]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_file.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
a4fbe6ab 21#include "xfs_format.h"
239880ef
DC
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
1da177e4 24#include "xfs_mount.h"
57062787
DC
25#include "xfs_da_format.h"
26#include "xfs_da_btree.h"
1da177e4 27#include "xfs_inode.h"
239880ef 28#include "xfs_trans.h"
fd3200be 29#include "xfs_inode_item.h"
dda35b8f 30#include "xfs_bmap.h"
c24b5dfa 31#include "xfs_bmap_util.h"
1da177e4 32#include "xfs_error.h"
2b9ab5ab 33#include "xfs_dir2.h"
c24b5dfa 34#include "xfs_dir2_priv.h"
ddcd856d 35#include "xfs_ioctl.h"
dda35b8f 36#include "xfs_trace.h"
239880ef 37#include "xfs_log.h"
dc06f398 38#include "xfs_icache.h"
781355c6 39#include "xfs_pnfs.h"
68a9f5e7 40#include "xfs_iomap.h"
0613f16c 41#include "xfs_reflink.h"
1da177e4
LT
42
43#include <linux/dcache.h>
2fe17c10 44#include <linux/falloc.h>
d126d43f 45#include <linux/pagevec.h>
66114cad 46#include <linux/backing-dev.h>
1da177e4 47
f0f37e2f 48static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 49
dda35b8f 50/*
68a9f5e7
CH
51 * Clear the specified ranges to zero through either the pagecache or DAX.
52 * Holes and unwritten extents will be left as-is as they already are zeroed.
dda35b8f 53 */
ef9d8733 54int
7bb41db3 55xfs_zero_range(
68a9f5e7 56 struct xfs_inode *ip,
7bb41db3
CH
57 xfs_off_t pos,
58 xfs_off_t count,
59 bool *did_zero)
dda35b8f 60{
f16078e0 61 return iomap_zero_range(VFS_I(ip), pos, count, did_zero, &xfs_iomap_ops);
dda35b8f
CH
62}
63
8add71ca
CH
64int
65xfs_update_prealloc_flags(
66 struct xfs_inode *ip,
67 enum xfs_prealloc_flags flags)
68{
69 struct xfs_trans *tp;
70 int error;
71
253f4911
CH
72 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
73 0, 0, 0, &tp);
74 if (error)
8add71ca 75 return error;
8add71ca
CH
76
77 xfs_ilock(ip, XFS_ILOCK_EXCL);
78 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
79
80 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
c19b3b05
DC
81 VFS_I(ip)->i_mode &= ~S_ISUID;
82 if (VFS_I(ip)->i_mode & S_IXGRP)
83 VFS_I(ip)->i_mode &= ~S_ISGID;
8add71ca
CH
84 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
85 }
86
87 if (flags & XFS_PREALLOC_SET)
88 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
89 if (flags & XFS_PREALLOC_CLEAR)
90 ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
91
92 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
93 if (flags & XFS_PREALLOC_SYNC)
94 xfs_trans_set_sync(tp);
70393313 95 return xfs_trans_commit(tp);
8add71ca
CH
96}
97
1da2f2db
CH
98/*
99 * Fsync operations on directories are much simpler than on regular files,
100 * as there is no file data to flush, and thus also no need for explicit
101 * cache flush operations, and there are no non-transaction metadata updates
102 * on directories either.
103 */
104STATIC int
105xfs_dir_fsync(
106 struct file *file,
107 loff_t start,
108 loff_t end,
109 int datasync)
110{
111 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
112 struct xfs_mount *mp = ip->i_mount;
113 xfs_lsn_t lsn = 0;
114
115 trace_xfs_dir_fsync(ip);
116
117 xfs_ilock(ip, XFS_ILOCK_SHARED);
118 if (xfs_ipincount(ip))
119 lsn = ip->i_itemp->ili_last_lsn;
120 xfs_iunlock(ip, XFS_ILOCK_SHARED);
121
122 if (!lsn)
123 return 0;
2451337d 124 return _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
1da2f2db
CH
125}
126
fd3200be
CH
127STATIC int
128xfs_file_fsync(
129 struct file *file,
02c24a82
JB
130 loff_t start,
131 loff_t end,
fd3200be
CH
132 int datasync)
133{
7ea80859
CH
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
a27a263b 136 struct xfs_mount *mp = ip->i_mount;
fd3200be
CH
137 int error = 0;
138 int log_flushed = 0;
b1037058 139 xfs_lsn_t lsn = 0;
fd3200be 140
cca28fb8 141 trace_xfs_file_fsync(ip);
fd3200be 142
1b180274 143 error = file_write_and_wait_range(file, start, end);
02c24a82
JB
144 if (error)
145 return error;
146
a27a263b 147 if (XFS_FORCED_SHUTDOWN(mp))
b474c7ae 148 return -EIO;
fd3200be
CH
149
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
151
2291dab2
DC
152 /*
153 * If we have an RT and/or log subvolume we need to make sure to flush
154 * the write cache the device used for file data first. This is to
155 * ensure newly written file data make it to disk before logging the new
156 * inode size in case of an extending write.
157 */
158 if (XFS_IS_REALTIME_INODE(ip))
159 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
160 else if (mp->m_logdev_targp != mp->m_ddev_targp)
161 xfs_blkdev_issue_flush(mp->m_ddev_targp);
a27a263b 162
fd3200be 163 /*
fc0561ce
DC
164 * All metadata updates are logged, which means that we just have to
165 * flush the log up to the latest LSN that touched the inode. If we have
166 * concurrent fsync/fdatasync() calls, we need them to all block on the
167 * log force before we clear the ili_fsync_fields field. This ensures
168 * that we don't get a racing sync operation that does not wait for the
169 * metadata to hit the journal before returning. If we race with
170 * clearing the ili_fsync_fields, then all that will happen is the log
171 * force will do nothing as the lsn will already be on disk. We can't
172 * race with setting ili_fsync_fields because that is done under
173 * XFS_ILOCK_EXCL, and that can't happen because we hold the lock shared
174 * until after the ili_fsync_fields is cleared.
fd3200be
CH
175 */
176 xfs_ilock(ip, XFS_ILOCK_SHARED);
8f639dde
CH
177 if (xfs_ipincount(ip)) {
178 if (!datasync ||
fc0561ce 179 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
8f639dde
CH
180 lsn = ip->i_itemp->ili_last_lsn;
181 }
fd3200be 182
fc0561ce 183 if (lsn) {
b1037058 184 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
fc0561ce
DC
185 ip->i_itemp->ili_fsync_fields = 0;
186 }
187 xfs_iunlock(ip, XFS_ILOCK_SHARED);
b1037058 188
a27a263b
CH
189 /*
190 * If we only have a single device, and the log force about was
191 * a no-op we might have to flush the data device cache here.
192 * This can only happen for fdatasync/O_DSYNC if we were overwriting
193 * an already allocated file and thus do not have any metadata to
194 * commit.
195 */
2291dab2
DC
196 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
197 mp->m_logdev_targp == mp->m_ddev_targp)
a27a263b 198 xfs_blkdev_issue_flush(mp->m_ddev_targp);
fd3200be 199
2451337d 200 return error;
fd3200be
CH
201}
202
00258e36 203STATIC ssize_t
bbc5a740 204xfs_file_dio_aio_read(
dda35b8f 205 struct kiocb *iocb,
b4f5d2c6 206 struct iov_iter *to)
dda35b8f 207{
acdda3aa 208 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
bbc5a740 209 size_t count = iov_iter_count(to);
acdda3aa 210 ssize_t ret;
dda35b8f 211
bbc5a740 212 trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
dda35b8f 213
f1285ff0
CH
214 if (!count)
215 return 0; /* skip atime */
dda35b8f 216
a447d7cd
CH
217 file_accessed(iocb->ki_filp);
218
65523218 219 xfs_ilock(ip, XFS_IOLOCK_SHARED);
acdda3aa 220 ret = iomap_dio_rw(iocb, to, &xfs_iomap_ops, NULL);
65523218 221 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
acdda3aa 222
16d4d435
CH
223 return ret;
224}
225
f021bd07 226static noinline ssize_t
16d4d435
CH
227xfs_file_dax_read(
228 struct kiocb *iocb,
229 struct iov_iter *to)
230{
6c31f495 231 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
16d4d435
CH
232 size_t count = iov_iter_count(to);
233 ssize_t ret = 0;
234
235 trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
236
237 if (!count)
238 return 0; /* skip atime */
239
29a5d29e
GR
240 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
241 if (iocb->ki_flags & IOCB_NOWAIT)
242 return -EAGAIN;
243 xfs_ilock(ip, XFS_IOLOCK_SHARED);
244 }
11c59c92 245 ret = dax_iomap_rw(iocb, to, &xfs_iomap_ops);
65523218 246 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740 247
f1285ff0 248 file_accessed(iocb->ki_filp);
bbc5a740
CH
249 return ret;
250}
251
252STATIC ssize_t
253xfs_file_buffered_aio_read(
254 struct kiocb *iocb,
255 struct iov_iter *to)
256{
257 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
258 ssize_t ret;
259
260 trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
dda35b8f 261
65523218 262 xfs_ilock(ip, XFS_IOLOCK_SHARED);
b4f5d2c6 263 ret = generic_file_read_iter(iocb, to);
65523218 264 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
bbc5a740
CH
265
266 return ret;
267}
268
269STATIC ssize_t
270xfs_file_read_iter(
271 struct kiocb *iocb,
272 struct iov_iter *to)
273{
16d4d435
CH
274 struct inode *inode = file_inode(iocb->ki_filp);
275 struct xfs_mount *mp = XFS_I(inode)->i_mount;
bbc5a740
CH
276 ssize_t ret = 0;
277
278 XFS_STATS_INC(mp, xs_read_calls);
279
280 if (XFS_FORCED_SHUTDOWN(mp))
281 return -EIO;
282
16d4d435
CH
283 if (IS_DAX(inode))
284 ret = xfs_file_dax_read(iocb, to);
285 else if (iocb->ki_flags & IOCB_DIRECT)
bbc5a740 286 ret = xfs_file_dio_aio_read(iocb, to);
3176c3e0 287 else
bbc5a740 288 ret = xfs_file_buffered_aio_read(iocb, to);
dda35b8f 289
dda35b8f 290 if (ret > 0)
ff6d6af2 291 XFS_STATS_ADD(mp, xs_read_bytes, ret);
dda35b8f
CH
292 return ret;
293}
294
dda35b8f 295/*
193aec10
CH
296 * Zero any on disk space between the current EOF and the new, larger EOF.
297 *
298 * This handles the normal case of zeroing the remainder of the last block in
299 * the file and the unusual case of zeroing blocks out beyond the size of the
300 * file. This second case only happens with fixed size extents and when the
301 * system crashes before the inode size was updated but after blocks were
302 * allocated.
303 *
304 * Expects the iolock to be held exclusive, and will take the ilock internally.
dda35b8f 305 */
dda35b8f
CH
306int /* error (positive) */
307xfs_zero_eof(
193aec10
CH
308 struct xfs_inode *ip,
309 xfs_off_t offset, /* starting I/O offset */
5885ebda
DC
310 xfs_fsize_t isize, /* current inode size */
311 bool *did_zeroing)
dda35b8f 312{
193aec10 313 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
dda35b8f
CH
314 ASSERT(offset > isize);
315
0a50f162 316 trace_xfs_zero_eof(ip, isize, offset - isize);
570b6211 317 return xfs_zero_range(ip, isize, offset - isize, did_zeroing);
dda35b8f
CH
318}
319
4d8d1581
DC
320/*
321 * Common pre-write limit and setup checks.
322 *
5bf1f262
CH
323 * Called with the iolocked held either shared and exclusive according to
324 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
325 * if called for a direct write beyond i_size.
4d8d1581
DC
326 */
327STATIC ssize_t
328xfs_file_aio_write_checks(
99733fa3
AV
329 struct kiocb *iocb,
330 struct iov_iter *from,
4d8d1581
DC
331 int *iolock)
332{
99733fa3 333 struct file *file = iocb->ki_filp;
4d8d1581
DC
334 struct inode *inode = file->f_mapping->host;
335 struct xfs_inode *ip = XFS_I(inode);
3309dd04 336 ssize_t error = 0;
99733fa3 337 size_t count = iov_iter_count(from);
3136e8bb 338 bool drained_dio = false;
4d8d1581 339
7271d243 340restart:
3309dd04
AV
341 error = generic_write_checks(iocb, from);
342 if (error <= 0)
4d8d1581 343 return error;
4d8d1581 344
65523218 345 error = xfs_break_layouts(inode, iolock);
781355c6
CH
346 if (error)
347 return error;
348
65523218
CH
349 /*
350 * For changing security info in file_remove_privs() we need i_rwsem
351 * exclusively.
352 */
a6de82ca 353 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
65523218 354 xfs_iunlock(ip, *iolock);
a6de82ca 355 *iolock = XFS_IOLOCK_EXCL;
65523218 356 xfs_ilock(ip, *iolock);
a6de82ca
JK
357 goto restart;
358 }
4d8d1581
DC
359 /*
360 * If the offset is beyond the size of the file, we need to zero any
361 * blocks that fall between the existing EOF and the start of this
2813d682 362 * write. If zeroing is needed and we are currently holding the
467f7899
CH
363 * iolock shared, we need to update it to exclusive which implies
364 * having to redo all checks before.
b9d59846
DC
365 *
366 * We need to serialise against EOF updates that occur in IO
367 * completions here. We want to make sure that nobody is changing the
368 * size while we do this check until we have placed an IO barrier (i.e.
369 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
370 * The spinlock effectively forms a memory barrier once we have the
371 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
372 * and hence be able to correctly determine if we need to run zeroing.
4d8d1581 373 */
b9d59846 374 spin_lock(&ip->i_flags_lock);
99733fa3 375 if (iocb->ki_pos > i_size_read(inode)) {
5885ebda
DC
376 bool zero = false;
377
b9d59846 378 spin_unlock(&ip->i_flags_lock);
3136e8bb
BF
379 if (!drained_dio) {
380 if (*iolock == XFS_IOLOCK_SHARED) {
65523218 381 xfs_iunlock(ip, *iolock);
3136e8bb 382 *iolock = XFS_IOLOCK_EXCL;
65523218 383 xfs_ilock(ip, *iolock);
3136e8bb
BF
384 iov_iter_reexpand(from, count);
385 }
40c63fbc
DC
386 /*
387 * We now have an IO submission barrier in place, but
388 * AIO can do EOF updates during IO completion and hence
389 * we now need to wait for all of them to drain. Non-AIO
390 * DIO will have drained before we are given the
391 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
392 * no-op.
393 */
394 inode_dio_wait(inode);
3136e8bb 395 drained_dio = true;
7271d243
DC
396 goto restart;
397 }
99733fa3 398 error = xfs_zero_eof(ip, iocb->ki_pos, i_size_read(inode), &zero);
467f7899
CH
399 if (error)
400 return error;
b9d59846
DC
401 } else
402 spin_unlock(&ip->i_flags_lock);
4d8d1581 403
8a9c9980
CH
404 /*
405 * Updating the timestamps will grab the ilock again from
406 * xfs_fs_dirty_inode, so we have to call it after dropping the
407 * lock above. Eventually we should look into a way to avoid
408 * the pointless lock roundtrip.
409 */
c3b2da31
JB
410 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
411 error = file_update_time(file);
412 if (error)
413 return error;
414 }
8a9c9980 415
4d8d1581
DC
416 /*
417 * If we're writing the file then make sure to clear the setuid and
418 * setgid bits if the process is not being run by root. This keeps
419 * people from modifying setuid and setgid binaries.
420 */
a6de82ca
JK
421 if (!IS_NOSEC(inode))
422 return file_remove_privs(file);
423 return 0;
4d8d1581
DC
424}
425
acdda3aa
CH
426static int
427xfs_dio_write_end_io(
428 struct kiocb *iocb,
429 ssize_t size,
430 unsigned flags)
431{
432 struct inode *inode = file_inode(iocb->ki_filp);
433 struct xfs_inode *ip = XFS_I(inode);
434 loff_t offset = iocb->ki_pos;
acdda3aa
CH
435 int error = 0;
436
437 trace_xfs_end_io_direct_write(ip, offset, size);
438
439 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
440 return -EIO;
441
442 if (size <= 0)
443 return size;
444
15f30c7f
EG
445 if (flags & IOMAP_DIO_COW) {
446 error = xfs_reflink_end_cow(ip, offset, size);
447 if (error)
448 return error;
449 }
450
451 /*
452 * Unwritten conversion updates the in-core isize after extent
453 * conversion but before updating the on-disk size. Updating isize any
454 * earlier allows a racing dio read to find unwritten extents before
455 * they are converted.
456 */
457 if (flags & IOMAP_DIO_UNWRITTEN)
458 return xfs_iomap_write_unwritten(ip, offset, size, true);
459
acdda3aa
CH
460 /*
461 * We need to update the in-core inode size here so that we don't end up
462 * with the on-disk inode size being outside the in-core inode size. We
463 * have no other method of updating EOF for AIO, so always do it here
464 * if necessary.
465 *
466 * We need to lock the test/set EOF update as we can be racing with
467 * other IO completions here to update the EOF. Failing to serialise
468 * here can result in EOF moving backwards and Bad Things Happen when
469 * that occurs.
470 */
471 spin_lock(&ip->i_flags_lock);
472 if (offset + size > i_size_read(inode)) {
473 i_size_write(inode, offset + size);
15f30c7f 474 spin_unlock(&ip->i_flags_lock);
acdda3aa 475 error = xfs_setfilesize(ip, offset, size);
15f30c7f
EG
476 } else {
477 spin_unlock(&ip->i_flags_lock);
478 }
acdda3aa
CH
479
480 return error;
481}
482
f0d26e86
DC
483/*
484 * xfs_file_dio_aio_write - handle direct IO writes
485 *
486 * Lock the inode appropriately to prepare for and issue a direct IO write.
eda77982 487 * By separating it from the buffered write path we remove all the tricky to
f0d26e86
DC
488 * follow locking changes and looping.
489 *
eda77982
DC
490 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
491 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
492 * pages are flushed out.
493 *
494 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
495 * allowing them to be done in parallel with reads and other direct IO writes.
496 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
497 * needs to do sub-block zeroing and that requires serialisation against other
498 * direct IOs to the same block. In this case we need to serialise the
499 * submission of the unaligned IOs so that we don't get racing block zeroing in
500 * the dio layer. To avoid the problem with aio, we also need to wait for
501 * outstanding IOs to complete so that unwritten extent conversion is completed
502 * before we try to map the overlapping block. This is currently implemented by
4a06fd26 503 * hitting it with a big hammer (i.e. inode_dio_wait()).
eda77982 504 *
f0d26e86
DC
505 * Returns with locks held indicated by @iolock and errors indicated by
506 * negative return values.
507 */
508STATIC ssize_t
509xfs_file_dio_aio_write(
510 struct kiocb *iocb,
b3188919 511 struct iov_iter *from)
f0d26e86
DC
512{
513 struct file *file = iocb->ki_filp;
514 struct address_space *mapping = file->f_mapping;
515 struct inode *inode = mapping->host;
516 struct xfs_inode *ip = XFS_I(inode);
517 struct xfs_mount *mp = ip->i_mount;
518 ssize_t ret = 0;
eda77982 519 int unaligned_io = 0;
d0606464 520 int iolock;
b3188919 521 size_t count = iov_iter_count(from);
acdda3aa 522 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
f0d26e86
DC
523 mp->m_rtdev_targp : mp->m_ddev_targp;
524
7c71ee78 525 /* DIO must be aligned to device logical sector size */
16d4d435 526 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
b474c7ae 527 return -EINVAL;
f0d26e86 528
7271d243 529 /*
0ee7a3f6
CH
530 * Don't take the exclusive iolock here unless the I/O is unaligned to
531 * the file system block size. We don't need to consider the EOF
532 * extension case here because xfs_file_aio_write_checks() will relock
533 * the inode as necessary for EOF zeroing cases and fill out the new
534 * inode size as appropriate.
7271d243 535 */
0ee7a3f6
CH
536 if ((iocb->ki_pos & mp->m_blockmask) ||
537 ((iocb->ki_pos + count) & mp->m_blockmask)) {
538 unaligned_io = 1;
54a4ef8a
CH
539
540 /*
541 * We can't properly handle unaligned direct I/O to reflink
542 * files yet, as we can't unshare a partial block.
543 */
544 if (xfs_is_reflink_inode(ip)) {
545 trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
546 return -EREMCHG;
547 }
d0606464 548 iolock = XFS_IOLOCK_EXCL;
0ee7a3f6 549 } else {
d0606464 550 iolock = XFS_IOLOCK_SHARED;
c58cb165 551 }
f0d26e86 552
29a5d29e
GR
553 if (!xfs_ilock_nowait(ip, iolock)) {
554 if (iocb->ki_flags & IOCB_NOWAIT)
555 return -EAGAIN;
556 xfs_ilock(ip, iolock);
557 }
0ee7a3f6 558
99733fa3 559 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 560 if (ret)
d0606464 561 goto out;
99733fa3 562 count = iov_iter_count(from);
f0d26e86 563
eda77982
DC
564 /*
565 * If we are doing unaligned IO, wait for all other IO to drain,
0ee7a3f6
CH
566 * otherwise demote the lock if we had to take the exclusive lock
567 * for other reasons in xfs_file_aio_write_checks.
eda77982 568 */
29a5d29e
GR
569 if (unaligned_io) {
570 /* If we are going to wait for other DIO to finish, bail */
571 if (iocb->ki_flags & IOCB_NOWAIT) {
572 if (atomic_read(&inode->i_dio_count))
573 return -EAGAIN;
574 } else {
575 inode_dio_wait(inode);
576 }
577 } else if (iolock == XFS_IOLOCK_EXCL) {
65523218 578 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
d0606464 579 iolock = XFS_IOLOCK_SHARED;
f0d26e86
DC
580 }
581
3176c3e0 582 trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
acdda3aa 583 ret = iomap_dio_rw(iocb, from, &xfs_iomap_ops, xfs_dio_write_end_io);
d0606464 584out:
65523218 585 xfs_iunlock(ip, iolock);
d0606464 586
6b698ede 587 /*
16d4d435
CH
588 * No fallback to buffered IO on errors for XFS, direct IO will either
589 * complete fully or fail.
6b698ede 590 */
16d4d435
CH
591 ASSERT(ret < 0 || ret == count);
592 return ret;
593}
594
f021bd07 595static noinline ssize_t
16d4d435
CH
596xfs_file_dax_write(
597 struct kiocb *iocb,
598 struct iov_iter *from)
599{
6c31f495 600 struct inode *inode = iocb->ki_filp->f_mapping->host;
16d4d435 601 struct xfs_inode *ip = XFS_I(inode);
17879e8f 602 int iolock = XFS_IOLOCK_EXCL;
6c31f495
CH
603 ssize_t ret, error = 0;
604 size_t count;
605 loff_t pos;
16d4d435 606
29a5d29e
GR
607 if (!xfs_ilock_nowait(ip, iolock)) {
608 if (iocb->ki_flags & IOCB_NOWAIT)
609 return -EAGAIN;
610 xfs_ilock(ip, iolock);
611 }
612
16d4d435
CH
613 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
614 if (ret)
615 goto out;
616
6c31f495
CH
617 pos = iocb->ki_pos;
618 count = iov_iter_count(from);
8b2180b3 619
6c31f495 620 trace_xfs_file_dax_write(ip, count, pos);
11c59c92 621 ret = dax_iomap_rw(iocb, from, &xfs_iomap_ops);
6c31f495
CH
622 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
623 i_size_write(inode, iocb->ki_pos);
624 error = xfs_setfilesize(ip, pos, ret);
16d4d435 625 }
16d4d435 626out:
65523218 627 xfs_iunlock(ip, iolock);
6c31f495 628 return error ? error : ret;
f0d26e86
DC
629}
630
00258e36 631STATIC ssize_t
637bbc75 632xfs_file_buffered_aio_write(
dda35b8f 633 struct kiocb *iocb,
b3188919 634 struct iov_iter *from)
dda35b8f
CH
635{
636 struct file *file = iocb->ki_filp;
637 struct address_space *mapping = file->f_mapping;
638 struct inode *inode = mapping->host;
00258e36 639 struct xfs_inode *ip = XFS_I(inode);
637bbc75
DC
640 ssize_t ret;
641 int enospc = 0;
c3155097 642 int iolock;
dda35b8f 643
c3155097
BF
644write_retry:
645 iolock = XFS_IOLOCK_EXCL;
65523218 646 xfs_ilock(ip, iolock);
dda35b8f 647
99733fa3 648 ret = xfs_file_aio_write_checks(iocb, from, &iolock);
4d8d1581 649 if (ret)
d0606464 650 goto out;
dda35b8f
CH
651
652 /* We can write back this queue in page reclaim */
de1414a6 653 current->backing_dev_info = inode_to_bdi(inode);
dda35b8f 654
3176c3e0 655 trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
68a9f5e7 656 ret = iomap_file_buffered_write(iocb, from, &xfs_iomap_ops);
0a64bc2c 657 if (likely(ret >= 0))
99733fa3 658 iocb->ki_pos += ret;
dc06f398 659
637bbc75 660 /*
dc06f398
BF
661 * If we hit a space limit, try to free up some lingering preallocated
662 * space before returning an error. In the case of ENOSPC, first try to
663 * write back all dirty inodes to free up some of the excess reserved
664 * metadata space. This reduces the chances that the eofblocks scan
665 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
666 * also behaves as a filter to prevent too many eofblocks scans from
667 * running at the same time.
637bbc75 668 */
dc06f398 669 if (ret == -EDQUOT && !enospc) {
c3155097 670 xfs_iunlock(ip, iolock);
dc06f398
BF
671 enospc = xfs_inode_free_quota_eofblocks(ip);
672 if (enospc)
673 goto write_retry;
83104d44
DW
674 enospc = xfs_inode_free_quota_cowblocks(ip);
675 if (enospc)
676 goto write_retry;
c3155097 677 iolock = 0;
dc06f398
BF
678 } else if (ret == -ENOSPC && !enospc) {
679 struct xfs_eofblocks eofb = {0};
680
637bbc75 681 enospc = 1;
9aa05000 682 xfs_flush_inodes(ip->i_mount);
c3155097
BF
683
684 xfs_iunlock(ip, iolock);
dc06f398
BF
685 eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
686 xfs_icache_free_eofblocks(ip->i_mount, &eofb);
cf2cb784 687 xfs_icache_free_cowblocks(ip->i_mount, &eofb);
9aa05000 688 goto write_retry;
dda35b8f 689 }
d0606464 690
dda35b8f 691 current->backing_dev_info = NULL;
d0606464 692out:
c3155097
BF
693 if (iolock)
694 xfs_iunlock(ip, iolock);
637bbc75
DC
695 return ret;
696}
697
698STATIC ssize_t
bf97f3bc 699xfs_file_write_iter(
637bbc75 700 struct kiocb *iocb,
bf97f3bc 701 struct iov_iter *from)
637bbc75
DC
702{
703 struct file *file = iocb->ki_filp;
704 struct address_space *mapping = file->f_mapping;
705 struct inode *inode = mapping->host;
706 struct xfs_inode *ip = XFS_I(inode);
707 ssize_t ret;
bf97f3bc 708 size_t ocount = iov_iter_count(from);
637bbc75 709
ff6d6af2 710 XFS_STATS_INC(ip->i_mount, xs_write_calls);
637bbc75 711
637bbc75
DC
712 if (ocount == 0)
713 return 0;
714
bf97f3bc
AV
715 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
716 return -EIO;
637bbc75 717
16d4d435
CH
718 if (IS_DAX(inode))
719 ret = xfs_file_dax_write(iocb, from);
0613f16c
DW
720 else if (iocb->ki_flags & IOCB_DIRECT) {
721 /*
722 * Allow a directio write to fall back to a buffered
723 * write *only* in the case that we're doing a reflink
724 * CoW. In all other directio scenarios we do not
725 * allow an operation to fall back to buffered mode.
726 */
bf97f3bc 727 ret = xfs_file_dio_aio_write(iocb, from);
0613f16c
DW
728 if (ret == -EREMCHG)
729 goto buffered;
730 } else {
731buffered:
bf97f3bc 732 ret = xfs_file_buffered_aio_write(iocb, from);
0613f16c 733 }
dda35b8f 734
d0606464 735 if (ret > 0) {
ff6d6af2 736 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
dda35b8f 737
d0606464 738 /* Handle various SYNC-type writes */
e2592217 739 ret = generic_write_sync(iocb, ret);
dda35b8f 740 }
a363f0c2 741 return ret;
dda35b8f
CH
742}
743
a904b1ca
NJ
744#define XFS_FALLOC_FL_SUPPORTED \
745 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
746 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
98cc2db5 747 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
a904b1ca 748
2fe17c10
CH
749STATIC long
750xfs_file_fallocate(
83aee9e4
CH
751 struct file *file,
752 int mode,
753 loff_t offset,
754 loff_t len)
2fe17c10 755{
83aee9e4
CH
756 struct inode *inode = file_inode(file);
757 struct xfs_inode *ip = XFS_I(inode);
83aee9e4 758 long error;
8add71ca 759 enum xfs_prealloc_flags flags = 0;
781355c6 760 uint iolock = XFS_IOLOCK_EXCL;
83aee9e4 761 loff_t new_size = 0;
a904b1ca 762 bool do_file_insert = 0;
2fe17c10 763
83aee9e4
CH
764 if (!S_ISREG(inode->i_mode))
765 return -EINVAL;
a904b1ca 766 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
2fe17c10
CH
767 return -EOPNOTSUPP;
768
781355c6 769 xfs_ilock(ip, iolock);
65523218 770 error = xfs_break_layouts(inode, &iolock);
781355c6
CH
771 if (error)
772 goto out_unlock;
773
e8e9ad42
DC
774 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
775 iolock |= XFS_MMAPLOCK_EXCL;
776
83aee9e4
CH
777 if (mode & FALLOC_FL_PUNCH_HOLE) {
778 error = xfs_free_file_space(ip, offset, len);
779 if (error)
780 goto out_unlock;
e1d8fb88 781 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
93407472 782 unsigned int blksize_mask = i_blocksize(inode) - 1;
e1d8fb88
NJ
783
784 if (offset & blksize_mask || len & blksize_mask) {
2451337d 785 error = -EINVAL;
e1d8fb88
NJ
786 goto out_unlock;
787 }
788
23fffa92
LC
789 /*
790 * There is no need to overlap collapse range with EOF,
791 * in which case it is effectively a truncate operation
792 */
793 if (offset + len >= i_size_read(inode)) {
2451337d 794 error = -EINVAL;
23fffa92
LC
795 goto out_unlock;
796 }
797
e1d8fb88
NJ
798 new_size = i_size_read(inode) - len;
799
800 error = xfs_collapse_file_space(ip, offset, len);
801 if (error)
802 goto out_unlock;
a904b1ca 803 } else if (mode & FALLOC_FL_INSERT_RANGE) {
93407472 804 unsigned int blksize_mask = i_blocksize(inode) - 1;
a904b1ca
NJ
805
806 new_size = i_size_read(inode) + len;
807 if (offset & blksize_mask || len & blksize_mask) {
808 error = -EINVAL;
809 goto out_unlock;
810 }
811
812 /* check the new inode size does not wrap through zero */
813 if (new_size > inode->i_sb->s_maxbytes) {
814 error = -EFBIG;
815 goto out_unlock;
816 }
817
818 /* Offset should be less than i_size */
819 if (offset >= i_size_read(inode)) {
820 error = -EINVAL;
821 goto out_unlock;
822 }
823 do_file_insert = 1;
83aee9e4 824 } else {
8add71ca
CH
825 flags |= XFS_PREALLOC_SET;
826
83aee9e4
CH
827 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
828 offset + len > i_size_read(inode)) {
829 new_size = offset + len;
2451337d 830 error = inode_newsize_ok(inode, new_size);
83aee9e4
CH
831 if (error)
832 goto out_unlock;
833 }
2fe17c10 834
376ba313
LC
835 if (mode & FALLOC_FL_ZERO_RANGE)
836 error = xfs_zero_file_space(ip, offset, len);
98cc2db5
DW
837 else {
838 if (mode & FALLOC_FL_UNSHARE_RANGE) {
839 error = xfs_reflink_unshare(ip, offset, len);
840 if (error)
841 goto out_unlock;
842 }
376ba313
LC
843 error = xfs_alloc_file_space(ip, offset, len,
844 XFS_BMAPI_PREALLOC);
98cc2db5 845 }
2fe17c10
CH
846 if (error)
847 goto out_unlock;
848 }
849
83aee9e4 850 if (file->f_flags & O_DSYNC)
8add71ca
CH
851 flags |= XFS_PREALLOC_SYNC;
852
853 error = xfs_update_prealloc_flags(ip, flags);
2fe17c10
CH
854 if (error)
855 goto out_unlock;
856
857 /* Change file size if needed */
858 if (new_size) {
859 struct iattr iattr;
860
861 iattr.ia_valid = ATTR_SIZE;
862 iattr.ia_size = new_size;
69bca807 863 error = xfs_vn_setattr_size(file_dentry(file), &iattr);
a904b1ca
NJ
864 if (error)
865 goto out_unlock;
2fe17c10
CH
866 }
867
a904b1ca
NJ
868 /*
869 * Perform hole insertion now that the file size has been
870 * updated so that if we crash during the operation we don't
871 * leave shifted extents past EOF and hence losing access to
872 * the data that is contained within them.
873 */
874 if (do_file_insert)
875 error = xfs_insert_file_space(ip, offset, len);
876
2fe17c10 877out_unlock:
781355c6 878 xfs_iunlock(ip, iolock);
2451337d 879 return error;
2fe17c10
CH
880}
881
9fe26045
DW
882STATIC int
883xfs_file_clone_range(
884 struct file *file_in,
885 loff_t pos_in,
886 struct file *file_out,
887 loff_t pos_out,
888 u64 len)
889{
5faaf4fa 890 return xfs_reflink_remap_range(file_in, pos_in, file_out, pos_out,
cc714660
DW
891 len, false);
892}
893
cc714660
DW
894STATIC ssize_t
895xfs_file_dedupe_range(
896 struct file *src_file,
897 u64 loff,
898 u64 len,
899 struct file *dst_file,
900 u64 dst_loff)
901{
902 int error;
903
5faaf4fa 904 error = xfs_reflink_remap_range(src_file, loff, dst_file, dst_loff,
cc714660
DW
905 len, true);
906 if (error)
907 return error;
908 return len;
9fe26045 909}
2fe17c10 910
1da177e4 911STATIC int
3562fd45 912xfs_file_open(
1da177e4 913 struct inode *inode,
f999a5bf 914 struct file *file)
1da177e4 915{
f999a5bf 916 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 917 return -EFBIG;
f999a5bf
CH
918 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
919 return -EIO;
29a5d29e 920 file->f_mode |= FMODE_AIO_NOWAIT;
f999a5bf
CH
921 return 0;
922}
923
924STATIC int
925xfs_dir_open(
926 struct inode *inode,
927 struct file *file)
928{
929 struct xfs_inode *ip = XFS_I(inode);
930 int mode;
931 int error;
932
933 error = xfs_file_open(inode, file);
934 if (error)
935 return error;
936
937 /*
938 * If there are any blocks, read-ahead block 0 as we're almost
939 * certain to have the next operation be a read there.
940 */
309ecac8 941 mode = xfs_ilock_data_map_shared(ip);
f999a5bf 942 if (ip->i_d.di_nextents > 0)
7a652bbe 943 error = xfs_dir3_data_readahead(ip, 0, -1);
f999a5bf 944 xfs_iunlock(ip, mode);
7a652bbe 945 return error;
1da177e4
LT
946}
947
1da177e4 948STATIC int
3562fd45 949xfs_file_release(
1da177e4
LT
950 struct inode *inode,
951 struct file *filp)
952{
2451337d 953 return xfs_release(XFS_I(inode));
1da177e4
LT
954}
955
1da177e4 956STATIC int
3562fd45 957xfs_file_readdir(
b8227554
AV
958 struct file *file,
959 struct dir_context *ctx)
1da177e4 960{
b8227554 961 struct inode *inode = file_inode(file);
739bfb2a 962 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
963 size_t bufsize;
964
965 /*
966 * The Linux API doesn't pass down the total size of the buffer
967 * we read into down to the filesystem. With the filldir concept
968 * it's not needed for correct information, but the XFS dir2 leaf
969 * code wants an estimate of the buffer size to calculate it's
970 * readahead window and size the buffers used for mapping to
971 * physical blocks.
972 *
973 * Try to give it an estimate that's good enough, maybe at some
974 * point we can change the ->readdir prototype to include the
a9cc799e 975 * buffer size. For now we use the current glibc buffer size.
051e7cd4 976 */
a9cc799e 977 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 978
acb9553c 979 return xfs_readdir(NULL, ip, ctx, bufsize);
3fe3e6b1
JL
980}
981
982STATIC loff_t
983xfs_file_llseek(
984 struct file *file,
985 loff_t offset,
59f9c004 986 int whence)
3fe3e6b1 987{
9b2970aa
CH
988 struct inode *inode = file->f_mapping->host;
989
990 if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
991 return -EIO;
992
59f9c004 993 switch (whence) {
9b2970aa 994 default:
59f9c004 995 return generic_file_llseek(file, offset, whence);
3fe3e6b1 996 case SEEK_HOLE:
9b2970aa
CH
997 offset = iomap_seek_hole(inode, offset, &xfs_iomap_ops);
998 break;
49c69591 999 case SEEK_DATA:
9b2970aa
CH
1000 offset = iomap_seek_data(inode, offset, &xfs_iomap_ops);
1001 break;
3fe3e6b1 1002 }
9b2970aa
CH
1003
1004 if (offset < 0)
1005 return offset;
1006 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3fe3e6b1
JL
1007}
1008
de0e8c20
DC
1009/*
1010 * Locking for serialisation of IO during page faults. This results in a lock
1011 * ordering of:
1012 *
1013 * mmap_sem (MM)
6b698ede 1014 * sb_start_pagefault(vfs, freeze)
13ad4fe3 1015 * i_mmaplock (XFS - truncate serialisation)
6b698ede
DC
1016 * page_lock (MM)
1017 * i_lock (XFS - extent map serialisation)
de0e8c20 1018 */
de0e8c20 1019
075a924d
DC
1020/*
1021 * mmap()d file has taken write protection fault and is being made writable. We
1022 * can set the page state up correctly for a writable page, which means we can
1023 * do correct delalloc accounting (ENOSPC checking!) and unwritten extent
1024 * mapping.
de0e8c20
DC
1025 */
1026STATIC int
075a924d 1027xfs_filemap_page_mkwrite(
de0e8c20
DC
1028 struct vm_fault *vmf)
1029{
11bac800 1030 struct inode *inode = file_inode(vmf->vma->vm_file);
ec56b1f1 1031 int ret;
de0e8c20 1032
6b698ede 1033 trace_xfs_filemap_page_mkwrite(XFS_I(inode));
de0e8c20 1034
6b698ede 1035 sb_start_pagefault(inode->i_sb);
11bac800 1036 file_update_time(vmf->vma->vm_file);
6b698ede 1037 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
de0e8c20 1038
6b698ede 1039 if (IS_DAX(inode)) {
c791ace1 1040 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
6b698ede 1041 } else {
11bac800 1042 ret = iomap_page_mkwrite(vmf, &xfs_iomap_ops);
6b698ede
DC
1043 ret = block_page_mkwrite_return(ret);
1044 }
1045
1046 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1047 sb_end_pagefault(inode->i_sb);
1048
1049 return ret;
de0e8c20
DC
1050}
1051
075a924d 1052STATIC int
6b698ede 1053xfs_filemap_fault(
075a924d
DC
1054 struct vm_fault *vmf)
1055{
11bac800 1056 struct inode *inode = file_inode(vmf->vma->vm_file);
6b698ede 1057 int ret;
ec56b1f1 1058
b2442c5a 1059 trace_xfs_filemap_fault(XFS_I(inode));
075a924d 1060
6b698ede 1061 /* DAX can shortcut the normal fault path on write faults! */
b2442c5a 1062 if ((vmf->flags & FAULT_FLAG_WRITE) && IS_DAX(inode))
11bac800 1063 return xfs_filemap_page_mkwrite(vmf);
075a924d 1064
b2442c5a 1065 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
acdda3aa 1066 if (IS_DAX(inode))
c791ace1 1067 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
acdda3aa 1068 else
11bac800 1069 ret = filemap_fault(vmf);
b2442c5a 1070 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
075a924d 1071
6b698ede
DC
1072 return ret;
1073}
1074
13ad4fe3
DC
1075/*
1076 * Similar to xfs_filemap_fault(), the DAX fault path can call into here on
1077 * both read and write faults. Hence we need to handle both cases. There is no
a2d58167 1078 * ->huge_mkwrite callout for huge pages, so we have a single function here to
13ad4fe3
DC
1079 * handle both cases here. @flags carries the information on the type of fault
1080 * occuring.
1081 */
acd76e74 1082STATIC int
a2d58167 1083xfs_filemap_huge_fault(
c791ace1
DJ
1084 struct vm_fault *vmf,
1085 enum page_entry_size pe_size)
acd76e74 1086{
f4200391 1087 struct inode *inode = file_inode(vmf->vma->vm_file);
acd76e74
MW
1088 struct xfs_inode *ip = XFS_I(inode);
1089 int ret;
1090
1091 if (!IS_DAX(inode))
1092 return VM_FAULT_FALLBACK;
1093
a2d58167 1094 trace_xfs_filemap_huge_fault(ip);
acd76e74 1095
d8a849e1 1096 if (vmf->flags & FAULT_FLAG_WRITE) {
13ad4fe3 1097 sb_start_pagefault(inode->i_sb);
f4200391 1098 file_update_time(vmf->vma->vm_file);
13ad4fe3
DC
1099 }
1100
acd76e74 1101 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
c791ace1 1102 ret = dax_iomap_fault(vmf, pe_size, &xfs_iomap_ops);
acd76e74 1103 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
acd76e74 1104
d8a849e1 1105 if (vmf->flags & FAULT_FLAG_WRITE)
13ad4fe3 1106 sb_end_pagefault(inode->i_sb);
acd76e74
MW
1107
1108 return ret;
1109}
1110
3af49285
DC
1111/*
1112 * pfn_mkwrite was originally inteneded to ensure we capture time stamp
1113 * updates on write faults. In reality, it's need to serialise against
5eb88dca
RZ
1114 * truncate similar to page_mkwrite. Hence we cycle the XFS_MMAPLOCK_SHARED
1115 * to ensure we serialise the fault barrier in place.
3af49285
DC
1116 */
1117static int
1118xfs_filemap_pfn_mkwrite(
3af49285
DC
1119 struct vm_fault *vmf)
1120{
1121
11bac800 1122 struct inode *inode = file_inode(vmf->vma->vm_file);
3af49285
DC
1123 struct xfs_inode *ip = XFS_I(inode);
1124 int ret = VM_FAULT_NOPAGE;
1125 loff_t size;
1126
1127 trace_xfs_filemap_pfn_mkwrite(ip);
1128
1129 sb_start_pagefault(inode->i_sb);
11bac800 1130 file_update_time(vmf->vma->vm_file);
3af49285
DC
1131
1132 /* check if the faulting page hasn't raced with truncate */
1133 xfs_ilock(ip, XFS_MMAPLOCK_SHARED);
1134 size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1135 if (vmf->pgoff >= size)
1136 ret = VM_FAULT_SIGBUS;
5eb88dca 1137 else if (IS_DAX(inode))
54585e35 1138 ret = dax_iomap_fault(vmf, PE_SIZE_PTE, &xfs_iomap_ops);
3af49285
DC
1139 xfs_iunlock(ip, XFS_MMAPLOCK_SHARED);
1140 sb_end_pagefault(inode->i_sb);
acd76e74 1141 return ret;
3af49285 1142
acd76e74
MW
1143}
1144
6b698ede
DC
1145static const struct vm_operations_struct xfs_file_vm_ops = {
1146 .fault = xfs_filemap_fault,
a2d58167 1147 .huge_fault = xfs_filemap_huge_fault,
6b698ede
DC
1148 .map_pages = filemap_map_pages,
1149 .page_mkwrite = xfs_filemap_page_mkwrite,
3af49285 1150 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
6b698ede
DC
1151};
1152
1153STATIC int
1154xfs_file_mmap(
1155 struct file *filp,
1156 struct vm_area_struct *vma)
1157{
1158 file_accessed(filp);
1159 vma->vm_ops = &xfs_file_vm_ops;
1160 if (IS_DAX(file_inode(filp)))
acd76e74 1161 vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
6b698ede 1162 return 0;
075a924d
DC
1163}
1164
4b6f5d20 1165const struct file_operations xfs_file_operations = {
3fe3e6b1 1166 .llseek = xfs_file_llseek,
b4f5d2c6 1167 .read_iter = xfs_file_read_iter,
bf97f3bc 1168 .write_iter = xfs_file_write_iter,
82c156f8 1169 .splice_read = generic_file_splice_read,
8d020765 1170 .splice_write = iter_file_splice_write,
3562fd45 1171 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 1172#ifdef CONFIG_COMPAT
3562fd45 1173 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 1174#endif
3562fd45
NS
1175 .mmap = xfs_file_mmap,
1176 .open = xfs_file_open,
1177 .release = xfs_file_release,
1178 .fsync = xfs_file_fsync,
dbe6ec81 1179 .get_unmapped_area = thp_get_unmapped_area,
2fe17c10 1180 .fallocate = xfs_file_fallocate,
9fe26045 1181 .clone_file_range = xfs_file_clone_range,
cc714660 1182 .dedupe_file_range = xfs_file_dedupe_range,
1da177e4
LT
1183};
1184
4b6f5d20 1185const struct file_operations xfs_dir_file_operations = {
f999a5bf 1186 .open = xfs_dir_open,
1da177e4 1187 .read = generic_read_dir,
3b0a3c1a 1188 .iterate_shared = xfs_file_readdir,
59af1584 1189 .llseek = generic_file_llseek,
3562fd45 1190 .unlocked_ioctl = xfs_file_ioctl,
d3870398 1191#ifdef CONFIG_COMPAT
3562fd45 1192 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 1193#endif
1da2f2db 1194 .fsync = xfs_dir_fsync,
1da177e4 1195};