]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/xfs/xfs_inode.c
[XFS] Remove spin.h
[mirror_ubuntu-hirsute-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451
NS
23#include "xfs_inum.h"
24#include "xfs_imap.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4
LT
29#include "xfs_dir2.h"
30#include "xfs_dmapi.h"
31#include "xfs_mount.h"
1da177e4 32#include "xfs_bmap_btree.h"
a844f451 33#include "xfs_alloc_btree.h"
1da177e4 34#include "xfs_ialloc_btree.h"
1da177e4 35#include "xfs_dir2_sf.h"
a844f451 36#include "xfs_attr_sf.h"
1da177e4 37#include "xfs_dinode.h"
1da177e4 38#include "xfs_inode.h"
1da177e4 39#include "xfs_buf_item.h"
a844f451
NS
40#include "xfs_inode_item.h"
41#include "xfs_btree.h"
42#include "xfs_alloc.h"
43#include "xfs_ialloc.h"
44#include "xfs_bmap.h"
1da177e4
LT
45#include "xfs_rw.h"
46#include "xfs_error.h"
1da177e4
LT
47#include "xfs_utils.h"
48#include "xfs_dir2_trace.h"
49#include "xfs_quota.h"
1da177e4 50#include "xfs_acl.h"
2a82b8be 51#include "xfs_filestream.h"
739bfb2a 52#include "xfs_vnodeops.h"
1da177e4 53
1da177e4
LT
54kmem_zone_t *xfs_ifork_zone;
55kmem_zone_t *xfs_inode_zone;
da353b0d 56kmem_zone_t *xfs_icluster_zone;
1da177e4
LT
57
58/*
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
61 */
62#define XFS_ITRUNC_MAX_EXTENTS 2
63
64STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68
1da177e4
LT
69#ifdef DEBUG
70/*
71 * Make sure that the extents in the given memory buffer
72 * are valid.
73 */
74STATIC void
75xfs_validate_extents(
4eea22f0 76 xfs_ifork_t *ifp,
1da177e4 77 int nrecs,
1da177e4
LT
78 xfs_exntfmt_t fmt)
79{
80 xfs_bmbt_irec_t irec;
a6f64d4a 81 xfs_bmbt_rec_host_t rec;
1da177e4
LT
82 int i;
83
84 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
91 }
92}
93#else /* DEBUG */
a6f64d4a 94#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
95#endif /* DEBUG */
96
97/*
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
100 */
101#if defined(DEBUG)
102void
103xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
106{
107 int i;
108 int j;
109 xfs_dinode_t *dip;
110
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
121 }
122 }
123}
124#endif
125
1da177e4
LT
126/*
127 * This routine is called to map an inode number within a file
128 * system to the buffer containing the on-disk version of the
129 * inode. It returns a pointer to the buffer containing the
130 * on-disk inode in the bpp parameter, and in the dip parameter
131 * it returns a pointer to the on-disk inode within that buffer.
132 *
133 * If a non-zero error is returned, then the contents of bpp and
134 * dipp are undefined.
135 *
136 * Use xfs_imap() to determine the size and location of the
137 * buffer to read from disk.
138 */
ba0f32d4 139STATIC int
1da177e4
LT
140xfs_inotobp(
141 xfs_mount_t *mp,
142 xfs_trans_t *tp,
143 xfs_ino_t ino,
144 xfs_dinode_t **dipp,
145 xfs_buf_t **bpp,
146 int *offset)
147{
148 int di_ok;
149 xfs_imap_t imap;
150 xfs_buf_t *bp;
151 int error;
152 xfs_dinode_t *dip;
153
154 /*
c41564b5 155 * Call the space management code to find the location of the
1da177e4
LT
156 * inode on disk.
157 */
158 imap.im_blkno = 0;
159 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
160 if (error != 0) {
161 cmn_err(CE_WARN,
162 "xfs_inotobp: xfs_imap() returned an "
163 "error %d on %s. Returning error.", error, mp->m_fsname);
164 return error;
165 }
166
167 /*
168 * If the inode number maps to a block outside the bounds of the
169 * file system then return NULL rather than calling read_buf
170 * and panicing when we get an error from the driver.
171 */
172 if ((imap.im_blkno + imap.im_len) >
173 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
174 cmn_err(CE_WARN,
da1650a5 175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
1da177e4 176 "of the file system %s. Returning EINVAL.",
da1650a5
CH
177 (unsigned long long)imap.im_blkno,
178 imap.im_len, mp->m_fsname);
1da177e4
LT
179 return XFS_ERROR(EINVAL);
180 }
181
182 /*
183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
184 * default to just a read_buf() call.
185 */
186 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 (int)imap.im_len, XFS_BUF_LOCK, &bp);
188
189 if (error) {
190 cmn_err(CE_WARN,
191 "xfs_inotobp: xfs_trans_read_buf() returned an "
192 "error %d on %s. Returning error.", error, mp->m_fsname);
193 return error;
194 }
195 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
196 di_ok =
347d1c01
CH
197 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
1da177e4
LT
199 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 XFS_RANDOM_ITOBP_INOTOBP))) {
201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 xfs_trans_brelse(tp, bp);
203 cmn_err(CE_WARN,
204 "xfs_inotobp: XFS_TEST_ERROR() returned an "
205 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
206 return XFS_ERROR(EFSCORRUPTED);
207 }
208
209 xfs_inobp_check(mp, bp);
210
211 /*
212 * Set *dipp to point to the on-disk inode in the buffer.
213 */
214 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
215 *bpp = bp;
216 *offset = imap.im_boffset;
217 return 0;
218}
219
220
221/*
222 * This routine is called to map an inode to the buffer containing
223 * the on-disk version of the inode. It returns a pointer to the
224 * buffer containing the on-disk inode in the bpp parameter, and in
225 * the dip parameter it returns a pointer to the on-disk inode within
226 * that buffer.
227 *
228 * If a non-zero error is returned, then the contents of bpp and
229 * dipp are undefined.
230 *
231 * If the inode is new and has not yet been initialized, use xfs_imap()
232 * to determine the size and location of the buffer to read from disk.
233 * If the inode has already been mapped to its buffer and read in once,
234 * then use the mapping information stored in the inode rather than
235 * calling xfs_imap(). This allows us to avoid the overhead of looking
236 * at the inode btree for small block file systems (see xfs_dilocate()).
237 * We can tell whether the inode has been mapped in before by comparing
238 * its disk block address to 0. Only uninitialized inodes will have
239 * 0 for the disk block address.
240 */
241int
242xfs_itobp(
243 xfs_mount_t *mp,
244 xfs_trans_t *tp,
245 xfs_inode_t *ip,
246 xfs_dinode_t **dipp,
247 xfs_buf_t **bpp,
b12dd342
NS
248 xfs_daddr_t bno,
249 uint imap_flags)
1da177e4 250{
4d1a2ed3 251 xfs_imap_t imap;
1da177e4
LT
252 xfs_buf_t *bp;
253 int error;
1da177e4
LT
254 int i;
255 int ni;
1da177e4
LT
256
257 if (ip->i_blkno == (xfs_daddr_t)0) {
258 /*
259 * Call the space management code to find the location of the
260 * inode on disk.
261 */
262 imap.im_blkno = bno;
b12dd342
NS
263 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 XFS_IMAP_LOOKUP | imap_flags)))
1da177e4 265 return error;
1da177e4
LT
266
267 /*
268 * If the inode number maps to a block outside the bounds
269 * of the file system then return NULL rather than calling
270 * read_buf and panicing when we get an error from the
271 * driver.
272 */
273 if ((imap.im_blkno + imap.im_len) >
274 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
275#ifdef DEBUG
276 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 "(imap.im_blkno (0x%llx) "
278 "+ imap.im_len (0x%llx)) > "
279 " XFS_FSB_TO_BB(mp, "
280 "mp->m_sb.sb_dblocks) (0x%llx)",
281 (unsigned long long) imap.im_blkno,
282 (unsigned long long) imap.im_len,
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
284#endif /* DEBUG */
285 return XFS_ERROR(EINVAL);
286 }
287
288 /*
289 * Fill in the fields in the inode that will be used to
290 * map the inode to its buffer from now on.
291 */
292 ip->i_blkno = imap.im_blkno;
293 ip->i_len = imap.im_len;
294 ip->i_boffset = imap.im_boffset;
295 } else {
296 /*
297 * We've already mapped the inode once, so just use the
298 * mapping that we saved the first time.
299 */
300 imap.im_blkno = ip->i_blkno;
301 imap.im_len = ip->i_len;
302 imap.im_boffset = ip->i_boffset;
303 }
304 ASSERT(bno == 0 || bno == imap.im_blkno);
305
306 /*
307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
308 * default to just a read_buf() call.
309 */
310 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 (int)imap.im_len, XFS_BUF_LOCK, &bp);
1da177e4
LT
312 if (error) {
313#ifdef DEBUG
314 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 "xfs_trans_read_buf() returned error %d, "
316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 error, (unsigned long long) imap.im_blkno,
318 (unsigned long long) imap.im_len);
319#endif /* DEBUG */
320 return error;
321 }
4d1a2ed3 322
1da177e4
LT
323 /*
324 * Validate the magic number and version of every inode in the buffer
325 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
4d1a2ed3 326 * No validation is done here in userspace (xfs_repair).
1da177e4 327 */
4d1a2ed3
NS
328#if !defined(__KERNEL__)
329 ni = 0;
330#elif defined(DEBUG)
41ff715a 331 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
4d1a2ed3 332#else /* usual case */
41ff715a 333 ni = 1;
1da177e4 334#endif
4d1a2ed3 335
1da177e4
LT
336 for (i = 0; i < ni; i++) {
337 int di_ok;
338 xfs_dinode_t *dip;
339
340 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 (i << mp->m_sb.sb_inodelog));
347d1c01
CH
342 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
41ff715a
NS
344 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 XFS_ERRTAG_ITOBP_INOTOBP,
346 XFS_RANDOM_ITOBP_INOTOBP))) {
347 if (imap_flags & XFS_IMAP_BULKSTAT) {
348 xfs_trans_brelse(tp, bp);
349 return XFS_ERROR(EINVAL);
350 }
1da177e4 351#ifdef DEBUG
41ff715a 352 cmn_err(CE_ALERT,
4d1a2ed3
NS
353 "Device %s - bad inode magic/vsn "
354 "daddr %lld #%d (magic=%x)",
b6574520 355 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1da177e4 356 (unsigned long long)imap.im_blkno, i,
347d1c01 357 be16_to_cpu(dip->di_core.di_magic));
1da177e4
LT
358#endif
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 mp, dip);
361 xfs_trans_brelse(tp, bp);
362 return XFS_ERROR(EFSCORRUPTED);
363 }
364 }
1da177e4
LT
365
366 xfs_inobp_check(mp, bp);
367
368 /*
369 * Mark the buffer as an inode buffer now that it looks good
370 */
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
372
373 /*
374 * Set *dipp to point to the on-disk inode in the buffer.
375 */
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 *bpp = bp;
378 return 0;
379}
380
381/*
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
389 */
390STATIC int
391xfs_iformat(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip)
394{
395 xfs_attr_shortform_t *atp;
396 int size;
397 int error;
398 xfs_fsize_t di_size;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 error = 0;
402
347d1c01
CH
403 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 be16_to_cpu(dip->di_core.di_anextents) >
405 be64_to_cpu(dip->di_core.di_nblocks))) {
3762ec6b
NS
406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 408 (unsigned long long)ip->i_ino,
347d1c01
CH
409 (int)(be32_to_cpu(dip->di_core.di_nextents) +
410 be16_to_cpu(dip->di_core.di_anextents)),
1da177e4 411 (unsigned long long)
347d1c01 412 be64_to_cpu(dip->di_core.di_nblocks));
1da177e4
LT
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 ip->i_mount, dip);
415 return XFS_ERROR(EFSCORRUPTED);
416 }
417
347d1c01 418 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 421 (unsigned long long)ip->i_ino,
347d1c01 422 dip->di_core.di_forkoff);
1da177e4
LT
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 ip->i_mount, dip);
425 return XFS_ERROR(EFSCORRUPTED);
426 }
427
428 switch (ip->i_d.di_mode & S_IFMT) {
429 case S_IFIFO:
430 case S_IFCHR:
431 case S_IFBLK:
432 case S_IFSOCK:
347d1c01 433 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
437 }
438 ip->i_d.di_size = 0;
ba87ea69 439 ip->i_size = 0;
347d1c01 440 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
1da177e4
LT
441 break;
442
443 case S_IFREG:
444 case S_IFLNK:
445 case S_IFDIR:
347d1c01 446 switch (dip->di_core.di_format) {
1da177e4
LT
447 case XFS_DINODE_FMT_LOCAL:
448 /*
449 * no local regular files yet
450 */
347d1c01 451 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 "corrupt inode %Lu "
454 "(local format for regular file).",
1da177e4
LT
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 XFS_ERRLEVEL_LOW,
458 ip->i_mount, dip);
459 return XFS_ERROR(EFSCORRUPTED);
460 }
461
347d1c01 462 di_size = be64_to_cpu(dip->di_core.di_size);
1da177e4 463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 "corrupt inode %Lu "
466 "(bad size %Ld for local inode).",
1da177e4
LT
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
473 }
474
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
488 }
489 break;
490
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
494 }
495 if (error) {
496 return error;
497 }
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
347d1c01 504 switch (dip->di_core.di_aformat) {
1da177e4
LT
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 507 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
519 }
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
524 }
525 return error;
526}
527
528/*
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
537 */
538STATIC int
539xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
544{
545 xfs_ifork_t *ifp;
546 int real_size;
547
548 /*
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
552 */
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu "
556 "(bad size %d for local fork, size = %d).",
1da177e4
LT
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 ip->i_mount, dip);
561 return XFS_ERROR(EFSCORRUPTED);
562 }
563 ifp = XFS_IFORK_PTR(ip, whichfork);
564 real_size = 0;
565 if (size == 0)
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 else {
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
572 }
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
575 if (size)
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
579 return 0;
580}
581
582/*
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
590 */
591STATIC int
592xfs_iformat_extents(
593 xfs_inode_t *ip,
594 xfs_dinode_t *dip,
595 int whichfork)
596{
a6f64d4a 597 xfs_bmbt_rec_t *dp;
1da177e4
LT
598 xfs_ifork_t *ifp;
599 int nex;
1da177e4
LT
600 int size;
601 int i;
602
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
606
607 /*
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
611 */
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
619 }
620
4eea22f0 621 ifp->if_real_bytes = 0;
1da177e4
LT
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
626 else
627 xfs_iext_add(ifp, 0, nex);
628
1da177e4 629 ifp->if_bytes = size;
1da177e4
LT
630 if (size) {
631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 633 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
cd8b0a97
CH
635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
1da177e4 637 }
3a59c94c 638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
639 if (whichfork != XFS_DATA_FORK ||
640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 if (unlikely(xfs_check_nostate_extents(
4eea22f0 642 ifp, 0, nex))) {
1da177e4
LT
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 XFS_ERRLEVEL_LOW,
645 ip->i_mount);
646 return XFS_ERROR(EFSCORRUPTED);
647 }
648 }
649 ifp->if_flags |= XFS_IFEXTENTS;
650 return 0;
651}
652
653/*
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
660 */
661STATIC int
662xfs_iformat_btree(
663 xfs_inode_t *ip,
664 xfs_dinode_t *dip,
665 int whichfork)
666{
667 xfs_bmdr_block_t *dfp;
668 xfs_ifork_t *ifp;
669 /* REFERENCED */
670 int nrecs;
671 int size;
672
673 ifp = XFS_IFORK_PTR(ip, whichfork);
674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 size = XFS_BMAP_BROOT_SPACE(dfp);
676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
677
678 /*
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
683 * blocks.
684 */
685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs) >
687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 "corrupt inode %Lu (btree).",
1da177e4
LT
691 (unsigned long long) ip->i_ino);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 ip->i_mount);
694 return XFS_ERROR(EFSCORRUPTED);
695 }
696
697 ifp->if_broot_bytes = size;
698 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 ASSERT(ifp->if_broot != NULL);
700 /*
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
703 */
704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 ifp->if_broot, size);
706 ifp->if_flags &= ~XFS_IFEXTENTS;
707 ifp->if_flags |= XFS_IFBROOT;
708
709 return 0;
710}
711
1da177e4 712void
347d1c01
CH
713xfs_dinode_from_disk(
714 xfs_icdinode_t *to,
715 xfs_dinode_core_t *from)
1da177e4 716{
347d1c01
CH
717 to->di_magic = be16_to_cpu(from->di_magic);
718 to->di_mode = be16_to_cpu(from->di_mode);
719 to->di_version = from ->di_version;
720 to->di_format = from->di_format;
721 to->di_onlink = be16_to_cpu(from->di_onlink);
722 to->di_uid = be32_to_cpu(from->di_uid);
723 to->di_gid = be32_to_cpu(from->di_gid);
724 to->di_nlink = be32_to_cpu(from->di_nlink);
725 to->di_projid = be16_to_cpu(from->di_projid);
726 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 to->di_size = be64_to_cpu(from->di_size);
735 to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 to->di_extsize = be32_to_cpu(from->di_extsize);
737 to->di_nextents = be32_to_cpu(from->di_nextents);
738 to->di_anextents = be16_to_cpu(from->di_anextents);
739 to->di_forkoff = from->di_forkoff;
740 to->di_aformat = from->di_aformat;
741 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
742 to->di_dmstate = be16_to_cpu(from->di_dmstate);
743 to->di_flags = be16_to_cpu(from->di_flags);
744 to->di_gen = be32_to_cpu(from->di_gen);
745}
746
747void
748xfs_dinode_to_disk(
749 xfs_dinode_core_t *to,
750 xfs_icdinode_t *from)
751{
752 to->di_magic = cpu_to_be16(from->di_magic);
753 to->di_mode = cpu_to_be16(from->di_mode);
754 to->di_version = from ->di_version;
755 to->di_format = from->di_format;
756 to->di_onlink = cpu_to_be16(from->di_onlink);
757 to->di_uid = cpu_to_be32(from->di_uid);
758 to->di_gid = cpu_to_be32(from->di_gid);
759 to->di_nlink = cpu_to_be32(from->di_nlink);
760 to->di_projid = cpu_to_be16(from->di_projid);
761 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 to->di_size = cpu_to_be64(from->di_size);
770 to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 to->di_extsize = cpu_to_be32(from->di_extsize);
772 to->di_nextents = cpu_to_be32(from->di_nextents);
773 to->di_anextents = cpu_to_be16(from->di_anextents);
774 to->di_forkoff = from->di_forkoff;
775 to->di_aformat = from->di_aformat;
776 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 to->di_flags = cpu_to_be16(from->di_flags);
779 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
780}
781
782STATIC uint
783_xfs_dic2xflags(
1da177e4
LT
784 __uint16_t di_flags)
785{
786 uint flags = 0;
787
788 if (di_flags & XFS_DIFLAG_ANY) {
789 if (di_flags & XFS_DIFLAG_REALTIME)
790 flags |= XFS_XFLAG_REALTIME;
791 if (di_flags & XFS_DIFLAG_PREALLOC)
792 flags |= XFS_XFLAG_PREALLOC;
793 if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 flags |= XFS_XFLAG_IMMUTABLE;
795 if (di_flags & XFS_DIFLAG_APPEND)
796 flags |= XFS_XFLAG_APPEND;
797 if (di_flags & XFS_DIFLAG_SYNC)
798 flags |= XFS_XFLAG_SYNC;
799 if (di_flags & XFS_DIFLAG_NOATIME)
800 flags |= XFS_XFLAG_NOATIME;
801 if (di_flags & XFS_DIFLAG_NODUMP)
802 flags |= XFS_XFLAG_NODUMP;
803 if (di_flags & XFS_DIFLAG_RTINHERIT)
804 flags |= XFS_XFLAG_RTINHERIT;
805 if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 flags |= XFS_XFLAG_PROJINHERIT;
807 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
809 if (di_flags & XFS_DIFLAG_EXTSIZE)
810 flags |= XFS_XFLAG_EXTSIZE;
811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
813 if (di_flags & XFS_DIFLAG_NODEFRAG)
814 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
815 if (di_flags & XFS_DIFLAG_FILESTREAM)
816 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
817 }
818
819 return flags;
820}
821
822uint
823xfs_ip2xflags(
824 xfs_inode_t *ip)
825{
347d1c01 826 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 827
a916e2bd
NS
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
830}
831
832uint
833xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
835{
347d1c01 836 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
a916e2bd 837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
838}
839
840/*
841 * Given a mount structure and an inode number, return a pointer
c41564b5 842 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
843 * inode number.
844 *
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
847 */
848int
849xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
745b1f47
NS
854 xfs_daddr_t bno,
855 uint imap_flags)
1da177e4
LT
856{
857 xfs_buf_t *bp;
858 xfs_dinode_t *dip;
859 xfs_inode_t *ip;
860 int error;
861
862 ASSERT(xfs_inode_zone != NULL);
863
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 ip->i_ino = ino;
866 ip->i_mount = mp;
b677c210 867 atomic_set(&ip->i_iocount, 0);
f273ab84 868 spin_lock_init(&ip->i_flags_lock);
1da177e4
LT
869
870 /*
871 * Get pointer's to the on-disk inode and the buffer containing it.
872 * If the inode number refers to a block outside the file system
873 * then xfs_itobp() will return NULL. In this case we should
874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
875 * know that this is a new incore inode.
876 */
745b1f47 877 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
b12dd342 878 if (error) {
1da177e4
LT
879 kmem_zone_free(xfs_inode_zone, ip);
880 return error;
881 }
882
883 /*
884 * Initialize inode's trace buffers.
885 * Do this before xfs_iformat in case it adds entries.
886 */
cf441eeb
LM
887#ifdef XFS_INODE_TRACE
888 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
1543d79c 889#endif
1da177e4
LT
890#ifdef XFS_BMAP_TRACE
891 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
892#endif
893#ifdef XFS_BMBT_TRACE
894 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
895#endif
896#ifdef XFS_RW_TRACE
897 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
898#endif
899#ifdef XFS_ILOCK_TRACE
900 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
901#endif
902#ifdef XFS_DIR2_TRACE
903 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
904#endif
905
906 /*
907 * If we got something that isn't an inode it means someone
908 * (nfs or dmi) has a stale handle.
909 */
347d1c01 910 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
1da177e4
LT
911 kmem_zone_free(xfs_inode_zone, ip);
912 xfs_trans_brelse(tp, bp);
913#ifdef DEBUG
914 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 "dip->di_core.di_magic (0x%x) != "
916 "XFS_DINODE_MAGIC (0x%x)",
347d1c01 917 be16_to_cpu(dip->di_core.di_magic),
1da177e4
LT
918 XFS_DINODE_MAGIC);
919#endif /* DEBUG */
920 return XFS_ERROR(EINVAL);
921 }
922
923 /*
924 * If the on-disk inode is already linked to a directory
925 * entry, copy all of the inode into the in-core inode.
926 * xfs_iformat() handles copying in the inode format
927 * specific information.
928 * Otherwise, just get the truly permanent information.
929 */
930 if (dip->di_core.di_mode) {
347d1c01 931 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
1da177e4
LT
932 error = xfs_iformat(ip, dip);
933 if (error) {
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
936#ifdef DEBUG
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
939 error);
940#endif /* DEBUG */
941 return error;
942 }
943 } else {
347d1c01
CH
944 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
945 ip->i_d.di_version = dip->di_core.di_version;
946 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
947 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
1da177e4
LT
948 /*
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
954 */
955 ip->i_d.di_mode = 0;
956 /*
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
959 */
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
962 }
963
964 INIT_LIST_HEAD(&ip->i_reclaim);
965
966 /*
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
976 */
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
981 }
982
983 ip->i_delayed_blks = 0;
ba87ea69 984 ip->i_size = ip->i_d.di_size;
1da177e4
LT
985
986 /*
987 * Mark the buffer containing the inode as something to keep
988 * around for a while. This helps to keep recently accessed
989 * meta-data in-core longer.
990 */
991 XFS_BUF_SET_REF(bp, XFS_INO_REF);
992
993 /*
994 * Use xfs_trans_brelse() to release the buffer containing the
995 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 * in xfs_itobp() above. If tp is NULL, this is just a normal
997 * brelse(). If we're within a transaction, then xfs_trans_brelse()
998 * will only release the buffer if it is not dirty within the
999 * transaction. It will be OK to release the buffer in this case,
1000 * because inodes on disk are never destroyed and we will be
1001 * locking the new in-core inode before putting it in the hash
1002 * table where other processes can find it. Thus we don't have
1003 * to worry about the inode being changed just because we released
1004 * the buffer.
1005 */
1006 xfs_trans_brelse(tp, bp);
1007 *ipp = ip;
1008 return 0;
1009}
1010
1011/*
1012 * Read in extents from a btree-format inode.
1013 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1014 */
1015int
1016xfs_iread_extents(
1017 xfs_trans_t *tp,
1018 xfs_inode_t *ip,
1019 int whichfork)
1020{
1021 int error;
1022 xfs_ifork_t *ifp;
4eea22f0 1023 xfs_extnum_t nextents;
1da177e4
LT
1024 size_t size;
1025
1026 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 ip->i_mount);
1029 return XFS_ERROR(EFSCORRUPTED);
1030 }
4eea22f0
MK
1031 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1033 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1034
1da177e4
LT
1035 /*
1036 * We know that the size is valid (it's checked in iformat_btree)
1037 */
1da177e4 1038 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1039 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1040 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1041 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1042 error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 if (error) {
4eea22f0 1044 xfs_iext_destroy(ifp);
1da177e4
LT
1045 ifp->if_flags &= ~XFS_IFEXTENTS;
1046 return error;
1047 }
a6f64d4a 1048 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1049 return 0;
1050}
1051
1052/*
1053 * Allocate an inode on disk and return a copy of its in-core version.
1054 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1055 * appropriately within the inode. The uid and gid for the inode are
1056 * set according to the contents of the given cred structure.
1057 *
1058 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059 * has a free inode available, call xfs_iget()
1060 * to obtain the in-core version of the allocated inode. Finally,
1061 * fill in the inode and log its initial contents. In this case,
1062 * ialloc_context would be set to NULL and call_again set to false.
1063 *
1064 * If xfs_dialloc() does not have an available inode,
1065 * it will replenish its supply by doing an allocation. Since we can
1066 * only do one allocation within a transaction without deadlocks, we
1067 * must commit the current transaction before returning the inode itself.
1068 * In this case, therefore, we will set call_again to true and return.
1069 * The caller should then commit the current transaction, start a new
1070 * transaction, and call xfs_ialloc() again to actually get the inode.
1071 *
1072 * To ensure that some other process does not grab the inode that
1073 * was allocated during the first call to xfs_ialloc(), this routine
1074 * also returns the [locked] bp pointing to the head of the freelist
1075 * as ialloc_context. The caller should hold this buffer across
1076 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1077 *
1078 * If we are allocating quota inodes, we do not have a parent inode
1079 * to attach to or associate with (i.e. pip == NULL) because they
1080 * are not linked into the directory structure - they are attached
1081 * directly to the superblock - and so have no parent.
1da177e4
LT
1082 */
1083int
1084xfs_ialloc(
1085 xfs_trans_t *tp,
1086 xfs_inode_t *pip,
1087 mode_t mode,
31b084ae 1088 xfs_nlink_t nlink,
1da177e4
LT
1089 xfs_dev_t rdev,
1090 cred_t *cr,
1091 xfs_prid_t prid,
1092 int okalloc,
1093 xfs_buf_t **ialloc_context,
1094 boolean_t *call_again,
1095 xfs_inode_t **ipp)
1096{
1097 xfs_ino_t ino;
1098 xfs_inode_t *ip;
67fcaa73 1099 bhv_vnode_t *vp;
1da177e4
LT
1100 uint flags;
1101 int error;
1102
1103 /*
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1106 */
b11f94d5 1107 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4
LT
1108 ialloc_context, call_again, &ino);
1109 if (error != 0) {
1110 return error;
1111 }
1112 if (*call_again || ino == NULLFSINO) {
1113 *ipp = NULL;
1114 return 0;
1115 }
1116 ASSERT(*ialloc_context == NULL);
1117
1118 /*
1119 * Get the in-core inode with the lock held exclusively.
1120 * This is because we're setting fields here we need
1121 * to prevent others from looking at until we're done.
1122 */
1123 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1124 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1da177e4
LT
1125 if (error != 0) {
1126 return error;
1127 }
1128 ASSERT(ip != NULL);
1129
1130 vp = XFS_ITOV(ip);
1da177e4
LT
1131 ip->i_d.di_mode = (__uint16_t)mode;
1132 ip->i_d.di_onlink = 0;
1133 ip->i_d.di_nlink = nlink;
1134 ASSERT(ip->i_d.di_nlink == nlink);
1135 ip->i_d.di_uid = current_fsuid(cr);
1136 ip->i_d.di_gid = current_fsgid(cr);
1137 ip->i_d.di_projid = prid;
1138 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1139
1140 /*
1141 * If the superblock version is up to where we support new format
1142 * inodes and this is currently an old format inode, then change
1143 * the inode version number now. This way we only do the conversion
1144 * here rather than here and in the flush/logging code.
1145 */
1146 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1149 /*
1150 * We've already zeroed the old link count, the projid field,
1151 * and the pad field.
1152 */
1153 }
1154
1155 /*
1156 * Project ids won't be stored on disk if we are using a version 1 inode.
1157 */
2a82b8be 1158 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1da177e4
LT
1159 xfs_bump_ino_vers2(tp, ip);
1160
bd186aa9 1161 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1162 ip->i_d.di_gid = pip->i_d.di_gid;
1163 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 ip->i_d.di_mode |= S_ISGID;
1165 }
1166 }
1167
1168 /*
1169 * If the group ID of the new file does not match the effective group
1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 * (and only if the irix_sgid_inherit compatibility variable is set).
1172 */
1173 if ((irix_sgid_inherit) &&
1174 (ip->i_d.di_mode & S_ISGID) &&
1175 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 ip->i_d.di_mode &= ~S_ISGID;
1177 }
1178
1179 ip->i_d.di_size = 0;
ba87ea69 1180 ip->i_size = 0;
1da177e4
LT
1181 ip->i_d.di_nextents = 0;
1182 ASSERT(ip->i_d.di_nblocks == 0);
1183 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1184 /*
1185 * di_gen will have been taken care of in xfs_iread.
1186 */
1187 ip->i_d.di_extsize = 0;
1188 ip->i_d.di_dmevmask = 0;
1189 ip->i_d.di_dmstate = 0;
1190 ip->i_d.di_flags = 0;
1191 flags = XFS_ILOG_CORE;
1192 switch (mode & S_IFMT) {
1193 case S_IFIFO:
1194 case S_IFCHR:
1195 case S_IFBLK:
1196 case S_IFSOCK:
1197 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1198 ip->i_df.if_u2.if_rdev = rdev;
1199 ip->i_df.if_flags = 0;
1200 flags |= XFS_ILOG_DEV;
1201 break;
1202 case S_IFREG:
b11f94d5 1203 if (pip && xfs_inode_is_filestream(pip)) {
2a82b8be
DC
1204 error = xfs_filestream_associate(pip, ip);
1205 if (error < 0)
1206 return -error;
1207 if (!error)
1208 xfs_iflags_set(ip, XFS_IFILESTREAM);
1209 }
1210 /* fall through */
1da177e4 1211 case S_IFDIR:
b11f94d5 1212 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1213 uint di_flags = 0;
1214
1215 if ((mode & S_IFMT) == S_IFDIR) {
1216 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1217 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1218 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1219 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1220 ip->i_d.di_extsize = pip->i_d.di_extsize;
1221 }
1222 } else if ((mode & S_IFMT) == S_IFREG) {
365ca83d
NS
1223 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1224 di_flags |= XFS_DIFLAG_REALTIME;
1da177e4
LT
1225 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1226 }
dd9f438e
NS
1227 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1228 di_flags |= XFS_DIFLAG_EXTSIZE;
1229 ip->i_d.di_extsize = pip->i_d.di_extsize;
1230 }
1da177e4
LT
1231 }
1232 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1233 xfs_inherit_noatime)
365ca83d 1234 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1235 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1236 xfs_inherit_nodump)
365ca83d 1237 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1238 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1239 xfs_inherit_sync)
365ca83d 1240 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1241 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1242 xfs_inherit_nosymlinks)
365ca83d
NS
1243 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1244 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1245 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1246 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1247 xfs_inherit_nodefrag)
1248 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1249 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1250 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1251 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1252 }
1253 /* FALLTHROUGH */
1254 case S_IFLNK:
1255 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1256 ip->i_df.if_flags = XFS_IFEXTENTS;
1257 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1258 ip->i_df.if_u1.if_extents = NULL;
1259 break;
1260 default:
1261 ASSERT(0);
1262 }
1263 /*
1264 * Attribute fork settings for new inode.
1265 */
1266 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1267 ip->i_d.di_anextents = 0;
1268
1269 /*
1270 * Log the new values stuffed into the inode.
1271 */
1272 xfs_trans_log_inode(tp, ip, flags);
1273
b83bd138 1274 /* now that we have an i_mode we can setup inode ops and unlock */
745f6919 1275 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1da177e4
LT
1276
1277 *ipp = ip;
1278 return 0;
1279}
1280
1281/*
1282 * Check to make sure that there are no blocks allocated to the
1283 * file beyond the size of the file. We don't check this for
1284 * files with fixed size extents or real time extents, but we
1285 * at least do it for regular files.
1286 */
1287#ifdef DEBUG
1288void
1289xfs_isize_check(
1290 xfs_mount_t *mp,
1291 xfs_inode_t *ip,
1292 xfs_fsize_t isize)
1293{
1294 xfs_fileoff_t map_first;
1295 int nimaps;
1296 xfs_bmbt_irec_t imaps[2];
1297
1298 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1299 return;
1300
dd9f438e 1301 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1da177e4
LT
1302 return;
1303
1304 nimaps = 2;
1305 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1306 /*
1307 * The filesystem could be shutting down, so bmapi may return
1308 * an error.
1309 */
1310 if (xfs_bmapi(NULL, ip, map_first,
1311 (XFS_B_TO_FSB(mp,
1312 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1313 map_first),
1314 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1315 NULL, NULL))
1da177e4
LT
1316 return;
1317 ASSERT(nimaps == 1);
1318 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1319}
1320#endif /* DEBUG */
1321
1322/*
1323 * Calculate the last possible buffered byte in a file. This must
1324 * include data that was buffered beyond the EOF by the write code.
1325 * This also needs to deal with overflowing the xfs_fsize_t type
1326 * which can happen for sizes near the limit.
1327 *
1328 * We also need to take into account any blocks beyond the EOF. It
1329 * may be the case that they were buffered by a write which failed.
1330 * In that case the pages will still be in memory, but the inode size
1331 * will never have been updated.
1332 */
1333xfs_fsize_t
1334xfs_file_last_byte(
1335 xfs_inode_t *ip)
1336{
1337 xfs_mount_t *mp;
1338 xfs_fsize_t last_byte;
1339 xfs_fileoff_t last_block;
1340 xfs_fileoff_t size_last_block;
1341 int error;
1342
1343 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1344
1345 mp = ip->i_mount;
1346 /*
1347 * Only check for blocks beyond the EOF if the extents have
1348 * been read in. This eliminates the need for the inode lock,
1349 * and it also saves us from looking when it really isn't
1350 * necessary.
1351 */
1352 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1353 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1354 XFS_DATA_FORK);
1355 if (error) {
1356 last_block = 0;
1357 }
1358 } else {
1359 last_block = 0;
1360 }
ba87ea69 1361 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1362 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1363
1364 last_byte = XFS_FSB_TO_B(mp, last_block);
1365 if (last_byte < 0) {
1366 return XFS_MAXIOFFSET(mp);
1367 }
1368 last_byte += (1 << mp->m_writeio_log);
1369 if (last_byte < 0) {
1370 return XFS_MAXIOFFSET(mp);
1371 }
1372 return last_byte;
1373}
1374
1375#if defined(XFS_RW_TRACE)
1376STATIC void
1377xfs_itrunc_trace(
1378 int tag,
1379 xfs_inode_t *ip,
1380 int flag,
1381 xfs_fsize_t new_size,
1382 xfs_off_t toss_start,
1383 xfs_off_t toss_finish)
1384{
1385 if (ip->i_rwtrace == NULL) {
1386 return;
1387 }
1388
1389 ktrace_enter(ip->i_rwtrace,
1390 (void*)((long)tag),
1391 (void*)ip,
1392 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1393 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1394 (void*)((long)flag),
1395 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1396 (void*)(unsigned long)(new_size & 0xffffffff),
1397 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1398 (void*)(unsigned long)(toss_start & 0xffffffff),
1399 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1400 (void*)(unsigned long)(toss_finish & 0xffffffff),
1401 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1402 (void*)(unsigned long)current_pid(),
1403 (void*)NULL,
1404 (void*)NULL,
1405 (void*)NULL);
1da177e4
LT
1406}
1407#else
1408#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1409#endif
1410
1411/*
1412 * Start the truncation of the file to new_size. The new size
1413 * must be smaller than the current size. This routine will
1414 * clear the buffer and page caches of file data in the removed
1415 * range, and xfs_itruncate_finish() will remove the underlying
1416 * disk blocks.
1417 *
1418 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1419 * must NOT have the inode lock held at all. This is because we're
1420 * calling into the buffer/page cache code and we can't hold the
1421 * inode lock when we do so.
1422 *
38e2299a
DC
1423 * We need to wait for any direct I/Os in flight to complete before we
1424 * proceed with the truncate. This is needed to prevent the extents
1425 * being read or written by the direct I/Os from being removed while the
1426 * I/O is in flight as there is no other method of synchronising
1427 * direct I/O with the truncate operation. Also, because we hold
1428 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1429 * started until the truncate completes and drops the lock. Essentially,
1430 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1431 * between direct I/Os and the truncate operation.
1432 *
1da177e4
LT
1433 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1434 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1435 * in the case that the caller is locking things out of order and
1436 * may not be able to call xfs_itruncate_finish() with the inode lock
1437 * held without dropping the I/O lock. If the caller must drop the
1438 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1439 * must be called again with all the same restrictions as the initial
1440 * call.
1441 */
d3cf2094 1442int
1da177e4
LT
1443xfs_itruncate_start(
1444 xfs_inode_t *ip,
1445 uint flags,
1446 xfs_fsize_t new_size)
1447{
1448 xfs_fsize_t last_byte;
1449 xfs_off_t toss_start;
1450 xfs_mount_t *mp;
67fcaa73 1451 bhv_vnode_t *vp;
d3cf2094 1452 int error = 0;
1da177e4
LT
1453
1454 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
ba87ea69 1455 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1456 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1457 (flags == XFS_ITRUNC_MAYBE));
1458
1459 mp = ip->i_mount;
1460 vp = XFS_ITOV(ip);
9fa8046f 1461
c734c79b
LM
1462 /* wait for the completion of any pending DIOs */
1463 if (new_size < ip->i_size)
1464 vn_iowait(ip);
1465
1da177e4 1466 /*
67fcaa73 1467 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1468 * overlapping the region being removed. We have to use
67fcaa73 1469 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1470 * caller may not be able to finish the truncate without
1471 * dropping the inode's I/O lock. Make sure
1472 * to catch any pages brought in by buffers overlapping
1473 * the EOF by searching out beyond the isize by our
1474 * block size. We round new_size up to a block boundary
1475 * so that we don't toss things on the same block as
1476 * new_size but before it.
1477 *
67fcaa73 1478 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1479 * call remapf() over the same region if the file is mapped.
1480 * This frees up mapped file references to the pages in the
67fcaa73 1481 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1482 * that we get the latest mapped changes flushed out.
1483 */
1484 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1485 toss_start = XFS_FSB_TO_B(mp, toss_start);
1486 if (toss_start < 0) {
1487 /*
1488 * The place to start tossing is beyond our maximum
1489 * file size, so there is no way that the data extended
1490 * out there.
1491 */
d3cf2094 1492 return 0;
1da177e4
LT
1493 }
1494 last_byte = xfs_file_last_byte(ip);
1495 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1496 last_byte);
1497 if (last_byte > toss_start) {
1498 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1499 xfs_tosspages(ip, toss_start,
1500 -1, FI_REMAPF_LOCKED);
1da177e4 1501 } else {
739bfb2a
CH
1502 error = xfs_flushinval_pages(ip, toss_start,
1503 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1504 }
1505 }
1506
1507#ifdef DEBUG
1508 if (new_size == 0) {
1509 ASSERT(VN_CACHED(vp) == 0);
1510 }
1511#endif
d3cf2094 1512 return error;
1da177e4
LT
1513}
1514
1515/*
1516 * Shrink the file to the given new_size. The new
1517 * size must be smaller than the current size.
1518 * This will free up the underlying blocks
1519 * in the removed range after a call to xfs_itruncate_start()
1520 * or xfs_atruncate_start().
1521 *
1522 * The transaction passed to this routine must have made
1523 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1524 * This routine may commit the given transaction and
1525 * start new ones, so make sure everything involved in
1526 * the transaction is tidy before calling here.
1527 * Some transaction will be returned to the caller to be
1528 * committed. The incoming transaction must already include
1529 * the inode, and both inode locks must be held exclusively.
1530 * The inode must also be "held" within the transaction. On
1531 * return the inode will be "held" within the returned transaction.
1532 * This routine does NOT require any disk space to be reserved
1533 * for it within the transaction.
1534 *
1535 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1536 * and it indicates the fork which is to be truncated. For the
1537 * attribute fork we only support truncation to size 0.
1538 *
1539 * We use the sync parameter to indicate whether or not the first
1540 * transaction we perform might have to be synchronous. For the attr fork,
1541 * it needs to be so if the unlink of the inode is not yet known to be
1542 * permanent in the log. This keeps us from freeing and reusing the
1543 * blocks of the attribute fork before the unlink of the inode becomes
1544 * permanent.
1545 *
1546 * For the data fork, we normally have to run synchronously if we're
1547 * being called out of the inactive path or we're being called
1548 * out of the create path where we're truncating an existing file.
1549 * Either way, the truncate needs to be sync so blocks don't reappear
1550 * in the file with altered data in case of a crash. wsync filesystems
1551 * can run the first case async because anything that shrinks the inode
1552 * has to run sync so by the time we're called here from inactive, the
1553 * inode size is permanently set to 0.
1554 *
1555 * Calls from the truncate path always need to be sync unless we're
1556 * in a wsync filesystem and the file has already been unlinked.
1557 *
1558 * The caller is responsible for correctly setting the sync parameter.
1559 * It gets too hard for us to guess here which path we're being called
1560 * out of just based on inode state.
1561 */
1562int
1563xfs_itruncate_finish(
1564 xfs_trans_t **tp,
1565 xfs_inode_t *ip,
1566 xfs_fsize_t new_size,
1567 int fork,
1568 int sync)
1569{
1570 xfs_fsblock_t first_block;
1571 xfs_fileoff_t first_unmap_block;
1572 xfs_fileoff_t last_block;
1573 xfs_filblks_t unmap_len=0;
1574 xfs_mount_t *mp;
1575 xfs_trans_t *ntp;
1576 int done;
1577 int committed;
1578 xfs_bmap_free_t free_list;
1579 int error;
1580
1581 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1582 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
ba87ea69 1583 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1584 ASSERT(*tp != NULL);
1585 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1586 ASSERT(ip->i_transp == *tp);
1587 ASSERT(ip->i_itemp != NULL);
1588 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1589
1590
1591 ntp = *tp;
1592 mp = (ntp)->t_mountp;
1593 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1594
1595 /*
1596 * We only support truncating the entire attribute fork.
1597 */
1598 if (fork == XFS_ATTR_FORK) {
1599 new_size = 0LL;
1600 }
1601 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1602 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1603 /*
1604 * The first thing we do is set the size to new_size permanently
1605 * on disk. This way we don't have to worry about anyone ever
1606 * being able to look at the data being freed even in the face
1607 * of a crash. What we're getting around here is the case where
1608 * we free a block, it is allocated to another file, it is written
1609 * to, and then we crash. If the new data gets written to the
1610 * file but the log buffers containing the free and reallocation
1611 * don't, then we'd end up with garbage in the blocks being freed.
1612 * As long as we make the new_size permanent before actually
1613 * freeing any blocks it doesn't matter if they get writtten to.
1614 *
1615 * The callers must signal into us whether or not the size
1616 * setting here must be synchronous. There are a few cases
1617 * where it doesn't have to be synchronous. Those cases
1618 * occur if the file is unlinked and we know the unlink is
1619 * permanent or if the blocks being truncated are guaranteed
1620 * to be beyond the inode eof (regardless of the link count)
1621 * and the eof value is permanent. Both of these cases occur
1622 * only on wsync-mounted filesystems. In those cases, we're
1623 * guaranteed that no user will ever see the data in the blocks
1624 * that are being truncated so the truncate can run async.
1625 * In the free beyond eof case, the file may wind up with
1626 * more blocks allocated to it than it needs if we crash
1627 * and that won't get fixed until the next time the file
1628 * is re-opened and closed but that's ok as that shouldn't
1629 * be too many blocks.
1630 *
1631 * However, we can't just make all wsync xactions run async
1632 * because there's one call out of the create path that needs
1633 * to run sync where it's truncating an existing file to size
1634 * 0 whose size is > 0.
1635 *
1636 * It's probably possible to come up with a test in this
1637 * routine that would correctly distinguish all the above
1638 * cases from the values of the function parameters and the
1639 * inode state but for sanity's sake, I've decided to let the
1640 * layers above just tell us. It's simpler to correctly figure
1641 * out in the layer above exactly under what conditions we
1642 * can run async and I think it's easier for others read and
1643 * follow the logic in case something has to be changed.
1644 * cscope is your friend -- rcc.
1645 *
1646 * The attribute fork is much simpler.
1647 *
1648 * For the attribute fork we allow the caller to tell us whether
1649 * the unlink of the inode that led to this call is yet permanent
1650 * in the on disk log. If it is not and we will be freeing extents
1651 * in this inode then we make the first transaction synchronous
1652 * to make sure that the unlink is permanent by the time we free
1653 * the blocks.
1654 */
1655 if (fork == XFS_DATA_FORK) {
1656 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1657 /*
1658 * If we are not changing the file size then do
1659 * not update the on-disk file size - we may be
1660 * called from xfs_inactive_free_eofblocks(). If we
1661 * update the on-disk file size and then the system
1662 * crashes before the contents of the file are
1663 * flushed to disk then the files may be full of
1664 * holes (ie NULL files bug).
1665 */
1666 if (ip->i_size != new_size) {
1667 ip->i_d.di_size = new_size;
1668 ip->i_size = new_size;
1669 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1670 }
1da177e4
LT
1671 }
1672 } else if (sync) {
1673 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1674 if (ip->i_d.di_anextents > 0)
1675 xfs_trans_set_sync(ntp);
1676 }
1677 ASSERT(fork == XFS_DATA_FORK ||
1678 (fork == XFS_ATTR_FORK &&
1679 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1680 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1681
1682 /*
1683 * Since it is possible for space to become allocated beyond
1684 * the end of the file (in a crash where the space is allocated
1685 * but the inode size is not yet updated), simply remove any
1686 * blocks which show up between the new EOF and the maximum
1687 * possible file size. If the first block to be removed is
1688 * beyond the maximum file size (ie it is the same as last_block),
1689 * then there is nothing to do.
1690 */
1691 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1692 ASSERT(first_unmap_block <= last_block);
1693 done = 0;
1694 if (last_block == first_unmap_block) {
1695 done = 1;
1696 } else {
1697 unmap_len = last_block - first_unmap_block + 1;
1698 }
1699 while (!done) {
1700 /*
1701 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1702 * will tell us whether it freed the entire range or
1703 * not. If this is a synchronous mount (wsync),
1704 * then we can tell bunmapi to keep all the
1705 * transactions asynchronous since the unlink
1706 * transaction that made this inode inactive has
1707 * already hit the disk. There's no danger of
1708 * the freed blocks being reused, there being a
1709 * crash, and the reused blocks suddenly reappearing
1710 * in this file with garbage in them once recovery
1711 * runs.
1712 */
1713 XFS_BMAP_INIT(&free_list, &first_block);
541d7d3c 1714 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1715 first_unmap_block, unmap_len,
1da177e4
LT
1716 XFS_BMAPI_AFLAG(fork) |
1717 (sync ? 0 : XFS_BMAPI_ASYNC),
1718 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1719 &first_block, &free_list,
1720 NULL, &done);
1da177e4
LT
1721 if (error) {
1722 /*
1723 * If the bunmapi call encounters an error,
1724 * return to the caller where the transaction
1725 * can be properly aborted. We just need to
1726 * make sure we're not holding any resources
1727 * that we were not when we came in.
1728 */
1729 xfs_bmap_cancel(&free_list);
1730 return error;
1731 }
1732
1733 /*
1734 * Duplicate the transaction that has the permanent
1735 * reservation and commit the old transaction.
1736 */
f7c99b6f 1737 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4
LT
1738 ntp = *tp;
1739 if (error) {
1740 /*
1741 * If the bmap finish call encounters an error,
1742 * return to the caller where the transaction
1743 * can be properly aborted. We just need to
1744 * make sure we're not holding any resources
1745 * that we were not when we came in.
1746 *
1747 * Aborting from this point might lose some
1748 * blocks in the file system, but oh well.
1749 */
1750 xfs_bmap_cancel(&free_list);
1751 if (committed) {
1752 /*
1753 * If the passed in transaction committed
1754 * in xfs_bmap_finish(), then we want to
1755 * add the inode to this one before returning.
1756 * This keeps things simple for the higher
1757 * level code, because it always knows that
1758 * the inode is locked and held in the
1759 * transaction that returns to it whether
1760 * errors occur or not. We don't mark the
1761 * inode dirty so that this transaction can
1762 * be easily aborted if possible.
1763 */
1764 xfs_trans_ijoin(ntp, ip,
1765 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1766 xfs_trans_ihold(ntp, ip);
1767 }
1768 return error;
1769 }
1770
1771 if (committed) {
1772 /*
1773 * The first xact was committed,
1774 * so add the inode to the new one.
1775 * Mark it dirty so it will be logged
1776 * and moved forward in the log as
1777 * part of every commit.
1778 */
1779 xfs_trans_ijoin(ntp, ip,
1780 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1781 xfs_trans_ihold(ntp, ip);
1782 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1783 }
1784 ntp = xfs_trans_dup(ntp);
1c72bf90 1785 (void) xfs_trans_commit(*tp, 0);
1da177e4
LT
1786 *tp = ntp;
1787 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1788 XFS_TRANS_PERM_LOG_RES,
1789 XFS_ITRUNCATE_LOG_COUNT);
1790 /*
1791 * Add the inode being truncated to the next chained
1792 * transaction.
1793 */
1794 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1795 xfs_trans_ihold(ntp, ip);
1796 if (error)
1797 return (error);
1798 }
1799 /*
1800 * Only update the size in the case of the data fork, but
1801 * always re-log the inode so that our permanent transaction
1802 * can keep on rolling it forward in the log.
1803 */
1804 if (fork == XFS_DATA_FORK) {
1805 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1806 /*
1807 * If we are not changing the file size then do
1808 * not update the on-disk file size - we may be
1809 * called from xfs_inactive_free_eofblocks(). If we
1810 * update the on-disk file size and then the system
1811 * crashes before the contents of the file are
1812 * flushed to disk then the files may be full of
1813 * holes (ie NULL files bug).
1814 */
1815 if (ip->i_size != new_size) {
1816 ip->i_d.di_size = new_size;
1817 ip->i_size = new_size;
1818 }
1da177e4
LT
1819 }
1820 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1821 ASSERT((new_size != 0) ||
1822 (fork == XFS_ATTR_FORK) ||
1823 (ip->i_delayed_blks == 0));
1824 ASSERT((new_size != 0) ||
1825 (fork == XFS_ATTR_FORK) ||
1826 (ip->i_d.di_nextents == 0));
1827 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1828 return 0;
1829}
1830
1831
1832/*
1833 * xfs_igrow_start
1834 *
1835 * Do the first part of growing a file: zero any data in the last
1836 * block that is beyond the old EOF. We need to do this before
1837 * the inode is joined to the transaction to modify the i_size.
1838 * That way we can drop the inode lock and call into the buffer
1839 * cache to get the buffer mapping the EOF.
1840 */
1841int
1842xfs_igrow_start(
1843 xfs_inode_t *ip,
1844 xfs_fsize_t new_size,
1845 cred_t *credp)
1846{
1da177e4
LT
1847 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1848 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
ba87ea69 1849 ASSERT(new_size > ip->i_size);
1da177e4 1850
1da177e4
LT
1851 /*
1852 * Zero any pages that may have been created by
1853 * xfs_write_file() beyond the end of the file
1854 * and any blocks between the old and new file sizes.
1855 */
541d7d3c 1856 return xfs_zero_eof(ip, new_size, ip->i_size);
1da177e4
LT
1857}
1858
1859/*
1860 * xfs_igrow_finish
1861 *
1862 * This routine is called to extend the size of a file.
1863 * The inode must have both the iolock and the ilock locked
1864 * for update and it must be a part of the current transaction.
1865 * The xfs_igrow_start() function must have been called previously.
1866 * If the change_flag is not zero, the inode change timestamp will
1867 * be updated.
1868 */
1869void
1870xfs_igrow_finish(
1871 xfs_trans_t *tp,
1872 xfs_inode_t *ip,
1873 xfs_fsize_t new_size,
1874 int change_flag)
1875{
1876 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1877 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1878 ASSERT(ip->i_transp == tp);
ba87ea69 1879 ASSERT(new_size > ip->i_size);
1da177e4
LT
1880
1881 /*
1882 * Update the file size. Update the inode change timestamp
1883 * if change_flag set.
1884 */
1885 ip->i_d.di_size = new_size;
ba87ea69 1886 ip->i_size = new_size;
1da177e4
LT
1887 if (change_flag)
1888 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1889 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1890
1891}
1892
1893
1894/*
1895 * This is called when the inode's link count goes to 0.
1896 * We place the on-disk inode on a list in the AGI. It
1897 * will be pulled from this list when the inode is freed.
1898 */
1899int
1900xfs_iunlink(
1901 xfs_trans_t *tp,
1902 xfs_inode_t *ip)
1903{
1904 xfs_mount_t *mp;
1905 xfs_agi_t *agi;
1906 xfs_dinode_t *dip;
1907 xfs_buf_t *agibp;
1908 xfs_buf_t *ibp;
1909 xfs_agnumber_t agno;
1910 xfs_daddr_t agdaddr;
1911 xfs_agino_t agino;
1912 short bucket_index;
1913 int offset;
1914 int error;
1915 int agi_ok;
1916
1917 ASSERT(ip->i_d.di_nlink == 0);
1918 ASSERT(ip->i_d.di_mode != 0);
1919 ASSERT(ip->i_transp == tp);
1920
1921 mp = tp->t_mountp;
1922
1923 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1924 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1925
1926 /*
1927 * Get the agi buffer first. It ensures lock ordering
1928 * on the list.
1929 */
1930 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1931 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
859d7182 1932 if (error)
1da177e4 1933 return error;
859d7182 1934
1da177e4
LT
1935 /*
1936 * Validate the magic number of the agi block.
1937 */
1938 agi = XFS_BUF_TO_AGI(agibp);
1939 agi_ok =
16259e7d
CH
1940 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1941 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1942 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1943 XFS_RANDOM_IUNLINK))) {
1944 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1945 xfs_trans_brelse(tp, agibp);
1946 return XFS_ERROR(EFSCORRUPTED);
1947 }
1948 /*
1949 * Get the index into the agi hash table for the
1950 * list this inode will go on.
1951 */
1952 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1953 ASSERT(agino != 0);
1954 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1955 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1956 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1957
859d7182
VA
1958 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1959 if (error)
1960 return error;
1961
1962 /*
1963 * Clear the on-disk di_nlink. This is to prevent xfs_bulkstat
1964 * from picking up this inode when it is reclaimed (its incore state
1965 * initialzed but not flushed to disk yet). The in-core di_nlink is
1966 * already cleared in xfs_droplink() and a corresponding transaction
1967 * logged. The hack here just synchronizes the in-core to on-disk
1968 * di_nlink value in advance before the actual inode sync to disk.
1969 * This is OK because the inode is already unlinked and would never
1970 * change its di_nlink again for this inode generation.
1971 * This is a temporary hack that would require a proper fix
1972 * in the future.
1973 */
1974 dip->di_core.di_nlink = 0;
1975
16259e7d 1976 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1977 /*
1978 * There is already another inode in the bucket we need
1979 * to add ourselves to. Add us at the front of the list.
1980 * Here we put the head pointer into our next pointer,
1981 * and then we fall through to point the head at us.
1982 */
347d1c01 1983 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1984 /* both on-disk, don't endian flip twice */
1985 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1986 offset = ip->i_boffset +
1987 offsetof(xfs_dinode_t, di_next_unlinked);
1988 xfs_trans_inode_buf(tp, ibp);
1989 xfs_trans_log_buf(tp, ibp, offset,
1990 (offset + sizeof(xfs_agino_t) - 1));
1991 xfs_inobp_check(mp, ibp);
1992 }
1993
1994 /*
1995 * Point the bucket head pointer at the inode being inserted.
1996 */
1997 ASSERT(agino != 0);
16259e7d 1998 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1999 offset = offsetof(xfs_agi_t, agi_unlinked) +
2000 (sizeof(xfs_agino_t) * bucket_index);
2001 xfs_trans_log_buf(tp, agibp, offset,
2002 (offset + sizeof(xfs_agino_t) - 1));
2003 return 0;
2004}
2005
2006/*
2007 * Pull the on-disk inode from the AGI unlinked list.
2008 */
2009STATIC int
2010xfs_iunlink_remove(
2011 xfs_trans_t *tp,
2012 xfs_inode_t *ip)
2013{
2014 xfs_ino_t next_ino;
2015 xfs_mount_t *mp;
2016 xfs_agi_t *agi;
2017 xfs_dinode_t *dip;
2018 xfs_buf_t *agibp;
2019 xfs_buf_t *ibp;
2020 xfs_agnumber_t agno;
2021 xfs_daddr_t agdaddr;
2022 xfs_agino_t agino;
2023 xfs_agino_t next_agino;
2024 xfs_buf_t *last_ibp;
6fdf8ccc 2025 xfs_dinode_t *last_dip = NULL;
1da177e4 2026 short bucket_index;
6fdf8ccc 2027 int offset, last_offset = 0;
1da177e4
LT
2028 int error;
2029 int agi_ok;
2030
2031 /*
2032 * First pull the on-disk inode from the AGI unlinked list.
2033 */
2034 mp = tp->t_mountp;
2035
2036 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2037 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2038
2039 /*
2040 * Get the agi buffer first. It ensures lock ordering
2041 * on the list.
2042 */
2043 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2044 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2045 if (error) {
2046 cmn_err(CE_WARN,
2047 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2048 error, mp->m_fsname);
2049 return error;
2050 }
2051 /*
2052 * Validate the magic number of the agi block.
2053 */
2054 agi = XFS_BUF_TO_AGI(agibp);
2055 agi_ok =
16259e7d
CH
2056 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2057 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
2058 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2059 XFS_RANDOM_IUNLINK_REMOVE))) {
2060 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2061 mp, agi);
2062 xfs_trans_brelse(tp, agibp);
2063 cmn_err(CE_WARN,
2064 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2065 mp->m_fsname);
2066 return XFS_ERROR(EFSCORRUPTED);
2067 }
2068 /*
2069 * Get the index into the agi hash table for the
2070 * list this inode will go on.
2071 */
2072 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2073 ASSERT(agino != 0);
2074 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 2075 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
2076 ASSERT(agi->agi_unlinked[bucket_index]);
2077
16259e7d 2078 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
2079 /*
2080 * We're at the head of the list. Get the inode's
2081 * on-disk buffer to see if there is anyone after us
2082 * on the list. Only modify our next pointer if it
2083 * is not already NULLAGINO. This saves us the overhead
2084 * of dealing with the buffer when there is no need to
2085 * change it.
2086 */
b12dd342 2087 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2088 if (error) {
2089 cmn_err(CE_WARN,
2090 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2091 error, mp->m_fsname);
2092 return error;
2093 }
347d1c01 2094 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2095 ASSERT(next_agino != 0);
2096 if (next_agino != NULLAGINO) {
347d1c01 2097 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2098 offset = ip->i_boffset +
2099 offsetof(xfs_dinode_t, di_next_unlinked);
2100 xfs_trans_inode_buf(tp, ibp);
2101 xfs_trans_log_buf(tp, ibp, offset,
2102 (offset + sizeof(xfs_agino_t) - 1));
2103 xfs_inobp_check(mp, ibp);
2104 } else {
2105 xfs_trans_brelse(tp, ibp);
2106 }
2107 /*
2108 * Point the bucket head pointer at the next inode.
2109 */
2110 ASSERT(next_agino != 0);
2111 ASSERT(next_agino != agino);
16259e7d 2112 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2113 offset = offsetof(xfs_agi_t, agi_unlinked) +
2114 (sizeof(xfs_agino_t) * bucket_index);
2115 xfs_trans_log_buf(tp, agibp, offset,
2116 (offset + sizeof(xfs_agino_t) - 1));
2117 } else {
2118 /*
2119 * We need to search the list for the inode being freed.
2120 */
16259e7d 2121 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2122 last_ibp = NULL;
2123 while (next_agino != agino) {
2124 /*
2125 * If the last inode wasn't the one pointing to
2126 * us, then release its buffer since we're not
2127 * going to do anything with it.
2128 */
2129 if (last_ibp != NULL) {
2130 xfs_trans_brelse(tp, last_ibp);
2131 }
2132 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2133 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2134 &last_ibp, &last_offset);
2135 if (error) {
2136 cmn_err(CE_WARN,
2137 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2138 error, mp->m_fsname);
2139 return error;
2140 }
347d1c01 2141 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2142 ASSERT(next_agino != NULLAGINO);
2143 ASSERT(next_agino != 0);
2144 }
2145 /*
2146 * Now last_ibp points to the buffer previous to us on
2147 * the unlinked list. Pull us from the list.
2148 */
b12dd342 2149 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2150 if (error) {
2151 cmn_err(CE_WARN,
2152 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2153 error, mp->m_fsname);
2154 return error;
2155 }
347d1c01 2156 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2157 ASSERT(next_agino != 0);
2158 ASSERT(next_agino != agino);
2159 if (next_agino != NULLAGINO) {
347d1c01 2160 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2161 offset = ip->i_boffset +
2162 offsetof(xfs_dinode_t, di_next_unlinked);
2163 xfs_trans_inode_buf(tp, ibp);
2164 xfs_trans_log_buf(tp, ibp, offset,
2165 (offset + sizeof(xfs_agino_t) - 1));
2166 xfs_inobp_check(mp, ibp);
2167 } else {
2168 xfs_trans_brelse(tp, ibp);
2169 }
2170 /*
2171 * Point the previous inode on the list to the next inode.
2172 */
347d1c01 2173 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2174 ASSERT(next_agino != 0);
2175 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2176 xfs_trans_inode_buf(tp, last_ibp);
2177 xfs_trans_log_buf(tp, last_ibp, offset,
2178 (offset + sizeof(xfs_agino_t) - 1));
2179 xfs_inobp_check(mp, last_ibp);
2180 }
2181 return 0;
2182}
2183
7989cb8e 2184STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
1da177e4
LT
2185{
2186 return (((ip->i_itemp == NULL) ||
2187 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2188 (ip->i_update_core == 0));
2189}
2190
ba0f32d4 2191STATIC void
1da177e4
LT
2192xfs_ifree_cluster(
2193 xfs_inode_t *free_ip,
2194 xfs_trans_t *tp,
2195 xfs_ino_t inum)
2196{
2197 xfs_mount_t *mp = free_ip->i_mount;
2198 int blks_per_cluster;
2199 int nbufs;
2200 int ninodes;
2201 int i, j, found, pre_flushed;
2202 xfs_daddr_t blkno;
2203 xfs_buf_t *bp;
1da177e4
LT
2204 xfs_inode_t *ip, **ip_found;
2205 xfs_inode_log_item_t *iip;
2206 xfs_log_item_t *lip;
da353b0d 2207 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2208
2209 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2210 blks_per_cluster = 1;
2211 ninodes = mp->m_sb.sb_inopblock;
2212 nbufs = XFS_IALLOC_BLOCKS(mp);
2213 } else {
2214 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2215 mp->m_sb.sb_blocksize;
2216 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2217 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2218 }
2219
2220 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2221
2222 for (j = 0; j < nbufs; j++, inum += ninodes) {
2223 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2224 XFS_INO_TO_AGBNO(mp, inum));
2225
2226
2227 /*
2228 * Look for each inode in memory and attempt to lock it,
2229 * we can be racing with flush and tail pushing here.
2230 * any inode we get the locks on, add to an array of
2231 * inode items to process later.
2232 *
2233 * The get the buffer lock, we could beat a flush
2234 * or tail pushing thread to the lock here, in which
2235 * case they will go looking for the inode buffer
2236 * and fail, we need some other form of interlock
2237 * here.
2238 */
2239 found = 0;
2240 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2241 read_lock(&pag->pag_ici_lock);
2242 ip = radix_tree_lookup(&pag->pag_ici_root,
2243 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2244
2245 /* Inode not in memory or we found it already,
2246 * nothing to do
2247 */
7a18c386 2248 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2249 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2250 continue;
2251 }
2252
2253 if (xfs_inode_clean(ip)) {
da353b0d 2254 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2255 continue;
2256 }
2257
2258 /* If we can get the locks then add it to the
2259 * list, otherwise by the time we get the bp lock
2260 * below it will already be attached to the
2261 * inode buffer.
2262 */
2263
2264 /* This inode will already be locked - by us, lets
2265 * keep it that way.
2266 */
2267
2268 if (ip == free_ip) {
2269 if (xfs_iflock_nowait(ip)) {
7a18c386 2270 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2271 if (xfs_inode_clean(ip)) {
2272 xfs_ifunlock(ip);
2273 } else {
2274 ip_found[found++] = ip;
2275 }
2276 }
da353b0d 2277 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2278 continue;
2279 }
2280
2281 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2282 if (xfs_iflock_nowait(ip)) {
7a18c386 2283 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2284
2285 if (xfs_inode_clean(ip)) {
2286 xfs_ifunlock(ip);
2287 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2288 } else {
2289 ip_found[found++] = ip;
2290 }
2291 } else {
2292 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2293 }
2294 }
da353b0d 2295 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2296 }
2297
2298 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2299 mp->m_bsize * blks_per_cluster,
2300 XFS_BUF_LOCK);
2301
2302 pre_flushed = 0;
2303 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2304 while (lip) {
2305 if (lip->li_type == XFS_LI_INODE) {
2306 iip = (xfs_inode_log_item_t *)lip;
2307 ASSERT(iip->ili_logged == 1);
2308 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
287f3dad 2309 spin_lock(&mp->m_ail_lock);
1da177e4 2310 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2311 spin_unlock(&mp->m_ail_lock);
e5ffd2bb 2312 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2313 pre_flushed++;
2314 }
2315 lip = lip->li_bio_list;
2316 }
2317
2318 for (i = 0; i < found; i++) {
2319 ip = ip_found[i];
2320 iip = ip->i_itemp;
2321
2322 if (!iip) {
2323 ip->i_update_core = 0;
2324 xfs_ifunlock(ip);
2325 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2326 continue;
2327 }
2328
2329 iip->ili_last_fields = iip->ili_format.ilf_fields;
2330 iip->ili_format.ilf_fields = 0;
2331 iip->ili_logged = 1;
287f3dad 2332 spin_lock(&mp->m_ail_lock);
1da177e4 2333 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2334 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
2335
2336 xfs_buf_attach_iodone(bp,
2337 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2338 xfs_istale_done, (xfs_log_item_t *)iip);
2339 if (ip != free_ip) {
2340 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2341 }
2342 }
2343
2344 if (found || pre_flushed)
2345 xfs_trans_stale_inode_buf(tp, bp);
2346 xfs_trans_binval(tp, bp);
2347 }
2348
2349 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
da353b0d 2350 xfs_put_perag(mp, pag);
1da177e4
LT
2351}
2352
2353/*
2354 * This is called to return an inode to the inode free list.
2355 * The inode should already be truncated to 0 length and have
2356 * no pages associated with it. This routine also assumes that
2357 * the inode is already a part of the transaction.
2358 *
2359 * The on-disk copy of the inode will have been added to the list
2360 * of unlinked inodes in the AGI. We need to remove the inode from
2361 * that list atomically with respect to freeing it here.
2362 */
2363int
2364xfs_ifree(
2365 xfs_trans_t *tp,
2366 xfs_inode_t *ip,
2367 xfs_bmap_free_t *flist)
2368{
2369 int error;
2370 int delete;
2371 xfs_ino_t first_ino;
2372
2373 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2374 ASSERT(ip->i_transp == tp);
2375 ASSERT(ip->i_d.di_nlink == 0);
2376 ASSERT(ip->i_d.di_nextents == 0);
2377 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2378 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2379 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2380 ASSERT(ip->i_d.di_nblocks == 0);
2381
2382 /*
2383 * Pull the on-disk inode from the AGI unlinked list.
2384 */
2385 error = xfs_iunlink_remove(tp, ip);
2386 if (error != 0) {
2387 return error;
2388 }
2389
2390 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2391 if (error != 0) {
2392 return error;
2393 }
2394 ip->i_d.di_mode = 0; /* mark incore inode as free */
2395 ip->i_d.di_flags = 0;
2396 ip->i_d.di_dmevmask = 0;
2397 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2398 ip->i_df.if_ext_max =
2399 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2400 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2401 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2402 /*
2403 * Bump the generation count so no one will be confused
2404 * by reincarnations of this inode.
2405 */
2406 ip->i_d.di_gen++;
2407 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2408
2409 if (delete) {
2410 xfs_ifree_cluster(ip, tp, first_ino);
2411 }
2412
2413 return 0;
2414}
2415
2416/*
2417 * Reallocate the space for if_broot based on the number of records
2418 * being added or deleted as indicated in rec_diff. Move the records
2419 * and pointers in if_broot to fit the new size. When shrinking this
2420 * will eliminate holes between the records and pointers created by
2421 * the caller. When growing this will create holes to be filled in
2422 * by the caller.
2423 *
2424 * The caller must not request to add more records than would fit in
2425 * the on-disk inode root. If the if_broot is currently NULL, then
2426 * if we adding records one will be allocated. The caller must also
2427 * not request that the number of records go below zero, although
2428 * it can go to zero.
2429 *
2430 * ip -- the inode whose if_broot area is changing
2431 * ext_diff -- the change in the number of records, positive or negative,
2432 * requested for the if_broot array.
2433 */
2434void
2435xfs_iroot_realloc(
2436 xfs_inode_t *ip,
2437 int rec_diff,
2438 int whichfork)
2439{
2440 int cur_max;
2441 xfs_ifork_t *ifp;
2442 xfs_bmbt_block_t *new_broot;
2443 int new_max;
2444 size_t new_size;
2445 char *np;
2446 char *op;
2447
2448 /*
2449 * Handle the degenerate case quietly.
2450 */
2451 if (rec_diff == 0) {
2452 return;
2453 }
2454
2455 ifp = XFS_IFORK_PTR(ip, whichfork);
2456 if (rec_diff > 0) {
2457 /*
2458 * If there wasn't any memory allocated before, just
2459 * allocate it now and get out.
2460 */
2461 if (ifp->if_broot_bytes == 0) {
2462 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2463 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2464 KM_SLEEP);
2465 ifp->if_broot_bytes = (int)new_size;
2466 return;
2467 }
2468
2469 /*
2470 * If there is already an existing if_broot, then we need
2471 * to realloc() it and shift the pointers to their new
2472 * location. The records don't change location because
2473 * they are kept butted up against the btree block header.
2474 */
2475 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2476 new_max = cur_max + rec_diff;
2477 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2478 ifp->if_broot = (xfs_bmbt_block_t *)
2479 kmem_realloc(ifp->if_broot,
2480 new_size,
2481 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2482 KM_SLEEP);
2483 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2484 ifp->if_broot_bytes);
2485 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2486 (int)new_size);
2487 ifp->if_broot_bytes = (int)new_size;
2488 ASSERT(ifp->if_broot_bytes <=
2489 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2490 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2491 return;
2492 }
2493
2494 /*
2495 * rec_diff is less than 0. In this case, we are shrinking the
2496 * if_broot buffer. It must already exist. If we go to zero
2497 * records, just get rid of the root and clear the status bit.
2498 */
2499 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2500 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2501 new_max = cur_max + rec_diff;
2502 ASSERT(new_max >= 0);
2503 if (new_max > 0)
2504 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2505 else
2506 new_size = 0;
2507 if (new_size > 0) {
2508 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2509 /*
2510 * First copy over the btree block header.
2511 */
2512 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2513 } else {
2514 new_broot = NULL;
2515 ifp->if_flags &= ~XFS_IFBROOT;
2516 }
2517
2518 /*
2519 * Only copy the records and pointers if there are any.
2520 */
2521 if (new_max > 0) {
2522 /*
2523 * First copy the records.
2524 */
2525 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2526 ifp->if_broot_bytes);
2527 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2528 (int)new_size);
2529 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2530
2531 /*
2532 * Then copy the pointers.
2533 */
2534 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2535 ifp->if_broot_bytes);
2536 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2537 (int)new_size);
2538 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2539 }
2540 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2541 ifp->if_broot = new_broot;
2542 ifp->if_broot_bytes = (int)new_size;
2543 ASSERT(ifp->if_broot_bytes <=
2544 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2545 return;
2546}
2547
2548
1da177e4
LT
2549/*
2550 * This is called when the amount of space needed for if_data
2551 * is increased or decreased. The change in size is indicated by
2552 * the number of bytes that need to be added or deleted in the
2553 * byte_diff parameter.
2554 *
2555 * If the amount of space needed has decreased below the size of the
2556 * inline buffer, then switch to using the inline buffer. Otherwise,
2557 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2558 * to what is needed.
2559 *
2560 * ip -- the inode whose if_data area is changing
2561 * byte_diff -- the change in the number of bytes, positive or negative,
2562 * requested for the if_data array.
2563 */
2564void
2565xfs_idata_realloc(
2566 xfs_inode_t *ip,
2567 int byte_diff,
2568 int whichfork)
2569{
2570 xfs_ifork_t *ifp;
2571 int new_size;
2572 int real_size;
2573
2574 if (byte_diff == 0) {
2575 return;
2576 }
2577
2578 ifp = XFS_IFORK_PTR(ip, whichfork);
2579 new_size = (int)ifp->if_bytes + byte_diff;
2580 ASSERT(new_size >= 0);
2581
2582 if (new_size == 0) {
2583 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2584 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2585 }
2586 ifp->if_u1.if_data = NULL;
2587 real_size = 0;
2588 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2589 /*
2590 * If the valid extents/data can fit in if_inline_ext/data,
2591 * copy them from the malloc'd vector and free it.
2592 */
2593 if (ifp->if_u1.if_data == NULL) {
2594 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2595 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2596 ASSERT(ifp->if_real_bytes != 0);
2597 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2598 new_size);
2599 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2600 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2601 }
2602 real_size = 0;
2603 } else {
2604 /*
2605 * Stuck with malloc/realloc.
2606 * For inline data, the underlying buffer must be
2607 * a multiple of 4 bytes in size so that it can be
2608 * logged and stay on word boundaries. We enforce
2609 * that here.
2610 */
2611 real_size = roundup(new_size, 4);
2612 if (ifp->if_u1.if_data == NULL) {
2613 ASSERT(ifp->if_real_bytes == 0);
2614 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2615 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2616 /*
2617 * Only do the realloc if the underlying size
2618 * is really changing.
2619 */
2620 if (ifp->if_real_bytes != real_size) {
2621 ifp->if_u1.if_data =
2622 kmem_realloc(ifp->if_u1.if_data,
2623 real_size,
2624 ifp->if_real_bytes,
2625 KM_SLEEP);
2626 }
2627 } else {
2628 ASSERT(ifp->if_real_bytes == 0);
2629 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2630 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2631 ifp->if_bytes);
2632 }
2633 }
2634 ifp->if_real_bytes = real_size;
2635 ifp->if_bytes = new_size;
2636 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2637}
2638
2639
2640
2641
2642/*
2643 * Map inode to disk block and offset.
2644 *
2645 * mp -- the mount point structure for the current file system
2646 * tp -- the current transaction
2647 * ino -- the inode number of the inode to be located
2648 * imap -- this structure is filled in with the information necessary
2649 * to retrieve the given inode from disk
2650 * flags -- flags to pass to xfs_dilocate indicating whether or not
2651 * lookups in the inode btree were OK or not
2652 */
2653int
2654xfs_imap(
2655 xfs_mount_t *mp,
2656 xfs_trans_t *tp,
2657 xfs_ino_t ino,
2658 xfs_imap_t *imap,
2659 uint flags)
2660{
2661 xfs_fsblock_t fsbno;
2662 int len;
2663 int off;
2664 int error;
2665
2666 fsbno = imap->im_blkno ?
2667 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2668 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2669 if (error != 0) {
2670 return error;
2671 }
2672 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2673 imap->im_len = XFS_FSB_TO_BB(mp, len);
2674 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2675 imap->im_ioffset = (ushort)off;
2676 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2677 return 0;
2678}
2679
2680void
2681xfs_idestroy_fork(
2682 xfs_inode_t *ip,
2683 int whichfork)
2684{
2685 xfs_ifork_t *ifp;
2686
2687 ifp = XFS_IFORK_PTR(ip, whichfork);
2688 if (ifp->if_broot != NULL) {
2689 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2690 ifp->if_broot = NULL;
2691 }
2692
2693 /*
2694 * If the format is local, then we can't have an extents
2695 * array so just look for an inline data array. If we're
2696 * not local then we may or may not have an extents list,
2697 * so check and free it up if we do.
2698 */
2699 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2700 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2701 (ifp->if_u1.if_data != NULL)) {
2702 ASSERT(ifp->if_real_bytes != 0);
2703 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2704 ifp->if_u1.if_data = NULL;
2705 ifp->if_real_bytes = 0;
2706 }
2707 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2708 ((ifp->if_flags & XFS_IFEXTIREC) ||
2709 ((ifp->if_u1.if_extents != NULL) &&
2710 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2711 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2712 xfs_iext_destroy(ifp);
1da177e4
LT
2713 }
2714 ASSERT(ifp->if_u1.if_extents == NULL ||
2715 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2716 ASSERT(ifp->if_real_bytes == 0);
2717 if (whichfork == XFS_ATTR_FORK) {
2718 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2719 ip->i_afp = NULL;
2720 }
2721}
2722
2723/*
2724 * This is called free all the memory associated with an inode.
2725 * It must free the inode itself and any buffers allocated for
2726 * if_extents/if_data and if_broot. It must also free the lock
2727 * associated with the inode.
2728 */
2729void
2730xfs_idestroy(
2731 xfs_inode_t *ip)
2732{
1da177e4
LT
2733 switch (ip->i_d.di_mode & S_IFMT) {
2734 case S_IFREG:
2735 case S_IFDIR:
2736 case S_IFLNK:
2737 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2738 break;
2739 }
2740 if (ip->i_afp)
2741 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2742 mrfree(&ip->i_lock);
2743 mrfree(&ip->i_iolock);
2744 freesema(&ip->i_flock);
1543d79c 2745
cf441eeb 2746#ifdef XFS_INODE_TRACE
1543d79c
CH
2747 ktrace_free(ip->i_trace);
2748#endif
1da177e4
LT
2749#ifdef XFS_BMAP_TRACE
2750 ktrace_free(ip->i_xtrace);
2751#endif
2752#ifdef XFS_BMBT_TRACE
2753 ktrace_free(ip->i_btrace);
2754#endif
2755#ifdef XFS_RW_TRACE
2756 ktrace_free(ip->i_rwtrace);
2757#endif
2758#ifdef XFS_ILOCK_TRACE
2759 ktrace_free(ip->i_lock_trace);
2760#endif
2761#ifdef XFS_DIR2_TRACE
2762 ktrace_free(ip->i_dir_trace);
2763#endif
2764 if (ip->i_itemp) {
f74eaf59
DC
2765 /*
2766 * Only if we are shutting down the fs will we see an
2767 * inode still in the AIL. If it is there, we should remove
2768 * it to prevent a use-after-free from occurring.
2769 */
2770 xfs_mount_t *mp = ip->i_mount;
2771 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
f74eaf59
DC
2772
2773 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2774 XFS_FORCED_SHUTDOWN(ip->i_mount));
2775 if (lip->li_flags & XFS_LI_IN_AIL) {
287f3dad 2776 spin_lock(&mp->m_ail_lock);
f74eaf59 2777 if (lip->li_flags & XFS_LI_IN_AIL)
287f3dad 2778 xfs_trans_delete_ail(mp, lip);
f74eaf59 2779 else
287f3dad 2780 spin_unlock(&mp->m_ail_lock);
f74eaf59 2781 }
1da177e4
LT
2782 xfs_inode_item_destroy(ip);
2783 }
2784 kmem_zone_free(xfs_inode_zone, ip);
2785}
2786
2787
2788/*
2789 * Increment the pin count of the given buffer.
2790 * This value is protected by ipinlock spinlock in the mount structure.
2791 */
2792void
2793xfs_ipin(
2794 xfs_inode_t *ip)
2795{
2796 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2797
2798 atomic_inc(&ip->i_pincount);
2799}
2800
2801/*
2802 * Decrement the pin count of the given inode, and wake up
2803 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2804 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2805 */
2806void
2807xfs_iunpin(
2808 xfs_inode_t *ip)
2809{
2810 ASSERT(atomic_read(&ip->i_pincount) > 0);
2811
4c60658e
DC
2812 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2813
58829e49 2814 /*
4c60658e
DC
2815 * If the inode is currently being reclaimed, the link between
2816 * the bhv_vnode and the xfs_inode will be broken after the
2817 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2818 * set, then we can move forward and mark the linux inode dirty
2819 * knowing that it is still valid as it won't freed until after
2820 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2821 * i_flags_lock is used to synchronise the setting of the
2822 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2823 * can execute atomically w.r.t to reclaim by holding this lock
2824 * here.
58829e49 2825 *
4c60658e
DC
2826 * However, we still need to issue the unpin wakeup call as the
2827 * inode reclaim may be blocked waiting for the inode to become
2828 * unpinned.
58829e49 2829 */
f273ab84 2830
7a18c386 2831 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
67fcaa73 2832 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
4c60658e
DC
2833 struct inode *inode = NULL;
2834
2835 BUG_ON(vp == NULL);
2836 inode = vn_to_inode(vp);
2837 BUG_ON(inode->i_state & I_CLEAR);
1da177e4 2838
58829e49 2839 /* make sync come back and flush this inode */
4c60658e
DC
2840 if (!(inode->i_state & (I_NEW|I_FREEING)))
2841 mark_inode_dirty_sync(inode);
1da177e4 2842 }
f273ab84 2843 spin_unlock(&ip->i_flags_lock);
1da177e4
LT
2844 wake_up(&ip->i_ipin_wait);
2845 }
2846}
2847
2848/*
2849 * This is called to wait for the given inode to be unpinned.
2850 * It will sleep until this happens. The caller must have the
2851 * inode locked in at least shared mode so that the buffer cannot
2852 * be subsequently pinned once someone is waiting for it to be
2853 * unpinned.
2854 */
ba0f32d4 2855STATIC void
1da177e4
LT
2856xfs_iunpin_wait(
2857 xfs_inode_t *ip)
2858{
2859 xfs_inode_log_item_t *iip;
2860 xfs_lsn_t lsn;
2861
2862 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2863
2864 if (atomic_read(&ip->i_pincount) == 0) {
2865 return;
2866 }
2867
2868 iip = ip->i_itemp;
2869 if (iip && iip->ili_last_lsn) {
2870 lsn = iip->ili_last_lsn;
2871 } else {
2872 lsn = (xfs_lsn_t)0;
2873 }
2874
2875 /*
2876 * Give the log a push so we don't wait here too long.
2877 */
2878 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2879
2880 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2881}
2882
2883
2884/*
2885 * xfs_iextents_copy()
2886 *
2887 * This is called to copy the REAL extents (as opposed to the delayed
2888 * allocation extents) from the inode into the given buffer. It
2889 * returns the number of bytes copied into the buffer.
2890 *
2891 * If there are no delayed allocation extents, then we can just
2892 * memcpy() the extents into the buffer. Otherwise, we need to
2893 * examine each extent in turn and skip those which are delayed.
2894 */
2895int
2896xfs_iextents_copy(
2897 xfs_inode_t *ip,
a6f64d4a 2898 xfs_bmbt_rec_t *dp,
1da177e4
LT
2899 int whichfork)
2900{
2901 int copied;
1da177e4
LT
2902 int i;
2903 xfs_ifork_t *ifp;
2904 int nrecs;
2905 xfs_fsblock_t start_block;
2906
2907 ifp = XFS_IFORK_PTR(ip, whichfork);
2908 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2909 ASSERT(ifp->if_bytes > 0);
2910
2911 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2912 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2913 ASSERT(nrecs > 0);
2914
2915 /*
2916 * There are some delayed allocation extents in the
2917 * inode, so copy the extents one at a time and skip
2918 * the delayed ones. There must be at least one
2919 * non-delayed extent.
2920 */
1da177e4
LT
2921 copied = 0;
2922 for (i = 0; i < nrecs; i++) {
a6f64d4a 2923 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2924 start_block = xfs_bmbt_get_startblock(ep);
2925 if (ISNULLSTARTBLOCK(start_block)) {
2926 /*
2927 * It's a delayed allocation extent, so skip it.
2928 */
1da177e4
LT
2929 continue;
2930 }
2931
2932 /* Translate to on disk format */
cd8b0a97
CH
2933 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2934 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2935 dp++;
1da177e4
LT
2936 copied++;
2937 }
2938 ASSERT(copied != 0);
a6f64d4a 2939 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2940
2941 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2942}
2943
2944/*
2945 * Each of the following cases stores data into the same region
2946 * of the on-disk inode, so only one of them can be valid at
2947 * any given time. While it is possible to have conflicting formats
2948 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2949 * in EXTENTS format, this can only happen when the fork has
2950 * changed formats after being modified but before being flushed.
2951 * In these cases, the format always takes precedence, because the
2952 * format indicates the current state of the fork.
2953 */
2954/*ARGSUSED*/
2955STATIC int
2956xfs_iflush_fork(
2957 xfs_inode_t *ip,
2958 xfs_dinode_t *dip,
2959 xfs_inode_log_item_t *iip,
2960 int whichfork,
2961 xfs_buf_t *bp)
2962{
2963 char *cp;
2964 xfs_ifork_t *ifp;
2965 xfs_mount_t *mp;
2966#ifdef XFS_TRANS_DEBUG
2967 int first;
2968#endif
2969 static const short brootflag[2] =
2970 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2971 static const short dataflag[2] =
2972 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2973 static const short extflag[2] =
2974 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2975
2976 if (iip == NULL)
2977 return 0;
2978 ifp = XFS_IFORK_PTR(ip, whichfork);
2979 /*
2980 * This can happen if we gave up in iformat in an error path,
2981 * for the attribute fork.
2982 */
2983 if (ifp == NULL) {
2984 ASSERT(whichfork == XFS_ATTR_FORK);
2985 return 0;
2986 }
2987 cp = XFS_DFORK_PTR(dip, whichfork);
2988 mp = ip->i_mount;
2989 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2990 case XFS_DINODE_FMT_LOCAL:
2991 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2992 (ifp->if_bytes > 0)) {
2993 ASSERT(ifp->if_u1.if_data != NULL);
2994 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2995 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2996 }
1da177e4
LT
2997 break;
2998
2999 case XFS_DINODE_FMT_EXTENTS:
3000 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
3001 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
3002 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
3003 (ifp->if_bytes == 0));
3004 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
3005 (ifp->if_bytes > 0));
1da177e4
LT
3006 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
3007 (ifp->if_bytes > 0)) {
3008 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
3009 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
3010 whichfork);
3011 }
3012 break;
3013
3014 case XFS_DINODE_FMT_BTREE:
3015 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
3016 (ifp->if_broot_bytes > 0)) {
3017 ASSERT(ifp->if_broot != NULL);
3018 ASSERT(ifp->if_broot_bytes <=
3019 (XFS_IFORK_SIZE(ip, whichfork) +
3020 XFS_BROOT_SIZE_ADJ));
3021 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
3022 (xfs_bmdr_block_t *)cp,
3023 XFS_DFORK_SIZE(dip, mp, whichfork));
3024 }
3025 break;
3026
3027 case XFS_DINODE_FMT_DEV:
3028 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3029 ASSERT(whichfork == XFS_DATA_FORK);
347d1c01 3030 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
1da177e4
LT
3031 }
3032 break;
3033
3034 case XFS_DINODE_FMT_UUID:
3035 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3036 ASSERT(whichfork == XFS_DATA_FORK);
3037 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3038 sizeof(uuid_t));
3039 }
3040 break;
3041
3042 default:
3043 ASSERT(0);
3044 break;
3045 }
3046
3047 return 0;
3048}
3049
3050/*
3051 * xfs_iflush() will write a modified inode's changes out to the
3052 * inode's on disk home. The caller must have the inode lock held
3053 * in at least shared mode and the inode flush semaphore must be
3054 * held as well. The inode lock will still be held upon return from
3055 * the call and the caller is free to unlock it.
3056 * The inode flush lock will be unlocked when the inode reaches the disk.
3057 * The flags indicate how the inode's buffer should be written out.
3058 */
3059int
3060xfs_iflush(
3061 xfs_inode_t *ip,
3062 uint flags)
3063{
3064 xfs_inode_log_item_t *iip;
3065 xfs_buf_t *bp;
3066 xfs_dinode_t *dip;
3067 xfs_mount_t *mp;
3068 int error;
3069 /* REFERENCED */
1da177e4
LT
3070 xfs_inode_t *iq;
3071 int clcount; /* count of inodes clustered */
3072 int bufwasdelwri;
da353b0d 3073 struct hlist_node *entry;
1da177e4 3074 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3075
3076 XFS_STATS_INC(xs_iflush_count);
3077
3078 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3079 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3080 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3081 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3082
3083 iip = ip->i_itemp;
3084 mp = ip->i_mount;
3085
3086 /*
3087 * If the inode isn't dirty, then just release the inode
3088 * flush lock and do nothing.
3089 */
3090 if ((ip->i_update_core == 0) &&
3091 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3092 ASSERT((iip != NULL) ?
3093 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3094 xfs_ifunlock(ip);
3095 return 0;
3096 }
3097
3098 /*
3099 * We can't flush the inode until it is unpinned, so
3100 * wait for it. We know noone new can pin it, because
3101 * we are holding the inode lock shared and you need
3102 * to hold it exclusively to pin the inode.
3103 */
3104 xfs_iunpin_wait(ip);
3105
3106 /*
3107 * This may have been unpinned because the filesystem is shutting
3108 * down forcibly. If that's the case we must not write this inode
3109 * to disk, because the log record didn't make it to disk!
3110 */
3111 if (XFS_FORCED_SHUTDOWN(mp)) {
3112 ip->i_update_core = 0;
3113 if (iip)
3114 iip->ili_format.ilf_fields = 0;
3115 xfs_ifunlock(ip);
3116 return XFS_ERROR(EIO);
3117 }
3118
3119 /*
3120 * Get the buffer containing the on-disk inode.
3121 */
b12dd342
NS
3122 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3123 if (error) {
1da177e4
LT
3124 xfs_ifunlock(ip);
3125 return error;
3126 }
3127
3128 /*
3129 * Decide how buffer will be flushed out. This is done before
3130 * the call to xfs_iflush_int because this field is zeroed by it.
3131 */
3132 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3133 /*
3134 * Flush out the inode buffer according to the directions
3135 * of the caller. In the cases where the caller has given
3136 * us a choice choose the non-delwri case. This is because
3137 * the inode is in the AIL and we need to get it out soon.
3138 */
3139 switch (flags) {
3140 case XFS_IFLUSH_SYNC:
3141 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3142 flags = 0;
3143 break;
3144 case XFS_IFLUSH_ASYNC:
3145 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3146 flags = INT_ASYNC;
3147 break;
3148 case XFS_IFLUSH_DELWRI:
3149 flags = INT_DELWRI;
3150 break;
3151 default:
3152 ASSERT(0);
3153 flags = 0;
3154 break;
3155 }
3156 } else {
3157 switch (flags) {
3158 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3159 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3160 case XFS_IFLUSH_DELWRI:
3161 flags = INT_DELWRI;
3162 break;
3163 case XFS_IFLUSH_ASYNC:
3164 flags = INT_ASYNC;
3165 break;
3166 case XFS_IFLUSH_SYNC:
3167 flags = 0;
3168 break;
3169 default:
3170 ASSERT(0);
3171 flags = 0;
3172 break;
3173 }
3174 }
3175
3176 /*
3177 * First flush out the inode that xfs_iflush was called with.
3178 */
3179 error = xfs_iflush_int(ip, bp);
3180 if (error) {
3181 goto corrupt_out;
3182 }
3183
3184 /*
3185 * inode clustering:
3186 * see if other inodes can be gathered into this write
3187 */
da353b0d
DC
3188 spin_lock(&ip->i_cluster->icl_lock);
3189 ip->i_cluster->icl_buf = bp;
1da177e4
LT
3190
3191 clcount = 0;
da353b0d
DC
3192 hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3193 if (iq == ip)
3194 continue;
3195
1da177e4
LT
3196 /*
3197 * Do an un-protected check to see if the inode is dirty and
3198 * is a candidate for flushing. These checks will be repeated
3199 * later after the appropriate locks are acquired.
3200 */
3201 iip = iq->i_itemp;
3202 if ((iq->i_update_core == 0) &&
3203 ((iip == NULL) ||
3204 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3205 xfs_ipincount(iq) == 0) {
3206 continue;
3207 }
3208
3209 /*
3210 * Try to get locks. If any are unavailable,
3211 * then this inode cannot be flushed and is skipped.
3212 */
3213
3214 /* get inode locks (just i_lock) */
3215 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3216 /* get inode flush lock */
3217 if (xfs_iflock_nowait(iq)) {
3218 /* check if pinned */
3219 if (xfs_ipincount(iq) == 0) {
3220 /* arriving here means that
3221 * this inode can be flushed.
3222 * first re-check that it's
3223 * dirty
3224 */
3225 iip = iq->i_itemp;
3226 if ((iq->i_update_core != 0)||
3227 ((iip != NULL) &&
3228 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3229 clcount++;
3230 error = xfs_iflush_int(iq, bp);
3231 if (error) {
3232 xfs_iunlock(iq,
3233 XFS_ILOCK_SHARED);
3234 goto cluster_corrupt_out;
3235 }
3236 } else {
3237 xfs_ifunlock(iq);
3238 }
3239 } else {
3240 xfs_ifunlock(iq);
3241 }
3242 }
3243 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3244 }
3245 }
da353b0d 3246 spin_unlock(&ip->i_cluster->icl_lock);
1da177e4
LT
3247
3248 if (clcount) {
3249 XFS_STATS_INC(xs_icluster_flushcnt);
3250 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3251 }
3252
3253 /*
3254 * If the buffer is pinned then push on the log so we won't
3255 * get stuck waiting in the write for too long.
3256 */
3257 if (XFS_BUF_ISPINNED(bp)){
3258 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3259 }
3260
3261 if (flags & INT_DELWRI) {
3262 xfs_bdwrite(mp, bp);
3263 } else if (flags & INT_ASYNC) {
3264 xfs_bawrite(mp, bp);
3265 } else {
3266 error = xfs_bwrite(mp, bp);
3267 }
3268 return error;
3269
3270corrupt_out:
3271 xfs_buf_relse(bp);
7d04a335 3272 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3273 xfs_iflush_abort(ip);
3274 /*
3275 * Unlocks the flush lock
3276 */
3277 return XFS_ERROR(EFSCORRUPTED);
3278
3279cluster_corrupt_out:
3280 /* Corruption detected in the clustering loop. Invalidate the
3281 * inode buffer and shut down the filesystem.
3282 */
da353b0d 3283 spin_unlock(&ip->i_cluster->icl_lock);
1da177e4
LT
3284
3285 /*
3286 * Clean up the buffer. If it was B_DELWRI, just release it --
3287 * brelse can handle it with no problems. If not, shut down the
3288 * filesystem before releasing the buffer.
3289 */
3290 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3291 xfs_buf_relse(bp);
3292 }
3293
7d04a335 3294 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3295
3296 if(!bufwasdelwri) {
3297 /*
3298 * Just like incore_relse: if we have b_iodone functions,
3299 * mark the buffer as an error and call them. Otherwise
3300 * mark it as stale and brelse.
3301 */
3302 if (XFS_BUF_IODONE_FUNC(bp)) {
3303 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3304 XFS_BUF_UNDONE(bp);
3305 XFS_BUF_STALE(bp);
3306 XFS_BUF_SHUT(bp);
3307 XFS_BUF_ERROR(bp,EIO);
3308 xfs_biodone(bp);
3309 } else {
3310 XFS_BUF_STALE(bp);
3311 xfs_buf_relse(bp);
3312 }
3313 }
3314
3315 xfs_iflush_abort(iq);
3316 /*
3317 * Unlocks the flush lock
3318 */
3319 return XFS_ERROR(EFSCORRUPTED);
3320}
3321
3322
3323STATIC int
3324xfs_iflush_int(
3325 xfs_inode_t *ip,
3326 xfs_buf_t *bp)
3327{
3328 xfs_inode_log_item_t *iip;
3329 xfs_dinode_t *dip;
3330 xfs_mount_t *mp;
3331#ifdef XFS_TRANS_DEBUG
3332 int first;
3333#endif
1da177e4
LT
3334
3335 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3336 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3337 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3338 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3339
3340 iip = ip->i_itemp;
3341 mp = ip->i_mount;
3342
3343
3344 /*
3345 * If the inode isn't dirty, then just release the inode
3346 * flush lock and do nothing.
3347 */
3348 if ((ip->i_update_core == 0) &&
3349 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3350 xfs_ifunlock(ip);
3351 return 0;
3352 }
3353
3354 /* set *dip = inode's place in the buffer */
3355 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3356
3357 /*
3358 * Clear i_update_core before copying out the data.
3359 * This is for coordination with our timestamp updates
3360 * that don't hold the inode lock. They will always
3361 * update the timestamps BEFORE setting i_update_core,
3362 * so if we clear i_update_core after they set it we
3363 * are guaranteed to see their updates to the timestamps.
3364 * I believe that this depends on strongly ordered memory
3365 * semantics, but we have that. We use the SYNCHRONIZE
3366 * macro to make sure that the compiler does not reorder
3367 * the i_update_core access below the data copy below.
3368 */
3369 ip->i_update_core = 0;
3370 SYNCHRONIZE();
3371
42fe2b1f
CH
3372 /*
3373 * Make sure to get the latest atime from the Linux inode.
3374 */
3375 xfs_synchronize_atime(ip);
3376
347d1c01 3377 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3378 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3379 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3380 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
347d1c01 3381 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
1da177e4
LT
3382 goto corrupt_out;
3383 }
3384 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3385 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3386 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3387 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3388 ip->i_ino, ip, ip->i_d.di_magic);
3389 goto corrupt_out;
3390 }
3391 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3392 if (XFS_TEST_ERROR(
3393 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3394 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3395 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3396 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3397 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3398 ip->i_ino, ip);
3399 goto corrupt_out;
3400 }
3401 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3402 if (XFS_TEST_ERROR(
3403 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3404 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3405 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3406 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3407 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3408 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3409 ip->i_ino, ip);
3410 goto corrupt_out;
3411 }
3412 }
3413 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3414 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3415 XFS_RANDOM_IFLUSH_5)) {
3416 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3417 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3418 ip->i_ino,
3419 ip->i_d.di_nextents + ip->i_d.di_anextents,
3420 ip->i_d.di_nblocks,
3421 ip);
3422 goto corrupt_out;
3423 }
3424 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3425 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3426 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3427 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3428 ip->i_ino, ip->i_d.di_forkoff, ip);
3429 goto corrupt_out;
3430 }
3431 /*
3432 * bump the flush iteration count, used to detect flushes which
3433 * postdate a log record during recovery.
3434 */
3435
3436 ip->i_d.di_flushiter++;
3437
3438 /*
3439 * Copy the dirty parts of the inode into the on-disk
3440 * inode. We always copy out the core of the inode,
3441 * because if the inode is dirty at all the core must
3442 * be.
3443 */
347d1c01 3444 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
1da177e4
LT
3445
3446 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3447 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3448 ip->i_d.di_flushiter = 0;
3449
3450 /*
3451 * If this is really an old format inode and the superblock version
3452 * has not been updated to support only new format inodes, then
3453 * convert back to the old inode format. If the superblock version
3454 * has been updated, then make the conversion permanent.
3455 */
3456 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3457 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3458 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3459 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3460 /*
3461 * Convert it back.
3462 */
3463 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
347d1c01 3464 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3465 } else {
3466 /*
3467 * The superblock version has already been bumped,
3468 * so just make the conversion to the new inode
3469 * format permanent.
3470 */
3471 ip->i_d.di_version = XFS_DINODE_VERSION_2;
347d1c01 3472 dip->di_core.di_version = XFS_DINODE_VERSION_2;
1da177e4
LT
3473 ip->i_d.di_onlink = 0;
3474 dip->di_core.di_onlink = 0;
3475 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3476 memset(&(dip->di_core.di_pad[0]), 0,
3477 sizeof(dip->di_core.di_pad));
3478 ASSERT(ip->i_d.di_projid == 0);
3479 }
3480 }
3481
3482 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3483 goto corrupt_out;
3484 }
3485
3486 if (XFS_IFORK_Q(ip)) {
3487 /*
3488 * The only error from xfs_iflush_fork is on the data fork.
3489 */
3490 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3491 }
3492 xfs_inobp_check(mp, bp);
3493
3494 /*
3495 * We've recorded everything logged in the inode, so we'd
3496 * like to clear the ilf_fields bits so we don't log and
3497 * flush things unnecessarily. However, we can't stop
3498 * logging all this information until the data we've copied
3499 * into the disk buffer is written to disk. If we did we might
3500 * overwrite the copy of the inode in the log with all the
3501 * data after re-logging only part of it, and in the face of
3502 * a crash we wouldn't have all the data we need to recover.
3503 *
3504 * What we do is move the bits to the ili_last_fields field.
3505 * When logging the inode, these bits are moved back to the
3506 * ilf_fields field. In the xfs_iflush_done() routine we
3507 * clear ili_last_fields, since we know that the information
3508 * those bits represent is permanently on disk. As long as
3509 * the flush completes before the inode is logged again, then
3510 * both ilf_fields and ili_last_fields will be cleared.
3511 *
3512 * We can play with the ilf_fields bits here, because the inode
3513 * lock must be held exclusively in order to set bits there
3514 * and the flush lock protects the ili_last_fields bits.
3515 * Set ili_logged so the flush done
3516 * routine can tell whether or not to look in the AIL.
3517 * Also, store the current LSN of the inode so that we can tell
3518 * whether the item has moved in the AIL from xfs_iflush_done().
3519 * In order to read the lsn we need the AIL lock, because
3520 * it is a 64 bit value that cannot be read atomically.
3521 */
3522 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3523 iip->ili_last_fields = iip->ili_format.ilf_fields;
3524 iip->ili_format.ilf_fields = 0;
3525 iip->ili_logged = 1;
3526
3527 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
287f3dad 3528 spin_lock(&mp->m_ail_lock);
1da177e4 3529 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 3530 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
3531
3532 /*
3533 * Attach the function xfs_iflush_done to the inode's
3534 * buffer. This will remove the inode from the AIL
3535 * and unlock the inode's flush lock when the inode is
3536 * completely written to disk.
3537 */
3538 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3539 xfs_iflush_done, (xfs_log_item_t *)iip);
3540
3541 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3542 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3543 } else {
3544 /*
3545 * We're flushing an inode which is not in the AIL and has
3546 * not been logged but has i_update_core set. For this
3547 * case we can use a B_DELWRI flush and immediately drop
3548 * the inode flush lock because we can avoid the whole
3549 * AIL state thing. It's OK to drop the flush lock now,
3550 * because we've already locked the buffer and to do anything
3551 * you really need both.
3552 */
3553 if (iip != NULL) {
3554 ASSERT(iip->ili_logged == 0);
3555 ASSERT(iip->ili_last_fields == 0);
3556 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3557 }
3558 xfs_ifunlock(ip);
3559 }
3560
3561 return 0;
3562
3563corrupt_out:
3564 return XFS_ERROR(EFSCORRUPTED);
3565}
3566
3567
3568/*
efa80278 3569 * Flush all inactive inodes in mp.
1da177e4 3570 */
efa80278 3571void
1da177e4 3572xfs_iflush_all(
efa80278 3573 xfs_mount_t *mp)
1da177e4 3574{
1da177e4 3575 xfs_inode_t *ip;
67fcaa73 3576 bhv_vnode_t *vp;
1da177e4 3577
efa80278
CH
3578 again:
3579 XFS_MOUNT_ILOCK(mp);
3580 ip = mp->m_inodes;
3581 if (ip == NULL)
3582 goto out;
1da177e4 3583
efa80278
CH
3584 do {
3585 /* Make sure we skip markers inserted by sync */
3586 if (ip->i_mount == NULL) {
3587 ip = ip->i_mnext;
3588 continue;
3589 }
1da177e4 3590
efa80278
CH
3591 vp = XFS_ITOV_NULL(ip);
3592 if (!vp) {
1da177e4 3593 XFS_MOUNT_IUNLOCK(mp);
efa80278
CH
3594 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3595 goto again;
3596 }
1da177e4 3597
efa80278 3598 ASSERT(vn_count(vp) == 0);
1da177e4 3599
efa80278
CH
3600 ip = ip->i_mnext;
3601 } while (ip != mp->m_inodes);
3602 out:
1da177e4 3603 XFS_MOUNT_IUNLOCK(mp);
1da177e4
LT
3604}
3605
1da177e4
LT
3606/*
3607 * xfs_iaccess: check accessibility of inode for mode.
3608 */
3609int
3610xfs_iaccess(
3611 xfs_inode_t *ip,
3612 mode_t mode,
3613 cred_t *cr)
3614{
3615 int error;
3616 mode_t orgmode = mode;
ec86dc02 3617 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
1da177e4
LT
3618
3619 if (mode & S_IWUSR) {
3620 umode_t imode = inode->i_mode;
3621
3622 if (IS_RDONLY(inode) &&
3623 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3624 return XFS_ERROR(EROFS);
3625
3626 if (IS_IMMUTABLE(inode))
3627 return XFS_ERROR(EACCES);
3628 }
3629
3630 /*
3631 * If there's an Access Control List it's used instead of
3632 * the mode bits.
3633 */
3634 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3635 return error ? XFS_ERROR(error) : 0;
3636
3637 if (current_fsuid(cr) != ip->i_d.di_uid) {
3638 mode >>= 3;
3639 if (!in_group_p((gid_t)ip->i_d.di_gid))
3640 mode >>= 3;
3641 }
3642
3643 /*
3644 * If the DACs are ok we don't need any capability check.
3645 */
3646 if ((ip->i_d.di_mode & mode) == mode)
3647 return 0;
3648 /*
3649 * Read/write DACs are always overridable.
3650 * Executable DACs are overridable if at least one exec bit is set.
3651 */
3652 if (!(orgmode & S_IXUSR) ||
3653 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3654 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3655 return 0;
3656
3657 if ((orgmode == S_IRUSR) ||
3658 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3659 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3660 return 0;
3661#ifdef NOISE
3662 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3663#endif /* NOISE */
3664 return XFS_ERROR(EACCES);
3665 }
3666 return XFS_ERROR(EACCES);
3667}
3668
3669/*
3670 * xfs_iroundup: round up argument to next power of two
3671 */
3672uint
3673xfs_iroundup(
3674 uint v)
3675{
3676 int i;
3677 uint m;
3678
3679 if ((v & (v - 1)) == 0)
3680 return v;
3681 ASSERT((v & 0x80000000) == 0);
3682 if ((v & (v + 1)) == 0)
3683 return v + 1;
3684 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3685 if (v & m)
3686 continue;
3687 v |= m;
3688 if ((v & (v + 1)) == 0)
3689 return v + 1;
3690 }
3691 ASSERT(0);
3692 return( 0 );
3693}
3694
1da177e4
LT
3695#ifdef XFS_ILOCK_TRACE
3696ktrace_t *xfs_ilock_trace_buf;
3697
3698void
3699xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3700{
3701 ktrace_enter(ip->i_lock_trace,
3702 (void *)ip,
3703 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3704 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3705 (void *)ra, /* caller of ilock */
3706 (void *)(unsigned long)current_cpu(),
3707 (void *)(unsigned long)current_pid(),
3708 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3709}
3710#endif
4eea22f0
MK
3711
3712/*
3713 * Return a pointer to the extent record at file index idx.
3714 */
a6f64d4a 3715xfs_bmbt_rec_host_t *
4eea22f0
MK
3716xfs_iext_get_ext(
3717 xfs_ifork_t *ifp, /* inode fork pointer */
3718 xfs_extnum_t idx) /* index of target extent */
3719{
3720 ASSERT(idx >= 0);
0293ce3a
MK
3721 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3722 return ifp->if_u1.if_ext_irec->er_extbuf;
3723 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3724 xfs_ext_irec_t *erp; /* irec pointer */
3725 int erp_idx = 0; /* irec index */
3726 xfs_extnum_t page_idx = idx; /* ext index in target list */
3727
3728 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3729 return &erp->er_extbuf[page_idx];
3730 } else if (ifp->if_bytes) {
4eea22f0
MK
3731 return &ifp->if_u1.if_extents[idx];
3732 } else {
3733 return NULL;
3734 }
3735}
3736
3737/*
3738 * Insert new item(s) into the extent records for incore inode
3739 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3740 */
3741void
3742xfs_iext_insert(
3743 xfs_ifork_t *ifp, /* inode fork pointer */
3744 xfs_extnum_t idx, /* starting index of new items */
3745 xfs_extnum_t count, /* number of inserted items */
3746 xfs_bmbt_irec_t *new) /* items to insert */
3747{
4eea22f0
MK
3748 xfs_extnum_t i; /* extent record index */
3749
3750 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3751 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3752 for (i = idx; i < idx + count; i++, new++)
3753 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3754}
3755
3756/*
3757 * This is called when the amount of space required for incore file
3758 * extents needs to be increased. The ext_diff parameter stores the
3759 * number of new extents being added and the idx parameter contains
3760 * the extent index where the new extents will be added. If the new
3761 * extents are being appended, then we just need to (re)allocate and
3762 * initialize the space. Otherwise, if the new extents are being
3763 * inserted into the middle of the existing entries, a bit more work
3764 * is required to make room for the new extents to be inserted. The
3765 * caller is responsible for filling in the new extent entries upon
3766 * return.
3767 */
3768void
3769xfs_iext_add(
3770 xfs_ifork_t *ifp, /* inode fork pointer */
3771 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3772 int ext_diff) /* number of extents to add */
4eea22f0
MK
3773{
3774 int byte_diff; /* new bytes being added */
3775 int new_size; /* size of extents after adding */
3776 xfs_extnum_t nextents; /* number of extents in file */
3777
3778 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3779 ASSERT((idx >= 0) && (idx <= nextents));
3780 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3781 new_size = ifp->if_bytes + byte_diff;
3782 /*
3783 * If the new number of extents (nextents + ext_diff)
3784 * fits inside the inode, then continue to use the inline
3785 * extent buffer.
3786 */
3787 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3788 if (idx < nextents) {
3789 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3790 &ifp->if_u2.if_inline_ext[idx],
3791 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3792 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3793 }
3794 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3795 ifp->if_real_bytes = 0;
0293ce3a 3796 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3797 }
3798 /*
3799 * Otherwise use a linear (direct) extent list.
3800 * If the extents are currently inside the inode,
3801 * xfs_iext_realloc_direct will switch us from
3802 * inline to direct extent allocation mode.
3803 */
0293ce3a 3804 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3805 xfs_iext_realloc_direct(ifp, new_size);
3806 if (idx < nextents) {
3807 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3808 &ifp->if_u1.if_extents[idx],
3809 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3810 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3811 }
3812 }
0293ce3a
MK
3813 /* Indirection array */
3814 else {
3815 xfs_ext_irec_t *erp;
3816 int erp_idx = 0;
3817 int page_idx = idx;
3818
3819 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3820 if (ifp->if_flags & XFS_IFEXTIREC) {
3821 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3822 } else {
3823 xfs_iext_irec_init(ifp);
3824 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3825 erp = ifp->if_u1.if_ext_irec;
3826 }
3827 /* Extents fit in target extent page */
3828 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3829 if (page_idx < erp->er_extcount) {
3830 memmove(&erp->er_extbuf[page_idx + ext_diff],
3831 &erp->er_extbuf[page_idx],
3832 (erp->er_extcount - page_idx) *
3833 sizeof(xfs_bmbt_rec_t));
3834 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3835 }
3836 erp->er_extcount += ext_diff;
3837 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3838 }
3839 /* Insert a new extent page */
3840 else if (erp) {
3841 xfs_iext_add_indirect_multi(ifp,
3842 erp_idx, page_idx, ext_diff);
3843 }
3844 /*
3845 * If extent(s) are being appended to the last page in
3846 * the indirection array and the new extent(s) don't fit
3847 * in the page, then erp is NULL and erp_idx is set to
3848 * the next index needed in the indirection array.
3849 */
3850 else {
3851 int count = ext_diff;
3852
3853 while (count) {
3854 erp = xfs_iext_irec_new(ifp, erp_idx);
3855 erp->er_extcount = count;
3856 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3857 if (count) {
3858 erp_idx++;
3859 }
3860 }
3861 }
3862 }
4eea22f0
MK
3863 ifp->if_bytes = new_size;
3864}
3865
0293ce3a
MK
3866/*
3867 * This is called when incore extents are being added to the indirection
3868 * array and the new extents do not fit in the target extent list. The
3869 * erp_idx parameter contains the irec index for the target extent list
3870 * in the indirection array, and the idx parameter contains the extent
3871 * index within the list. The number of extents being added is stored
3872 * in the count parameter.
3873 *
3874 * |-------| |-------|
3875 * | | | | idx - number of extents before idx
3876 * | idx | | count |
3877 * | | | | count - number of extents being inserted at idx
3878 * |-------| |-------|
3879 * | count | | nex2 | nex2 - number of extents after idx + count
3880 * |-------| |-------|
3881 */
3882void
3883xfs_iext_add_indirect_multi(
3884 xfs_ifork_t *ifp, /* inode fork pointer */
3885 int erp_idx, /* target extent irec index */
3886 xfs_extnum_t idx, /* index within target list */
3887 int count) /* new extents being added */
3888{
3889 int byte_diff; /* new bytes being added */
3890 xfs_ext_irec_t *erp; /* pointer to irec entry */
3891 xfs_extnum_t ext_diff; /* number of extents to add */
3892 xfs_extnum_t ext_cnt; /* new extents still needed */
3893 xfs_extnum_t nex2; /* extents after idx + count */
3894 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3895 int nlists; /* number of irec's (lists) */
3896
3897 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3898 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3899 nex2 = erp->er_extcount - idx;
3900 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3901
3902 /*
3903 * Save second part of target extent list
3904 * (all extents past */
3905 if (nex2) {
3906 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3907 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3908 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3909 erp->er_extcount -= nex2;
3910 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3911 memset(&erp->er_extbuf[idx], 0, byte_diff);
3912 }
3913
3914 /*
3915 * Add the new extents to the end of the target
3916 * list, then allocate new irec record(s) and
3917 * extent buffer(s) as needed to store the rest
3918 * of the new extents.
3919 */
3920 ext_cnt = count;
3921 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3922 if (ext_diff) {
3923 erp->er_extcount += ext_diff;
3924 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3925 ext_cnt -= ext_diff;
3926 }
3927 while (ext_cnt) {
3928 erp_idx++;
3929 erp = xfs_iext_irec_new(ifp, erp_idx);
3930 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3931 erp->er_extcount = ext_diff;
3932 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3933 ext_cnt -= ext_diff;
3934 }
3935
3936 /* Add nex2 extents back to indirection array */
3937 if (nex2) {
3938 xfs_extnum_t ext_avail;
3939 int i;
3940
3941 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3942 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3943 i = 0;
3944 /*
3945 * If nex2 extents fit in the current page, append
3946 * nex2_ep after the new extents.
3947 */
3948 if (nex2 <= ext_avail) {
3949 i = erp->er_extcount;
3950 }
3951 /*
3952 * Otherwise, check if space is available in the
3953 * next page.
3954 */
3955 else if ((erp_idx < nlists - 1) &&
3956 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3957 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3958 erp_idx++;
3959 erp++;
3960 /* Create a hole for nex2 extents */
3961 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3962 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3963 }
3964 /*
3965 * Final choice, create a new extent page for
3966 * nex2 extents.
3967 */
3968 else {
3969 erp_idx++;
3970 erp = xfs_iext_irec_new(ifp, erp_idx);
3971 }
3972 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3973 kmem_free(nex2_ep, byte_diff);
3974 erp->er_extcount += nex2;
3975 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3976 }
3977}
3978
4eea22f0
MK
3979/*
3980 * This is called when the amount of space required for incore file
3981 * extents needs to be decreased. The ext_diff parameter stores the
3982 * number of extents to be removed and the idx parameter contains
3983 * the extent index where the extents will be removed from.
0293ce3a
MK
3984 *
3985 * If the amount of space needed has decreased below the linear
3986 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3987 * extent array. Otherwise, use kmem_realloc() to adjust the
3988 * size to what is needed.
4eea22f0
MK
3989 */
3990void
3991xfs_iext_remove(
3992 xfs_ifork_t *ifp, /* inode fork pointer */
3993 xfs_extnum_t idx, /* index to begin removing exts */
3994 int ext_diff) /* number of extents to remove */
3995{
3996 xfs_extnum_t nextents; /* number of extents in file */
3997 int new_size; /* size of extents after removal */
3998
3999 ASSERT(ext_diff > 0);
4000 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4001 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
4002
4003 if (new_size == 0) {
4004 xfs_iext_destroy(ifp);
0293ce3a
MK
4005 } else if (ifp->if_flags & XFS_IFEXTIREC) {
4006 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
4007 } else if (ifp->if_real_bytes) {
4008 xfs_iext_remove_direct(ifp, idx, ext_diff);
4009 } else {
4010 xfs_iext_remove_inline(ifp, idx, ext_diff);
4011 }
4012 ifp->if_bytes = new_size;
4013}
4014
4015/*
4016 * This removes ext_diff extents from the inline buffer, beginning
4017 * at extent index idx.
4018 */
4019void
4020xfs_iext_remove_inline(
4021 xfs_ifork_t *ifp, /* inode fork pointer */
4022 xfs_extnum_t idx, /* index to begin removing exts */
4023 int ext_diff) /* number of extents to remove */
4024{
4025 int nextents; /* number of extents in file */
4026
0293ce3a 4027 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4028 ASSERT(idx < XFS_INLINE_EXTS);
4029 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4030 ASSERT(((nextents - ext_diff) > 0) &&
4031 (nextents - ext_diff) < XFS_INLINE_EXTS);
4032
4033 if (idx + ext_diff < nextents) {
4034 memmove(&ifp->if_u2.if_inline_ext[idx],
4035 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4036 (nextents - (idx + ext_diff)) *
4037 sizeof(xfs_bmbt_rec_t));
4038 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4039 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4040 } else {
4041 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4042 ext_diff * sizeof(xfs_bmbt_rec_t));
4043 }
4044}
4045
4046/*
4047 * This removes ext_diff extents from a linear (direct) extent list,
4048 * beginning at extent index idx. If the extents are being removed
4049 * from the end of the list (ie. truncate) then we just need to re-
4050 * allocate the list to remove the extra space. Otherwise, if the
4051 * extents are being removed from the middle of the existing extent
4052 * entries, then we first need to move the extent records beginning
4053 * at idx + ext_diff up in the list to overwrite the records being
4054 * removed, then remove the extra space via kmem_realloc.
4055 */
4056void
4057xfs_iext_remove_direct(
4058 xfs_ifork_t *ifp, /* inode fork pointer */
4059 xfs_extnum_t idx, /* index to begin removing exts */
4060 int ext_diff) /* number of extents to remove */
4061{
4062 xfs_extnum_t nextents; /* number of extents in file */
4063 int new_size; /* size of extents after removal */
4064
0293ce3a 4065 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4066 new_size = ifp->if_bytes -
4067 (ext_diff * sizeof(xfs_bmbt_rec_t));
4068 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4069
4070 if (new_size == 0) {
4071 xfs_iext_destroy(ifp);
4072 return;
4073 }
4074 /* Move extents up in the list (if needed) */
4075 if (idx + ext_diff < nextents) {
4076 memmove(&ifp->if_u1.if_extents[idx],
4077 &ifp->if_u1.if_extents[idx + ext_diff],
4078 (nextents - (idx + ext_diff)) *
4079 sizeof(xfs_bmbt_rec_t));
4080 }
4081 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4082 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4083 /*
4084 * Reallocate the direct extent list. If the extents
4085 * will fit inside the inode then xfs_iext_realloc_direct
4086 * will switch from direct to inline extent allocation
4087 * mode for us.
4088 */
4089 xfs_iext_realloc_direct(ifp, new_size);
4090 ifp->if_bytes = new_size;
4091}
4092
0293ce3a
MK
4093/*
4094 * This is called when incore extents are being removed from the
4095 * indirection array and the extents being removed span multiple extent
4096 * buffers. The idx parameter contains the file extent index where we
4097 * want to begin removing extents, and the count parameter contains
4098 * how many extents need to be removed.
4099 *
4100 * |-------| |-------|
4101 * | nex1 | | | nex1 - number of extents before idx
4102 * |-------| | count |
4103 * | | | | count - number of extents being removed at idx
4104 * | count | |-------|
4105 * | | | nex2 | nex2 - number of extents after idx + count
4106 * |-------| |-------|
4107 */
4108void
4109xfs_iext_remove_indirect(
4110 xfs_ifork_t *ifp, /* inode fork pointer */
4111 xfs_extnum_t idx, /* index to begin removing extents */
4112 int count) /* number of extents to remove */
4113{
4114 xfs_ext_irec_t *erp; /* indirection array pointer */
4115 int erp_idx = 0; /* indirection array index */
4116 xfs_extnum_t ext_cnt; /* extents left to remove */
4117 xfs_extnum_t ext_diff; /* extents to remove in current list */
4118 xfs_extnum_t nex1; /* number of extents before idx */
4119 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 4120 int nlists; /* entries in indirection array */
0293ce3a
MK
4121 int page_idx = idx; /* index in target extent list */
4122
4123 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4124 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4125 ASSERT(erp != NULL);
4126 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4127 nex1 = page_idx;
4128 ext_cnt = count;
4129 while (ext_cnt) {
4130 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4131 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4132 /*
4133 * Check for deletion of entire list;
4134 * xfs_iext_irec_remove() updates extent offsets.
4135 */
4136 if (ext_diff == erp->er_extcount) {
4137 xfs_iext_irec_remove(ifp, erp_idx);
4138 ext_cnt -= ext_diff;
4139 nex1 = 0;
4140 if (ext_cnt) {
4141 ASSERT(erp_idx < ifp->if_real_bytes /
4142 XFS_IEXT_BUFSZ);
4143 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4144 nex1 = 0;
4145 continue;
4146 } else {
4147 break;
4148 }
4149 }
4150 /* Move extents up (if needed) */
4151 if (nex2) {
4152 memmove(&erp->er_extbuf[nex1],
4153 &erp->er_extbuf[nex1 + ext_diff],
4154 nex2 * sizeof(xfs_bmbt_rec_t));
4155 }
4156 /* Zero out rest of page */
4157 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4158 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4159 /* Update remaining counters */
4160 erp->er_extcount -= ext_diff;
4161 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4162 ext_cnt -= ext_diff;
4163 nex1 = 0;
4164 erp_idx++;
4165 erp++;
4166 }
4167 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4168 xfs_iext_irec_compact(ifp);
4169}
4170
4eea22f0
MK
4171/*
4172 * Create, destroy, or resize a linear (direct) block of extents.
4173 */
4174void
4175xfs_iext_realloc_direct(
4176 xfs_ifork_t *ifp, /* inode fork pointer */
4177 int new_size) /* new size of extents */
4178{
4179 int rnew_size; /* real new size of extents */
4180
4181 rnew_size = new_size;
4182
0293ce3a
MK
4183 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4184 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4185 (new_size != ifp->if_real_bytes)));
4186
4eea22f0
MK
4187 /* Free extent records */
4188 if (new_size == 0) {
4189 xfs_iext_destroy(ifp);
4190 }
4191 /* Resize direct extent list and zero any new bytes */
4192 else if (ifp->if_real_bytes) {
4193 /* Check if extents will fit inside the inode */
4194 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4195 xfs_iext_direct_to_inline(ifp, new_size /
4196 (uint)sizeof(xfs_bmbt_rec_t));
4197 ifp->if_bytes = new_size;
4198 return;
4199 }
16a087d8 4200 if (!is_power_of_2(new_size)){
4eea22f0
MK
4201 rnew_size = xfs_iroundup(new_size);
4202 }
4203 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 4204 ifp->if_u1.if_extents =
4eea22f0
MK
4205 kmem_realloc(ifp->if_u1.if_extents,
4206 rnew_size,
4207 ifp->if_real_bytes,
4208 KM_SLEEP);
4209 }
4210 if (rnew_size > ifp->if_real_bytes) {
4211 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4212 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4213 rnew_size - ifp->if_real_bytes);
4214 }
4215 }
4216 /*
4217 * Switch from the inline extent buffer to a direct
4218 * extent list. Be sure to include the inline extent
4219 * bytes in new_size.
4220 */
4221 else {
4222 new_size += ifp->if_bytes;
16a087d8 4223 if (!is_power_of_2(new_size)) {
4eea22f0
MK
4224 rnew_size = xfs_iroundup(new_size);
4225 }
4226 xfs_iext_inline_to_direct(ifp, rnew_size);
4227 }
4228 ifp->if_real_bytes = rnew_size;
4229 ifp->if_bytes = new_size;
4230}
4231
4232/*
4233 * Switch from linear (direct) extent records to inline buffer.
4234 */
4235void
4236xfs_iext_direct_to_inline(
4237 xfs_ifork_t *ifp, /* inode fork pointer */
4238 xfs_extnum_t nextents) /* number of extents in file */
4239{
4240 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4241 ASSERT(nextents <= XFS_INLINE_EXTS);
4242 /*
4243 * The inline buffer was zeroed when we switched
4244 * from inline to direct extent allocation mode,
4245 * so we don't need to clear it here.
4246 */
4247 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4248 nextents * sizeof(xfs_bmbt_rec_t));
fe6c1e72 4249 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4eea22f0
MK
4250 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4251 ifp->if_real_bytes = 0;
4252}
4253
4254/*
4255 * Switch from inline buffer to linear (direct) extent records.
4256 * new_size should already be rounded up to the next power of 2
4257 * by the caller (when appropriate), so use new_size as it is.
4258 * However, since new_size may be rounded up, we can't update
4259 * if_bytes here. It is the caller's responsibility to update
4260 * if_bytes upon return.
4261 */
4262void
4263xfs_iext_inline_to_direct(
4264 xfs_ifork_t *ifp, /* inode fork pointer */
4265 int new_size) /* number of extents in file */
4266{
a6f64d4a 4267 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4eea22f0
MK
4268 memset(ifp->if_u1.if_extents, 0, new_size);
4269 if (ifp->if_bytes) {
4270 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4271 ifp->if_bytes);
4272 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4273 sizeof(xfs_bmbt_rec_t));
4274 }
4275 ifp->if_real_bytes = new_size;
4276}
4277
0293ce3a
MK
4278/*
4279 * Resize an extent indirection array to new_size bytes.
4280 */
4281void
4282xfs_iext_realloc_indirect(
4283 xfs_ifork_t *ifp, /* inode fork pointer */
4284 int new_size) /* new indirection array size */
4285{
4286 int nlists; /* number of irec's (ex lists) */
4287 int size; /* current indirection array size */
4288
4289 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4290 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4291 size = nlists * sizeof(xfs_ext_irec_t);
4292 ASSERT(ifp->if_real_bytes);
4293 ASSERT((new_size >= 0) && (new_size != size));
4294 if (new_size == 0) {
4295 xfs_iext_destroy(ifp);
4296 } else {
4297 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4298 kmem_realloc(ifp->if_u1.if_ext_irec,
4299 new_size, size, KM_SLEEP);
4300 }
4301}
4302
4303/*
4304 * Switch from indirection array to linear (direct) extent allocations.
4305 */
4306void
4307xfs_iext_indirect_to_direct(
4308 xfs_ifork_t *ifp) /* inode fork pointer */
4309{
a6f64d4a 4310 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4311 xfs_extnum_t nextents; /* number of extents in file */
4312 int size; /* size of file extents */
4313
4314 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4315 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4316 ASSERT(nextents <= XFS_LINEAR_EXTS);
4317 size = nextents * sizeof(xfs_bmbt_rec_t);
4318
4319 xfs_iext_irec_compact_full(ifp);
4320 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4321
4322 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4323 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4324 ifp->if_flags &= ~XFS_IFEXTIREC;
4325 ifp->if_u1.if_extents = ep;
4326 ifp->if_bytes = size;
4327 if (nextents < XFS_LINEAR_EXTS) {
4328 xfs_iext_realloc_direct(ifp, size);
4329 }
4330}
4331
4eea22f0
MK
4332/*
4333 * Free incore file extents.
4334 */
4335void
4336xfs_iext_destroy(
4337 xfs_ifork_t *ifp) /* inode fork pointer */
4338{
0293ce3a
MK
4339 if (ifp->if_flags & XFS_IFEXTIREC) {
4340 int erp_idx;
4341 int nlists;
4342
4343 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4344 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4345 xfs_iext_irec_remove(ifp, erp_idx);
4346 }
4347 ifp->if_flags &= ~XFS_IFEXTIREC;
4348 } else if (ifp->if_real_bytes) {
4eea22f0
MK
4349 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4350 } else if (ifp->if_bytes) {
4351 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4352 sizeof(xfs_bmbt_rec_t));
4353 }
4354 ifp->if_u1.if_extents = NULL;
4355 ifp->if_real_bytes = 0;
4356 ifp->if_bytes = 0;
4357}
0293ce3a 4358
8867bc9b
MK
4359/*
4360 * Return a pointer to the extent record for file system block bno.
4361 */
a6f64d4a 4362xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4363xfs_iext_bno_to_ext(
4364 xfs_ifork_t *ifp, /* inode fork pointer */
4365 xfs_fileoff_t bno, /* block number to search for */
4366 xfs_extnum_t *idxp) /* index of target extent */
4367{
a6f64d4a 4368 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4369 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4370 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4371 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4372 int high; /* upper boundary in search */
8867bc9b 4373 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4374 int low; /* lower boundary in search */
8867bc9b
MK
4375 xfs_extnum_t nextents; /* number of file extents */
4376 xfs_fileoff_t startoff = 0; /* start offset of extent */
4377
4378 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4379 if (nextents == 0) {
4380 *idxp = 0;
4381 return NULL;
4382 }
4383 low = 0;
4384 if (ifp->if_flags & XFS_IFEXTIREC) {
4385 /* Find target extent list */
4386 int erp_idx = 0;
4387 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4388 base = erp->er_extbuf;
4389 high = erp->er_extcount - 1;
4390 } else {
4391 base = ifp->if_u1.if_extents;
4392 high = nextents - 1;
4393 }
4394 /* Binary search extent records */
4395 while (low <= high) {
4396 idx = (low + high) >> 1;
4397 ep = base + idx;
4398 startoff = xfs_bmbt_get_startoff(ep);
4399 blockcount = xfs_bmbt_get_blockcount(ep);
4400 if (bno < startoff) {
4401 high = idx - 1;
4402 } else if (bno >= startoff + blockcount) {
4403 low = idx + 1;
4404 } else {
4405 /* Convert back to file-based extent index */
4406 if (ifp->if_flags & XFS_IFEXTIREC) {
4407 idx += erp->er_extoff;
4408 }
4409 *idxp = idx;
4410 return ep;
4411 }
4412 }
4413 /* Convert back to file-based extent index */
4414 if (ifp->if_flags & XFS_IFEXTIREC) {
4415 idx += erp->er_extoff;
4416 }
4417 if (bno >= startoff + blockcount) {
4418 if (++idx == nextents) {
4419 ep = NULL;
4420 } else {
4421 ep = xfs_iext_get_ext(ifp, idx);
4422 }
4423 }
4424 *idxp = idx;
4425 return ep;
4426}
4427
0293ce3a
MK
4428/*
4429 * Return a pointer to the indirection array entry containing the
4430 * extent record for filesystem block bno. Store the index of the
4431 * target irec in *erp_idxp.
4432 */
8867bc9b 4433xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4434xfs_iext_bno_to_irec(
4435 xfs_ifork_t *ifp, /* inode fork pointer */
4436 xfs_fileoff_t bno, /* block number to search for */
4437 int *erp_idxp) /* irec index of target ext list */
4438{
4439 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4440 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4441 int erp_idx; /* indirection array index */
0293ce3a
MK
4442 int nlists; /* number of extent irec's (lists) */
4443 int high; /* binary search upper limit */
4444 int low; /* binary search lower limit */
4445
4446 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4447 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4448 erp_idx = 0;
4449 low = 0;
4450 high = nlists - 1;
4451 while (low <= high) {
4452 erp_idx = (low + high) >> 1;
4453 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4454 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4455 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4456 high = erp_idx - 1;
4457 } else if (erp_next && bno >=
4458 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4459 low = erp_idx + 1;
4460 } else {
4461 break;
4462 }
4463 }
4464 *erp_idxp = erp_idx;
4465 return erp;
4466}
4467
4468/*
4469 * Return a pointer to the indirection array entry containing the
4470 * extent record at file extent index *idxp. Store the index of the
4471 * target irec in *erp_idxp and store the page index of the target
4472 * extent record in *idxp.
4473 */
4474xfs_ext_irec_t *
4475xfs_iext_idx_to_irec(
4476 xfs_ifork_t *ifp, /* inode fork pointer */
4477 xfs_extnum_t *idxp, /* extent index (file -> page) */
4478 int *erp_idxp, /* pointer to target irec */
4479 int realloc) /* new bytes were just added */
4480{
4481 xfs_ext_irec_t *prev; /* pointer to previous irec */
4482 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4483 int erp_idx; /* indirection array index */
4484 int nlists; /* number of irec's (ex lists) */
4485 int high; /* binary search upper limit */
4486 int low; /* binary search lower limit */
4487 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4488
4489 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4490 ASSERT(page_idx >= 0 && page_idx <=
4491 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4492 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4493 erp_idx = 0;
4494 low = 0;
4495 high = nlists - 1;
4496
4497 /* Binary search extent irec's */
4498 while (low <= high) {
4499 erp_idx = (low + high) >> 1;
4500 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4501 prev = erp_idx > 0 ? erp - 1 : NULL;
4502 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4503 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4504 high = erp_idx - 1;
4505 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4506 (page_idx == erp->er_extoff + erp->er_extcount &&
4507 !realloc)) {
4508 low = erp_idx + 1;
4509 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4510 erp->er_extcount == XFS_LINEAR_EXTS) {
4511 ASSERT(realloc);
4512 page_idx = 0;
4513 erp_idx++;
4514 erp = erp_idx < nlists ? erp + 1 : NULL;
4515 break;
4516 } else {
4517 page_idx -= erp->er_extoff;
4518 break;
4519 }
4520 }
4521 *idxp = page_idx;
4522 *erp_idxp = erp_idx;
4523 return(erp);
4524}
4525
4526/*
4527 * Allocate and initialize an indirection array once the space needed
4528 * for incore extents increases above XFS_IEXT_BUFSZ.
4529 */
4530void
4531xfs_iext_irec_init(
4532 xfs_ifork_t *ifp) /* inode fork pointer */
4533{
4534 xfs_ext_irec_t *erp; /* indirection array pointer */
4535 xfs_extnum_t nextents; /* number of extents in file */
4536
4537 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4538 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4539 ASSERT(nextents <= XFS_LINEAR_EXTS);
4540
4541 erp = (xfs_ext_irec_t *)
4542 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4543
4544 if (nextents == 0) {
a6f64d4a 4545 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
0293ce3a
MK
4546 } else if (!ifp->if_real_bytes) {
4547 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4548 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4549 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4550 }
4551 erp->er_extbuf = ifp->if_u1.if_extents;
4552 erp->er_extcount = nextents;
4553 erp->er_extoff = 0;
4554
4555 ifp->if_flags |= XFS_IFEXTIREC;
4556 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4557 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4558 ifp->if_u1.if_ext_irec = erp;
4559
4560 return;
4561}
4562
4563/*
4564 * Allocate and initialize a new entry in the indirection array.
4565 */
4566xfs_ext_irec_t *
4567xfs_iext_irec_new(
4568 xfs_ifork_t *ifp, /* inode fork pointer */
4569 int erp_idx) /* index for new irec */
4570{
4571 xfs_ext_irec_t *erp; /* indirection array pointer */
4572 int i; /* loop counter */
4573 int nlists; /* number of irec's (ex lists) */
4574
4575 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4576 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4577
4578 /* Resize indirection array */
4579 xfs_iext_realloc_indirect(ifp, ++nlists *
4580 sizeof(xfs_ext_irec_t));
4581 /*
4582 * Move records down in the array so the
4583 * new page can use erp_idx.
4584 */
4585 erp = ifp->if_u1.if_ext_irec;
4586 for (i = nlists - 1; i > erp_idx; i--) {
4587 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4588 }
4589 ASSERT(i == erp_idx);
4590
4591 /* Initialize new extent record */
4592 erp = ifp->if_u1.if_ext_irec;
a6f64d4a 4593 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
0293ce3a
MK
4594 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4595 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4596 erp[erp_idx].er_extcount = 0;
4597 erp[erp_idx].er_extoff = erp_idx > 0 ?
4598 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4599 return (&erp[erp_idx]);
4600}
4601
4602/*
4603 * Remove a record from the indirection array.
4604 */
4605void
4606xfs_iext_irec_remove(
4607 xfs_ifork_t *ifp, /* inode fork pointer */
4608 int erp_idx) /* irec index to remove */
4609{
4610 xfs_ext_irec_t *erp; /* indirection array pointer */
4611 int i; /* loop counter */
4612 int nlists; /* number of irec's (ex lists) */
4613
4614 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4615 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4616 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4617 if (erp->er_extbuf) {
4618 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4619 -erp->er_extcount);
4620 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4621 }
4622 /* Compact extent records */
4623 erp = ifp->if_u1.if_ext_irec;
4624 for (i = erp_idx; i < nlists - 1; i++) {
4625 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4626 }
4627 /*
4628 * Manually free the last extent record from the indirection
4629 * array. A call to xfs_iext_realloc_indirect() with a size
4630 * of zero would result in a call to xfs_iext_destroy() which
4631 * would in turn call this function again, creating a nasty
4632 * infinite loop.
4633 */
4634 if (--nlists) {
4635 xfs_iext_realloc_indirect(ifp,
4636 nlists * sizeof(xfs_ext_irec_t));
4637 } else {
4638 kmem_free(ifp->if_u1.if_ext_irec,
4639 sizeof(xfs_ext_irec_t));
4640 }
4641 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4642}
4643
4644/*
4645 * This is called to clean up large amounts of unused memory allocated
4646 * by the indirection array. Before compacting anything though, verify
4647 * that the indirection array is still needed and switch back to the
4648 * linear extent list (or even the inline buffer) if possible. The
4649 * compaction policy is as follows:
4650 *
4651 * Full Compaction: Extents fit into a single page (or inline buffer)
4652 * Full Compaction: Extents occupy less than 10% of allocated space
4653 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4654 * No Compaction: Extents occupy at least 50% of allocated space
4655 */
4656void
4657xfs_iext_irec_compact(
4658 xfs_ifork_t *ifp) /* inode fork pointer */
4659{
4660 xfs_extnum_t nextents; /* number of extents in file */
4661 int nlists; /* number of irec's (ex lists) */
4662
4663 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4664 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4665 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4666
4667 if (nextents == 0) {
4668 xfs_iext_destroy(ifp);
4669 } else if (nextents <= XFS_INLINE_EXTS) {
4670 xfs_iext_indirect_to_direct(ifp);
4671 xfs_iext_direct_to_inline(ifp, nextents);
4672 } else if (nextents <= XFS_LINEAR_EXTS) {
4673 xfs_iext_indirect_to_direct(ifp);
4674 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4675 xfs_iext_irec_compact_full(ifp);
4676 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4677 xfs_iext_irec_compact_pages(ifp);
4678 }
4679}
4680
4681/*
4682 * Combine extents from neighboring extent pages.
4683 */
4684void
4685xfs_iext_irec_compact_pages(
4686 xfs_ifork_t *ifp) /* inode fork pointer */
4687{
4688 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4689 int erp_idx = 0; /* indirection array index */
4690 int nlists; /* number of irec's (ex lists) */
4691
4692 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4693 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4694 while (erp_idx < nlists - 1) {
4695 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4696 erp_next = erp + 1;
4697 if (erp_next->er_extcount <=
4698 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4699 memmove(&erp->er_extbuf[erp->er_extcount],
4700 erp_next->er_extbuf, erp_next->er_extcount *
4701 sizeof(xfs_bmbt_rec_t));
4702 erp->er_extcount += erp_next->er_extcount;
4703 /*
4704 * Free page before removing extent record
4705 * so er_extoffs don't get modified in
4706 * xfs_iext_irec_remove.
4707 */
4708 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4709 erp_next->er_extbuf = NULL;
4710 xfs_iext_irec_remove(ifp, erp_idx + 1);
4711 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4712 } else {
4713 erp_idx++;
4714 }
4715 }
4716}
4717
4718/*
4719 * Fully compact the extent records managed by the indirection array.
4720 */
4721void
4722xfs_iext_irec_compact_full(
4723 xfs_ifork_t *ifp) /* inode fork pointer */
4724{
a6f64d4a 4725 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
0293ce3a
MK
4726 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4727 int erp_idx = 0; /* extent irec index */
4728 int ext_avail; /* empty entries in ex list */
4729 int ext_diff; /* number of exts to add */
4730 int nlists; /* number of irec's (ex lists) */
4731
4732 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4733 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4734 erp = ifp->if_u1.if_ext_irec;
4735 ep = &erp->er_extbuf[erp->er_extcount];
4736 erp_next = erp + 1;
4737 ep_next = erp_next->er_extbuf;
4738 while (erp_idx < nlists - 1) {
4739 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4740 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4741 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4742 erp->er_extcount += ext_diff;
4743 erp_next->er_extcount -= ext_diff;
4744 /* Remove next page */
4745 if (erp_next->er_extcount == 0) {
4746 /*
4747 * Free page before removing extent record
4748 * so er_extoffs don't get modified in
4749 * xfs_iext_irec_remove.
4750 */
4751 kmem_free(erp_next->er_extbuf,
4752 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4753 erp_next->er_extbuf = NULL;
4754 xfs_iext_irec_remove(ifp, erp_idx + 1);
4755 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4756 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4757 /* Update next page */
4758 } else {
4759 /* Move rest of page up to become next new page */
4760 memmove(erp_next->er_extbuf, ep_next,
4761 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4762 ep_next = erp_next->er_extbuf;
4763 memset(&ep_next[erp_next->er_extcount], 0,
4764 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4765 sizeof(xfs_bmbt_rec_t));
4766 }
4767 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4768 erp_idx++;
4769 if (erp_idx < nlists)
4770 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4771 else
4772 break;
4773 }
4774 ep = &erp->er_extbuf[erp->er_extcount];
4775 erp_next = erp + 1;
4776 ep_next = erp_next->er_extbuf;
4777 }
4778}
4779
4780/*
4781 * This is called to update the er_extoff field in the indirection
4782 * array when extents have been added or removed from one of the
4783 * extent lists. erp_idx contains the irec index to begin updating
4784 * at and ext_diff contains the number of extents that were added
4785 * or removed.
4786 */
4787void
4788xfs_iext_irec_update_extoffs(
4789 xfs_ifork_t *ifp, /* inode fork pointer */
4790 int erp_idx, /* irec index to update */
4791 int ext_diff) /* number of new extents */
4792{
4793 int i; /* loop counter */
4794 int nlists; /* number of irec's (ex lists */
4795
4796 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4797 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4798 for (i = erp_idx; i < nlists; i++) {
4799 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4800 }
4801}