]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_icache.c
xfs: fix sgid inheritance for subdirectories inheriting default acls [V3]
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_icache.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
fe4fa4b8 21#include "xfs_log.h"
f661f1e0 22#include "xfs_log_priv.h"
fe4fa4b8
DC
23#include "xfs_inum.h"
24#include "xfs_trans.h"
fd074841 25#include "xfs_trans_priv.h"
fe4fa4b8
DC
26#include "xfs_sb.h"
27#include "xfs_ag.h"
fe4fa4b8
DC
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
fe4fa4b8
DC
30#include "xfs_inode.h"
31#include "xfs_dinode.h"
32#include "xfs_error.h"
fe4fa4b8
DC
33#include "xfs_filestream.h"
34#include "xfs_vnodeops.h"
fe4fa4b8 35#include "xfs_inode_item.h"
7d095257 36#include "xfs_quota.h"
0b1b213f 37#include "xfs_trace.h"
1a387d3b 38#include "xfs_fsops.h"
6d8b79cf 39#include "xfs_icache.h"
fe4fa4b8 40
a167b17e
DC
41#include <linux/kthread.h>
42#include <linux/freezer.h>
43
33479e05
DC
44STATIC void __xfs_inode_clear_reclaim_tag(struct xfs_mount *mp,
45 struct xfs_perag *pag, struct xfs_inode *ip);
46
47/*
48 * Allocate and initialise an xfs_inode.
49 */
50STATIC struct xfs_inode *
51xfs_inode_alloc(
52 struct xfs_mount *mp,
53 xfs_ino_t ino)
54{
55 struct xfs_inode *ip;
56
57 /*
58 * if this didn't occur in transactions, we could use
59 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
60 * code up to do this anyway.
61 */
62 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
63 if (!ip)
64 return NULL;
65 if (inode_init_always(mp->m_super, VFS_I(ip))) {
66 kmem_zone_free(xfs_inode_zone, ip);
67 return NULL;
68 }
69
70 ASSERT(atomic_read(&ip->i_pincount) == 0);
71 ASSERT(!spin_is_locked(&ip->i_flags_lock));
72 ASSERT(!xfs_isiflocked(ip));
73 ASSERT(ip->i_ino == 0);
74
75 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
76
77 /* initialise the xfs inode */
78 ip->i_ino = ino;
79 ip->i_mount = mp;
80 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
81 ip->i_afp = NULL;
82 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
83 ip->i_flags = 0;
84 ip->i_delayed_blks = 0;
85 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
86
87 return ip;
88}
89
90STATIC void
91xfs_inode_free_callback(
92 struct rcu_head *head)
93{
94 struct inode *inode = container_of(head, struct inode, i_rcu);
95 struct xfs_inode *ip = XFS_I(inode);
96
97 kmem_zone_free(xfs_inode_zone, ip);
98}
99
100STATIC void
101xfs_inode_free(
102 struct xfs_inode *ip)
103{
104 switch (ip->i_d.di_mode & S_IFMT) {
105 case S_IFREG:
106 case S_IFDIR:
107 case S_IFLNK:
108 xfs_idestroy_fork(ip, XFS_DATA_FORK);
109 break;
110 }
111
112 if (ip->i_afp)
113 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
114
115 if (ip->i_itemp) {
116 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
117 xfs_inode_item_destroy(ip);
118 ip->i_itemp = NULL;
119 }
120
121 /* asserts to verify all state is correct here */
122 ASSERT(atomic_read(&ip->i_pincount) == 0);
123 ASSERT(!spin_is_locked(&ip->i_flags_lock));
124 ASSERT(!xfs_isiflocked(ip));
125
126 /*
127 * Because we use RCU freeing we need to ensure the inode always
128 * appears to be reclaimed with an invalid inode number when in the
129 * free state. The ip->i_flags_lock provides the barrier against lookup
130 * races.
131 */
132 spin_lock(&ip->i_flags_lock);
133 ip->i_flags = XFS_IRECLAIM;
134 ip->i_ino = 0;
135 spin_unlock(&ip->i_flags_lock);
136
137 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
138}
139
140/*
141 * Check the validity of the inode we just found it the cache
142 */
143static int
144xfs_iget_cache_hit(
145 struct xfs_perag *pag,
146 struct xfs_inode *ip,
147 xfs_ino_t ino,
148 int flags,
149 int lock_flags) __releases(RCU)
150{
151 struct inode *inode = VFS_I(ip);
152 struct xfs_mount *mp = ip->i_mount;
153 int error;
154
155 /*
156 * check for re-use of an inode within an RCU grace period due to the
157 * radix tree nodes not being updated yet. We monitor for this by
158 * setting the inode number to zero before freeing the inode structure.
159 * If the inode has been reallocated and set up, then the inode number
160 * will not match, so check for that, too.
161 */
162 spin_lock(&ip->i_flags_lock);
163 if (ip->i_ino != ino) {
164 trace_xfs_iget_skip(ip);
165 XFS_STATS_INC(xs_ig_frecycle);
166 error = EAGAIN;
167 goto out_error;
168 }
169
170
171 /*
172 * If we are racing with another cache hit that is currently
173 * instantiating this inode or currently recycling it out of
174 * reclaimabe state, wait for the initialisation to complete
175 * before continuing.
176 *
177 * XXX(hch): eventually we should do something equivalent to
178 * wait_on_inode to wait for these flags to be cleared
179 * instead of polling for it.
180 */
181 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
182 trace_xfs_iget_skip(ip);
183 XFS_STATS_INC(xs_ig_frecycle);
184 error = EAGAIN;
185 goto out_error;
186 }
187
188 /*
189 * If lookup is racing with unlink return an error immediately.
190 */
191 if (ip->i_d.di_mode == 0 && !(flags & XFS_IGET_CREATE)) {
192 error = ENOENT;
193 goto out_error;
194 }
195
196 /*
197 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
198 * Need to carefully get it back into useable state.
199 */
200 if (ip->i_flags & XFS_IRECLAIMABLE) {
201 trace_xfs_iget_reclaim(ip);
202
203 /*
204 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
205 * from stomping over us while we recycle the inode. We can't
206 * clear the radix tree reclaimable tag yet as it requires
207 * pag_ici_lock to be held exclusive.
208 */
209 ip->i_flags |= XFS_IRECLAIM;
210
211 spin_unlock(&ip->i_flags_lock);
212 rcu_read_unlock();
213
214 error = -inode_init_always(mp->m_super, inode);
215 if (error) {
216 /*
217 * Re-initializing the inode failed, and we are in deep
218 * trouble. Try to re-add it to the reclaim list.
219 */
220 rcu_read_lock();
221 spin_lock(&ip->i_flags_lock);
222
223 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
224 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
225 trace_xfs_iget_reclaim_fail(ip);
226 goto out_error;
227 }
228
229 spin_lock(&pag->pag_ici_lock);
230 spin_lock(&ip->i_flags_lock);
231
232 /*
233 * Clear the per-lifetime state in the inode as we are now
234 * effectively a new inode and need to return to the initial
235 * state before reuse occurs.
236 */
237 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
238 ip->i_flags |= XFS_INEW;
239 __xfs_inode_clear_reclaim_tag(mp, pag, ip);
240 inode->i_state = I_NEW;
241
242 ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock));
243 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", ip->i_ino);
244
245 spin_unlock(&ip->i_flags_lock);
246 spin_unlock(&pag->pag_ici_lock);
247 } else {
248 /* If the VFS inode is being torn down, pause and try again. */
249 if (!igrab(inode)) {
250 trace_xfs_iget_skip(ip);
251 error = EAGAIN;
252 goto out_error;
253 }
254
255 /* We've got a live one. */
256 spin_unlock(&ip->i_flags_lock);
257 rcu_read_unlock();
258 trace_xfs_iget_hit(ip);
259 }
260
261 if (lock_flags != 0)
262 xfs_ilock(ip, lock_flags);
263
264 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
265 XFS_STATS_INC(xs_ig_found);
266
267 return 0;
268
269out_error:
270 spin_unlock(&ip->i_flags_lock);
271 rcu_read_unlock();
272 return error;
273}
274
275
276static int
277xfs_iget_cache_miss(
278 struct xfs_mount *mp,
279 struct xfs_perag *pag,
280 xfs_trans_t *tp,
281 xfs_ino_t ino,
282 struct xfs_inode **ipp,
283 int flags,
284 int lock_flags)
285{
286 struct xfs_inode *ip;
287 int error;
288 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
289 int iflags;
290
291 ip = xfs_inode_alloc(mp, ino);
292 if (!ip)
293 return ENOMEM;
294
295 error = xfs_iread(mp, tp, ip, flags);
296 if (error)
297 goto out_destroy;
298
299 trace_xfs_iget_miss(ip);
300
301 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
302 error = ENOENT;
303 goto out_destroy;
304 }
305
306 /*
307 * Preload the radix tree so we can insert safely under the
308 * write spinlock. Note that we cannot sleep inside the preload
309 * region. Since we can be called from transaction context, don't
310 * recurse into the file system.
311 */
312 if (radix_tree_preload(GFP_NOFS)) {
313 error = EAGAIN;
314 goto out_destroy;
315 }
316
317 /*
318 * Because the inode hasn't been added to the radix-tree yet it can't
319 * be found by another thread, so we can do the non-sleeping lock here.
320 */
321 if (lock_flags) {
322 if (!xfs_ilock_nowait(ip, lock_flags))
323 BUG();
324 }
325
326 /*
327 * These values must be set before inserting the inode into the radix
328 * tree as the moment it is inserted a concurrent lookup (allowed by the
329 * RCU locking mechanism) can find it and that lookup must see that this
330 * is an inode currently under construction (i.e. that XFS_INEW is set).
331 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
332 * memory barrier that ensures this detection works correctly at lookup
333 * time.
334 */
335 iflags = XFS_INEW;
336 if (flags & XFS_IGET_DONTCACHE)
337 iflags |= XFS_IDONTCACHE;
113a5683
CS
338 ip->i_udquot = NULL;
339 ip->i_gdquot = NULL;
33479e05
DC
340 xfs_iflags_set(ip, iflags);
341
342 /* insert the new inode */
343 spin_lock(&pag->pag_ici_lock);
344 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
345 if (unlikely(error)) {
346 WARN_ON(error != -EEXIST);
347 XFS_STATS_INC(xs_ig_dup);
348 error = EAGAIN;
349 goto out_preload_end;
350 }
351 spin_unlock(&pag->pag_ici_lock);
352 radix_tree_preload_end();
353
354 *ipp = ip;
355 return 0;
356
357out_preload_end:
358 spin_unlock(&pag->pag_ici_lock);
359 radix_tree_preload_end();
360 if (lock_flags)
361 xfs_iunlock(ip, lock_flags);
362out_destroy:
363 __destroy_inode(VFS_I(ip));
364 xfs_inode_free(ip);
365 return error;
366}
367
368/*
369 * Look up an inode by number in the given file system.
370 * The inode is looked up in the cache held in each AG.
371 * If the inode is found in the cache, initialise the vfs inode
372 * if necessary.
373 *
374 * If it is not in core, read it in from the file system's device,
375 * add it to the cache and initialise the vfs inode.
376 *
377 * The inode is locked according to the value of the lock_flags parameter.
378 * This flag parameter indicates how and if the inode's IO lock and inode lock
379 * should be taken.
380 *
381 * mp -- the mount point structure for the current file system. It points
382 * to the inode hash table.
383 * tp -- a pointer to the current transaction if there is one. This is
384 * simply passed through to the xfs_iread() call.
385 * ino -- the number of the inode desired. This is the unique identifier
386 * within the file system for the inode being requested.
387 * lock_flags -- flags indicating how to lock the inode. See the comment
388 * for xfs_ilock() for a list of valid values.
389 */
390int
391xfs_iget(
392 xfs_mount_t *mp,
393 xfs_trans_t *tp,
394 xfs_ino_t ino,
395 uint flags,
396 uint lock_flags,
397 xfs_inode_t **ipp)
398{
399 xfs_inode_t *ip;
400 int error;
401 xfs_perag_t *pag;
402 xfs_agino_t agino;
403
404 /*
405 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
406 * doesn't get freed while it's being referenced during a
407 * radix tree traversal here. It assumes this function
408 * aqcuires only the ILOCK (and therefore it has no need to
409 * involve the IOLOCK in this synchronization).
410 */
411 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
412
413 /* reject inode numbers outside existing AGs */
414 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
415 return EINVAL;
416
417 /* get the perag structure and ensure that it's inode capable */
418 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
419 agino = XFS_INO_TO_AGINO(mp, ino);
420
421again:
422 error = 0;
423 rcu_read_lock();
424 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
425
426 if (ip) {
427 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
428 if (error)
429 goto out_error_or_again;
430 } else {
431 rcu_read_unlock();
432 XFS_STATS_INC(xs_ig_missed);
433
434 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
435 flags, lock_flags);
436 if (error)
437 goto out_error_or_again;
438 }
439 xfs_perag_put(pag);
440
441 *ipp = ip;
442
443 /*
444 * If we have a real type for an on-disk inode, we can set ops(&unlock)
445 * now. If it's a new inode being created, xfs_ialloc will handle it.
446 */
447 if (xfs_iflags_test(ip, XFS_INEW) && ip->i_d.di_mode != 0)
448 xfs_setup_inode(ip);
449 return 0;
450
451out_error_or_again:
452 if (error == EAGAIN) {
453 delay(1);
454 goto again;
455 }
456 xfs_perag_put(pag);
457 return error;
458}
459
78ae5256
DC
460/*
461 * The inode lookup is done in batches to keep the amount of lock traffic and
462 * radix tree lookups to a minimum. The batch size is a trade off between
463 * lookup reduction and stack usage. This is in the reclaim path, so we can't
464 * be too greedy.
465 */
466#define XFS_LOOKUP_BATCH 32
467
e13de955
DC
468STATIC int
469xfs_inode_ag_walk_grab(
470 struct xfs_inode *ip)
471{
472 struct inode *inode = VFS_I(ip);
473
1a3e8f3d
DC
474 ASSERT(rcu_read_lock_held());
475
476 /*
477 * check for stale RCU freed inode
478 *
479 * If the inode has been reallocated, it doesn't matter if it's not in
480 * the AG we are walking - we are walking for writeback, so if it
481 * passes all the "valid inode" checks and is dirty, then we'll write
482 * it back anyway. If it has been reallocated and still being
483 * initialised, the XFS_INEW check below will catch it.
484 */
485 spin_lock(&ip->i_flags_lock);
486 if (!ip->i_ino)
487 goto out_unlock_noent;
488
489 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
490 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
491 goto out_unlock_noent;
492 spin_unlock(&ip->i_flags_lock);
493
e13de955
DC
494 /* nothing to sync during shutdown */
495 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
496 return EFSCORRUPTED;
497
e13de955
DC
498 /* If we can't grab the inode, it must on it's way to reclaim. */
499 if (!igrab(inode))
500 return ENOENT;
501
502 if (is_bad_inode(inode)) {
503 IRELE(ip);
504 return ENOENT;
505 }
506
507 /* inode is valid */
508 return 0;
1a3e8f3d
DC
509
510out_unlock_noent:
511 spin_unlock(&ip->i_flags_lock);
512 return ENOENT;
e13de955
DC
513}
514
75f3cb13
DC
515STATIC int
516xfs_inode_ag_walk(
517 struct xfs_mount *mp,
5017e97d 518 struct xfs_perag *pag,
75f3cb13 519 int (*execute)(struct xfs_inode *ip,
a454f742
BF
520 struct xfs_perag *pag, int flags,
521 void *args),
522 int flags,
523 void *args,
524 int tag)
75f3cb13 525{
75f3cb13
DC
526 uint32_t first_index;
527 int last_error = 0;
528 int skipped;
65d0f205 529 int done;
78ae5256 530 int nr_found;
75f3cb13
DC
531
532restart:
65d0f205 533 done = 0;
75f3cb13
DC
534 skipped = 0;
535 first_index = 0;
78ae5256 536 nr_found = 0;
75f3cb13 537 do {
78ae5256 538 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 539 int error = 0;
78ae5256 540 int i;
75f3cb13 541
1a3e8f3d 542 rcu_read_lock();
a454f742
BF
543
544 if (tag == -1)
545 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
546 (void **)batch, first_index,
547 XFS_LOOKUP_BATCH);
a454f742
BF
548 else
549 nr_found = radix_tree_gang_lookup_tag(
550 &pag->pag_ici_root,
551 (void **) batch, first_index,
552 XFS_LOOKUP_BATCH, tag);
553
65d0f205 554 if (!nr_found) {
1a3e8f3d 555 rcu_read_unlock();
75f3cb13 556 break;
c8e20be0 557 }
75f3cb13 558
65d0f205 559 /*
78ae5256
DC
560 * Grab the inodes before we drop the lock. if we found
561 * nothing, nr == 0 and the loop will be skipped.
65d0f205 562 */
78ae5256
DC
563 for (i = 0; i < nr_found; i++) {
564 struct xfs_inode *ip = batch[i];
565
566 if (done || xfs_inode_ag_walk_grab(ip))
567 batch[i] = NULL;
568
569 /*
1a3e8f3d
DC
570 * Update the index for the next lookup. Catch
571 * overflows into the next AG range which can occur if
572 * we have inodes in the last block of the AG and we
573 * are currently pointing to the last inode.
574 *
575 * Because we may see inodes that are from the wrong AG
576 * due to RCU freeing and reallocation, only update the
577 * index if it lies in this AG. It was a race that lead
578 * us to see this inode, so another lookup from the
579 * same index will not find it again.
78ae5256 580 */
1a3e8f3d
DC
581 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
582 continue;
78ae5256
DC
583 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
584 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
585 done = 1;
e13de955 586 }
78ae5256
DC
587
588 /* unlock now we've grabbed the inodes. */
1a3e8f3d 589 rcu_read_unlock();
e13de955 590
78ae5256
DC
591 for (i = 0; i < nr_found; i++) {
592 if (!batch[i])
593 continue;
a454f742 594 error = execute(batch[i], pag, flags, args);
78ae5256
DC
595 IRELE(batch[i]);
596 if (error == EAGAIN) {
597 skipped++;
598 continue;
599 }
600 if (error && last_error != EFSCORRUPTED)
601 last_error = error;
75f3cb13 602 }
c8e20be0
DC
603
604 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
605 if (error == EFSCORRUPTED)
606 break;
607
8daaa831
DC
608 cond_resched();
609
78ae5256 610 } while (nr_found && !done);
75f3cb13
DC
611
612 if (skipped) {
613 delay(1);
614 goto restart;
615 }
75f3cb13
DC
616 return last_error;
617}
618
579b62fa
BF
619/*
620 * Background scanning to trim post-EOF preallocated space. This is queued
621 * based on the 'background_prealloc_discard_period' tunable (5m by default).
622 */
623STATIC void
624xfs_queue_eofblocks(
625 struct xfs_mount *mp)
626{
627 rcu_read_lock();
628 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
629 queue_delayed_work(mp->m_eofblocks_workqueue,
630 &mp->m_eofblocks_work,
631 msecs_to_jiffies(xfs_eofb_secs * 1000));
632 rcu_read_unlock();
633}
634
635void
636xfs_eofblocks_worker(
637 struct work_struct *work)
638{
639 struct xfs_mount *mp = container_of(to_delayed_work(work),
640 struct xfs_mount, m_eofblocks_work);
641 xfs_icache_free_eofblocks(mp, NULL);
642 xfs_queue_eofblocks(mp);
643}
644
fe588ed3 645int
75f3cb13
DC
646xfs_inode_ag_iterator(
647 struct xfs_mount *mp,
648 int (*execute)(struct xfs_inode *ip,
a454f742
BF
649 struct xfs_perag *pag, int flags,
650 void *args),
651 int flags,
652 void *args)
75f3cb13 653{
16fd5367 654 struct xfs_perag *pag;
75f3cb13
DC
655 int error = 0;
656 int last_error = 0;
657 xfs_agnumber_t ag;
658
16fd5367 659 ag = 0;
65d0f205
DC
660 while ((pag = xfs_perag_get(mp, ag))) {
661 ag = pag->pag_agno + 1;
a454f742
BF
662 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1);
663 xfs_perag_put(pag);
664 if (error) {
665 last_error = error;
666 if (error == EFSCORRUPTED)
667 break;
668 }
669 }
670 return XFS_ERROR(last_error);
671}
672
673int
674xfs_inode_ag_iterator_tag(
675 struct xfs_mount *mp,
676 int (*execute)(struct xfs_inode *ip,
677 struct xfs_perag *pag, int flags,
678 void *args),
679 int flags,
680 void *args,
681 int tag)
682{
683 struct xfs_perag *pag;
684 int error = 0;
685 int last_error = 0;
686 xfs_agnumber_t ag;
687
688 ag = 0;
689 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
690 ag = pag->pag_agno + 1;
691 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag);
5017e97d 692 xfs_perag_put(pag);
75f3cb13
DC
693 if (error) {
694 last_error = error;
695 if (error == EFSCORRUPTED)
696 break;
697 }
698 }
699 return XFS_ERROR(last_error);
700}
701
a7b339f1
DC
702/*
703 * Queue a new inode reclaim pass if there are reclaimable inodes and there
704 * isn't a reclaim pass already in progress. By default it runs every 5s based
5889608d 705 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
a7b339f1
DC
706 * tunable, but that can be done if this method proves to be ineffective or too
707 * aggressive.
708 */
709static void
5889608d 710xfs_reclaim_work_queue(
a7b339f1 711 struct xfs_mount *mp)
a167b17e 712{
a167b17e 713
a7b339f1
DC
714 rcu_read_lock();
715 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
5889608d 716 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
a7b339f1 717 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
a167b17e 718 }
a7b339f1
DC
719 rcu_read_unlock();
720}
a167b17e 721
a7b339f1
DC
722/*
723 * This is a fast pass over the inode cache to try to get reclaim moving on as
724 * many inodes as possible in a short period of time. It kicks itself every few
725 * seconds, as well as being kicked by the inode cache shrinker when memory
726 * goes low. It scans as quickly as possible avoiding locked inodes or those
727 * already being flushed, and once done schedules a future pass.
728 */
33c7a2bc 729void
a7b339f1
DC
730xfs_reclaim_worker(
731 struct work_struct *work)
732{
733 struct xfs_mount *mp = container_of(to_delayed_work(work),
734 struct xfs_mount, m_reclaim_work);
735
736 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
5889608d 737 xfs_reclaim_work_queue(mp);
a7b339f1
DC
738}
739
33479e05 740static void
bc990f5c
CH
741__xfs_inode_set_reclaim_tag(
742 struct xfs_perag *pag,
743 struct xfs_inode *ip)
744{
745 radix_tree_tag_set(&pag->pag_ici_root,
746 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
747 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
748
749 if (!pag->pag_ici_reclaimable) {
750 /* propagate the reclaim tag up into the perag radix tree */
751 spin_lock(&ip->i_mount->m_perag_lock);
752 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
753 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
754 XFS_ICI_RECLAIM_TAG);
755 spin_unlock(&ip->i_mount->m_perag_lock);
a7b339f1
DC
756
757 /* schedule periodic background inode reclaim */
5889608d 758 xfs_reclaim_work_queue(ip->i_mount);
a7b339f1 759
16fd5367
DC
760 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
761 -1, _RET_IP_);
762 }
9bf729c0 763 pag->pag_ici_reclaimable++;
bc990f5c
CH
764}
765
11654513
DC
766/*
767 * We set the inode flag atomically with the radix tree tag.
768 * Once we get tag lookups on the radix tree, this inode flag
769 * can go away.
770 */
396beb85
DC
771void
772xfs_inode_set_reclaim_tag(
773 xfs_inode_t *ip)
774{
5017e97d
DC
775 struct xfs_mount *mp = ip->i_mount;
776 struct xfs_perag *pag;
396beb85 777
5017e97d 778 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1a427ab0 779 spin_lock(&pag->pag_ici_lock);
396beb85 780 spin_lock(&ip->i_flags_lock);
bc990f5c 781 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 782 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 783 spin_unlock(&ip->i_flags_lock);
1a427ab0 784 spin_unlock(&pag->pag_ici_lock);
5017e97d 785 xfs_perag_put(pag);
396beb85
DC
786}
787
081003ff
JW
788STATIC void
789__xfs_inode_clear_reclaim(
396beb85
DC
790 xfs_perag_t *pag,
791 xfs_inode_t *ip)
792{
9bf729c0 793 pag->pag_ici_reclaimable--;
16fd5367
DC
794 if (!pag->pag_ici_reclaimable) {
795 /* clear the reclaim tag from the perag radix tree */
796 spin_lock(&ip->i_mount->m_perag_lock);
797 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
798 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
799 XFS_ICI_RECLAIM_TAG);
800 spin_unlock(&ip->i_mount->m_perag_lock);
801 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
802 -1, _RET_IP_);
803 }
396beb85
DC
804}
805
33479e05 806STATIC void
081003ff
JW
807__xfs_inode_clear_reclaim_tag(
808 xfs_mount_t *mp,
809 xfs_perag_t *pag,
810 xfs_inode_t *ip)
811{
812 radix_tree_tag_clear(&pag->pag_ici_root,
813 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
814 __xfs_inode_clear_reclaim(pag, ip);
815}
816
e3a20c0b
DC
817/*
818 * Grab the inode for reclaim exclusively.
819 * Return 0 if we grabbed it, non-zero otherwise.
820 */
821STATIC int
822xfs_reclaim_inode_grab(
823 struct xfs_inode *ip,
824 int flags)
825{
1a3e8f3d
DC
826 ASSERT(rcu_read_lock_held());
827
828 /* quick check for stale RCU freed inode */
829 if (!ip->i_ino)
830 return 1;
e3a20c0b
DC
831
832 /*
474fce06
CH
833 * If we are asked for non-blocking operation, do unlocked checks to
834 * see if the inode already is being flushed or in reclaim to avoid
835 * lock traffic.
e3a20c0b
DC
836 */
837 if ((flags & SYNC_TRYLOCK) &&
474fce06 838 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
e3a20c0b 839 return 1;
e3a20c0b
DC
840
841 /*
842 * The radix tree lock here protects a thread in xfs_iget from racing
843 * with us starting reclaim on the inode. Once we have the
844 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
845 *
846 * Due to RCU lookup, we may find inodes that have been freed and only
847 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
848 * aren't candidates for reclaim at all, so we must check the
849 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
850 */
851 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
852 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
853 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
854 /* not a reclaim candidate. */
e3a20c0b
DC
855 spin_unlock(&ip->i_flags_lock);
856 return 1;
857 }
858 __xfs_iflags_set(ip, XFS_IRECLAIM);
859 spin_unlock(&ip->i_flags_lock);
860 return 0;
861}
862
777df5af 863/*
8a48088f
CH
864 * Inodes in different states need to be treated differently. The following
865 * table lists the inode states and the reclaim actions necessary:
777df5af
DC
866 *
867 * inode state iflush ret required action
868 * --------------- ---------- ---------------
869 * bad - reclaim
870 * shutdown EIO unpin and reclaim
871 * clean, unpinned 0 reclaim
872 * stale, unpinned 0 reclaim
c854363e
DC
873 * clean, pinned(*) 0 requeue
874 * stale, pinned EAGAIN requeue
8a48088f
CH
875 * dirty, async - requeue
876 * dirty, sync 0 reclaim
777df5af
DC
877 *
878 * (*) dgc: I don't think the clean, pinned state is possible but it gets
879 * handled anyway given the order of checks implemented.
880 *
c854363e
DC
881 * Also, because we get the flush lock first, we know that any inode that has
882 * been flushed delwri has had the flush completed by the time we check that
8a48088f 883 * the inode is clean.
c854363e 884 *
8a48088f
CH
885 * Note that because the inode is flushed delayed write by AIL pushing, the
886 * flush lock may already be held here and waiting on it can result in very
887 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
888 * the caller should push the AIL first before trying to reclaim inodes to
889 * minimise the amount of time spent waiting. For background relaim, we only
890 * bother to reclaim clean inodes anyway.
c854363e 891 *
777df5af
DC
892 * Hence the order of actions after gaining the locks should be:
893 * bad => reclaim
894 * shutdown => unpin and reclaim
8a48088f 895 * pinned, async => requeue
c854363e 896 * pinned, sync => unpin
777df5af
DC
897 * stale => reclaim
898 * clean => reclaim
8a48088f 899 * dirty, async => requeue
c854363e 900 * dirty, sync => flush, wait and reclaim
777df5af 901 */
75f3cb13 902STATIC int
c8e20be0 903xfs_reclaim_inode(
75f3cb13
DC
904 struct xfs_inode *ip,
905 struct xfs_perag *pag,
c8e20be0 906 int sync_mode)
fce08f2f 907{
4c46819a
CH
908 struct xfs_buf *bp = NULL;
909 int error;
777df5af 910
1bfd8d04
DC
911restart:
912 error = 0;
c8e20be0 913 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
914 if (!xfs_iflock_nowait(ip)) {
915 if (!(sync_mode & SYNC_WAIT))
916 goto out;
917 xfs_iflock(ip);
918 }
7a3be02b 919
777df5af
DC
920 if (is_bad_inode(VFS_I(ip)))
921 goto reclaim;
922 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
923 xfs_iunpin_wait(ip);
04913fdd 924 xfs_iflush_abort(ip, false);
777df5af
DC
925 goto reclaim;
926 }
c854363e 927 if (xfs_ipincount(ip)) {
8a48088f
CH
928 if (!(sync_mode & SYNC_WAIT))
929 goto out_ifunlock;
777df5af 930 xfs_iunpin_wait(ip);
c854363e 931 }
777df5af
DC
932 if (xfs_iflags_test(ip, XFS_ISTALE))
933 goto reclaim;
934 if (xfs_inode_clean(ip))
935 goto reclaim;
936
8a48088f
CH
937 /*
938 * Never flush out dirty data during non-blocking reclaim, as it would
939 * just contend with AIL pushing trying to do the same job.
940 */
941 if (!(sync_mode & SYNC_WAIT))
942 goto out_ifunlock;
943
1bfd8d04
DC
944 /*
945 * Now we have an inode that needs flushing.
946 *
4c46819a 947 * Note that xfs_iflush will never block on the inode buffer lock, as
1bfd8d04 948 * xfs_ifree_cluster() can lock the inode buffer before it locks the
4c46819a 949 * ip->i_lock, and we are doing the exact opposite here. As a result,
475ee413
CH
950 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
951 * result in an ABBA deadlock with xfs_ifree_cluster().
1bfd8d04
DC
952 *
953 * As xfs_ifree_cluser() must gather all inodes that are active in the
954 * cache to mark them stale, if we hit this case we don't actually want
955 * to do IO here - we want the inode marked stale so we can simply
4c46819a
CH
956 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
957 * inode, back off and try again. Hopefully the next pass through will
958 * see the stale flag set on the inode.
1bfd8d04 959 */
4c46819a 960 error = xfs_iflush(ip, &bp);
8a48088f
CH
961 if (error == EAGAIN) {
962 xfs_iunlock(ip, XFS_ILOCK_EXCL);
963 /* backoff longer than in xfs_ifree_cluster */
964 delay(2);
965 goto restart;
c854363e 966 }
c854363e 967
4c46819a
CH
968 if (!error) {
969 error = xfs_bwrite(bp);
970 xfs_buf_relse(bp);
971 }
972
973 xfs_iflock(ip);
777df5af
DC
974reclaim:
975 xfs_ifunlock(ip);
c8e20be0 976 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
977
978 XFS_STATS_INC(xs_ig_reclaims);
979 /*
980 * Remove the inode from the per-AG radix tree.
981 *
982 * Because radix_tree_delete won't complain even if the item was never
983 * added to the tree assert that it's been there before to catch
984 * problems with the inode life time early on.
985 */
1a427ab0 986 spin_lock(&pag->pag_ici_lock);
2f11feab
DC
987 if (!radix_tree_delete(&pag->pag_ici_root,
988 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
989 ASSERT(0);
081003ff 990 __xfs_inode_clear_reclaim(pag, ip);
1a427ab0 991 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
992
993 /*
994 * Here we do an (almost) spurious inode lock in order to coordinate
995 * with inode cache radix tree lookups. This is because the lookup
996 * can reference the inodes in the cache without taking references.
997 *
998 * We make that OK here by ensuring that we wait until the inode is
ad637a10 999 * unlocked after the lookup before we go ahead and free it.
2f11feab 1000 */
ad637a10 1001 xfs_ilock(ip, XFS_ILOCK_EXCL);
2f11feab 1002 xfs_qm_dqdetach(ip);
ad637a10 1003 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
1004
1005 xfs_inode_free(ip);
ad637a10 1006 return error;
8a48088f
CH
1007
1008out_ifunlock:
1009 xfs_ifunlock(ip);
1010out:
1011 xfs_iflags_clear(ip, XFS_IRECLAIM);
1012 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1013 /*
1014 * We could return EAGAIN here to make reclaim rescan the inode tree in
1015 * a short while. However, this just burns CPU time scanning the tree
5889608d
DC
1016 * waiting for IO to complete and the reclaim work never goes back to
1017 * the idle state. Instead, return 0 to let the next scheduled
1018 * background reclaim attempt to reclaim the inode again.
8a48088f
CH
1019 */
1020 return 0;
7a3be02b
DC
1021}
1022
65d0f205
DC
1023/*
1024 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1025 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1026 * then a shut down during filesystem unmount reclaim walk leak all the
1027 * unreclaimed inodes.
1028 */
33479e05 1029STATIC int
65d0f205
DC
1030xfs_reclaim_inodes_ag(
1031 struct xfs_mount *mp,
1032 int flags,
1033 int *nr_to_scan)
1034{
1035 struct xfs_perag *pag;
1036 int error = 0;
1037 int last_error = 0;
1038 xfs_agnumber_t ag;
69b491c2
DC
1039 int trylock = flags & SYNC_TRYLOCK;
1040 int skipped;
65d0f205 1041
69b491c2 1042restart:
65d0f205 1043 ag = 0;
69b491c2 1044 skipped = 0;
65d0f205
DC
1045 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1046 unsigned long first_index = 0;
1047 int done = 0;
e3a20c0b 1048 int nr_found = 0;
65d0f205
DC
1049
1050 ag = pag->pag_agno + 1;
1051
69b491c2
DC
1052 if (trylock) {
1053 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1054 skipped++;
f83282a8 1055 xfs_perag_put(pag);
69b491c2
DC
1056 continue;
1057 }
1058 first_index = pag->pag_ici_reclaim_cursor;
1059 } else
1060 mutex_lock(&pag->pag_ici_reclaim_lock);
1061
65d0f205 1062 do {
e3a20c0b
DC
1063 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1064 int i;
65d0f205 1065
1a3e8f3d 1066 rcu_read_lock();
e3a20c0b
DC
1067 nr_found = radix_tree_gang_lookup_tag(
1068 &pag->pag_ici_root,
1069 (void **)batch, first_index,
1070 XFS_LOOKUP_BATCH,
65d0f205
DC
1071 XFS_ICI_RECLAIM_TAG);
1072 if (!nr_found) {
b2232219 1073 done = 1;
1a3e8f3d 1074 rcu_read_unlock();
65d0f205
DC
1075 break;
1076 }
1077
1078 /*
e3a20c0b
DC
1079 * Grab the inodes before we drop the lock. if we found
1080 * nothing, nr == 0 and the loop will be skipped.
65d0f205 1081 */
e3a20c0b
DC
1082 for (i = 0; i < nr_found; i++) {
1083 struct xfs_inode *ip = batch[i];
1084
1085 if (done || xfs_reclaim_inode_grab(ip, flags))
1086 batch[i] = NULL;
1087
1088 /*
1089 * Update the index for the next lookup. Catch
1090 * overflows into the next AG range which can
1091 * occur if we have inodes in the last block of
1092 * the AG and we are currently pointing to the
1093 * last inode.
1a3e8f3d
DC
1094 *
1095 * Because we may see inodes that are from the
1096 * wrong AG due to RCU freeing and
1097 * reallocation, only update the index if it
1098 * lies in this AG. It was a race that lead us
1099 * to see this inode, so another lookup from
1100 * the same index will not find it again.
e3a20c0b 1101 */
1a3e8f3d
DC
1102 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1103 pag->pag_agno)
1104 continue;
e3a20c0b
DC
1105 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1106 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1107 done = 1;
1108 }
65d0f205 1109
e3a20c0b 1110 /* unlock now we've grabbed the inodes. */
1a3e8f3d 1111 rcu_read_unlock();
e3a20c0b
DC
1112
1113 for (i = 0; i < nr_found; i++) {
1114 if (!batch[i])
1115 continue;
1116 error = xfs_reclaim_inode(batch[i], pag, flags);
1117 if (error && last_error != EFSCORRUPTED)
1118 last_error = error;
1119 }
1120
1121 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 1122
8daaa831
DC
1123 cond_resched();
1124
e3a20c0b 1125 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 1126
69b491c2
DC
1127 if (trylock && !done)
1128 pag->pag_ici_reclaim_cursor = first_index;
1129 else
1130 pag->pag_ici_reclaim_cursor = 0;
1131 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
1132 xfs_perag_put(pag);
1133 }
69b491c2
DC
1134
1135 /*
1136 * if we skipped any AG, and we still have scan count remaining, do
1137 * another pass this time using blocking reclaim semantics (i.e
1138 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1139 * ensure that when we get more reclaimers than AGs we block rather
1140 * than spin trying to execute reclaim.
1141 */
8daaa831 1142 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
69b491c2
DC
1143 trylock = 0;
1144 goto restart;
1145 }
65d0f205
DC
1146 return XFS_ERROR(last_error);
1147}
1148
7a3be02b
DC
1149int
1150xfs_reclaim_inodes(
1151 xfs_mount_t *mp,
7a3be02b
DC
1152 int mode)
1153{
65d0f205
DC
1154 int nr_to_scan = INT_MAX;
1155
1156 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
1157}
1158
1159/*
8daaa831 1160 * Scan a certain number of inodes for reclaim.
a7b339f1
DC
1161 *
1162 * When called we make sure that there is a background (fast) inode reclaim in
8daaa831 1163 * progress, while we will throttle the speed of reclaim via doing synchronous
a7b339f1
DC
1164 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1165 * them to be cleaned, which we hope will not be very long due to the
1166 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 1167 */
8daaa831
DC
1168void
1169xfs_reclaim_inodes_nr(
1170 struct xfs_mount *mp,
1171 int nr_to_scan)
9bf729c0 1172{
8daaa831 1173 /* kick background reclaimer and push the AIL */
5889608d 1174 xfs_reclaim_work_queue(mp);
8daaa831 1175 xfs_ail_push_all(mp->m_ail);
a7b339f1 1176
8daaa831
DC
1177 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
1178}
9bf729c0 1179
8daaa831
DC
1180/*
1181 * Return the number of reclaimable inodes in the filesystem for
1182 * the shrinker to determine how much to reclaim.
1183 */
1184int
1185xfs_reclaim_inodes_count(
1186 struct xfs_mount *mp)
1187{
1188 struct xfs_perag *pag;
1189 xfs_agnumber_t ag = 0;
1190 int reclaimable = 0;
9bf729c0 1191
65d0f205
DC
1192 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1193 ag = pag->pag_agno + 1;
70e60ce7
DC
1194 reclaimable += pag->pag_ici_reclaimable;
1195 xfs_perag_put(pag);
9bf729c0 1196 }
9bf729c0
DC
1197 return reclaimable;
1198}
1199
3e3f9f58
BF
1200STATIC int
1201xfs_inode_match_id(
1202 struct xfs_inode *ip,
1203 struct xfs_eofblocks *eofb)
1204{
1b556048
BF
1205 if (eofb->eof_flags & XFS_EOF_FLAGS_UID &&
1206 ip->i_d.di_uid != eofb->eof_uid)
1207 return 0;
3e3f9f58 1208
1b556048
BF
1209 if (eofb->eof_flags & XFS_EOF_FLAGS_GID &&
1210 ip->i_d.di_gid != eofb->eof_gid)
1211 return 0;
1212
1213 if (eofb->eof_flags & XFS_EOF_FLAGS_PRID &&
1214 xfs_get_projid(ip) != eofb->eof_prid)
1215 return 0;
1216
1217 return 1;
3e3f9f58
BF
1218}
1219
41176a68
BF
1220STATIC int
1221xfs_inode_free_eofblocks(
1222 struct xfs_inode *ip,
1223 struct xfs_perag *pag,
1224 int flags,
1225 void *args)
1226{
1227 int ret;
3e3f9f58 1228 struct xfs_eofblocks *eofb = args;
41176a68
BF
1229
1230 if (!xfs_can_free_eofblocks(ip, false)) {
1231 /* inode could be preallocated or append-only */
1232 trace_xfs_inode_free_eofblocks_invalid(ip);
1233 xfs_inode_clear_eofblocks_tag(ip);
1234 return 0;
1235 }
1236
1237 /*
1238 * If the mapping is dirty the operation can block and wait for some
1239 * time. Unless we are waiting, skip it.
1240 */
1241 if (!(flags & SYNC_WAIT) &&
1242 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1243 return 0;
1244
00ca79a0
BF
1245 if (eofb) {
1246 if (!xfs_inode_match_id(ip, eofb))
1247 return 0;
1248
1249 /* skip the inode if the file size is too small */
1250 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1251 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1252 return 0;
1253 }
3e3f9f58 1254
41176a68
BF
1255 ret = xfs_free_eofblocks(ip->i_mount, ip, true);
1256
1257 /* don't revisit the inode if we're not waiting */
1258 if (ret == EAGAIN && !(flags & SYNC_WAIT))
1259 ret = 0;
1260
1261 return ret;
1262}
1263
1264int
1265xfs_icache_free_eofblocks(
1266 struct xfs_mount *mp,
8ca149de 1267 struct xfs_eofblocks *eofb)
41176a68 1268{
8ca149de
BF
1269 int flags = SYNC_TRYLOCK;
1270
1271 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1272 flags = SYNC_WAIT;
1273
41176a68 1274 return xfs_inode_ag_iterator_tag(mp, xfs_inode_free_eofblocks, flags,
8ca149de 1275 eofb, XFS_ICI_EOFBLOCKS_TAG);
41176a68
BF
1276}
1277
27b52867
BF
1278void
1279xfs_inode_set_eofblocks_tag(
1280 xfs_inode_t *ip)
1281{
1282 struct xfs_mount *mp = ip->i_mount;
1283 struct xfs_perag *pag;
1284 int tagged;
1285
1286 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1287 spin_lock(&pag->pag_ici_lock);
1288 trace_xfs_inode_set_eofblocks_tag(ip);
1289
1290 tagged = radix_tree_tagged(&pag->pag_ici_root,
1291 XFS_ICI_EOFBLOCKS_TAG);
1292 radix_tree_tag_set(&pag->pag_ici_root,
1293 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1294 XFS_ICI_EOFBLOCKS_TAG);
1295 if (!tagged) {
1296 /* propagate the eofblocks tag up into the perag radix tree */
1297 spin_lock(&ip->i_mount->m_perag_lock);
1298 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1299 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1300 XFS_ICI_EOFBLOCKS_TAG);
1301 spin_unlock(&ip->i_mount->m_perag_lock);
579b62fa
BF
1302
1303 /* kick off background trimming */
1304 xfs_queue_eofblocks(ip->i_mount);
27b52867
BF
1305
1306 trace_xfs_perag_set_eofblocks(ip->i_mount, pag->pag_agno,
1307 -1, _RET_IP_);
1308 }
1309
1310 spin_unlock(&pag->pag_ici_lock);
1311 xfs_perag_put(pag);
1312}
1313
1314void
1315xfs_inode_clear_eofblocks_tag(
1316 xfs_inode_t *ip)
1317{
1318 struct xfs_mount *mp = ip->i_mount;
1319 struct xfs_perag *pag;
1320
1321 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1322 spin_lock(&pag->pag_ici_lock);
1323 trace_xfs_inode_clear_eofblocks_tag(ip);
1324
1325 radix_tree_tag_clear(&pag->pag_ici_root,
1326 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
1327 XFS_ICI_EOFBLOCKS_TAG);
1328 if (!radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_EOFBLOCKS_TAG)) {
1329 /* clear the eofblocks tag from the perag radix tree */
1330 spin_lock(&ip->i_mount->m_perag_lock);
1331 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1332 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1333 XFS_ICI_EOFBLOCKS_TAG);
1334 spin_unlock(&ip->i_mount->m_perag_lock);
1335 trace_xfs_perag_clear_eofblocks(ip->i_mount, pag->pag_agno,
1336 -1, _RET_IP_);
1337 }
1338
1339 spin_unlock(&pag->pag_ici_lock);
1340 xfs_perag_put(pag);
1341}
1342