]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_icache.c
mm: new shrinker API
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_icache.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
6ca1c906 20#include "xfs_format.h"
fe4fa4b8 21#include "xfs_types.h"
fe4fa4b8 22#include "xfs_log.h"
f661f1e0 23#include "xfs_log_priv.h"
fe4fa4b8
DC
24#include "xfs_inum.h"
25#include "xfs_trans.h"
fd074841 26#include "xfs_trans_priv.h"
fe4fa4b8
DC
27#include "xfs_sb.h"
28#include "xfs_ag.h"
fe4fa4b8
DC
29#include "xfs_mount.h"
30#include "xfs_bmap_btree.h"
fe4fa4b8
DC
31#include "xfs_inode.h"
32#include "xfs_dinode.h"
33#include "xfs_error.h"
fe4fa4b8 34#include "xfs_filestream.h"
fe4fa4b8 35#include "xfs_inode_item.h"
7d095257 36#include "xfs_quota.h"
0b1b213f 37#include "xfs_trace.h"
1a387d3b 38#include "xfs_fsops.h"
6d8b79cf 39#include "xfs_icache.h"
c24b5dfa 40#include "xfs_bmap_util.h"
fe4fa4b8 41
a167b17e
DC
42#include <linux/kthread.h>
43#include <linux/freezer.h>
44
33479e05
DC
45STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
46 struct xfs_perag *pag, struct xfs_inode *ip);
47
48/*
49 * Allocate and initialise an xfs_inode.
50 */
51STATIC struct xfs_inode *
52xfs_inode_alloc(
53 struct xfs_mount *mp,
54 xfs_ino_t ino)
55{
56 struct xfs_inode *ip;
57
58 /*
59 * if this didn't occur in transactions, we could use
60 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
61 * code up to do this anyway.
62 */
63 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
64 if (!ip)
65 return NULL;
66 if (inode_init_always(mp->m_super, VFS_I(ip))) {
67 kmem_zone_free(xfs_inode_zone, ip);
68 return NULL;
69 }
70
71 ASSERT(atomic_read(&ip->i_pincount) == 0);
72 ASSERT(!spin_is_locked(&ip->i_flags_lock));
73 ASSERT(!xfs_isiflocked(ip));
74 ASSERT(ip->i_ino == 0);
75
76 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
77
78 /* initialise the xfs inode */
79 ip->i_ino = ino;
80 ip->i_mount = mp;
81 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
82 ip->i_afp = NULL;
83 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
84 ip->i_flags = 0;
85 ip->i_delayed_blks = 0;
86 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
87
88 return ip;
89}
90
91STATIC void
92xfs_inode_free_callback(
93 struct rcu_head *head)
94{
95 struct inode *inode = container_of(head, struct inode, i_rcu);
96 struct xfs_inode *ip = XFS_I(inode);
97
98 kmem_zone_free(xfs_inode_zone, ip);
99}
100
101STATIC void
102xfs_inode_free(
103 struct xfs_inode *ip)
104{
105 switch (ip->i_d.di_mode & S_IFMT) {
106 case S_IFREG:
107 case S_IFDIR:
108 case S_IFLNK:
109 xfs_idestroy_fork(ip, XFS_DATA_FORK);
110 break;
111 }
112
113 if (ip->i_afp)
114 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
115
116 if (ip->i_itemp) {
117 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
118 xfs_inode_item_destroy(ip);
119 ip->i_itemp = NULL;
120 }
121
122 /* asserts to verify all state is correct here */
123 ASSERT(atomic_read(&ip->i_pincount) == 0);
124 ASSERT(!spin_is_locked(&ip->i_flags_lock));
125 ASSERT(!xfs_isiflocked(ip));
126
127 /*
128 * Because we use RCU freeing we need to ensure the inode always
129 * appears to be reclaimed with an invalid inode number when in the
130 * free state. The ip->i_flags_lock provides the barrier against lookup
131 * races.
132 */
133 spin_lock(&ip->i_flags_lock);
134 ip->i_flags = XFS_IRECLAIM;
135 ip->i_ino = 0;
136 spin_unlock(&ip->i_flags_lock);
137
138 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
139}
140
141/*
142 * Check the validity of the inode we just found it the cache
143 */
144static int
145xfs_iget_cache_hit(
146 struct xfs_perag *pag,
147 struct xfs_inode *ip,
148 xfs_ino_t ino,
149 int flags,
150 int lock_flags) __releases(RCU)
151{
152 struct inode *inode = VFS_I(ip);
153 struct xfs_mount *mp = ip->i_mount;
154 int error;
155
156 /*
157 * check for re-use of an inode within an RCU grace period due to the
158 * radix tree nodes not being updated yet. We monitor for this by
159 * setting the inode number to zero before freeing the inode structure.
160 * If the inode has been reallocated and set up, then the inode number
161 * will not match, so check for that, too.
162 */
163 spin_lock(&ip->i_flags_lock);
164 if (ip->i_ino != ino) {
165 trace_xfs_iget_skip(ip);
166 XFS_STATS_INC(xs_ig_frecycle);
167 error = EAGAIN;
168 goto out_error;
169 }
170
171
172 /*
173 * If we are racing with another cache hit that is currently
174 * instantiating this inode or currently recycling it out of
175 * reclaimabe state, wait for the initialisation to complete
176 * before continuing.
177 *
178 * XXX(hch): eventually we should do something equivalent to
179 * wait_on_inode to wait for these flags to be cleared
180 * instead of polling for it.
181 */
182 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
183 trace_xfs_iget_skip(ip);
184 XFS_STATS_INC(xs_ig_frecycle);
185 error = EAGAIN;
186 goto out_error;
187 }
188
189 /*
190 * If lookup is racing with unlink return an error immediately.
191 */
192 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
193 error = ENOENT;
194 goto out_error;
195 }
196
197 /*
198 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
199 * Need to carefully get it back into useable state.
200 */
201 if (ip->i_flags & XFS_IRECLAIMABLE) {
202 trace_xfs_iget_reclaim(ip);
203
204 /*
205 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
206 * from stomping over us while we recycle the inode. We can't
207 * clear the radix tree reclaimable tag yet as it requires
208 * pag_ici_lock to be held exclusive.
209 */
210 ip->i_flags |= XFS_IRECLAIM;
211
212 spin_unlock(&ip->i_flags_lock);
213 rcu_read_unlock();
214
215 error = -inode_init_always(mp->m_super, inode);
216 if (error) {
217 /*
218 * Re-initializing the inode failed, and we are in deep
219 * trouble. Try to re-add it to the reclaim list.
220 */
221 rcu_read_lock();
222 spin_lock(&ip->i_flags_lock);
223
224 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
225 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
226 trace_xfs_iget_reclaim_fail(ip);
227 goto out_error;
228 }
229
230 spin_lock(&pag->pag_ici_lock);
231 spin_lock(&ip->i_flags_lock);
232
233 /*
234 * Clear the per-lifetime state in the inode as we are now
235 * effectively a new inode and need to return to the initial
236 * state before reuse occurs.
237 */
238 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
239 ip->i_flags |= XFS_INEW;
240 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
241 inode->i_state = I_NEW;
242
243 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
244 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
245
246 spin_unlock(&ip->i_flags_lock);
247 spin_unlock(&pag->pag_ici_lock);
248 } else {
249 /* If the VFS inode is being torn down, pause and try again. */
250 if (!igrab(inode)) {
251 trace_xfs_iget_skip(ip);
252 error = EAGAIN;
253 goto out_error;
254 }
255
256 /* We've got a live one. */
257 spin_unlock(&ip->i_flags_lock);
258 rcu_read_unlock();
259 trace_xfs_iget_hit(ip);
260 }
261
262 if (lock_flags != 0)
263 xfs_ilock(ip, lock_flags);
264
265 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
266 XFS_STATS_INC(xs_ig_found);
267
268 return 0;
269
270out_error:
271 spin_unlock(&ip->i_flags_lock);
272 rcu_read_unlock();
273 return error;
274}
275
276
277static int
278xfs_iget_cache_miss(
279 struct xfs_mount *mp,
280 struct xfs_perag *pag,
281 xfs_trans_t *tp,
282 xfs_ino_t ino,
283 struct xfs_inode **ipp,
284 int flags,
285 int lock_flags)
286{
287 struct xfs_inode *ip;
288 int error;
289 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
290 int iflags;
291
292 ip = xfs_inode_alloc(mp, ino);
293 if (!ip)
294 return ENOMEM;
295
296 error = xfs_iread(mp, tp, ip, flags);
297 if (error)
298 goto out_destroy;
299
300 trace_xfs_iget_miss(ip);
301
302 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
303 error = ENOENT;
304 goto out_destroy;
305 }
306
307 /*
308 * Preload the radix tree so we can insert safely under the
309 * write spinlock. Note that we cannot sleep inside the preload
310 * region. Since we can be called from transaction context, don't
311 * recurse into the file system.
312 */
313 if (radix_tree_preload(GFP_NOFS)) {
314 error = EAGAIN;
315 goto out_destroy;
316 }
317
318 /*
319 * Because the inode hasn't been added to the radix-tree yet it can't
320 * be found by another thread, so we can do the non-sleeping lock here.
321 */
322 if (lock_flags) {
323 if (!xfs_ilock_nowait(ip, lock_flags))
324 BUG();
325 }
326
327 /*
328 * These values must be set before inserting the inode into the radix
329 * tree as the moment it is inserted a concurrent lookup (allowed by the
330 * RCU locking mechanism) can find it and that lookup must see that this
331 * is an inode currently under construction (i.e. that XFS_INEW is set).
332 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
333 * memory barrier that ensures this detection works correctly at lookup
334 * time.
335 */
336 iflags = XFS_INEW;
337 if (flags & XFS_IGET_DONTCACHE)
338 iflags |= XFS_IDONTCACHE;
113a5683
CS
339 ip->i_udquot = NULL;
340 ip->i_gdquot = NULL;
92f8ff73 341 ip->i_pdquot = NULL;
33479e05
DC
342 xfs_iflags_set(ip, iflags);
343
344 /* insert the new inode */
345 spin_lock(&pag->pag_ici_lock);
346 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
347 if (unlikely(error)) {
348 WARN_ON(error != -EEXIST);
349 XFS_STATS_INC(xs_ig_dup);
350 error = EAGAIN;
351 goto out_preload_end;
352 }
353 spin_unlock(&pag->pag_ici_lock);
354 radix_tree_preload_end();
355
356 *ipp = ip;
357 return 0;
358
359out_preload_end:
360 spin_unlock(&pag->pag_ici_lock);
361 radix_tree_preload_end();
362 if (lock_flags)
363 xfs_iunlock(ip, lock_flags);
364out_destroy:
365 __destroy_inode(VFS_I(ip));
366 xfs_inode_free(ip);
367 return error;
368}
369
370/*
371 * Look up an inode by number in the given file system.
372 * The inode is looked up in the cache held in each AG.
373 * If the inode is found in the cache, initialise the vfs inode
374 * if necessary.
375 *
376 * If it is not in core, read it in from the file system's device,
377 * add it to the cache and initialise the vfs inode.
378 *
379 * The inode is locked according to the value of the lock_flags parameter.
380 * This flag parameter indicates how and if the inode's IO lock and inode lock
381 * should be taken.
382 *
383 * mp -- the mount point structure for the current file system. It points
384 * to the inode hash table.
385 * tp -- a pointer to the current transaction if there is one. This is
386 * simply passed through to the xfs_iread() call.
387 * ino -- the number of the inode desired. This is the unique identifier
388 * within the file system for the inode being requested.
389 * lock_flags -- flags indicating how to lock the inode. See the comment
390 * for xfs_ilock() for a list of valid values.
391 */
392int
393xfs_iget(
394 xfs_mount_t *mp,
395 xfs_trans_t *tp,
396 xfs_ino_t ino,
397 uint flags,
398 uint lock_flags,
399 xfs_inode_t **ipp)
400{
401 xfs_inode_t *ip;
402 int error;
403 xfs_perag_t *pag;
404 xfs_agino_t agino;
405
406 /*
407 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
408 * doesn't get freed while it's being referenced during a
409 * radix tree traversal here. It assumes this function
410 * aqcuires only the ILOCK (and therefore it has no need to
411 * involve the IOLOCK in this synchronization).
412 */
413 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
414
415 /* reject inode numbers outside existing AGs */
416 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
417 return EINVAL;
418
419 /* get the perag structure and ensure that it's inode capable */
420 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
421 agino = XFS_INO_TO_AGINO(mp, ino);
422
423again:
424 error = 0;
425 rcu_read_lock();
426 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
427
428 if (ip) {
429 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
430 if (error)
431 goto out_error_or_again;
432 } else {
433 rcu_read_unlock();
434 XFS_STATS_INC(xs_ig_missed);
435
436 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
437 flags, lock_flags);
438 if (error)
439 goto out_error_or_again;
440 }
441 xfs_perag_put(pag);
442
443 *ipp = ip;
444
445 /*
446 * If we have a real type for an on-disk inode, we can set ops(&unlock)
447 * now. If it's a new inode being created, xfs_ialloc will handle it.
448 */
449 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
450 xfs_setup_inode(ip);
451 return 0;
452
453out_error_or_again:
454 if (error == EAGAIN) {
455 delay(1);
456 goto again;
457 }
458 xfs_perag_put(pag);
459 return error;
460}
461
78ae5256
DC
462/*
463 * The inode lookup is done in batches to keep the amount of lock traffic and
464 * radix tree lookups to a minimum. The batch size is a trade off between
465 * lookup reduction and stack usage. This is in the reclaim path, so we can't
466 * be too greedy.
467 */
468#define XFS_LOOKUP_BATCH 32
469
e13de955
DC
470STATIC int
471xfs_inode_ag_walk_grab(
472 struct xfs_inode *ip)
473{
474 struct inode *inode = VFS_I(ip);
475
1a3e8f3d
DC
476 ASSERT(rcu_read_lock_held());
477
478 /*
479 * check for stale RCU freed inode
480 *
481 * If the inode has been reallocated, it doesn't matter if it's not in
482 * the AG we are walking - we are walking for writeback, so if it
483 * passes all the "valid inode" checks and is dirty, then we'll write
484 * it back anyway. If it has been reallocated and still being
485 * initialised, the XFS_INEW check below will catch it.
486 */
487 spin_lock(&ip->i_flags_lock);
488 if (!ip->i_ino)
489 goto out_unlock_noent;
490
491 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
492 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
493 goto out_unlock_noent;
494 spin_unlock(&ip->i_flags_lock);
495
e13de955
DC
496 /* nothing to sync during shutdown */
497 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
498 return EFSCORRUPTED;
499
e13de955
DC
500 /* If we can't grab the inode, it must on it's way to reclaim. */
501 if (!igrab(inode))
502 return ENOENT;
503
504 if (is_bad_inode(inode)) {
505 IRELE(ip);
506 return ENOENT;
507 }
508
509 /* inode is valid */
510 return 0;
1a3e8f3d
DC
511
512out_unlock_noent:
513 spin_unlock(&ip->i_flags_lock);
514 return ENOENT;
e13de955
DC
515}
516
75f3cb13
DC
517STATIC int
518xfs_inode_ag_walk(
519 struct xfs_mount *mp,
5017e97d 520 struct xfs_perag *pag,
75f3cb13 521 int (*execute)(struct xfs_inode *ip,
a454f742
BF
522 struct xfs_perag *pag, int flags,
523 void *args),
524 int flags,
525 void *args,
526 int tag)
75f3cb13 527{
75f3cb13
DC
528 uint32_t first_index;
529 int last_error = 0;
530 int skipped;
65d0f205 531 int done;
78ae5256 532 int nr_found;
75f3cb13
DC
533
534restart:
65d0f205 535 done = 0;
75f3cb13
DC
536 skipped = 0;
537 first_index = 0;
78ae5256 538 nr_found = 0;
75f3cb13 539 do {
78ae5256 540 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 541 int error = 0;
78ae5256 542 int i;
75f3cb13 543
1a3e8f3d 544 rcu_read_lock();
a454f742
BF
545
546 if (tag == -1)
547 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
548 (void **)batch, first_index,
549 XFS_LOOKUP_BATCH);
a454f742
BF
550 else
551 nr_found = radix_tree_gang_lookup_tag(
552 &pag->pag_ici_root,
553 (void **) batch, first_index,
554 XFS_LOOKUP_BATCH, tag);
555
65d0f205 556 if (!nr_found) {
1a3e8f3d 557 rcu_read_unlock();
75f3cb13 558 break;
c8e20be0 559 }
75f3cb13 560
65d0f205 561 /*
78ae5256
DC
562 * Grab the inodes before we drop the lock. if we found
563 * nothing, nr == 0 and the loop will be skipped.
65d0f205 564 */
78ae5256
DC
565 for (i = 0; i < nr_found; i++) {
566 struct xfs_inode *ip = batch[i];
567
568 if (done || xfs_inode_ag_walk_grab(ip))
569 batch[i] = NULL;
570
571 /*
1a3e8f3d
DC
572 * Update the index for the next lookup. Catch
573 * overflows into the next AG range which can occur if
574 * we have inodes in the last block of the AG and we
575 * are currently pointing to the last inode.
576 *
577 * Because we may see inodes that are from the wrong AG
578 * due to RCU freeing and reallocation, only update the
579 * index if it lies in this AG. It was a race that lead
580 * us to see this inode, so another lookup from the
581 * same index will not find it again.
78ae5256 582 */
1a3e8f3d
DC
583 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
584 continue;
78ae5256
DC
585 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
586 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
587 done = 1;
e13de955 588 }
78ae5256
DC
589
590 /* unlock now we've grabbed the inodes. */
1a3e8f3d 591 rcu_read_unlock();
e13de955 592
78ae5256
DC
593 for (i = 0; i < nr_found; i++) {
594 if (!batch[i])
595 continue;
a454f742 596 error = execute(batch[i], pag, flags, args);
78ae5256
DC
597 IRELE(batch[i]);
598 if (error == EAGAIN) {
599 skipped++;
600 continue;
601 }
602 if (error && last_error != EFSCORRUPTED)
603 last_error = error;
75f3cb13 604 }
c8e20be0
DC
605
606 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
607 if (error == EFSCORRUPTED)
608 break;
609
8daaa831
DC
610 cond_resched();
611
78ae5256 612 } while (nr_found && !done);
75f3cb13
DC
613
614 if (skipped) {
615 delay(1);
616 goto restart;
617 }
75f3cb13
DC
618 return last_error;
619}
620
579b62fa
BF
621/*
622 * Background scanning to trim post-EOF preallocated space. This is queued
b9fe5052 623 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
579b62fa
BF
624 */
625STATIC void
626xfs_queue_eofblocks(
627 struct xfs_mount *mp)
628{
629 rcu_read_lock();
630 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
631 queue_delayed_work(mp->m_eofblocks_workqueue,
632 &mp->m_eofblocks_work,
633 msecs_to_jiffies(xfs_eofb_secs * 1000));
634 rcu_read_unlock();
635}
636
637void
638xfs_eofblocks_worker(
639 struct work_struct *work)
640{
641 struct xfs_mount *mp = container_of(to_delayed_work(work),
642 struct xfs_mount, m_eofblocks_work);
643 xfs_icache_free_eofblocks(mp, NULL);
644 xfs_queue_eofblocks(mp);
645}
646
fe588ed3 647int
75f3cb13
DC
648xfs_inode_ag_iterator(
649 struct xfs_mount *mp,
650 int (*execute)(struct xfs_inode *ip,
a454f742
BF
651 struct xfs_perag *pag, int flags,
652 void *args),
653 int flags,
654 void *args)
75f3cb13 655{
16fd5367 656 struct xfs_perag *pag;
75f3cb13
DC
657 int error = 0;
658 int last_error = 0;
659 xfs_agnumber_t ag;
660
16fd5367 661 ag = 0;
65d0f205
DC
662 while ((pag = xfs_perag_get(mp, ag))) {
663 ag = pag->pag_agno + 1;
a454f742
BF
664 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
665 xfs_perag_put(pag);
666 if (error) {
667 last_error = error;
668 if (error == EFSCORRUPTED)
669 break;
670 }
671 }
672 return XFS_ERROR(last_error);
673}
674
675int
676xfs_inode_ag_iterator_tag(
677 struct xfs_mount *mp,
678 int (*execute)(struct xfs_inode *ip,
679 struct xfs_perag *pag, int flags,
680 void *args),
681 int flags,
682 void *args,
683 int tag)
684{
685 struct xfs_perag *pag;
686 int error = 0;
687 int last_error = 0;
688 xfs_agnumber_t ag;
689
690 ag = 0;
691 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
692 ag = pag->pag_agno + 1;
693 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
5017e97d 694 xfs_perag_put(pag);
75f3cb13
DC
695 if (error) {
696 last_error = error;
697 if (error == EFSCORRUPTED)
698 break;
699 }
700 }
701 return XFS_ERROR(last_error);
702}
703
a7b339f1
DC
704/*
705 * Queue a new inode reclaim pass if there are reclaimable inodes and there
706 * isn't a reclaim pass already in progress. By default it runs every 5s based
5889608d 707 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
a7b339f1
DC
708 * tunable, but that can be done if this method proves to be ineffective or too
709 * aggressive.
710 */
711static void
5889608d 712xfs_reclaim_work_queue(
a7b339f1 713 struct xfs_mount *mp)
a167b17e 714{
a167b17e 715
a7b339f1
DC
716 rcu_read_lock();
717 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
5889608d 718 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
a7b339f1 719 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
a167b17e 720 }
a7b339f1
DC
721 rcu_read_unlock();
722}
a167b17e 723
a7b339f1
DC
724/*
725 * This is a fast pass over the inode cache to try to get reclaim moving on as
726 * many inodes as possible in a short period of time. It kicks itself every few
727 * seconds, as well as being kicked by the inode cache shrinker when memory
728 * goes low. It scans as quickly as possible avoiding locked inodes or those
729 * already being flushed, and once done schedules a future pass.
730 */
33c7a2bc 731void
a7b339f1
DC
732xfs_reclaim_worker(
733 struct work_struct *work)
734{
735 struct xfs_mount *mp = container_of(to_delayed_work(work),
736 struct xfs_mount, m_reclaim_work);
737
738 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
5889608d 739 xfs_reclaim_work_queue(mp);
a7b339f1
DC
740}
741
33479e05 742static void
bc990f5c
CH
743__xfs_inode_set_reclaim_tag(
744 struct xfs_perag *pag,
745 struct xfs_inode *ip)
746{
747 radix_tree_tag_set(&pag->pag_ici_root,
748 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
749 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
750
751 if (!pag->pag_ici_reclaimable) {
752 /* propagate the reclaim tag up into the perag radix tree */
753 spin_lock(&ip->i_mount->m_perag_lock);
754 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
755 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
756 XFS_ICI_RECLAIM_TAG);
757 spin_unlock(&ip->i_mount->m_perag_lock);
a7b339f1
DC
758
759 /* schedule periodic background inode reclaim */
5889608d 760 xfs_reclaim_work_queue(ip->i_mount);
a7b339f1 761
16fd5367
DC
762 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
763 -1, _RET_IP_);
764 }
9bf729c0 765 pag->pag_ici_reclaimable++;
bc990f5c
CH
766}
767
11654513
DC
768/*
769 * We set the inode flag atomically with the radix tree tag.
770 * Once we get tag lookups on the radix tree, this inode flag
771 * can go away.
772 */
396beb85
DC
773void
774xfs_inode_set_reclaim_tag(
775 xfs_inode_t *ip)
776{
5017e97d
DC
777 struct xfs_mount *mp = ip->i_mount;
778 struct xfs_perag *pag;
396beb85 779
5017e97d 780 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1a427ab0 781 spin_lock(&pag->pag_ici_lock);
396beb85 782 spin_lock(&ip->i_flags_lock);
bc990f5c 783 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 784 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 785 spin_unlock(&ip->i_flags_lock);
1a427ab0 786 spin_unlock(&pag->pag_ici_lock);
5017e97d 787 xfs_perag_put(pag);
396beb85
DC
788}
789
081003ff
JW
790STATIC void
791__xfs_inode_clear_reclaim(
396beb85
DC
792 xfs_perag_t *pag,
793 xfs_inode_t *ip)
794{
9bf729c0 795 pag->pag_ici_reclaimable--;
16fd5367
DC
796 if (!pag->pag_ici_reclaimable) {
797 /* clear the reclaim tag from the perag radix tree */
798 spin_lock(&ip->i_mount->m_perag_lock);
799 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
800 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
801 XFS_ICI_RECLAIM_TAG);
802 spin_unlock(&ip->i_mount->m_perag_lock);
803 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
804 -1, _RET_IP_);
805 }
396beb85
DC
806}
807
33479e05 808STATIC void
081003ff
JW
809__xfs_inode_clear_reclaim_tag(
810 xfs_mount_t *mp,
811 xfs_perag_t *pag,
812 xfs_inode_t *ip)
813{
814 radix_tree_tag_clear(&pag->pag_ici_root,
815 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
816 __xfs_inode_clear_reclaim(pag, ip);
817}
818
e3a20c0b
DC
819/*
820 * Grab the inode for reclaim exclusively.
821 * Return 0 if we grabbed it, non-zero otherwise.
822 */
823STATIC int
824xfs_reclaim_inode_grab(
825 struct xfs_inode *ip,
826 int flags)
827{
1a3e8f3d
DC
828 ASSERT(rcu_read_lock_held());
829
830 /* quick check for stale RCU freed inode */
831 if (!ip->i_ino)
832 return 1;
e3a20c0b
DC
833
834 /*
474fce06
CH
835 * If we are asked for non-blocking operation, do unlocked checks to
836 * see if the inode already is being flushed or in reclaim to avoid
837 * lock traffic.
e3a20c0b
DC
838 */
839 if ((flags & SYNC_TRYLOCK) &&
474fce06 840 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
e3a20c0b 841 return 1;
e3a20c0b
DC
842
843 /*
844 * The radix tree lock here protects a thread in xfs_iget from racing
845 * with us starting reclaim on the inode. Once we have the
846 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
847 *
848 * Due to RCU lookup, we may find inodes that have been freed and only
849 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
850 * aren't candidates for reclaim at all, so we must check the
851 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
852 */
853 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
854 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
855 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
856 /* not a reclaim candidate. */
e3a20c0b
DC
857 spin_unlock(&ip->i_flags_lock);
858 return 1;
859 }
860 __xfs_iflags_set(ip, XFS_IRECLAIM);
861 spin_unlock(&ip->i_flags_lock);
862 return 0;
863}
864
777df5af 865/*
8a48088f
CH
866 * Inodes in different states need to be treated differently. The following
867 * table lists the inode states and the reclaim actions necessary:
777df5af
DC
868 *
869 * inode state iflush ret required action
870 * --------------- ---------- ---------------
871 * bad - reclaim
872 * shutdown EIO unpin and reclaim
873 * clean, unpinned 0 reclaim
874 * stale, unpinned 0 reclaim
c854363e
DC
875 * clean, pinned(*) 0 requeue
876 * stale, pinned EAGAIN requeue
8a48088f
CH
877 * dirty, async - requeue
878 * dirty, sync 0 reclaim
777df5af
DC
879 *
880 * (*) dgc: I don't think the clean, pinned state is possible but it gets
881 * handled anyway given the order of checks implemented.
882 *
c854363e
DC
883 * Also, because we get the flush lock first, we know that any inode that has
884 * been flushed delwri has had the flush completed by the time we check that
8a48088f 885 * the inode is clean.
c854363e 886 *
8a48088f
CH
887 * Note that because the inode is flushed delayed write by AIL pushing, the
888 * flush lock may already be held here and waiting on it can result in very
889 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
890 * the caller should push the AIL first before trying to reclaim inodes to
891 * minimise the amount of time spent waiting. For background relaim, we only
892 * bother to reclaim clean inodes anyway.
c854363e 893 *
777df5af
DC
894 * Hence the order of actions after gaining the locks should be:
895 * bad => reclaim
896 * shutdown => unpin and reclaim
8a48088f 897 * pinned, async => requeue
c854363e 898 * pinned, sync => unpin
777df5af
DC
899 * stale => reclaim
900 * clean => reclaim
8a48088f 901 * dirty, async => requeue
c854363e 902 * dirty, sync => flush, wait and reclaim
777df5af 903 */
75f3cb13 904STATIC int
c8e20be0 905xfs_reclaim_inode(
75f3cb13
DC
906 struct xfs_inode *ip,
907 struct xfs_perag *pag,
c8e20be0 908 int sync_mode)
fce08f2f 909{
4c46819a
CH
910 struct xfs_buf *bp = NULL;
911 int error;
777df5af 912
1bfd8d04
DC
913restart:
914 error = 0;
c8e20be0 915 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
916 if (!xfs_iflock_nowait(ip)) {
917 if (!(sync_mode & SYNC_WAIT))
918 goto out;
919 xfs_iflock(ip);
920 }
7a3be02b 921
777df5af
DC
922 if (is_bad_inode(VFS_I(ip)))
923 goto reclaim;
924 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
925 xfs_iunpin_wait(ip);
04913fdd 926 xfs_iflush_abort(ip, false);
777df5af
DC
927 goto reclaim;
928 }
c854363e 929 if (xfs_ipincount(ip)) {
8a48088f
CH
930 if (!(sync_mode & SYNC_WAIT))
931 goto out_ifunlock;
777df5af 932 xfs_iunpin_wait(ip);
c854363e 933 }
777df5af
DC
934 if (xfs_iflags_test(ip, XFS_ISTALE))
935 goto reclaim;
936 if (xfs_inode_clean(ip))
937 goto reclaim;
938
8a48088f
CH
939 /*
940 * Never flush out dirty data during non-blocking reclaim, as it would
941 * just contend with AIL pushing trying to do the same job.
942 */
943 if (!(sync_mode & SYNC_WAIT))
944 goto out_ifunlock;
945
1bfd8d04
DC
946 /*
947 * Now we have an inode that needs flushing.
948 *
4c46819a 949 * Note that xfs_iflush will never block on the inode buffer lock, as
1bfd8d04 950 * xfs_ifree_cluster() can lock the inode buffer before it locks the
4c46819a 951 * ip->i_lock, and we are doing the exact opposite here. As a result,
475ee413
CH
952 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
953 * result in an ABBA deadlock with xfs_ifree_cluster().
1bfd8d04
DC
954 *
955 * As xfs_ifree_cluser() must gather all inodes that are active in the
956 * cache to mark them stale, if we hit this case we don't actually want
957 * to do IO here - we want the inode marked stale so we can simply
4c46819a
CH
958 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
959 * inode, back off and try again. Hopefully the next pass through will
960 * see the stale flag set on the inode.
1bfd8d04 961 */
4c46819a 962 error = xfs_iflush(ip, &bp);
8a48088f
CH
963 if (error == EAGAIN) {
964 xfs_iunlock(ip, XFS_ILOCK_EXCL);
965 /* backoff longer than in xfs_ifree_cluster */
966 delay(2);
967 goto restart;
c854363e 968 }
c854363e 969
4c46819a
CH
970 if (!error) {
971 error = xfs_bwrite(bp);
972 xfs_buf_relse(bp);
973 }
974
975 xfs_iflock(ip);
777df5af
DC
976reclaim:
977 xfs_ifunlock(ip);
c8e20be0 978 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
979
980 XFS_STATS_INC(xs_ig_reclaims);
981 /*
982 * Remove the inode from the per-AG radix tree.
983 *
984 * Because radix_tree_delete won't complain even if the item was never
985 * added to the tree assert that it's been there before to catch
986 * problems with the inode life time early on.
987 */
1a427ab0 988 spin_lock(&pag->pag_ici_lock);
2f11feab
DC
989 if (!radix_tree_delete(&pag->pag_ici_root,
990 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
991 ASSERT(0);
081003ff 992 __xfs_inode_clear_reclaim(pag, ip);
1a427ab0 993 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
994
995 /*
996 * Here we do an (almost) spurious inode lock in order to coordinate
997 * with inode cache radix tree lookups. This is because the lookup
998 * can reference the inodes in the cache without taking references.
999 *
1000 * We make that OK here by ensuring that we wait until the inode is
ad637a10 1001 * unlocked after the lookup before we go ahead and free it.
2f11feab 1002 */
ad637a10 1003 xfs_ilock(ip, XFS_ILOCK_EXCL);
2f11feab 1004 xfs_qm_dqdetach(ip);
ad637a10 1005 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
1006
1007 xfs_inode_free(ip);
ad637a10 1008 return error;
8a48088f
CH
1009
1010out_ifunlock:
1011 xfs_ifunlock(ip);
1012out:
1013 xfs_iflags_clear(ip, XFS_IRECLAIM);
1014 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1015 /*
1016 * We could return EAGAIN here to make reclaim rescan the inode tree in
1017 * a short while. However, this just burns CPU time scanning the tree
5889608d
DC
1018 * waiting for IO to complete and the reclaim work never goes back to
1019 * the idle state. Instead, return 0 to let the next scheduled
1020 * background reclaim attempt to reclaim the inode again.
8a48088f
CH
1021 */
1022 return 0;
7a3be02b
DC
1023}
1024
65d0f205
DC
1025/*
1026 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1027 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1028 * then a shut down during filesystem unmount reclaim walk leak all the
1029 * unreclaimed inodes.
1030 */
33479e05 1031STATIC int
65d0f205
DC
1032xfs_reclaim_inodes_ag(
1033 struct xfs_mount *mp,
1034 int flags,
1035 int *nr_to_scan)
1036{
1037 struct xfs_perag *pag;
1038 int error = 0;
1039 int last_error = 0;
1040 xfs_agnumber_t ag;
69b491c2
DC
1041 int trylock = flags & SYNC_TRYLOCK;
1042 int skipped;
65d0f205 1043
69b491c2 1044restart:
65d0f205 1045 ag = 0;
69b491c2 1046 skipped = 0;
65d0f205
DC
1047 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1048 unsigned long first_index = 0;
1049 int done = 0;
e3a20c0b 1050 int nr_found = 0;
65d0f205
DC
1051
1052 ag = pag->pag_agno + 1;
1053
69b491c2
DC
1054 if (trylock) {
1055 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1056 skipped++;
f83282a8 1057 xfs_perag_put(pag);
69b491c2
DC
1058 continue;
1059 }
1060 first_index = pag->pag_ici_reclaim_cursor;
1061 } else
1062 mutex_lock(&pag->pag_ici_reclaim_lock);
1063
65d0f205 1064 do {
e3a20c0b
DC
1065 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1066 int i;
65d0f205 1067
1a3e8f3d 1068 rcu_read_lock();
e3a20c0b
DC
1069 nr_found = radix_tree_gang_lookup_tag(
1070 &pag->pag_ici_root,
1071 (void **)batch, first_index,
1072 XFS_LOOKUP_BATCH,
65d0f205
DC
1073 XFS_ICI_RECLAIM_TAG);
1074 if (!nr_found) {
b2232219 1075 done = 1;
1a3e8f3d 1076 rcu_read_unlock();
65d0f205
DC
1077 break;
1078 }
1079
1080 /*
e3a20c0b
DC
1081 * Grab the inodes before we drop the lock. if we found
1082 * nothing, nr == 0 and the loop will be skipped.
65d0f205 1083 */
e3a20c0b
DC
1084 for (i = 0; i < nr_found; i++) {
1085 struct xfs_inode *ip = batch[i];
1086
1087 if (done || xfs_reclaim_inode_grab(ip, flags))
1088 batch[i] = NULL;
1089
1090 /*
1091 * Update the index for the next lookup. Catch
1092 * overflows into the next AG range which can
1093 * occur if we have inodes in the last block of
1094 * the AG and we are currently pointing to the
1095 * last inode.
1a3e8f3d
DC
1096 *
1097 * Because we may see inodes that are from the
1098 * wrong AG due to RCU freeing and
1099 * reallocation, only update the index if it
1100 * lies in this AG. It was a race that lead us
1101 * to see this inode, so another lookup from
1102 * the same index will not find it again.
e3a20c0b 1103 */
1a3e8f3d
DC
1104 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1105 pag->pag_agno)
1106 continue;
e3a20c0b
DC
1107 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1108 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1109 done = 1;
1110 }
65d0f205 1111
e3a20c0b 1112 /* unlock now we've grabbed the inodes. */
1a3e8f3d 1113 rcu_read_unlock();
e3a20c0b
DC
1114
1115 for (i = 0; i < nr_found; i++) {
1116 if (!batch[i])
1117 continue;
1118 error = xfs_reclaim_inode(batch[i], pag, flags);
1119 if (error && last_error != EFSCORRUPTED)
1120 last_error = error;
1121 }
1122
1123 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 1124
8daaa831
DC
1125 cond_resched();
1126
e3a20c0b 1127 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 1128
69b491c2
DC
1129 if (trylock && !done)
1130 pag->pag_ici_reclaim_cursor = first_index;
1131 else
1132 pag->pag_ici_reclaim_cursor = 0;
1133 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
1134 xfs_perag_put(pag);
1135 }
69b491c2
DC
1136
1137 /*
1138 * if we skipped any AG, and we still have scan count remaining, do
1139 * another pass this time using blocking reclaim semantics (i.e
1140 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1141 * ensure that when we get more reclaimers than AGs we block rather
1142 * than spin trying to execute reclaim.
1143 */
8daaa831 1144 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
69b491c2
DC
1145 trylock = 0;
1146 goto restart;
1147 }
65d0f205
DC
1148 return XFS_ERROR(last_error);
1149}
1150
7a3be02b
DC
1151int
1152xfs_reclaim_inodes(
1153 xfs_mount_t *mp,
7a3be02b
DC
1154 int mode)
1155{
65d0f205
DC
1156 int nr_to_scan = INT_MAX;
1157
1158 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
1159}
1160
1161/*
8daaa831 1162 * Scan a certain number of inodes for reclaim.
a7b339f1
DC
1163 *
1164 * When called we make sure that there is a background (fast) inode reclaim in
8daaa831 1165 * progress, while we will throttle the speed of reclaim via doing synchronous
a7b339f1
DC
1166 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1167 * them to be cleaned, which we hope will not be very long due to the
1168 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 1169 */
8daaa831
DC
1170void
1171xfs_reclaim_inodes_nr(
1172 struct xfs_mount *mp,
1173 int nr_to_scan)
9bf729c0 1174{
8daaa831 1175 /* kick background reclaimer and push the AIL */
5889608d 1176 xfs_reclaim_work_queue(mp);
8daaa831 1177 xfs_ail_push_all(mp->m_ail);
a7b339f1 1178
8daaa831
DC
1179 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1180}
9bf729c0 1181
8daaa831
DC
1182/*
1183 * Return the number of reclaimable inodes in the filesystem for
1184 * the shrinker to determine how much to reclaim.
1185 */
1186int
1187xfs_reclaim_inodes_count(
1188 struct xfs_mount *mp)
1189{
1190 struct xfs_perag *pag;
1191 xfs_agnumber_t ag = 0;
1192 int reclaimable = 0;
9bf729c0 1193
65d0f205
DC
1194 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1195 ag = pag->pag_agno + 1;
70e60ce7
DC
1196 reclaimable += pag->pag_ici_reclaimable;
1197 xfs_perag_put(pag);
9bf729c0 1198 }
9bf729c0
DC
1199 return reclaimable;
1200}
1201
3e3f9f58
BF
1202STATIC int
1203xfs_inode_match_id(
1204 struct xfs_inode *ip,
1205 struct xfs_eofblocks *eofb)
1206{
b9fe5052
DE
1207 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1208 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1b556048 1209 return 0;
3e3f9f58 1210
b9fe5052
DE
1211 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1212 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1b556048
BF
1213 return 0;
1214
b9fe5052 1215 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1b556048
BF
1216 xfs_get_projid(ip) != eofb->eof_prid)
1217 return 0;
1218
1219 return 1;
3e3f9f58
BF
1220}
1221
41176a68
BF
1222STATIC int
1223xfs_inode_free_eofblocks(
1224 struct xfs_inode *ip,
1225 struct xfs_perag *pag,
1226 int flags,
1227 void *args)
1228{
1229 int ret;
3e3f9f58 1230 struct xfs_eofblocks *eofb = args;
41176a68
BF
1231
1232 if (!xfs_can_free_eofblocks(ip, false)) {
1233 /* inode could be preallocated or append-only */
1234 trace_xfs_inode_free_eofblocks_invalid(ip);
1235 xfs_inode_clear_eofblocks_tag(ip);
1236 return 0;
1237 }
1238
1239 /*
1240 * If the mapping is dirty the operation can block and wait for some
1241 * time. Unless we are waiting, skip it.
1242 */
1243 if (!(flags & SYNC_WAIT) &&
1244 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1245 return 0;
1246
00ca79a0
BF
1247 if (eofb) {
1248 if (!xfs_inode_match_id(ip, eofb))
1249 return 0;
1250
1251 /* skip the inode if the file size is too small */
1252 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1253 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1254 return 0;
1255 }
3e3f9f58 1256
41176a68
BF
1257 ret = xfs_free_eofblocks(ip->i_mount, ip, true);
1258
1259 /* don't revisit the inode if we're not waiting */
1260 if (ret == EAGAIN && !(flags & SYNC_WAIT))
1261 ret = 0;
1262
1263 return ret;
1264}
1265
1266int
1267xfs_icache_free_eofblocks(
1268 struct xfs_mount *mp,
8ca149de 1269 struct xfs_eofblocks *eofb)
41176a68 1270{
8ca149de
BF
1271 int flags = SYNC_TRYLOCK;
1272
1273 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1274 flags = SYNC_WAIT;
1275
41176a68 1276 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
8ca149de 1277 eofb, XFS_ICI_EOFBLOCKS_TAG);
41176a68
BF
1278}
1279
27b52867
BF
1280void
1281xfs_inode_set_eofblocks_tag(
1282 xfs_inode_t *ip)
1283{
1284 struct xfs_mount *mp = ip->i_mount;
1285 struct xfs_perag *pag;
1286 int tagged;
1287
1288 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1289 spin_lock(&pag->pag_ici_lock);
1290 trace_xfs_inode_set_eofblocks_tag(ip);
1291
1292 tagged = radix_tree_tagged(&pag->pag_ici_root,
1293 XFS_ICI_EOFBLOCKS_TAG);
1294 radix_tree_tag_set(&pag->pag_ici_root,
1295 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1296 XFS_ICI_EOFBLOCKS_TAG);
1297 if (!tagged) {
1298 /* propagate the eofblocks tag up into the perag radix tree */
1299 spin_lock(&ip->i_mount->m_perag_lock);
1300 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1301 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1302 XFS_ICI_EOFBLOCKS_TAG);
1303 spin_unlock(&ip->i_mount->m_perag_lock);
579b62fa
BF
1304
1305 /* kick off background trimming */
1306 xfs_queue_eofblocks(ip->i_mount);
27b52867
BF
1307
1308 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1309 -1, _RET_IP_);
1310 }
1311
1312 spin_unlock(&pag->pag_ici_lock);
1313 xfs_perag_put(pag);
1314}
1315
1316void
1317xfs_inode_clear_eofblocks_tag(
1318 xfs_inode_t *ip)
1319{
1320 struct xfs_mount *mp = ip->i_mount;
1321 struct xfs_perag *pag;
1322
1323 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1324 spin_lock(&pag->pag_ici_lock);
1325 trace_xfs_inode_clear_eofblocks_tag(ip);
1326
1327 radix_tree_tag_clear(&pag->pag_ici_root,
1328 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1329 XFS_ICI_EOFBLOCKS_TAG);
1330 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1331 /* clear the eofblocks tag from the perag radix tree */
1332 spin_lock(&ip->i_mount->m_perag_lock);
1333 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1334 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1335 XFS_ICI_EOFBLOCKS_TAG);
1336 spin_unlock(&ip->i_mount->m_perag_lock);
1337 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1338 -1, _RET_IP_);
1339 }
1340
1341 spin_unlock(&pag->pag_ici_lock);
1342 xfs_perag_put(pag);
1343}
1344