555 * setgid bits if the process is not being run by root. This keeps
556 * people from modifying setuid and setgid binaries.
557 */
a6de82ca
JK
558 if (!IS_NOSEC(inode))
559 return file_remove_privs(file);
560 return 0;
4d8d1581
DC
561}
562
f0d26e86
DC
563/*
564 * xfs_file_dio_aio_write - handle direct IO writes
565 *
566 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 567 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
568 * follow locking changes and looping.
569 *
eda77982
DC
570 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
571 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
572 * pages are flushed out.
573 *
574 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
575 * allowing them to be done in parallel with reads and other direct IO writes.
576 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
577 * needs to do sub-block zeroing and that requires serialisation against other
578 * direct IOs to the same block. In this case we need to serialise the
579 * submission of the unaligned IOs so that we don't get racing block zeroing in
580 * the dio layer. To avoid the problem with aio, we also need to wait for
581 * outstanding IOs to complete so that unwritten extent conversion is completed
582 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 583 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 584 *
f0d26e86
DC
585 * Returns with locks held indicated by @iolock and errors indicated by
586 * negative return values.
587 */
588STATIC ssize_t
589xfs_file_dio_aio_write(
590 struct kiocb *iocb,
b3188919 591 struct iov_iter *from)
f0d26e86
DC
592{
593 struct file *file = iocb->ki_filp;
594 struct address_space *mapping = file->f_mapping;
595 struct inode *inode = mapping->host;
596 struct xfs_inode *ip = XFS_I(inode);
597 struct xfs_mount *mp = ip->i_mount;
598 ssize_t ret = 0;
eda77982 599 int unaligned_io = 0;
d0606464 600 int iolock;
b3188919 601 size_t count = iov_iter_count(from);
0cefb29e
DC
602 loff_t end;
603 struct iov_iter data;
f0d26e86
DC
604 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
605 mp->m_rtdev_targp : mp->m_ddev_targp;
606
7c71ee78 607 /* DIO must be aligned to device logical sector size */
16d4d435 608 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 609 return -EINVAL;
f0d26e86 610
7c71ee78 611 /* "unaligned" here means not aligned to a filesystem block */
13712713
CH
612 if ((iocb->ki_pos & mp->m_blockmask) ||
613 ((iocb->ki_pos + count) & mp->m_blockmask))
eda77982
DC
614 unaligned_io = 1;
615
7271d243
DC
616 /*
617 * We don't need to take an exclusive lock unless there page cache needs
618 * to be invalidated or unaligned IO is being executed. We don't need to
619 * consider the EOF extension case here because
620 * xfs_file_aio_write_checks() will relock the inode as necessary for
621 * EOF zeroing cases and fill out the new inode size as appropriate.
622 */
623 if (unaligned_io || mapping->nrpages)
d0606464 624 iolock = XFS_IOLOCK_EXCL;
f0d26e86 625 else
d0606464
CH
626 iolock = XFS_IOLOCK_SHARED;
627 xfs_rw_ilock(ip, iolock);
c58cb165
CH
628
629 /*
630 * Recheck if there are cached pages that need invalidate after we got
631 * the iolock to protect against other threads adding new pages while
632 * we were waiting for the iolock.
633 */
d0606464
CH
634 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
635 xfs_rw_iunlock(ip, iolock);
636 iolock = XFS_IOLOCK_EXCL;
637 xfs_rw_ilock(ip, iolock);
c58cb165 638 }
f0d26e86 639
99733fa3 640 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 641 if (ret)
d0606464 642 goto out;
99733fa3 643 count = iov_iter_count(from);
13712713 644 end = iocb->ki_pos + count - 1;
f0d26e86 645
3d751af2 646 /*
bbc5a740 647 * See xfs_file_dio_aio_read() for why we do a full-file flush here.
3d751af2 648 */
f0d26e86 649 if (mapping->nrpages) {
3d751af2 650 ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
f0d26e86 651 if (ret)
d0606464 652 goto out;
834ffca6 653 /*
3d751af2
BF
654 * Invalidate whole pages. This can return an error if we fail
655 * to invalidate a page, but this should never happen on XFS.
656 * Warn if it does fail.
834ffca6 657 */
3d751af2 658 ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
834ffca6
DC
659 WARN_ON_ONCE(ret);
660 ret = 0;
f0d26e86
DC
661 }
662
eda77982
DC
663 /*
664 * If we are doing unaligned IO, wait for all other IO to drain,
665 * otherwise demote the lock if we had to flush cached pages
666 */
667 if (unaligned_io)
4a06fd26 668 inode_dio_wait(inode);
d0606464 669 else if (iolock == XFS_IOLOCK_EXCL) {
f0d26e86 670 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 671 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
672 }
673
3176c3e0 674 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
f0d26e86 675
0cefb29e 676 data = *from;
16d4d435
CH
677 ret = __blockdev_direct_IO(iocb, inode, target->bt_bdev, &data,
678 xfs_get_blocks_direct, xfs_end_io_direct_write,
679 NULL, DIO_ASYNC_EXTEND);
0cefb29e
DC
680
681 /* see generic_file_direct_write() for why this is necessary */
682 if (mapping->nrpages) {
683 invalidate_inode_pages2_range(mapping,
13712713 684 iocb->ki_pos >> PAGE_SHIFT,
09cbfeaf 685 end >> PAGE_SHIFT);
0cefb29e
DC
686 }
687
688 if (ret > 0) {
13712713 689 iocb->ki_pos += ret;
0cefb29e 690 iov_iter_advance(from, ret);
0cefb29e 691 }
d0606464
CH
692out:
693 xfs_rw_iunlock(ip, iolock);
694
6b698ede 695 /*
16d4d435
CH
696 * No fallback to buffered IO on errors for XFS, direct IO will either
697 * complete fully or fail.
6b698ede 698 */
16d4d435
CH
699 ASSERT(ret < 0 || ret == count);
700 return ret;
701}
702
f021bd07 703static noinline ssize_t
16d4d435
CH
704xfs_file_dax_write(
705 struct kiocb *iocb,
706 struct iov_iter *from)
707{
6c31f495 708 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 709 struct xfs_inode *ip = XFS_I(inode);
17879e8f 710 int iolock = XFS_IOLOCK_EXCL;
6c31f495
CH
711 ssize_t ret, error = 0;
712 size_t count;
713 loff_t pos;
16d4d435 714
16d4d435 715 xfs_rw_ilock(ip, iolock);
16d4d435
CH
716 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
717 if (ret)
718 goto out;
719
6c31f495
CH
720 pos = iocb->ki_pos;
721 count = iov_iter_count(from);
8b2180b3 722
6c31f495 723 trace_xfs_file_dax_write(ip, count, pos);
16d4d435 724
6c31f495
CH
725 ret = iomap_dax_rw(iocb, from, &xfs_iomap_ops);
726 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
727 i_size_write(inode, iocb->ki_pos);
728 error = xfs_setfilesize(ip, pos, ret);
16d4d435
CH
729 }
730
16d4d435
CH
731out:
732 xfs_rw_iunlock(ip, iolock);
6c31f495 733 return error ? error : ret;
f0d26e86
DC
734}
735
00258e36 736STATIC ssize_t
637bbc75 737xfs_file_buffered_aio_write(
dda35b8f 738 struct kiocb *iocb,
b3188919 739 struct iov_iter *from)
dda35b8f
CH
740{
741 struct file *file = iocb->ki_filp;
742 struct address_space *mapping = file->f_mapping;
743 struct inode *inode = mapping->host;
00258e36 744 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
745 ssize_t ret;
746 int enospc = 0;
d0606464 747 int iolock = XFS_IOLOCK_EXCL;
dda35b8f 748
d0606464 749 xfs_rw_ilock(ip, iolock);
dda35b8f 750
99733fa3 751 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 752 if (ret)
d0606464 753 goto out;
dda35b8f
CH
754
755 /* We can write back this queue in page reclaim */
de1414a6 756 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 757
dda35b8f 758write_retry:
3176c3e0 759 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 760 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 761 if (likely(ret >= 0))
99733fa3 762 iocb->ki_pos += ret;
dc06f398 763
637bbc75 764 /*
dc06f398
BF
765 * If we hit a space limit, try to free up some lingering preallocated
766 * space before returning an error. In the case of ENOSPC, first try to
767 * write back all dirty inodes to free up some of the excess reserved
768 * metadata space. This reduces the chances that the eofblocks scan
769 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
770 * also behaves as a filter to prevent too many eofblocks scans from
771 * running at the same time.
637bbc75 772 */
dc06f398
BF
773 if (ret == -EDQUOT && !enospc) {
774 enospc = xfs_inode_free_quota_eofblocks(ip);
775 if (enospc)
776 goto write_retry;
777 } else if (ret == -ENOSPC && !enospc) {
778 struct xfs_eofblocks eofb = {0};
779
637bbc75 780 enospc = 1;
9aa05000 781 xfs_flush_inodes(ip->i_mount);
dc06f398
BF
782 eofb.eof_scan_owner = ip->i_ino; /* for locking */
783 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
784 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
9aa05000 785 goto write_retry;
dda35b8f 786 }
d0606464 787
dda35b8f 788 current->backing_dev_info = NULL;
d0606464
CH
789out:
790 xfs_rw_iunlock(ip, iolock);
637bbc75
DC
791 return ret;
792}
793
794STATIC ssize_t
bf97f3bc 795xfs_file_write_iter(
637bbc75 796 struct kiocb *iocb,
bf97f3bc 797 struct iov_iter *from)
637bbc75
DC
798{
799 struct file *file = iocb->ki_filp;
800 struct address_space *mapping = file->f_mapping;
801 struct inode *inode = mapping->host;
802 struct xfs_inode *ip = XFS_I(inode);
803 ssize_t ret;
bf97f3bc 804 size_t ocount = iov_iter_count(from);
637bbc75 805
ff6d6af2 806 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 807
637bbc75
DC
808 if (ocount == 0)
809 return 0;
810
bf97f3bc
AV
811 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
812 return -EIO;
637bbc75 813
16d4d435
CH
814 if (IS_DAX(inode))
815 ret = xfs_file_dax_write(iocb, from);
816 else if (iocb->ki_flags & IOCB_DIRECT)
bf97f3bc 817 ret = xfs_file_dio_aio_write(iocb, from);
637bbc75 818 else
bf97f3bc 819 ret = xfs_file_buffered_aio_write(iocb, from);
dda35b8f 820
d0606464 821 if (ret > 0) {
ff6d6af2 822 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
dda35b8f 823
d0606464 824 /* Handle various SYNC-type writes */
e2592217 825 ret = generic_write_sync(iocb, ret);
dda35b8f 826 }
a363f0c2 827 return ret;
dda35b8f
CH
828}
829
a904b1ca
NJ
830#define XFS_FALLOC_FL_SUPPORTED \
831 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
832 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
833 FALLOC_FL_INSERT_RANGE)
834
2fe17c10
CH
835STATIC long
836xfs_file_fallocate(
83aee9e4
CH
837 struct file *file,
838 int mode,
839 loff_t offset,
840 loff_t len)
2fe17c10 841{
83aee9e4
CH
842 struct inode *inode = file_inode(file);
843 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 844 long error;
8add71ca 845 enum xfs_prealloc_flags flags = 0;
781355c6 846 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 847 loff_t new_size = 0;
a904b1ca 848 bool do_file_insert = 0;
2fe17c10 849
83aee9e4
CH
850 if (!S_ISREG(inode->i_mode))
851 return -EINVAL;
a904b1ca 852 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
853 return -EOPNOTSUPP;
854
781355c6 855 xfs_ilock(ip, iolock);
21c3ea18 856 error = xfs_break_layouts(inode, &iolock, false);
781355c6
CH
857 if (error)
858 goto out_unlock;
859
e8e9ad42
DC
860 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
861 iolock |= XFS_MMAPLOCK_EXCL;
862
83aee9e4
CH
863 if (mode & FALLOC_FL_PUNCH_HOLE) {
864 error = xfs_free_file_space(ip, offset, len);
865 if (error)
866 goto out_unlock;
e1d8fb88
NJ
867 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
868 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
869
870 if (offset & blksize_mask || len & blksize_mask) {
2451337d 871 error = -EINVAL;
e1d8fb88
NJ
872 goto out_unlock;
873 }
874
23fffa92
LC
875 /*
876 * There is no need to overlap collapse range with EOF,
877 * in which case it is effectively a truncate operation
878 */
879 if (offset + len >= i_size_read(inode)) {
2451337d 880 error = -EINVAL;
23fffa92
LC
881 goto out_unlock;
882 }
883
e1d8fb88
NJ
884 new_size = i_size_read(inode) - len;
885
886 error = xfs_collapse_file_space(ip, offset, len);
887 if (error)
888 goto out_unlock;
a904b1ca
NJ
889 } else if (mode & FALLOC_FL_INSERT_RANGE) {
890 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
891
892 new_size = i_size_read(inode) + len;
893 if (offset & blksize_mask || len & blksize_mask) {
894 error = -EINVAL;
895 goto out_unlock;
896 }
897
898 /* check the new inode size does not wrap through zero */
899 if (new_size > inode->i_sb->s_maxbytes) {
900 error = -EFBIG;
901 goto out_unlock;
902 }
903
904 /* Offset should be less than i_size */
905 if (offset >= i_size_read(inode)) {
906 error = -EINVAL;
907 goto out_unlock;
908 }
909 do_file_insert = 1;
83aee9e4 910 } else {
8add71ca
CH
911 flags |= XFS_PREALLOC_SET;
912
83aee9e4
CH
913 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
914 offset + len > i_size_read(inode)) {
915 new_size = offset + len;
2451337d 916 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
917 if (error)
918 goto out_unlock;
919 }
2fe17c10 920
376ba313
LC
921 if (mode & FALLOC_FL_ZERO_RANGE)
922 error = xfs_zero_file_space(ip, offset, len);
923 else
924 error = xfs_alloc_file_space(ip, offset, len,
925 XFS_BMAPI_PREALLOC);
2fe17c10
CH
926 if (error)
927 goto out_unlock;
928 }
929
83aee9e4 930 if (file->f_flags & O_DSYNC)
8add71ca
CH
931 flags |= XFS_PREALLOC_SYNC;
932
933 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
934 if (error)
935 goto out_unlock;
936
937 /* Change file size if needed */
938 if (new_size) {
939 struct iattr iattr;
940
941 iattr.ia_valid = ATTR_SIZE;
942 iattr.ia_size = new_size;
83aee9e4 943 error = xfs_setattr_size(ip, &iattr);
a904b1ca
NJ
944 if (error)
945 goto out_unlock;
2fe17c10
CH
946 }
947
a904b1ca
NJ
948 /*
949 * Perform hole insertion now that the file size has been
950 * updated so that if we crash during the operation we don't
951 * leave shifted extents past EOF and hence losing access to
952 * the data that is contained within them.
953 */
954 if (do_file_insert)
955 error = xfs_insert_file_space(ip, offset, len);
956
2fe17c10 957out_unlock:
781355c6 958 xfs_iunlock(ip, iolock);
2451337d 959 return error;
2fe17c10
CH
960}
961
962
1da177e4 963STATIC int
3562fd45 964xfs_file_open(
1da177e4 965 struct inode *inode,
f999a5bf 966 struct file *file)
1da177e4 967{
f999a5bf 968 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 969 return -EFBIG;
f999a5bf
CH
970 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
971 return -EIO;
972 return 0;
973}
974
975STATIC int
976xfs_dir_open(
977 struct inode *inode,
978 struct file *file)
979{
980 struct xfs_inode *ip = XFS_I(inode);
981 int mode;
982 int error;
983
984 error = xfs_file_open(inode, file);
985 if (error)
986 return error;
987
988 /*
989 * If there are any blocks, read-ahead block 0 as we're almost
990 * certain to have the next operation be a read there.
991 */
309ecac8 992 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 993 if (ip->i_d.di_nextents > 0)
9df2dd0b 994 xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf
CH
995 xfs_iunlock(ip, mode);
996 return 0;
1da177e4
LT
997}
998
1da177e4 999STATIC int
3562fd45 1000xfs_file_release(
1da177e4
LT
1001 struct inode *inode,
1002 struct file *filp)
1003{
2451337d 1004 return xfs_release(XFS_I(inode));
1da177e4
LT
1005}
1006
1da177e4 1007STATIC int
3562fd45 1008xfs_file_readdir(
b8227554
AV
1009 struct file *file,
1010 struct dir_context *ctx)
1da177e4 1011{
b8227554 1012 struct inode *inode = file_inode(file);
739bfb2a 1013 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
1014 size_t bufsize;
1015
1016 /*
1017 * The Linux API doesn't pass down the total size of the buffer
1018 * we read into down to the filesystem. With the filldir concept
1019 * it's not needed for correct information, but the XFS dir2 leaf
1020 * code wants an estimate of the buffer size to calculate it's
1021 * readahead window and size the buffers used for mapping to
1022 * physical blocks.
1023 *
1024 * Try to give it an estimate that's good enough, maybe at some
1025 * point we can change the ->readdir prototype to include the
a9cc799e 1026 * buffer size. For now we use the current glibc buffer size.
051e7cd4 1027 */
a9cc799e 1028 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 1029
8300475e 1030 return xfs_readdir(ip, ctx, bufsize);
1da177e4
LT
1031}
1032
d126d43f
JL
1033/*
1034 * This type is designed to indicate the type of offset we would like
49c69591 1035 * to search from page cache for xfs_seek_hole_data().
d126d43f
JL
1036 */
1037enum {
1038 HOLE_OFF = 0,
1039 DATA_OFF,
1040};
1041
1042/*
1043 * Lookup the desired type of offset from the given page.
1044 *
1045 * On success, return true and the offset argument will point to the
1046 * start of the region that was found. Otherwise this function will
1047 * return false and keep the offset argument unchanged.
1048 */
1049STATIC bool
1050xfs_lookup_buffer_offset(
1051 struct page *page,
1052 loff_t *offset,
1053 unsigned int type)
1054{
1055 loff_t lastoff = page_offset(page);
1056 bool found = false;
1057 struct buffer_head *bh, *head;
1058
1059 bh = head = page_buffers(page);
1060 do {
1061 /*
1062 * Unwritten extents that have data in the page
1063 * cache covering them can be identified by the
1064 * BH_Unwritten state flag. Pages with multiple
1065 * buffers might have a mix of holes, data and
1066 * unwritten extents - any buffer with valid
1067 * data in it should have BH_Uptodate flag set
1068 * on it.
1069 */
1070 if (buffer_unwritten(bh) ||
1071 buffer_uptodate(bh)) {
1072 if (type == DATA_OFF)
1073 found = true;
1074 } else {
1075 if (type == HOLE_OFF)
1076 found = true;
1077 }
1078
1079 if (found) {
1080 *offset = lastoff;
1081 break;
1082 }
1083 lastoff += bh->b_size;
1084 } while ((bh = bh->b_this_page) != head);
1085
1086 return found;
1087}
1088
1089/*
1090 * This routine is called to find out and return a data or hole offset
1091 * from the page cache for unwritten extents according to the desired
49c69591 1092 * type for xfs_seek_hole_data().
d126d43f
JL
1093 *
1094 * The argument offset is used to tell where we start to search from the
1095 * page cache. Map is used to figure out the end points of the range to
1096 * lookup pages.
1097 *
1098 * Return true if the desired type of offset was found, and the argument
1099 * offset is filled with that address. Otherwise, return false and keep
1100 * offset unchanged.
1101 */
1102STATIC bool
1103xfs_find_get_desired_pgoff(
1104 struct inode *inode,
1105 struct xfs_bmbt_irec *map,
1106 unsigned int type,
1107 loff_t *offset)
1108{
1109 struct xfs_inode *ip = XFS_I(inode);
1110 struct xfs_mount *mp = ip->i_mount;
1111 struct pagevec pvec;
1112 pgoff_t index;
1113 pgoff_t end;
1114 loff_t endoff;
1115 loff_t startoff = *offset;
1116 loff_t lastoff = startoff;
1117 bool found = false;
1118
1119 pagevec_init(&pvec, 0);
1120
09cbfeaf 1121 index = startoff >> PAGE_SHIFT;
d126d43f 1122 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
09cbfeaf 1123 end = endoff >> PAGE_SHIFT;
d126d43f
JL
1124 do {
1125 int want;
1126 unsigned nr_pages;
1127 unsigned int i;
1128
1129 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1130 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1131 want);
1132 /*
1133 * No page mapped into given range. If we are searching holes
1134 * and if this is the first time we got into the loop, it means
1135 * that the given offset is landed in a hole, return it.
1136 *
1137 * If we have already stepped through some block buffers to find
1138 * holes but they all contains data. In this case, the last
1139 * offset is already updated and pointed to the end of the last
1140 * mapped page, if it does not reach the endpoint to search,
1141 * that means there should be a hole between them.
1142 */
1143 if (nr_pages == 0) {
1144 /* Data search found nothing */
1145 if (type == DATA_OFF)
1146 break;
1147
1148 ASSERT(type == HOLE_OFF);
1149 if (lastoff == startoff || lastoff < endoff) {
1150 found = true;
1151 *offset = lastoff;
1152 }
1153 break;
1154 }
1155
1156 /*
1157 * At lease we found one page. If this is the first time we
1158 * step into the loop, and if the first page index offset is
1159 * greater than the given search offset, a hole was found.
1160 */
1161 if (type == HOLE_OFF && lastoff == startoff &&
1162 lastoff < page_offset(pvec.pages[0])) {
1163 found = true;
1164 break;
1165 }
1166
1167 for (i = 0; i < nr_pages; i++) {
1168 struct page *page = pvec.pages[i];
1169 loff_t b_offset;
1170
1171 /*
1172 * At this point, the page may be truncated or
1173 * invalidated (changing page->mapping to NULL),
1174 * or even swizzled back from swapper_space to tmpfs
1175 * file mapping. However, page->index will not change
1176 * because we have a reference on the page.
1177 *
1178 * Searching done if the page index is out of range.
1179 * If the current offset is not reaches the end of
1180 * the specified search range, there should be a hole
1181 * between them.
1182 */
1183 if (page->index > end) {
1184 if (type == HOLE_OFF && lastoff < endoff) {
1185 *offset = lastoff;
1186 found = true;
1187 }
1188 goto out;
1189 }
1190
1191 lock_page(page);
1192 /*
1193 * Page truncated or invalidated(page->mapping == NULL).
1194 * We can freely skip it and proceed to check the next
1195 * page.
1196 */
1197 if (unlikely(page->mapping != inode->i_mapping)) {
1198 unlock_page(page);
1199 continue;
1200 }
1201
1202 if (!page_has_buffers(page)) {
1203 unlock_page(page);
1204 continue;
1205 }
1206
1207 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1208 if (found) {
1209 /*
1210 * The found offset may be less than the start
1211 * point to search if this is the first time to
1212 * come here.
1213 */
1214 *offset = max_t(loff_t, startoff, b_offset);
1215 unlock_page(page);
1216 goto out;
1217 }
1218
1219 /*
1220 * We either searching data but nothing was found, or
1221 * searching hole but found a data buffer. In either
1222 * case, probably the next page contains the desired
1223 * things, update the last offset to it so.
1224 */
1225 lastoff = page_offset(page) + PAGE_SIZE;
1226 unlock_page(page);
1227 }
1228
1229 /*
1230 * The number of returned pages less than our desired, search
1231 * done. In this case, nothing was found for searching data,
1232 * but we found a hole behind the last offset.
1233 */
1234 if (nr_pages < want) {
1235 if (type == HOLE_OFF) {
1236 *offset = lastoff;
1237 found = true;
1238 }
1239 break;
1240 }
1241
1242 index = pvec.pages[i - 1]->index + 1;
1243 pagevec_release(&pvec);
1244 } while (index <= end);
1245
1246out:
1247 pagevec_release(&pvec);
1248 return found;
1249}
1250
8aa7d37e
ES
1251/*
1252 * caller must lock inode with xfs_ilock_data_map_shared,
1253 * can we craft an appropriate ASSERT?
1254 *
1255 * end is because the VFS-level lseek interface is defined such that any
1256 * offset past i_size shall return -ENXIO, but we use this for quota code
1257 * which does not maintain i_size, and we want to SEEK_DATA past i_size.
1258 */
1259loff_t
1260__xfs_seek_hole_data(
1261 struct inode *inode,
49c69591 1262 loff_t start,
8aa7d37e 1263 loff_t end,
49c69591 1264 int whence)
3fe3e6b1 1265{
3fe3e6b1
JL
1266 struct xfs_inode *ip = XFS_I(inode);
1267 struct xfs_mount *mp = ip->i_mount;
3fe3e6b1 1268 loff_t uninitialized_var(offset);
3fe3e6b1 1269 xfs_fileoff_t fsbno;
8aa7d37e 1270 xfs_filblks_t lastbno;
3fe3e6b1
JL
1271 int error;
1272
8aa7d37e 1273 if (start >= end) {
2451337d 1274 error = -ENXIO;
8aa7d37e 1275 goto out_error;
3fe3e6b1
JL
1276 }
1277
3fe3e6b1
JL
1278 /*
1279 * Try to read extents from the first block indicated
1280 * by fsbno to the end block of the file.
1281 */
52f1acc8 1282 fsbno = XFS_B_TO_FSBT(mp, start);
8aa7d37e 1283 lastbno = XFS_B_TO_FSB(mp, end);
49c69591 1284
52f1acc8
JL
1285 for (;;) {
1286 struct xfs_bmbt_irec map[2];
1287 int nmap = 2;
1288 unsigned int i;
3fe3e6b1 1289
8aa7d37e 1290 error = xfs_bmapi_read(ip, fsbno, lastbno - fsbno, map, &nmap,
52f1acc8
JL
1291 XFS_BMAPI_ENTIRE);
1292 if (error)
8aa7d37e 1293 goto out_error;
3fe3e6b1 1294
52f1acc8
JL
1295 /* No extents at given offset, must be beyond EOF */
1296 if (nmap == 0) {
2451337d 1297 error = -ENXIO;
8aa7d37e 1298 goto out_error;
52f1acc8
JL
1299 }
1300
1301 for (i = 0; i < nmap; i++) {
1302 offset = max_t(loff_t, start,
1303 XFS_FSB_TO_B(mp, map[i].br_startoff));
1304
49c69591
ES
1305 /* Landed in the hole we wanted? */
1306 if (whence == SEEK_HOLE &&
1307 map[i].br_startblock == HOLESTARTBLOCK)
1308 goto out;
1309
1310 /* Landed in the data extent we wanted? */
1311 if (whence == SEEK_DATA &&
1312 (map[i].br_startblock == DELAYSTARTBLOCK ||
1313 (map[i].br_state == XFS_EXT_NORM &&
1314 !isnullstartblock(map[i].br_startblock))))
52f1acc8
JL
1315 goto out;
1316
1317 /*
49c69591
ES
1318 * Landed in an unwritten extent, try to search
1319 * for hole or data from page cache.
52f1acc8
JL
1320 */
1321 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1322 if (xfs_find_get_desired_pgoff(inode, &map[i],
49c69591
ES
1323 whence == SEEK_HOLE ? HOLE_OFF : DATA_OFF,
1324 &offset))
52f1acc8
JL
1325 goto out;
1326 }
1327 }
1328
1329 /*
49c69591
ES
1330 * We only received one extent out of the two requested. This
1331 * means we've hit EOF and didn't find what we are looking for.
52f1acc8 1332 */
3fe3e6b1 1333 if (nmap == 1) {
49c69591
ES
1334 /*
1335 * If we were looking for a hole, set offset to
1336 * the end of the file (i.e., there is an implicit
1337 * hole at the end of any file).
1338 */
1339 if (whence == SEEK_HOLE) {
8aa7d37e 1340 offset = end;
49c69591
ES
1341 break;
1342 }
1343 /*
1344 * If we were looking for data, it's nowhere to be found
1345 */
1346 ASSERT(whence == SEEK_DATA);
2451337d 1347 error = -ENXIO;
8aa7d37e 1348 goto out_error;
3fe3e6b1
JL
1349 }
1350
52f1acc8
JL
1351 ASSERT(i > 1);
1352
1353 /*
1354 * Nothing was found, proceed to the next round of search
49c69591 1355 * if the next reading offset is not at or beyond EOF.
52f1acc8
JL
1356 */
1357 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1358 start = XFS_FSB_TO_B(mp, fsbno);
8aa7d37e 1359 if (start >= end) {
49c69591 1360 if (whence == SEEK_HOLE) {
8aa7d37e 1361 offset = end;
49c69591
ES
1362 break;
1363 }
1364 ASSERT(whence == SEEK_DATA);
2451337d 1365 error = -ENXIO;
8aa7d37e 1366 goto out_error;
52f1acc8 1367 }
3fe3e6b1
JL
1368 }
1369
b686d1f7
JL
1370out:
1371 /*
49c69591 1372 * If at this point we have found the hole we wanted, the returned
b686d1f7 1373 * offset may be bigger than the file size as it may be aligned to
49c69591 1374 * page boundary for unwritten extents. We need to deal with this
b686d1f7
JL
1375 * situation in particular.
1376 */
49c69591 1377 if (whence == SEEK_HOLE)
8aa7d37e
ES
1378 offset = min_t(loff_t, offset, end);
1379
1380 return offset;
1381
1382out_error:
1383 return error;
1384}
1385
1386STATIC loff_t
1387xfs_seek_hole_data(
1388 struct file *file,
1389 loff_t start,
1390 int whence)
1391{
1392 struct inode *inode = file->f_mapping->host;
1393 struct xfs_inode *ip = XFS_I(inode);
1394 struct xfs_mount *mp = ip->i_mount;
1395 uint lock;
1396 loff_t offset, end;
1397 int error = 0;
1398
1399 if (XFS_FORCED_SHUTDOWN(mp))
1400 return -EIO;
1401
1402 lock = xfs_ilock_data_map_shared(ip);
1403
1404 end = i_size_read(inode);
1405 offset = __xfs_seek_hole_data(inode, start, end, whence);
1406 if (offset < 0) {
1407 error = offset;
1408 goto out_unlock;
1409 }
1410
46a1c2c7 1411 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1412
1413out_unlock:
01f4f327 1414 xfs_iunlock(ip, lock);
3fe3e6b1
JL
1415
1416 if (error)
2451337d 1417 return error;
3fe3e6b1
JL
1418 return offset;
1419}
1420
1421STATIC loff_t
1422xfs_file_llseek(
1423 struct file *file,
1424 loff_t offset,
59f9c004 1425 int whence)
3fe3e6b1 1426{
59f9c004 1427 switch (whence) {
3fe3e6b1
JL
1428 case SEEK_END:
1429 case SEEK_CUR:
1430 case SEEK_SET:
59f9c004 1431 return generic_file_llseek(file, offset, whence);
3fe3e6b1 1432 case SEEK_HOLE:
49c69591 1433 case SEEK_DATA:
59f9c004 1434 return xfs_seek_hole_data(file, offset, whence);
3fe3e6b1
JL
1435 default:
1436 return -EINVAL;
1437 }
1438}
1439
de0e8c20
DC
1440/*
1441 * Locking for serialisation of IO during page faults. This results in a lock
1442 * ordering of:
1443 *
1444 * mmap_sem (MM)
6b698ede 1445 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1446 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1447 * page_lock (MM)
1448 * i_lock (XFS - extent map serialisation)
de0e8c20 1449 */
de0e8c20 1450
075a924d
DC
1451/*
1452 * mmap()d file has taken write protection fault and is being made writable. We
1453 * can set the page state up correctly for a writable page, which means we can
1454 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1455 * mapping.
de0e8c20
DC
1456 */
1457STATIC int
075a924d 1458xfs_filemap_page_mkwrite(
de0e8c20
DC
1459 struct vm_area_struct *vma,
1460 struct vm_fault *vmf)
1461{
6b698ede 1462 struct inode *inode = file_inode(vma->vm_file);
ec56b1f1 1463 int ret;
de0e8c20 1464
6b698ede 1465 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
de0e8c20 1466
6b698ede 1467 sb_start_pagefault(inode->i_sb);
ec56b1f1 1468 file_update_time(vma->vm_file);
6b698ede 1469 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
de0e8c20 1470
6b698ede 1471 if (IS_DAX(inode)) {
6c31f495 1472 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
6b698ede 1473 } else {
68a9f5e7 1474 ret = iomap_page_mkwrite(vma, vmf, &xfs_iomap_ops);
6b698ede
DC
1475 ret = block_page_mkwrite_return(ret);
1476 }
1477
1478 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1479 sb_end_pagefault(inode->i_sb);
1480
1481 return ret;
de0e8c20
DC
1482}
1483
075a924d 1484STATIC int
6b698ede 1485xfs_filemap_fault(
075a924d
DC
1486 struct vm_area_struct *vma,
1487 struct vm_fault *vmf)
1488{
b2442c5a 1489 struct inode *inode = file_inode(vma->vm_file);
6b698ede 1490 int ret;
ec56b1f1 1491
b2442c5a 1492 trace_xfs_filemap_fault(XFS_I(inode));
075a924d 1493
6b698ede 1494 /* DAX can shortcut the normal fault path on write faults! */
b2442c5a 1495 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
6b698ede 1496 return xfs_filemap_page_mkwrite(vma, vmf);
075a924d 1497
b2442c5a
DC
1498 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1499 if (IS_DAX(inode)) {
1500 /*
1501 * we do not want to trigger unwritten extent conversion on read
1502 * faults - that is unnecessary overhead and would also require
1503 * changes to xfs_get_blocks_direct() to map unwritten extent
1504 * ioend for conversion on read-only mappings.
1505 */
6c31f495 1506 ret = iomap_dax_fault(vma, vmf, &xfs_iomap_ops);
b2442c5a
DC
1507 } else
1508 ret = filemap_fault(vma, vmf);
1509 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
075a924d 1510
6b698ede
DC
1511 return ret;
1512}
1513
13ad4fe3
DC
1514/*
1515 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1516 * both read and write faults. Hence we need to handle both cases. There is no
1517 * ->pmd_mkwrite callout for huge pages, so we have a single function here to
1518 * handle both cases here. @flags carries the information on the type of fault
1519 * occuring.
1520 */
acd76e74
MW
1521STATIC int
1522xfs_filemap_pmd_fault(
1523 struct vm_area_struct *vma,
1524 unsigned long addr,
1525 pmd_t *pmd,
1526 unsigned int flags)
1527{
1528 struct inode *inode = file_inode(vma->vm_file);
1529 struct xfs_inode *ip = XFS_I(inode);
1530 int ret;
1531
1532 if (!IS_DAX(inode))
1533 return VM_FAULT_FALLBACK;
1534
1535 trace_xfs_filemap_pmd_fault(ip);
1536
13ad4fe3
DC
1537 if (flags & FAULT_FLAG_WRITE) {
1538 sb_start_pagefault(inode->i_sb);
1539 file_update_time(vma->vm_file);
1540 }
1541
acd76e74 1542 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
6b524995 1543 ret = dax_pmd_fault(vma, addr, pmd, flags, xfs_get_blocks_dax_fault);
acd76e74 1544 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
acd76e74 1545
13ad4fe3
DC
1546 if (flags & FAULT_FLAG_WRITE)
1547 sb_end_pagefault(inode->i_sb);
acd76e74
MW
1548
1549 return ret;
1550}
1551
3af49285
DC
1552/*
1553 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1554 * updates on write faults. In reality, it's need to serialise against
5eb88dca
RZ
1555 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1556 * to ensure we serialise the fault barrier in place.
3af49285
DC
1557 */
1558static int
1559xfs_filemap_pfn_mkwrite(
1560 struct vm_area_struct *vma,
1561 struct vm_fault *vmf)
1562{
1563
1564 struct inode *inode = file_inode(vma->vm_file);
1565 struct xfs_inode *ip = XFS_I(inode);
1566 int ret = VM_FAULT_NOPAGE;
1567 loff_t size;
1568
1569 trace_xfs_filemap_pfn_mkwrite(ip);
1570
1571 sb_start_pagefault(inode->i_sb);
1572 file_update_time(vma->vm_file);
1573
1574 /* check if the faulting page hasn't raced with truncate */
1575 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1576 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1577 if (vmf->pgoff >= size)
1578 ret = VM_FAULT_SIGBUS;
5eb88dca
RZ
1579 else if (IS_DAX(inode))
1580 ret = dax_pfn_mkwrite(vma, vmf);
3af49285
DC
1581 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1582 sb_end_pagefault(inode->i_sb);
acd76e74 1583 return ret;
3af49285 1584
acd76e74
MW
1585}
1586
6b698ede
DC
1587static const struct vm_operations_struct xfs_file_vm_ops = {
1588 .fault = xfs_filemap_fault,
acd76e74 1589 .pmd_fault = xfs_filemap_pmd_fault,
6b698ede
DC
1590 .map_pages = filemap_map_pages,
1591 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1592 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1593};
1594
1595STATIC int
1596xfs_file_mmap(
1597 struct file *filp,
1598 struct vm_area_struct *vma)
1599{
1600 file_accessed(filp);
1601 vma->vm_ops = &xfs_file_vm_ops;
1602 if (IS_DAX(file_inode(filp)))
acd76e74 1603 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
6b698ede 1604 return 0;
075a924d
DC
1605}
1606
4b6f5d20 1607const struct file_operations xfs_file_operations = {
3fe3e6b1 1608 .llseek = xfs_file_llseek,
b4f5d2c6 1609 .read_iter = xfs_file_read_iter,
bf97f3bc 1610 .write_iter = xfs_file_write_iter,
1b895840 1611 .splice_read = xfs_file_splice_read,
8d020765 1612 .splice_write = iter_file_splice_write,
3562fd45 1613 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1614#ifdef CONFIG_COMPAT
3562fd45 1615 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1616#endif
3562fd45
NS
1617 .mmap = xfs_file_mmap,
1618 .open = xfs_file_open,
1619 .release = xfs_file_release,
1620 .fsync = xfs_file_fsync,
2fe17c10 1621 .fallocate = xfs_file_fallocate,
1da177e4
LT
1622};
1623
4b6f5d20 1624const struct file_operations xfs_dir_file_operations = {
f999a5bf 1625 .open = xfs_dir_open,
1da177e4 1626 .read = generic_read_dir,
3b0a3c1a 1627 .iterate_shared = xfs_file_readdir,
59af1584 1628 .llseek = generic_file_llseek,
3562fd45 1629 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1630#ifdef CONFIG_COMPAT
3562fd45 1631 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1632#endif
1da2f2db 1633 .fsync = xfs_dir_fsync,
1da177e4 1634};