]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_inode.c
xfs: convert to SPDX license tags
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
3e57ecf6 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
40ebd81d 6#include <linux/log2.h>
f0e28280 7#include <linux/iversion.h>
40ebd81d 8
1da177e4 9#include "xfs.h"
a844f451 10#include "xfs_fs.h"
70a9883c 11#include "xfs_shared.h"
239880ef
DC
12#include "xfs_format.h"
13#include "xfs_log_format.h"
14#include "xfs_trans_resv.h"
1da177e4 15#include "xfs_sb.h"
1da177e4 16#include "xfs_mount.h"
3ab78df2 17#include "xfs_defer.h"
a4fbe6ab 18#include "xfs_inode.h"
57062787 19#include "xfs_da_format.h"
c24b5dfa 20#include "xfs_da_btree.h"
c24b5dfa 21#include "xfs_dir2.h"
a844f451 22#include "xfs_attr_sf.h"
c24b5dfa 23#include "xfs_attr.h"
239880ef
DC
24#include "xfs_trans_space.h"
25#include "xfs_trans.h"
1da177e4 26#include "xfs_buf_item.h"
a844f451 27#include "xfs_inode_item.h"
a844f451
NS
28#include "xfs_ialloc.h"
29#include "xfs_bmap.h"
68988114 30#include "xfs_bmap_util.h"
e9e899a2 31#include "xfs_errortag.h"
1da177e4 32#include "xfs_error.h"
1da177e4 33#include "xfs_quota.h"
2a82b8be 34#include "xfs_filestream.h"
93848a99 35#include "xfs_cksum.h"
0b1b213f 36#include "xfs_trace.h"
33479e05 37#include "xfs_icache.h"
c24b5dfa 38#include "xfs_symlink.h"
239880ef
DC
39#include "xfs_trans_priv.h"
40#include "xfs_log.h"
a4fbe6ab 41#include "xfs_bmap_btree.h"
aa8968f2 42#include "xfs_reflink.h"
005c5db8 43#include "xfs_dir2_priv.h"
1da177e4 44
1da177e4 45kmem_zone_t *xfs_inode_zone;
1da177e4
LT
46
47/*
8f04c47a 48 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
49 * freed from a file in a single transaction.
50 */
51#define XFS_ITRUNC_MAX_EXTENTS 2
52
54d7b5c1
DC
53STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
54STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
55STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 56
2a0ec1d9
DC
57/*
58 * helper function to extract extent size hint from inode
59 */
60xfs_extlen_t
61xfs_get_extsz_hint(
62 struct xfs_inode *ip)
63{
64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 return ip->i_d.di_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
68 return 0;
69}
70
f7ca3522
DW
71/*
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
f7ca3522
DW
76 */
77xfs_extlen_t
78xfs_get_cowextsz_hint(
79 struct xfs_inode *ip)
80{
81 xfs_extlen_t a, b;
82
83 a = 0;
84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_d.di_cowextsize;
86 b = xfs_get_extsz_hint(ip);
87
e153aa79
DW
88 a = max(a, b);
89 if (a == 0)
90 return XFS_DEFAULT_COWEXTSZ_HINT;
91 return a;
f7ca3522
DW
92}
93
fa96acad 94/*
efa70be1
CH
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
104 * if they have not.
fa96acad 105 *
efa70be1 106 * The functions return a value which should be given to the corresponding
01f4f327 107 * xfs_iunlock() call.
fa96acad
DC
108 */
109uint
309ecac8
CH
110xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
fa96acad 112{
309ecac8 113 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 114
309ecac8
CH
115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 117 lock_mode = XFS_ILOCK_EXCL;
fa96acad 118 xfs_ilock(ip, lock_mode);
fa96acad
DC
119 return lock_mode;
120}
121
efa70be1
CH
122uint
123xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
fa96acad 125{
efa70be1
CH
126 uint lock_mode = XFS_ILOCK_SHARED;
127
128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
fa96acad
DC
133}
134
135/*
65523218
CH
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
fa96acad 139 *
653c60b6
DC
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 142 *
653c60b6
DC
143 * Basic locking order:
144 *
65523218 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6
DC
146 *
147 * mmap_sem locking order:
148 *
65523218 149 * i_rwsem -> page lock -> mmap_sem
653c60b6
DC
150 * mmap_sem -> i_mmap_lock -> page_lock
151 *
152 * The difference in mmap_sem locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155 * in get_user_pages() to map the user pages into the kernel address space for
65523218 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
653c60b6
DC
157 * page faults already hold the mmap_sem.
158 *
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
163 * functions).
fa96acad
DC
164 */
165void
166xfs_ilock(
167 xfs_inode_t *ip,
168 uint lock_flags)
169{
170 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171
172 /*
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 */
177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 184
65523218
CH
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 down_write_nested(&VFS_I(ip)->i_rwsem,
187 XFS_IOLOCK_DEP(lock_flags));
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 down_read_nested(&VFS_I(ip)->i_rwsem,
190 XFS_IOLOCK_DEP(lock_flags));
191 }
fa96acad 192
653c60b6
DC
193 if (lock_flags & XFS_MMAPLOCK_EXCL)
194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197
fa96acad
DC
198 if (lock_flags & XFS_ILOCK_EXCL)
199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 else if (lock_flags & XFS_ILOCK_SHARED)
201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202}
203
204/*
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
210 *
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
214 * of valid values.
215 */
216int
217xfs_ilock_nowait(
218 xfs_inode_t *ip,
219 uint lock_flags)
220{
221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222
223 /*
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 */
228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
235
236 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
238 goto out;
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
241 goto out;
242 }
653c60b6
DC
243
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!mrtryupdate(&ip->i_mmaplock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!mrtryaccess(&ip->i_mmaplock))
249 goto out_undo_iolock;
250 }
251
fa96acad
DC
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
653c60b6 254 goto out_undo_mmaplock;
fa96acad
DC
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
653c60b6 257 goto out_undo_mmaplock;
fa96acad
DC
258 }
259 return 1;
260
653c60b6
DC
261out_undo_mmaplock:
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 mrunlock_excl(&ip->i_mmaplock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 mrunlock_shared(&ip->i_mmaplock);
266out_undo_iolock:
fa96acad 267 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 268 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 269 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 270 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 271out:
fa96acad
DC
272 return 0;
273}
274
275/*
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
280 *
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
285 *
286 */
287void
288xfs_iunlock(
289 xfs_inode_t *ip,
290 uint lock_flags)
291{
292 /*
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 */
297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
304 ASSERT(lock_flags != 0);
305
306 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 307 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 308 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 309 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 310
653c60b6
DC
311 if (lock_flags & XFS_MMAPLOCK_EXCL)
312 mrunlock_excl(&ip->i_mmaplock);
313 else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 mrunlock_shared(&ip->i_mmaplock);
315
fa96acad
DC
316 if (lock_flags & XFS_ILOCK_EXCL)
317 mrunlock_excl(&ip->i_lock);
318 else if (lock_flags & XFS_ILOCK_SHARED)
319 mrunlock_shared(&ip->i_lock);
320
321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322}
323
324/*
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
327 */
328void
329xfs_ilock_demote(
330 xfs_inode_t *ip,
331 uint lock_flags)
332{
653c60b6
DC
333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 ASSERT((lock_flags &
335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
336
337 if (lock_flags & XFS_ILOCK_EXCL)
338 mrdemote(&ip->i_lock);
653c60b6
DC
339 if (lock_flags & XFS_MMAPLOCK_EXCL)
340 mrdemote(&ip->i_mmaplock);
fa96acad 341 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 342 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
343
344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345}
346
742ae1e3 347#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
348int
349xfs_isilocked(
350 xfs_inode_t *ip,
351 uint lock_flags)
352{
353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 if (!(lock_flags & XFS_ILOCK_SHARED))
355 return !!ip->i_lock.mr_writer;
356 return rwsem_is_locked(&ip->i_lock.mr_lock);
357 }
358
653c60b6
DC
359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 return !!ip->i_mmaplock.mr_writer;
362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 }
364
fa96acad
DC
365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
367 return !debug_locks ||
368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
370 }
371
372 ASSERT(0);
373 return 0;
374}
375#endif
376
b6a9947e
DC
377/*
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
382 */
383#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
384static bool
385xfs_lockdep_subclass_ok(
386 int subclass)
387{
388 return subclass < MAX_LOCKDEP_SUBCLASSES;
389}
390#else
391#define xfs_lockdep_subclass_ok(subclass) (true)
392#endif
393
c24b5dfa 394/*
653c60b6 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
c24b5dfa
DC
399 */
400static inline int
401xfs_lock_inumorder(int lock_mode, int subclass)
402{
0952c818
DC
403 int class = 0;
404
405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 XFS_ILOCK_RTSUM)));
3403ccc0 407 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 408
653c60b6 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 411 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
412 }
413
414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
417 }
418
0952c818
DC
419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 class += subclass << XFS_ILOCK_SHIFT;
422 }
c24b5dfa 423
0952c818 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
425}
426
427/*
95afcf5c
DC
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
c24b5dfa 430 *
95afcf5c
DC
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
0952c818
DC
436 *
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
c24b5dfa 441 */
0d5a75e9 442static void
c24b5dfa
DC
443xfs_lock_inodes(
444 xfs_inode_t **ips,
445 int inodes,
446 uint lock_mode)
447{
448 int attempts = 0, i, j, try_lock;
449 xfs_log_item_t *lp;
450
0952c818
DC
451 /*
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
456 * the asserts.
457 */
95afcf5c 458 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 XFS_ILOCK_EXCL));
461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 XFS_ILOCK_SHARED)));
0952c818
DC
463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467
468 if (lock_mode & XFS_IOLOCK_EXCL) {
469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
472
473 try_lock = 0;
474 i = 0;
c24b5dfa
DC
475again:
476 for (; i < inodes; i++) {
477 ASSERT(ips[i]);
478
95afcf5c 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
480 continue;
481
482 /*
95afcf5c
DC
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 485 */
c24b5dfa
DC
486 if (!try_lock) {
487 for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 lp = (xfs_log_item_t *)ips[j]->i_itemp;
22525c17 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
c24b5dfa 490 try_lock++;
c24b5dfa
DC
491 }
492 }
493
494 /*
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
498 * and try again.
499 */
95afcf5c
DC
500 if (!try_lock) {
501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 continue;
503 }
504
505 /* try_lock means we have an inode locked that is in the AIL. */
506 ASSERT(i != 0);
507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 continue;
c24b5dfa 509
95afcf5c
DC
510 /*
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
513 */
514 attempts++;
515 for (j = i - 1; j >= 0; j--) {
c24b5dfa 516 /*
95afcf5c
DC
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
519 * same.
c24b5dfa 520 */
95afcf5c
DC
521 if (j != (i - 1) && ips[j] == ips[j + 1])
522 continue;
c24b5dfa 523
95afcf5c
DC
524 xfs_iunlock(ips[j], lock_mode);
525 }
c24b5dfa 526
95afcf5c
DC
527 if ((attempts % 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
c24b5dfa 529 }
95afcf5c
DC
530 i = 0;
531 try_lock = 0;
532 goto again;
c24b5dfa 533 }
c24b5dfa
DC
534}
535
536/*
653c60b6 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
7c2d238a
DW
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
542 * SHARED.
c24b5dfa
DC
543 */
544void
545xfs_lock_two_inodes(
7c2d238a
DW
546 struct xfs_inode *ip0,
547 uint ip0_mode,
548 struct xfs_inode *ip1,
549 uint ip1_mode)
c24b5dfa 550{
7c2d238a
DW
551 struct xfs_inode *temp;
552 uint mode_temp;
c24b5dfa
DC
553 int attempts = 0;
554 xfs_log_item_t *lp;
555
7c2d238a
DW
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
653c60b6 568
c24b5dfa
DC
569 ASSERT(ip0->i_ino != ip1->i_ino);
570
571 if (ip0->i_ino > ip1->i_ino) {
572 temp = ip0;
573 ip0 = ip1;
574 ip1 = temp;
7c2d238a
DW
575 mode_temp = ip0_mode;
576 ip0_mode = ip1_mode;
577 ip1_mode = mode_temp;
c24b5dfa
DC
578 }
579
580 again:
7c2d238a 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
c24b5dfa
DC
582
583 /*
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
586 * and try again.
587 */
588 lp = (xfs_log_item_t *)ip0->i_itemp;
22525c17 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
7c2d238a
DW
590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 xfs_iunlock(ip0, ip0_mode);
c24b5dfa
DC
592 if ((++attempts % 5) == 0)
593 delay(1); /* Don't just spin the CPU */
594 goto again;
595 }
596 } else {
7c2d238a 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
c24b5dfa
DC
598 }
599}
600
fa96acad
DC
601void
602__xfs_iflock(
603 struct xfs_inode *ip)
604{
605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
607
608 do {
21417136 609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
fa96acad
DC
610 if (xfs_isiflocked(ip))
611 io_schedule();
612 } while (!xfs_iflock_nowait(ip));
613
21417136 614 finish_wait(wq, &wait.wq_entry);
fa96acad
DC
615}
616
1da177e4
LT
617STATIC uint
618_xfs_dic2xflags(
c8ce540d 619 uint16_t di_flags,
58f88ca2
DC
620 uint64_t di_flags2,
621 bool has_attr)
1da177e4
LT
622{
623 uint flags = 0;
624
625 if (di_flags & XFS_DIFLAG_ANY) {
626 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 627 flags |= FS_XFLAG_REALTIME;
1da177e4 628 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 629 flags |= FS_XFLAG_PREALLOC;
1da177e4 630 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 631 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 632 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 633 flags |= FS_XFLAG_APPEND;
1da177e4 634 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 635 flags |= FS_XFLAG_SYNC;
1da177e4 636 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 637 flags |= FS_XFLAG_NOATIME;
1da177e4 638 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 639 flags |= FS_XFLAG_NODUMP;
1da177e4 640 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 641 flags |= FS_XFLAG_RTINHERIT;
1da177e4 642 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 643 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 644 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 645 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 646 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 647 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 649 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 650 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 651 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 652 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 653 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
654 }
655
58f88ca2
DC
656 if (di_flags2 & XFS_DIFLAG2_ANY) {
657 if (di_flags2 & XFS_DIFLAG2_DAX)
658 flags |= FS_XFLAG_DAX;
f7ca3522
DW
659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
661 }
662
663 if (has_attr)
664 flags |= FS_XFLAG_HASATTR;
665
1da177e4
LT
666 return flags;
667}
668
669uint
670xfs_ip2xflags(
58f88ca2 671 struct xfs_inode *ip)
1da177e4 672{
58f88ca2 673 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 674
58f88ca2 675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
676}
677
c24b5dfa
DC
678/*
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
683 */
684int
685xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
690{
691 xfs_ino_t inum;
692 int error;
c24b5dfa
DC
693
694 trace_xfs_lookup(dp, name);
695
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 697 return -EIO;
c24b5dfa 698
c24b5dfa 699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 700 if (error)
dbad7c99 701 goto out_unlock;
c24b5dfa
DC
702
703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
704 if (error)
705 goto out_free_name;
706
707 return 0;
708
709out_free_name:
710 if (ci_name)
711 kmem_free(ci_name->name);
dbad7c99 712out_unlock:
c24b5dfa
DC
713 *ipp = NULL;
714 return error;
715}
716
1da177e4
LT
717/*
718 * Allocate an inode on disk and return a copy of its in-core version.
719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
720 * appropriately within the inode. The uid and gid for the inode are
721 * set according to the contents of the given cred structure.
722 *
723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
724 * has a free inode available, call xfs_iget() to obtain the in-core
725 * version of the allocated inode. Finally, fill in the inode and
726 * log its initial contents. In this case, ialloc_context would be
727 * set to NULL.
1da177e4 728 *
cd856db6
CM
729 * If xfs_dialloc() does not have an available inode, it will replenish
730 * its supply by doing an allocation. Since we can only do one
731 * allocation within a transaction without deadlocks, we must commit
732 * the current transaction before returning the inode itself.
733 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
734 * The caller should then commit the current transaction, start a new
735 * transaction, and call xfs_ialloc() again to actually get the inode.
736 *
737 * To ensure that some other process does not grab the inode that
738 * was allocated during the first call to xfs_ialloc(), this routine
739 * also returns the [locked] bp pointing to the head of the freelist
740 * as ialloc_context. The caller should hold this buffer across
741 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
742 *
743 * If we are allocating quota inodes, we do not have a parent inode
744 * to attach to or associate with (i.e. pip == NULL) because they
745 * are not linked into the directory structure - they are attached
746 * directly to the superblock - and so have no parent.
1da177e4 747 */
0d5a75e9 748static int
1da177e4
LT
749xfs_ialloc(
750 xfs_trans_t *tp,
751 xfs_inode_t *pip,
576b1d67 752 umode_t mode,
31b084ae 753 xfs_nlink_t nlink,
66f36464 754 dev_t rdev,
6743099c 755 prid_t prid,
1da177e4 756 xfs_buf_t **ialloc_context,
1da177e4
LT
757 xfs_inode_t **ipp)
758{
93848a99 759 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
760 xfs_ino_t ino;
761 xfs_inode_t *ip;
1da177e4
LT
762 uint flags;
763 int error;
e076b0f3 764 struct timespec tv;
3987848c 765 struct inode *inode;
1da177e4
LT
766
767 /*
768 * Call the space management code to pick
769 * the on-disk inode to be allocated.
770 */
f59cf5c2 771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
08358906 772 ialloc_context, &ino);
bf904248 773 if (error)
1da177e4 774 return error;
08358906 775 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
776 *ipp = NULL;
777 return 0;
778 }
779 ASSERT(*ialloc_context == NULL);
780
8b26984d
DC
781 /*
782 * Protect against obviously corrupt allocation btree records. Later
783 * xfs_iget checks will catch re-allocation of other active in-memory
784 * and on-disk inodes. If we don't catch reallocating the parent inode
785 * here we will deadlock in xfs_iget() so we have to do these checks
786 * first.
787 */
788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 return -EFSCORRUPTED;
791 }
792
1da177e4
LT
793 /*
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
797 */
93848a99 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 799 XFS_ILOCK_EXCL, &ip);
bf904248 800 if (error)
1da177e4 801 return error;
1da177e4 802 ASSERT(ip != NULL);
3987848c 803 inode = VFS_I(ip);
1da177e4 804
263997a6
DC
805 /*
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
809 */
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
812
c19b3b05 813 inode->i_mode = mode;
54d7b5c1 814 set_nlink(inode, nlink);
7aab1b28
DE
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
66f36464 817 inode->i_rdev = rdev;
6743099c 818 xfs_set_projid(ip, prid);
1da177e4 819
bd186aa9 820 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 821 ip->i_d.di_gid = pip->i_d.di_gid;
c19b3b05
DC
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
1da177e4
LT
824 }
825
826 /*
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
830 */
831 if ((irix_sgid_inherit) &&
c19b3b05
DC
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
1da177e4
LT
835
836 ip->i_d.di_size = 0;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 839
c2050a45 840 tv = current_time(inode);
3987848c
DC
841 inode->i_mtime = tv;
842 inode->i_atime = tv;
843 inode->i_ctime = tv;
dff35fd4 844
1da177e4
LT
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
93848a99
CH
849
850 if (ip->i_d.di_version == 3) {
f0e28280 851 inode_set_iversion(inode, 1);
93848a99 852 ip->i_d.di_flags2 = 0;
f7ca3522 853 ip->i_d.di_cowextsize = 0;
c8ce540d
DW
854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
93848a99
CH
856 }
857
858
1da177e4
LT
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
861 case S_IFIFO:
862 case S_IFCHR:
863 case S_IFBLK:
864 case S_IFSOCK:
865 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
866 ip->i_df.if_flags = 0;
867 flags |= XFS_ILOG_DEV;
868 break;
869 case S_IFREG:
870 case S_IFDIR:
b11f94d5 871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2 872 uint di_flags = 0;
365ca83d 873
abbede1b 874 if (S_ISDIR(mode)) {
365ca83d
NS
875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 ip->i_d.di_extsize = pip->i_d.di_extsize;
880 }
9336e3a7
DC
881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 883 } else if (S_ISREG(mode)) {
613d7043 884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 885 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 di_flags |= XFS_DIFLAG_EXTSIZE;
888 ip->i_d.di_extsize = pip->i_d.di_extsize;
889 }
1da177e4
LT
890 }
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
892 xfs_inherit_noatime)
365ca83d 893 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
895 xfs_inherit_nodump)
365ca83d 896 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
898 xfs_inherit_sync)
365ca83d 899 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 xfs_inherit_nosymlinks)
365ca83d 902 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 xfs_inherit_nodefrag)
905 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2 908
365ca83d 909 ip->i_d.di_flags |= di_flags;
1da177e4 910 }
f7ca3522
DW
911 if (pip &&
912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 pip->i_d.di_version == 3 &&
914 ip->i_d.di_version == 3) {
56bdf855
LC
915 uint64_t di_flags2 = 0;
916
f7ca3522 917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
56bdf855 918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
920 }
56bdf855
LC
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
923
924 ip->i_d.di_flags2 |= di_flags2;
f7ca3522 925 }
1da177e4
LT
926 /* FALLTHROUGH */
927 case S_IFLNK:
928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 ip->i_df.if_flags = XFS_IFEXTENTS;
930 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
6bdcf26a 931 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
932 break;
933 default:
934 ASSERT(0);
935 }
936 /*
937 * Attribute fork settings for new inode.
938 */
939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 ip->i_d.di_anextents = 0;
941
942 /*
943 * Log the new values stuffed into the inode.
944 */
ddc3415a 945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
946 xfs_trans_log_inode(tp, ip, flags);
947
58c90473 948 /* now that we have an i_mode we can setup the inode structure */
41be8bed 949 xfs_setup_inode(ip);
1da177e4
LT
950
951 *ipp = ip;
952 return 0;
953}
954
e546cb79
DC
955/*
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
960 *
961 * This routine is designed to be called from xfs_create and
962 * xfs_create_dir.
963 *
964 */
965int
966xfs_dir_ialloc(
967 xfs_trans_t **tpp, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t *dp, /* directory within whose allocate
970 the inode. */
971 umode_t mode,
972 xfs_nlink_t nlink,
66f36464 973 dev_t rdev,
e546cb79 974 prid_t prid, /* project id */
c959025e 975 xfs_inode_t **ipp) /* pointer to inode; it will be
e546cb79 976 locked. */
e546cb79
DC
977{
978 xfs_trans_t *tp;
e546cb79
DC
979 xfs_inode_t *ip;
980 xfs_buf_t *ialloc_context = NULL;
981 int code;
e546cb79
DC
982 void *dqinfo;
983 uint tflags;
984
985 tp = *tpp;
986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
987
988 /*
989 * xfs_ialloc will return a pointer to an incore inode if
990 * the Space Manager has an available inode on the free
991 * list. Otherwise, it will do an allocation and replenish
992 * the freelist. Since we can only do one allocation per
993 * transaction without deadlocks, we will need to commit the
994 * current transaction and start a new one. We will then
995 * need to call xfs_ialloc again to get the inode.
996 *
997 * If xfs_ialloc did an allocation to replenish the freelist,
998 * it returns the bp containing the head of the freelist as
999 * ialloc_context. We will hold a lock on it across the
1000 * transaction commit so that no other process can steal
1001 * the inode(s) that we've just allocated.
1002 */
f59cf5c2
CH
1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004 &ip);
e546cb79
DC
1005
1006 /*
1007 * Return an error if we were unable to allocate a new inode.
1008 * This should only happen if we run out of space on disk or
1009 * encounter a disk error.
1010 */
1011 if (code) {
1012 *ipp = NULL;
1013 return code;
1014 }
1015 if (!ialloc_context && !ip) {
1016 *ipp = NULL;
2451337d 1017 return -ENOSPC;
e546cb79
DC
1018 }
1019
1020 /*
1021 * If the AGI buffer is non-NULL, then we were unable to get an
1022 * inode in one operation. We need to commit the current
1023 * transaction and call xfs_ialloc() again. It is guaranteed
1024 * to succeed the second time.
1025 */
1026 if (ialloc_context) {
1027 /*
1028 * Normally, xfs_trans_commit releases all the locks.
1029 * We call bhold to hang on to the ialloc_context across
1030 * the commit. Holding this buffer prevents any other
1031 * processes from doing any allocations in this
1032 * allocation group.
1033 */
1034 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1035
1036 /*
1037 * We want the quota changes to be associated with the next
1038 * transaction, NOT this one. So, detach the dqinfo from this
1039 * and attach it to the next transaction.
1040 */
1041 dqinfo = NULL;
1042 tflags = 0;
1043 if (tp->t_dqinfo) {
1044 dqinfo = (void *)tp->t_dqinfo;
1045 tp->t_dqinfo = NULL;
1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048 }
1049
411350df 1050 code = xfs_trans_roll(&tp);
3d3c8b52 1051
e546cb79
DC
1052 /*
1053 * Re-attach the quota info that we detached from prev trx.
1054 */
1055 if (dqinfo) {
1056 tp->t_dqinfo = dqinfo;
1057 tp->t_flags |= tflags;
1058 }
1059
1060 if (code) {
1061 xfs_buf_relse(ialloc_context);
2e6db6c4 1062 *tpp = tp;
e546cb79
DC
1063 *ipp = NULL;
1064 return code;
1065 }
1066 xfs_trans_bjoin(tp, ialloc_context);
1067
1068 /*
1069 * Call ialloc again. Since we've locked out all
1070 * other allocations in this allocation group,
1071 * this call should always succeed.
1072 */
1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
f59cf5c2 1074 &ialloc_context, &ip);
e546cb79
DC
1075
1076 /*
1077 * If we get an error at this point, return to the caller
1078 * so that the current transaction can be aborted.
1079 */
1080 if (code) {
1081 *tpp = tp;
1082 *ipp = NULL;
1083 return code;
1084 }
1085 ASSERT(!ialloc_context && ip);
1086
e546cb79
DC
1087 }
1088
1089 *ipp = ip;
1090 *tpp = tp;
1091
1092 return 0;
1093}
1094
1095/*
54d7b5c1
DC
1096 * Decrement the link count on an inode & log the change. If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1099 */
0d5a75e9 1100static int /* error */
e546cb79
DC
1101xfs_droplink(
1102 xfs_trans_t *tp,
1103 xfs_inode_t *ip)
1104{
e546cb79
DC
1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
e546cb79
DC
1107 drop_nlink(VFS_I(ip));
1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
54d7b5c1
DC
1110 if (VFS_I(ip)->i_nlink)
1111 return 0;
1112
1113 return xfs_iunlink(tp, ip);
e546cb79
DC
1114}
1115
e546cb79
DC
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
0d5a75e9 1119static int
e546cb79
DC
1120xfs_bumplink(
1121 xfs_trans_t *tp,
1122 xfs_inode_t *ip)
1123{
1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
263997a6 1126 ASSERT(ip->i_d.di_version > 1);
e546cb79 1127 inc_nlink(VFS_I(ip));
e546cb79
DC
1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129 return 0;
1130}
1131
c24b5dfa
DC
1132int
1133xfs_create(
1134 xfs_inode_t *dp,
1135 struct xfs_name *name,
1136 umode_t mode,
66f36464 1137 dev_t rdev,
c24b5dfa
DC
1138 xfs_inode_t **ipp)
1139{
1140 int is_dir = S_ISDIR(mode);
1141 struct xfs_mount *mp = dp->i_mount;
1142 struct xfs_inode *ip = NULL;
1143 struct xfs_trans *tp = NULL;
1144 int error;
2c3234d1 1145 struct xfs_defer_ops dfops;
c24b5dfa
DC
1146 xfs_fsblock_t first_block;
1147 bool unlock_dp_on_error = false;
c24b5dfa
DC
1148 prid_t prid;
1149 struct xfs_dquot *udqp = NULL;
1150 struct xfs_dquot *gdqp = NULL;
1151 struct xfs_dquot *pdqp = NULL;
062647a8 1152 struct xfs_trans_res *tres;
c24b5dfa 1153 uint resblks;
c24b5dfa
DC
1154
1155 trace_xfs_create(dp, name);
1156
1157 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1158 return -EIO;
c24b5dfa 1159
163467d3 1160 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1161
1162 /*
1163 * Make sure that we have allocated dquot(s) on disk.
1164 */
7aab1b28
DE
1165 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1166 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1167 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1168 &udqp, &gdqp, &pdqp);
1169 if (error)
1170 return error;
1171
1172 if (is_dir) {
c24b5dfa 1173 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1174 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1175 } else {
1176 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1177 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1178 }
1179
c24b5dfa
DC
1180 /*
1181 * Initially assume that the file does not exist and
1182 * reserve the resources for that case. If that is not
1183 * the case we'll drop the one we have and get a more
1184 * appropriate transaction later.
1185 */
253f4911 1186 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1187 if (error == -ENOSPC) {
c24b5dfa
DC
1188 /* flush outstanding delalloc blocks and retry */
1189 xfs_flush_inodes(mp);
253f4911 1190 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1191 }
4906e215 1192 if (error)
253f4911 1193 goto out_release_inode;
c24b5dfa 1194
65523218 1195 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1196 unlock_dp_on_error = true;
1197
2c3234d1 1198 xfs_defer_init(&dfops, &first_block);
8b922f0e 1199 tp->t_agfl_dfops = &dfops;
c24b5dfa
DC
1200
1201 /*
1202 * Reserve disk quota and the inode.
1203 */
1204 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1205 pdqp, resblks, 1, 0);
1206 if (error)
1207 goto out_trans_cancel;
1208
c24b5dfa
DC
1209 /*
1210 * A newly created regular or special file just has one directory
1211 * entry pointing to them, but a directory also the "." entry
1212 * pointing to itself.
1213 */
c959025e 1214 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
d6077aa3 1215 if (error)
4906e215 1216 goto out_trans_cancel;
c24b5dfa
DC
1217
1218 /*
1219 * Now we join the directory inode to the transaction. We do not do it
1220 * earlier because xfs_dir_ialloc might commit the previous transaction
1221 * (and release all the locks). An error from here on will result in
1222 * the transaction cancel unlocking dp so don't do it explicitly in the
1223 * error path.
1224 */
65523218 1225 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1226 unlock_dp_on_error = false;
1227
1228 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
2c3234d1 1229 &first_block, &dfops, resblks ?
c24b5dfa
DC
1230 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1231 if (error) {
2451337d 1232 ASSERT(error != -ENOSPC);
4906e215 1233 goto out_trans_cancel;
c24b5dfa
DC
1234 }
1235 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1236 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1237
1238 if (is_dir) {
1239 error = xfs_dir_init(tp, ip, dp);
1240 if (error)
1241 goto out_bmap_cancel;
1242
1243 error = xfs_bumplink(tp, dp);
1244 if (error)
1245 goto out_bmap_cancel;
1246 }
1247
1248 /*
1249 * If this is a synchronous mount, make sure that the
1250 * create transaction goes to disk before returning to
1251 * the user.
1252 */
1253 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1254 xfs_trans_set_sync(tp);
1255
1256 /*
1257 * Attach the dquot(s) to the inodes and modify them incore.
1258 * These ids of the inode couldn't have changed since the new
1259 * inode has been locked ever since it was created.
1260 */
1261 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1262
8ad7c629 1263 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa
DC
1264 if (error)
1265 goto out_bmap_cancel;
1266
70393313 1267 error = xfs_trans_commit(tp);
c24b5dfa
DC
1268 if (error)
1269 goto out_release_inode;
1270
1271 xfs_qm_dqrele(udqp);
1272 xfs_qm_dqrele(gdqp);
1273 xfs_qm_dqrele(pdqp);
1274
1275 *ipp = ip;
1276 return 0;
1277
1278 out_bmap_cancel:
2c3234d1 1279 xfs_defer_cancel(&dfops);
c24b5dfa 1280 out_trans_cancel:
4906e215 1281 xfs_trans_cancel(tp);
c24b5dfa
DC
1282 out_release_inode:
1283 /*
58c90473
DC
1284 * Wait until after the current transaction is aborted to finish the
1285 * setup of the inode and release the inode. This prevents recursive
1286 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1287 */
58c90473
DC
1288 if (ip) {
1289 xfs_finish_inode_setup(ip);
c24b5dfa 1290 IRELE(ip);
58c90473 1291 }
c24b5dfa
DC
1292
1293 xfs_qm_dqrele(udqp);
1294 xfs_qm_dqrele(gdqp);
1295 xfs_qm_dqrele(pdqp);
1296
1297 if (unlock_dp_on_error)
65523218 1298 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1299 return error;
1300}
1301
99b6436b
ZYW
1302int
1303xfs_create_tmpfile(
1304 struct xfs_inode *dp,
330033d6
BF
1305 umode_t mode,
1306 struct xfs_inode **ipp)
99b6436b
ZYW
1307{
1308 struct xfs_mount *mp = dp->i_mount;
1309 struct xfs_inode *ip = NULL;
1310 struct xfs_trans *tp = NULL;
1311 int error;
99b6436b
ZYW
1312 prid_t prid;
1313 struct xfs_dquot *udqp = NULL;
1314 struct xfs_dquot *gdqp = NULL;
1315 struct xfs_dquot *pdqp = NULL;
1316 struct xfs_trans_res *tres;
1317 uint resblks;
1318
1319 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1320 return -EIO;
99b6436b
ZYW
1321
1322 prid = xfs_get_initial_prid(dp);
1323
1324 /*
1325 * Make sure that we have allocated dquot(s) on disk.
1326 */
1327 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1328 xfs_kgid_to_gid(current_fsgid()), prid,
1329 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1330 &udqp, &gdqp, &pdqp);
1331 if (error)
1332 return error;
1333
1334 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1335 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1336
1337 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
4906e215 1338 if (error)
253f4911 1339 goto out_release_inode;
99b6436b
ZYW
1340
1341 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1342 pdqp, resblks, 1, 0);
1343 if (error)
1344 goto out_trans_cancel;
1345
c959025e 1346 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
d6077aa3 1347 if (error)
4906e215 1348 goto out_trans_cancel;
99b6436b
ZYW
1349
1350 if (mp->m_flags & XFS_MOUNT_WSYNC)
1351 xfs_trans_set_sync(tp);
1352
1353 /*
1354 * Attach the dquot(s) to the inodes and modify them incore.
1355 * These ids of the inode couldn't have changed since the new
1356 * inode has been locked ever since it was created.
1357 */
1358 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1359
99b6436b
ZYW
1360 error = xfs_iunlink(tp, ip);
1361 if (error)
4906e215 1362 goto out_trans_cancel;
99b6436b 1363
70393313 1364 error = xfs_trans_commit(tp);
99b6436b
ZYW
1365 if (error)
1366 goto out_release_inode;
1367
1368 xfs_qm_dqrele(udqp);
1369 xfs_qm_dqrele(gdqp);
1370 xfs_qm_dqrele(pdqp);
1371
330033d6 1372 *ipp = ip;
99b6436b
ZYW
1373 return 0;
1374
99b6436b 1375 out_trans_cancel:
4906e215 1376 xfs_trans_cancel(tp);
99b6436b
ZYW
1377 out_release_inode:
1378 /*
58c90473
DC
1379 * Wait until after the current transaction is aborted to finish the
1380 * setup of the inode and release the inode. This prevents recursive
1381 * transactions and deadlocks from xfs_inactive.
99b6436b 1382 */
58c90473
DC
1383 if (ip) {
1384 xfs_finish_inode_setup(ip);
99b6436b 1385 IRELE(ip);
58c90473 1386 }
99b6436b
ZYW
1387
1388 xfs_qm_dqrele(udqp);
1389 xfs_qm_dqrele(gdqp);
1390 xfs_qm_dqrele(pdqp);
1391
1392 return error;
1393}
1394
c24b5dfa
DC
1395int
1396xfs_link(
1397 xfs_inode_t *tdp,
1398 xfs_inode_t *sip,
1399 struct xfs_name *target_name)
1400{
1401 xfs_mount_t *mp = tdp->i_mount;
1402 xfs_trans_t *tp;
1403 int error;
2c3234d1 1404 struct xfs_defer_ops dfops;
c24b5dfa 1405 xfs_fsblock_t first_block;
c24b5dfa
DC
1406 int resblks;
1407
1408 trace_xfs_link(tdp, target_name);
1409
c19b3b05 1410 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1411
1412 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1413 return -EIO;
c24b5dfa 1414
c14cfcca 1415 error = xfs_qm_dqattach(sip);
c24b5dfa
DC
1416 if (error)
1417 goto std_return;
1418
c14cfcca 1419 error = xfs_qm_dqattach(tdp);
c24b5dfa
DC
1420 if (error)
1421 goto std_return;
1422
c24b5dfa 1423 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1424 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1425 if (error == -ENOSPC) {
c24b5dfa 1426 resblks = 0;
253f4911 1427 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1428 }
4906e215 1429 if (error)
253f4911 1430 goto std_return;
c24b5dfa 1431
7c2d238a 1432 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1433
1434 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1435 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1436
1437 /*
1438 * If we are using project inheritance, we only allow hard link
1439 * creation in our tree when the project IDs are the same; else
1440 * the tree quota mechanism could be circumvented.
1441 */
1442 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1443 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1444 error = -EXDEV;
c24b5dfa
DC
1445 goto error_return;
1446 }
1447
94f3cad5
ES
1448 if (!resblks) {
1449 error = xfs_dir_canenter(tp, tdp, target_name);
1450 if (error)
1451 goto error_return;
1452 }
c24b5dfa 1453
2c3234d1 1454 xfs_defer_init(&dfops, &first_block);
8804630e 1455 tp->t_agfl_dfops = &dfops;
c24b5dfa 1456
54d7b5c1
DC
1457 /*
1458 * Handle initial link state of O_TMPFILE inode
1459 */
1460 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1461 error = xfs_iunlink_remove(tp, sip);
1462 if (error)
4906e215 1463 goto error_return;
ab297431
ZYW
1464 }
1465
c24b5dfa 1466 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
2c3234d1 1467 &first_block, &dfops, resblks);
c24b5dfa 1468 if (error)
4906e215 1469 goto error_return;
c24b5dfa
DC
1470 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1471 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1472
1473 error = xfs_bumplink(tp, sip);
1474 if (error)
4906e215 1475 goto error_return;
c24b5dfa
DC
1476
1477 /*
1478 * If this is a synchronous mount, make sure that the
1479 * link transaction goes to disk before returning to
1480 * the user.
1481 */
f6106efa 1482 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1483 xfs_trans_set_sync(tp);
c24b5dfa 1484
8ad7c629 1485 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa 1486 if (error) {
2c3234d1 1487 xfs_defer_cancel(&dfops);
4906e215 1488 goto error_return;
c24b5dfa
DC
1489 }
1490
70393313 1491 return xfs_trans_commit(tp);
c24b5dfa 1492
c24b5dfa 1493 error_return:
4906e215 1494 xfs_trans_cancel(tp);
c24b5dfa
DC
1495 std_return:
1496 return error;
1497}
1498
363e59ba
DW
1499/* Clear the reflink flag and the cowblocks tag if possible. */
1500static void
1501xfs_itruncate_clear_reflink_flags(
1502 struct xfs_inode *ip)
1503{
1504 struct xfs_ifork *dfork;
1505 struct xfs_ifork *cfork;
1506
1507 if (!xfs_is_reflink_inode(ip))
1508 return;
1509 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1510 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1511 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1512 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1513 if (cfork->if_bytes == 0)
1514 xfs_inode_clear_cowblocks_tag(ip);
1515}
1516
1da177e4 1517/*
8f04c47a
CH
1518 * Free up the underlying blocks past new_size. The new size must be smaller
1519 * than the current size. This routine can be used both for the attribute and
1520 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1521 *
f6485057
DC
1522 * The transaction passed to this routine must have made a permanent log
1523 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1524 * given transaction and start new ones, so make sure everything involved in
1525 * the transaction is tidy before calling here. Some transaction will be
1526 * returned to the caller to be committed. The incoming transaction must
1527 * already include the inode, and both inode locks must be held exclusively.
1528 * The inode must also be "held" within the transaction. On return the inode
1529 * will be "held" within the returned transaction. This routine does NOT
1530 * require any disk space to be reserved for it within the transaction.
1da177e4 1531 *
f6485057
DC
1532 * If we get an error, we must return with the inode locked and linked into the
1533 * current transaction. This keeps things simple for the higher level code,
1534 * because it always knows that the inode is locked and held in the transaction
1535 * that returns to it whether errors occur or not. We don't mark the inode
1536 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1537 */
1538int
4e529339 1539xfs_itruncate_extents_flags(
8f04c47a
CH
1540 struct xfs_trans **tpp,
1541 struct xfs_inode *ip,
1542 int whichfork,
13b86fc3 1543 xfs_fsize_t new_size,
4e529339 1544 int flags)
1da177e4 1545{
8f04c47a
CH
1546 struct xfs_mount *mp = ip->i_mount;
1547 struct xfs_trans *tp = *tpp;
2c3234d1 1548 struct xfs_defer_ops dfops;
8f04c47a
CH
1549 xfs_fsblock_t first_block;
1550 xfs_fileoff_t first_unmap_block;
1551 xfs_fileoff_t last_block;
1552 xfs_filblks_t unmap_len;
8f04c47a
CH
1553 int error = 0;
1554 int done = 0;
1da177e4 1555
0b56185b
CH
1556 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1557 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1558 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1559 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1560 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1561 ASSERT(ip->i_itemp != NULL);
898621d5 1562 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1563 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1564
673e8e59
CH
1565 trace_xfs_itruncate_extents_start(ip, new_size);
1566
4e529339 1567 flags |= xfs_bmapi_aflag(whichfork);
13b86fc3 1568
1da177e4
LT
1569 /*
1570 * Since it is possible for space to become allocated beyond
1571 * the end of the file (in a crash where the space is allocated
1572 * but the inode size is not yet updated), simply remove any
1573 * blocks which show up between the new EOF and the maximum
1574 * possible file size. If the first block to be removed is
1575 * beyond the maximum file size (ie it is the same as last_block),
1576 * then there is nothing to do.
1577 */
8f04c47a 1578 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1579 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1580 if (first_unmap_block == last_block)
1581 return 0;
1582
1583 ASSERT(first_unmap_block < last_block);
1584 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1585 while (!done) {
2c3234d1 1586 xfs_defer_init(&dfops, &first_block);
13b86fc3
BF
1587 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1588 XFS_ITRUNC_MAX_EXTENTS, &first_block,
1589 &dfops, &done);
8f04c47a
CH
1590 if (error)
1591 goto out_bmap_cancel;
1da177e4
LT
1592
1593 /*
1594 * Duplicate the transaction that has the permanent
1595 * reservation and commit the old transaction.
1596 */
8ad7c629
CH
1597 xfs_defer_ijoin(&dfops, ip);
1598 error = xfs_defer_finish(&tp, &dfops);
8f04c47a
CH
1599 if (error)
1600 goto out_bmap_cancel;
1da177e4 1601
411350df 1602 error = xfs_trans_roll_inode(&tp, ip);
f6485057 1603 if (error)
8f04c47a 1604 goto out;
1da177e4 1605 }
8f04c47a 1606
4919d42a
DW
1607 if (whichfork == XFS_DATA_FORK) {
1608 /* Remove all pending CoW reservations. */
1609 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1610 first_unmap_block, last_block, true);
1611 if (error)
1612 goto out;
aa8968f2 1613
4919d42a
DW
1614 xfs_itruncate_clear_reflink_flags(ip);
1615 }
aa8968f2 1616
673e8e59
CH
1617 /*
1618 * Always re-log the inode so that our permanent transaction can keep
1619 * on rolling it forward in the log.
1620 */
1621 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1622
1623 trace_xfs_itruncate_extents_end(ip, new_size);
1624
8f04c47a
CH
1625out:
1626 *tpp = tp;
1627 return error;
1628out_bmap_cancel:
1da177e4 1629 /*
8f04c47a
CH
1630 * If the bunmapi call encounters an error, return to the caller where
1631 * the transaction can be properly aborted. We just need to make sure
1632 * we're not holding any resources that we were not when we came in.
1da177e4 1633 */
2c3234d1 1634 xfs_defer_cancel(&dfops);
8f04c47a
CH
1635 goto out;
1636}
1637
c24b5dfa
DC
1638int
1639xfs_release(
1640 xfs_inode_t *ip)
1641{
1642 xfs_mount_t *mp = ip->i_mount;
1643 int error;
1644
c19b3b05 1645 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1646 return 0;
1647
1648 /* If this is a read-only mount, don't do this (would generate I/O) */
1649 if (mp->m_flags & XFS_MOUNT_RDONLY)
1650 return 0;
1651
1652 if (!XFS_FORCED_SHUTDOWN(mp)) {
1653 int truncated;
1654
c24b5dfa
DC
1655 /*
1656 * If we previously truncated this file and removed old data
1657 * in the process, we want to initiate "early" writeout on
1658 * the last close. This is an attempt to combat the notorious
1659 * NULL files problem which is particularly noticeable from a
1660 * truncate down, buffered (re-)write (delalloc), followed by
1661 * a crash. What we are effectively doing here is
1662 * significantly reducing the time window where we'd otherwise
1663 * be exposed to that problem.
1664 */
1665 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1666 if (truncated) {
1667 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1668 if (ip->i_delayed_blks > 0) {
2451337d 1669 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1670 if (error)
1671 return error;
1672 }
1673 }
1674 }
1675
54d7b5c1 1676 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1677 return 0;
1678
1679 if (xfs_can_free_eofblocks(ip, false)) {
1680
a36b9261
BF
1681 /*
1682 * Check if the inode is being opened, written and closed
1683 * frequently and we have delayed allocation blocks outstanding
1684 * (e.g. streaming writes from the NFS server), truncating the
1685 * blocks past EOF will cause fragmentation to occur.
1686 *
1687 * In this case don't do the truncation, but we have to be
1688 * careful how we detect this case. Blocks beyond EOF show up as
1689 * i_delayed_blks even when the inode is clean, so we need to
1690 * truncate them away first before checking for a dirty release.
1691 * Hence on the first dirty close we will still remove the
1692 * speculative allocation, but after that we will leave it in
1693 * place.
1694 */
1695 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1696 return 0;
c24b5dfa
DC
1697 /*
1698 * If we can't get the iolock just skip truncating the blocks
1699 * past EOF because we could deadlock with the mmap_sem
a36b9261 1700 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1701 * last reference to the inode is dropped, so we'll never leak
1702 * blocks permanently.
c24b5dfa 1703 */
a36b9261
BF
1704 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1705 error = xfs_free_eofblocks(ip);
1706 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1707 if (error)
1708 return error;
1709 }
c24b5dfa
DC
1710
1711 /* delalloc blocks after truncation means it really is dirty */
1712 if (ip->i_delayed_blks)
1713 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1714 }
1715 return 0;
1716}
1717
f7be2d7f
BF
1718/*
1719 * xfs_inactive_truncate
1720 *
1721 * Called to perform a truncate when an inode becomes unlinked.
1722 */
1723STATIC int
1724xfs_inactive_truncate(
1725 struct xfs_inode *ip)
1726{
1727 struct xfs_mount *mp = ip->i_mount;
1728 struct xfs_trans *tp;
1729 int error;
1730
253f4911 1731 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1732 if (error) {
1733 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1734 return error;
1735 }
1736
1737 xfs_ilock(ip, XFS_ILOCK_EXCL);
1738 xfs_trans_ijoin(tp, ip, 0);
1739
1740 /*
1741 * Log the inode size first to prevent stale data exposure in the event
1742 * of a system crash before the truncate completes. See the related
69bca807 1743 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1744 */
1745 ip->i_d.di_size = 0;
1746 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1747
1748 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1749 if (error)
1750 goto error_trans_cancel;
1751
1752 ASSERT(ip->i_d.di_nextents == 0);
1753
70393313 1754 error = xfs_trans_commit(tp);
f7be2d7f
BF
1755 if (error)
1756 goto error_unlock;
1757
1758 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1759 return 0;
1760
1761error_trans_cancel:
4906e215 1762 xfs_trans_cancel(tp);
f7be2d7f
BF
1763error_unlock:
1764 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1765 return error;
1766}
1767
88877d2b
BF
1768/*
1769 * xfs_inactive_ifree()
1770 *
1771 * Perform the inode free when an inode is unlinked.
1772 */
1773STATIC int
1774xfs_inactive_ifree(
1775 struct xfs_inode *ip)
1776{
2c3234d1 1777 struct xfs_defer_ops dfops;
88877d2b 1778 xfs_fsblock_t first_block;
88877d2b
BF
1779 struct xfs_mount *mp = ip->i_mount;
1780 struct xfs_trans *tp;
1781 int error;
1782
9d43b180 1783 /*
76d771b4
CH
1784 * We try to use a per-AG reservation for any block needed by the finobt
1785 * tree, but as the finobt feature predates the per-AG reservation
1786 * support a degraded file system might not have enough space for the
1787 * reservation at mount time. In that case try to dip into the reserved
1788 * pool and pray.
9d43b180
BF
1789 *
1790 * Send a warning if the reservation does happen to fail, as the inode
1791 * now remains allocated and sits on the unlinked list until the fs is
1792 * repaired.
1793 */
76d771b4
CH
1794 if (unlikely(mp->m_inotbt_nores)) {
1795 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1796 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1797 &tp);
1798 } else {
1799 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1800 }
88877d2b 1801 if (error) {
2451337d 1802 if (error == -ENOSPC) {
9d43b180
BF
1803 xfs_warn_ratelimited(mp,
1804 "Failed to remove inode(s) from unlinked list. "
1805 "Please free space, unmount and run xfs_repair.");
1806 } else {
1807 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1808 }
88877d2b
BF
1809 return error;
1810 }
1811
1812 xfs_ilock(ip, XFS_ILOCK_EXCL);
1813 xfs_trans_ijoin(tp, ip, 0);
1814
2c3234d1 1815 xfs_defer_init(&dfops, &first_block);
658f8f95 1816 tp->t_agfl_dfops = &dfops;
2c3234d1 1817 error = xfs_ifree(tp, ip, &dfops);
88877d2b
BF
1818 if (error) {
1819 /*
1820 * If we fail to free the inode, shut down. The cancel
1821 * might do that, we need to make sure. Otherwise the
1822 * inode might be lost for a long time or forever.
1823 */
1824 if (!XFS_FORCED_SHUTDOWN(mp)) {
1825 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1826 __func__, error);
1827 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1828 }
4906e215 1829 xfs_trans_cancel(tp);
88877d2b
BF
1830 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1831 return error;
1832 }
1833
1834 /*
1835 * Credit the quota account(s). The inode is gone.
1836 */
1837 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1838
1839 /*
d4a97a04
BF
1840 * Just ignore errors at this point. There is nothing we can do except
1841 * to try to keep going. Make sure it's not a silent error.
88877d2b 1842 */
8ad7c629 1843 error = xfs_defer_finish(&tp, &dfops);
d4a97a04 1844 if (error) {
310a75a3 1845 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
88877d2b 1846 __func__, error);
2c3234d1 1847 xfs_defer_cancel(&dfops);
d4a97a04 1848 }
70393313 1849 error = xfs_trans_commit(tp);
88877d2b
BF
1850 if (error)
1851 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1852 __func__, error);
1853
1854 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1855 return 0;
1856}
1857
c24b5dfa
DC
1858/*
1859 * xfs_inactive
1860 *
1861 * This is called when the vnode reference count for the vnode
1862 * goes to zero. If the file has been unlinked, then it must
1863 * now be truncated. Also, we clear all of the read-ahead state
1864 * kept for the inode here since the file is now closed.
1865 */
74564fb4 1866void
c24b5dfa
DC
1867xfs_inactive(
1868 xfs_inode_t *ip)
1869{
3d3c8b52 1870 struct xfs_mount *mp;
6231848c 1871 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
3d3c8b52
JL
1872 int error;
1873 int truncate = 0;
c24b5dfa
DC
1874
1875 /*
1876 * If the inode is already free, then there can be nothing
1877 * to clean up here.
1878 */
c19b3b05 1879 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa
DC
1880 ASSERT(ip->i_df.if_real_bytes == 0);
1881 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1882 return;
c24b5dfa
DC
1883 }
1884
1885 mp = ip->i_mount;
17c12bcd 1886 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1887
c24b5dfa
DC
1888 /* If this is a read-only mount, don't do this (would generate I/O) */
1889 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1890 return;
c24b5dfa 1891
6231848c
DW
1892 /* Try to clean out the cow blocks if there are any. */
1893 if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1894 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1895
54d7b5c1 1896 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1897 /*
1898 * force is true because we are evicting an inode from the
1899 * cache. Post-eof blocks must be freed, lest we end up with
1900 * broken free space accounting.
3b4683c2
BF
1901 *
1902 * Note: don't bother with iolock here since lockdep complains
1903 * about acquiring it in reclaim context. We have the only
1904 * reference to the inode at this point anyways.
c24b5dfa 1905 */
3b4683c2 1906 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1907 xfs_free_eofblocks(ip);
74564fb4
BF
1908
1909 return;
c24b5dfa
DC
1910 }
1911
c19b3b05 1912 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa
DC
1913 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1914 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1915 truncate = 1;
1916
c14cfcca 1917 error = xfs_qm_dqattach(ip);
c24b5dfa 1918 if (error)
74564fb4 1919 return;
c24b5dfa 1920
c19b3b05 1921 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1922 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1923 else if (truncate)
1924 error = xfs_inactive_truncate(ip);
1925 if (error)
74564fb4 1926 return;
c24b5dfa
DC
1927
1928 /*
1929 * If there are attributes associated with the file then blow them away
1930 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1931 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1932 */
6dfe5a04 1933 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1934 error = xfs_attr_inactive(ip);
1935 if (error)
74564fb4 1936 return;
c24b5dfa
DC
1937 }
1938
6dfe5a04 1939 ASSERT(!ip->i_afp);
c24b5dfa 1940 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1941 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1942
1943 /*
1944 * Free the inode.
1945 */
88877d2b
BF
1946 error = xfs_inactive_ifree(ip);
1947 if (error)
74564fb4 1948 return;
c24b5dfa
DC
1949
1950 /*
1951 * Release the dquots held by inode, if any.
1952 */
1953 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1954}
1955
1da177e4 1956/*
54d7b5c1
DC
1957 * This is called when the inode's link count goes to 0 or we are creating a
1958 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1959 * set to true as the link count is dropped to zero by the VFS after we've
1960 * created the file successfully, so we have to add it to the unlinked list
1961 * while the link count is non-zero.
1962 *
1963 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1964 * list when the inode is freed.
1da177e4 1965 */
54d7b5c1 1966STATIC int
1da177e4 1967xfs_iunlink(
54d7b5c1
DC
1968 struct xfs_trans *tp,
1969 struct xfs_inode *ip)
1da177e4 1970{
54d7b5c1 1971 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1972 xfs_agi_t *agi;
1973 xfs_dinode_t *dip;
1974 xfs_buf_t *agibp;
1975 xfs_buf_t *ibp;
1da177e4
LT
1976 xfs_agino_t agino;
1977 short bucket_index;
1978 int offset;
1979 int error;
1da177e4 1980
c19b3b05 1981 ASSERT(VFS_I(ip)->i_mode != 0);
1da177e4 1982
1da177e4
LT
1983 /*
1984 * Get the agi buffer first. It ensures lock ordering
1985 * on the list.
1986 */
5e1be0fb 1987 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1988 if (error)
1da177e4 1989 return error;
1da177e4 1990 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1991
1da177e4
LT
1992 /*
1993 * Get the index into the agi hash table for the
1994 * list this inode will go on.
1995 */
1996 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1997 ASSERT(agino != 0);
1998 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1999 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 2000 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 2001
69ef921b 2002 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
2003 /*
2004 * There is already another inode in the bucket we need
2005 * to add ourselves to. Add us at the front of the list.
2006 * Here we put the head pointer into our next pointer,
2007 * and then we fall through to point the head at us.
2008 */
475ee413
CH
2009 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2010 0, 0);
c319b58b
VA
2011 if (error)
2012 return error;
2013
69ef921b 2014 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2015 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2016 offset = ip->i_imap.im_boffset +
1da177e4 2017 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2018
2019 /* need to recalc the inode CRC if appropriate */
2020 xfs_dinode_calc_crc(mp, dip);
2021
1da177e4
LT
2022 xfs_trans_inode_buf(tp, ibp);
2023 xfs_trans_log_buf(tp, ibp, offset,
2024 (offset + sizeof(xfs_agino_t) - 1));
2025 xfs_inobp_check(mp, ibp);
2026 }
2027
2028 /*
2029 * Point the bucket head pointer at the inode being inserted.
2030 */
2031 ASSERT(agino != 0);
16259e7d 2032 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2033 offset = offsetof(xfs_agi_t, agi_unlinked) +
2034 (sizeof(xfs_agino_t) * bucket_index);
2035 xfs_trans_log_buf(tp, agibp, offset,
2036 (offset + sizeof(xfs_agino_t) - 1));
2037 return 0;
2038}
2039
2040/*
2041 * Pull the on-disk inode from the AGI unlinked list.
2042 */
2043STATIC int
2044xfs_iunlink_remove(
2045 xfs_trans_t *tp,
2046 xfs_inode_t *ip)
2047{
2048 xfs_ino_t next_ino;
2049 xfs_mount_t *mp;
2050 xfs_agi_t *agi;
2051 xfs_dinode_t *dip;
2052 xfs_buf_t *agibp;
2053 xfs_buf_t *ibp;
2054 xfs_agnumber_t agno;
1da177e4
LT
2055 xfs_agino_t agino;
2056 xfs_agino_t next_agino;
2057 xfs_buf_t *last_ibp;
6fdf8ccc 2058 xfs_dinode_t *last_dip = NULL;
1da177e4 2059 short bucket_index;
6fdf8ccc 2060 int offset, last_offset = 0;
1da177e4 2061 int error;
1da177e4 2062
1da177e4 2063 mp = tp->t_mountp;
1da177e4 2064 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2065
2066 /*
2067 * Get the agi buffer first. It ensures lock ordering
2068 * on the list.
2069 */
5e1be0fb
CH
2070 error = xfs_read_agi(mp, tp, agno, &agibp);
2071 if (error)
1da177e4 2072 return error;
5e1be0fb 2073
1da177e4 2074 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2075
1da177e4
LT
2076 /*
2077 * Get the index into the agi hash table for the
2078 * list this inode will go on.
2079 */
2080 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
d2e73665
DW
2081 if (!xfs_verify_agino(mp, agno, agino))
2082 return -EFSCORRUPTED;
1da177e4 2083 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
d2e73665
DW
2084 if (!xfs_verify_agino(mp, agno,
2085 be32_to_cpu(agi->agi_unlinked[bucket_index]))) {
2086 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2087 agi, sizeof(*agi));
2088 return -EFSCORRUPTED;
2089 }
1da177e4 2090
16259e7d 2091 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2092 /*
475ee413
CH
2093 * We're at the head of the list. Get the inode's on-disk
2094 * buffer to see if there is anyone after us on the list.
2095 * Only modify our next pointer if it is not already NULLAGINO.
2096 * This saves us the overhead of dealing with the buffer when
2097 * there is no need to change it.
1da177e4 2098 */
475ee413
CH
2099 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2100 0, 0);
1da177e4 2101 if (error) {
475ee413 2102 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2103 __func__, error);
1da177e4
LT
2104 return error;
2105 }
347d1c01 2106 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2107 ASSERT(next_agino != 0);
2108 if (next_agino != NULLAGINO) {
347d1c01 2109 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2110 offset = ip->i_imap.im_boffset +
1da177e4 2111 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2112
2113 /* need to recalc the inode CRC if appropriate */
2114 xfs_dinode_calc_crc(mp, dip);
2115
1da177e4
LT
2116 xfs_trans_inode_buf(tp, ibp);
2117 xfs_trans_log_buf(tp, ibp, offset,
2118 (offset + sizeof(xfs_agino_t) - 1));
2119 xfs_inobp_check(mp, ibp);
2120 } else {
2121 xfs_trans_brelse(tp, ibp);
2122 }
2123 /*
2124 * Point the bucket head pointer at the next inode.
2125 */
2126 ASSERT(next_agino != 0);
2127 ASSERT(next_agino != agino);
16259e7d 2128 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2129 offset = offsetof(xfs_agi_t, agi_unlinked) +
2130 (sizeof(xfs_agino_t) * bucket_index);
2131 xfs_trans_log_buf(tp, agibp, offset,
2132 (offset + sizeof(xfs_agino_t) - 1));
2133 } else {
2134 /*
2135 * We need to search the list for the inode being freed.
2136 */
16259e7d 2137 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2138 last_ibp = NULL;
2139 while (next_agino != agino) {
129dbc9a
CH
2140 struct xfs_imap imap;
2141
2142 if (last_ibp)
1da177e4 2143 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2144
2145 imap.im_blkno = 0;
1da177e4 2146 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2147
2148 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2149 if (error) {
2150 xfs_warn(mp,
2151 "%s: xfs_imap returned error %d.",
2152 __func__, error);
2153 return error;
2154 }
2155
2156 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2157 &last_ibp, 0, 0);
1da177e4 2158 if (error) {
0b932ccc 2159 xfs_warn(mp,
129dbc9a 2160 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2161 __func__, error);
1da177e4
LT
2162 return error;
2163 }
129dbc9a
CH
2164
2165 last_offset = imap.im_boffset;
347d1c01 2166 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
d2e73665
DW
2167 if (!xfs_verify_agino(mp, agno, next_agino)) {
2168 XFS_CORRUPTION_ERROR(__func__,
2169 XFS_ERRLEVEL_LOW, mp,
2170 last_dip, sizeof(*last_dip));
2171 return -EFSCORRUPTED;
2172 }
1da177e4 2173 }
475ee413 2174
1da177e4 2175 /*
475ee413
CH
2176 * Now last_ibp points to the buffer previous to us on the
2177 * unlinked list. Pull us from the list.
1da177e4 2178 */
475ee413
CH
2179 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2180 0, 0);
1da177e4 2181 if (error) {
475ee413 2182 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2183 __func__, error);
1da177e4
LT
2184 return error;
2185 }
347d1c01 2186 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2187 ASSERT(next_agino != 0);
2188 ASSERT(next_agino != agino);
2189 if (next_agino != NULLAGINO) {
347d1c01 2190 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2191 offset = ip->i_imap.im_boffset +
1da177e4 2192 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2193
2194 /* need to recalc the inode CRC if appropriate */
2195 xfs_dinode_calc_crc(mp, dip);
2196
1da177e4
LT
2197 xfs_trans_inode_buf(tp, ibp);
2198 xfs_trans_log_buf(tp, ibp, offset,
2199 (offset + sizeof(xfs_agino_t) - 1));
2200 xfs_inobp_check(mp, ibp);
2201 } else {
2202 xfs_trans_brelse(tp, ibp);
2203 }
2204 /*
2205 * Point the previous inode on the list to the next inode.
2206 */
347d1c01 2207 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2208 ASSERT(next_agino != 0);
2209 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2210
2211 /* need to recalc the inode CRC if appropriate */
2212 xfs_dinode_calc_crc(mp, last_dip);
2213
1da177e4
LT
2214 xfs_trans_inode_buf(tp, last_ibp);
2215 xfs_trans_log_buf(tp, last_ibp, offset,
2216 (offset + sizeof(xfs_agino_t) - 1));
2217 xfs_inobp_check(mp, last_ibp);
2218 }
2219 return 0;
2220}
2221
5b3eed75 2222/*
0b8182db 2223 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2224 * inodes that are in memory - they all must be marked stale and attached to
2225 * the cluster buffer.
2226 */
2a30f36d 2227STATIC int
1da177e4 2228xfs_ifree_cluster(
09b56604
BF
2229 xfs_inode_t *free_ip,
2230 xfs_trans_t *tp,
2231 struct xfs_icluster *xic)
1da177e4
LT
2232{
2233 xfs_mount_t *mp = free_ip->i_mount;
2234 int blks_per_cluster;
982e939e 2235 int inodes_per_cluster;
1da177e4 2236 int nbufs;
5b257b4a 2237 int i, j;
3cdaa189 2238 int ioffset;
1da177e4
LT
2239 xfs_daddr_t blkno;
2240 xfs_buf_t *bp;
5b257b4a 2241 xfs_inode_t *ip;
1da177e4 2242 xfs_inode_log_item_t *iip;
643c8c05 2243 struct xfs_log_item *lip;
5017e97d 2244 struct xfs_perag *pag;
09b56604 2245 xfs_ino_t inum;
1da177e4 2246
09b56604 2247 inum = xic->first_ino;
5017e97d 2248 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2249 blks_per_cluster = xfs_icluster_size_fsb(mp);
2250 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2251 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2252
982e939e 2253 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2254 /*
2255 * The allocation bitmap tells us which inodes of the chunk were
2256 * physically allocated. Skip the cluster if an inode falls into
2257 * a sparse region.
2258 */
3cdaa189
BF
2259 ioffset = inum - xic->first_ino;
2260 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2261 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2262 continue;
2263 }
2264
1da177e4
LT
2265 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2266 XFS_INO_TO_AGBNO(mp, inum));
2267
5b257b4a
DC
2268 /*
2269 * We obtain and lock the backing buffer first in the process
2270 * here, as we have to ensure that any dirty inode that we
2271 * can't get the flush lock on is attached to the buffer.
2272 * If we scan the in-memory inodes first, then buffer IO can
2273 * complete before we get a lock on it, and hence we may fail
2274 * to mark all the active inodes on the buffer stale.
2275 */
2276 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2277 mp->m_bsize * blks_per_cluster,
2278 XBF_UNMAPPED);
5b257b4a 2279
2a30f36d 2280 if (!bp)
2451337d 2281 return -ENOMEM;
b0f539de
DC
2282
2283 /*
2284 * This buffer may not have been correctly initialised as we
2285 * didn't read it from disk. That's not important because we are
2286 * only using to mark the buffer as stale in the log, and to
2287 * attach stale cached inodes on it. That means it will never be
2288 * dispatched for IO. If it is, we want to know about it, and we
2289 * want it to fail. We can acheive this by adding a write
2290 * verifier to the buffer.
2291 */
1813dd64 2292 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2293
5b257b4a
DC
2294 /*
2295 * Walk the inodes already attached to the buffer and mark them
2296 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2297 * in-memory inode walk can't lock them. By marking them all
2298 * stale first, we will not attempt to lock them in the loop
2299 * below as the XFS_ISTALE flag will be set.
5b257b4a 2300 */
643c8c05 2301 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
5b257b4a
DC
2302 if (lip->li_type == XFS_LI_INODE) {
2303 iip = (xfs_inode_log_item_t *)lip;
2304 ASSERT(iip->ili_logged == 1);
ca30b2a7 2305 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2306 xfs_trans_ail_copy_lsn(mp->m_ail,
2307 &iip->ili_flush_lsn,
2308 &iip->ili_item.li_lsn);
2309 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a 2310 }
5b257b4a 2311 }
1da177e4 2312
5b3eed75 2313
1da177e4 2314 /*
5b257b4a
DC
2315 * For each inode in memory attempt to add it to the inode
2316 * buffer and set it up for being staled on buffer IO
2317 * completion. This is safe as we've locked out tail pushing
2318 * and flushing by locking the buffer.
1da177e4 2319 *
5b257b4a
DC
2320 * We have already marked every inode that was part of a
2321 * transaction stale above, which means there is no point in
2322 * even trying to lock them.
1da177e4 2323 */
982e939e 2324 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2325retry:
1a3e8f3d 2326 rcu_read_lock();
da353b0d
DC
2327 ip = radix_tree_lookup(&pag->pag_ici_root,
2328 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2329
1a3e8f3d
DC
2330 /* Inode not in memory, nothing to do */
2331 if (!ip) {
2332 rcu_read_unlock();
1da177e4
LT
2333 continue;
2334 }
2335
1a3e8f3d
DC
2336 /*
2337 * because this is an RCU protected lookup, we could
2338 * find a recently freed or even reallocated inode
2339 * during the lookup. We need to check under the
2340 * i_flags_lock for a valid inode here. Skip it if it
2341 * is not valid, the wrong inode or stale.
2342 */
2343 spin_lock(&ip->i_flags_lock);
2344 if (ip->i_ino != inum + i ||
2345 __xfs_iflags_test(ip, XFS_ISTALE)) {
2346 spin_unlock(&ip->i_flags_lock);
2347 rcu_read_unlock();
2348 continue;
2349 }
2350 spin_unlock(&ip->i_flags_lock);
2351
5b3eed75
DC
2352 /*
2353 * Don't try to lock/unlock the current inode, but we
2354 * _cannot_ skip the other inodes that we did not find
2355 * in the list attached to the buffer and are not
2356 * already marked stale. If we can't lock it, back off
2357 * and retry.
2358 */
f2e9ad21
OS
2359 if (ip != free_ip) {
2360 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2361 rcu_read_unlock();
2362 delay(1);
2363 goto retry;
2364 }
2365
2366 /*
2367 * Check the inode number again in case we're
2368 * racing with freeing in xfs_reclaim_inode().
2369 * See the comments in that function for more
2370 * information as to why the initial check is
2371 * not sufficient.
2372 */
2373 if (ip->i_ino != inum + i) {
2374 xfs_iunlock(ip, XFS_ILOCK_EXCL);
962cc1ad 2375 rcu_read_unlock();
f2e9ad21
OS
2376 continue;
2377 }
1da177e4 2378 }
1a3e8f3d 2379 rcu_read_unlock();
1da177e4 2380
5b3eed75 2381 xfs_iflock(ip);
5b257b4a 2382 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2383
5b3eed75
DC
2384 /*
2385 * we don't need to attach clean inodes or those only
2386 * with unlogged changes (which we throw away, anyway).
2387 */
1da177e4 2388 iip = ip->i_itemp;
5b3eed75 2389 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2390 ASSERT(ip != free_ip);
1da177e4
LT
2391 xfs_ifunlock(ip);
2392 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2393 continue;
2394 }
2395
f5d8d5c4
CH
2396 iip->ili_last_fields = iip->ili_fields;
2397 iip->ili_fields = 0;
fc0561ce 2398 iip->ili_fsync_fields = 0;
1da177e4 2399 iip->ili_logged = 1;
7b2e2a31
DC
2400 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2401 &iip->ili_item.li_lsn);
1da177e4 2402
ca30b2a7
CH
2403 xfs_buf_attach_iodone(bp, xfs_istale_done,
2404 &iip->ili_item);
5b257b4a
DC
2405
2406 if (ip != free_ip)
1da177e4 2407 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2408 }
2409
5b3eed75 2410 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2411 xfs_trans_binval(tp, bp);
2412 }
2413
5017e97d 2414 xfs_perag_put(pag);
2a30f36d 2415 return 0;
1da177e4
LT
2416}
2417
98c4f78d
DW
2418/*
2419 * Free any local-format buffers sitting around before we reset to
2420 * extents format.
2421 */
2422static inline void
2423xfs_ifree_local_data(
2424 struct xfs_inode *ip,
2425 int whichfork)
2426{
2427 struct xfs_ifork *ifp;
2428
2429 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2430 return;
2431
2432 ifp = XFS_IFORK_PTR(ip, whichfork);
2433 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2434}
2435
1da177e4
LT
2436/*
2437 * This is called to return an inode to the inode free list.
2438 * The inode should already be truncated to 0 length and have
2439 * no pages associated with it. This routine also assumes that
2440 * the inode is already a part of the transaction.
2441 *
2442 * The on-disk copy of the inode will have been added to the list
2443 * of unlinked inodes in the AGI. We need to remove the inode from
2444 * that list atomically with respect to freeing it here.
2445 */
2446int
2447xfs_ifree(
2448 xfs_trans_t *tp,
2449 xfs_inode_t *ip,
2c3234d1 2450 struct xfs_defer_ops *dfops)
1da177e4
LT
2451{
2452 int error;
09b56604 2453 struct xfs_icluster xic = { 0 };
1da177e4 2454
579aa9ca 2455 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2456 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2457 ASSERT(ip->i_d.di_nextents == 0);
2458 ASSERT(ip->i_d.di_anextents == 0);
c19b3b05 2459 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2460 ASSERT(ip->i_d.di_nblocks == 0);
2461
2462 /*
2463 * Pull the on-disk inode from the AGI unlinked list.
2464 */
2465 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2466 if (error)
1da177e4 2467 return error;
1da177e4 2468
2c3234d1 2469 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
1baaed8f 2470 if (error)
1da177e4 2471 return error;
1baaed8f 2472
98c4f78d
DW
2473 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2474 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2475
c19b3b05 2476 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4 2477 ip->i_d.di_flags = 0;
beaae8cd 2478 ip->i_d.di_flags2 = 0;
1da177e4
LT
2479 ip->i_d.di_dmevmask = 0;
2480 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2481 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2482 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
dc1baa71
ES
2483
2484 /* Don't attempt to replay owner changes for a deleted inode */
2485 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2486
1da177e4
LT
2487 /*
2488 * Bump the generation count so no one will be confused
2489 * by reincarnations of this inode.
2490 */
9e9a2674 2491 VFS_I(ip)->i_generation++;
1da177e4
LT
2492 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2493
09b56604
BF
2494 if (xic.deleted)
2495 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2496
2a30f36d 2497 return error;
1da177e4
LT
2498}
2499
1da177e4 2500/*
60ec6783
CH
2501 * This is called to unpin an inode. The caller must have the inode locked
2502 * in at least shared mode so that the buffer cannot be subsequently pinned
2503 * once someone is waiting for it to be unpinned.
1da177e4 2504 */
60ec6783 2505static void
f392e631 2506xfs_iunpin(
60ec6783 2507 struct xfs_inode *ip)
1da177e4 2508{
579aa9ca 2509 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2510
4aaf15d1
DC
2511 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2512
a3f74ffb 2513 /* Give the log a push to start the unpinning I/O */
656de4ff 2514 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
a14a348b 2515
a3f74ffb 2516}
1da177e4 2517
f392e631
CH
2518static void
2519__xfs_iunpin_wait(
2520 struct xfs_inode *ip)
2521{
2522 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2523 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2524
2525 xfs_iunpin(ip);
2526
2527 do {
21417136 2528 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2529 if (xfs_ipincount(ip))
2530 io_schedule();
2531 } while (xfs_ipincount(ip));
21417136 2532 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2533}
2534
777df5af 2535void
a3f74ffb 2536xfs_iunpin_wait(
60ec6783 2537 struct xfs_inode *ip)
a3f74ffb 2538{
f392e631
CH
2539 if (xfs_ipincount(ip))
2540 __xfs_iunpin_wait(ip);
1da177e4
LT
2541}
2542
27320369
DC
2543/*
2544 * Removing an inode from the namespace involves removing the directory entry
2545 * and dropping the link count on the inode. Removing the directory entry can
2546 * result in locking an AGF (directory blocks were freed) and removing a link
2547 * count can result in placing the inode on an unlinked list which results in
2548 * locking an AGI.
2549 *
2550 * The big problem here is that we have an ordering constraint on AGF and AGI
2551 * locking - inode allocation locks the AGI, then can allocate a new extent for
2552 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2553 * removes the inode from the unlinked list, requiring that we lock the AGI
2554 * first, and then freeing the inode can result in an inode chunk being freed
2555 * and hence freeing disk space requiring that we lock an AGF.
2556 *
2557 * Hence the ordering that is imposed by other parts of the code is AGI before
2558 * AGF. This means we cannot remove the directory entry before we drop the inode
2559 * reference count and put it on the unlinked list as this results in a lock
2560 * order of AGF then AGI, and this can deadlock against inode allocation and
2561 * freeing. Therefore we must drop the link counts before we remove the
2562 * directory entry.
2563 *
2564 * This is still safe from a transactional point of view - it is not until we
310a75a3 2565 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2566 * transactions in this operation. Hence as long as we remove the directory
2567 * entry and drop the link count in the first transaction of the remove
2568 * operation, there are no transactional constraints on the ordering here.
2569 */
c24b5dfa
DC
2570int
2571xfs_remove(
2572 xfs_inode_t *dp,
2573 struct xfs_name *name,
2574 xfs_inode_t *ip)
2575{
2576 xfs_mount_t *mp = dp->i_mount;
2577 xfs_trans_t *tp = NULL;
c19b3b05 2578 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2579 int error = 0;
2c3234d1 2580 struct xfs_defer_ops dfops;
c24b5dfa 2581 xfs_fsblock_t first_block;
c24b5dfa 2582 uint resblks;
c24b5dfa
DC
2583
2584 trace_xfs_remove(dp, name);
2585
2586 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2587 return -EIO;
c24b5dfa 2588
c14cfcca 2589 error = xfs_qm_dqattach(dp);
c24b5dfa
DC
2590 if (error)
2591 goto std_return;
2592
c14cfcca 2593 error = xfs_qm_dqattach(ip);
c24b5dfa
DC
2594 if (error)
2595 goto std_return;
2596
c24b5dfa
DC
2597 /*
2598 * We try to get the real space reservation first,
2599 * allowing for directory btree deletion(s) implying
2600 * possible bmap insert(s). If we can't get the space
2601 * reservation then we use 0 instead, and avoid the bmap
2602 * btree insert(s) in the directory code by, if the bmap
2603 * insert tries to happen, instead trimming the LAST
2604 * block from the directory.
2605 */
2606 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2607 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2608 if (error == -ENOSPC) {
c24b5dfa 2609 resblks = 0;
253f4911
CH
2610 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2611 &tp);
c24b5dfa
DC
2612 }
2613 if (error) {
2451337d 2614 ASSERT(error != -ENOSPC);
253f4911 2615 goto std_return;
c24b5dfa
DC
2616 }
2617
7c2d238a 2618 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
c24b5dfa 2619
65523218 2620 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2621 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2622
2623 /*
2624 * If we're removing a directory perform some additional validation.
2625 */
2626 if (is_dir) {
54d7b5c1
DC
2627 ASSERT(VFS_I(ip)->i_nlink >= 2);
2628 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2629 error = -ENOTEMPTY;
c24b5dfa
DC
2630 goto out_trans_cancel;
2631 }
2632 if (!xfs_dir_isempty(ip)) {
2451337d 2633 error = -ENOTEMPTY;
c24b5dfa
DC
2634 goto out_trans_cancel;
2635 }
c24b5dfa 2636
27320369 2637 /* Drop the link from ip's "..". */
c24b5dfa
DC
2638 error = xfs_droplink(tp, dp);
2639 if (error)
27320369 2640 goto out_trans_cancel;
c24b5dfa 2641
27320369 2642 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2643 error = xfs_droplink(tp, ip);
2644 if (error)
27320369 2645 goto out_trans_cancel;
c24b5dfa
DC
2646 } else {
2647 /*
2648 * When removing a non-directory we need to log the parent
2649 * inode here. For a directory this is done implicitly
2650 * by the xfs_droplink call for the ".." entry.
2651 */
2652 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2653 }
27320369 2654 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2655
27320369 2656 /* Drop the link from dp to ip. */
c24b5dfa
DC
2657 error = xfs_droplink(tp, ip);
2658 if (error)
27320369 2659 goto out_trans_cancel;
c24b5dfa 2660
2c3234d1 2661 xfs_defer_init(&dfops, &first_block);
8804630e 2662 tp->t_agfl_dfops = &dfops;
27320369 2663 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2c3234d1 2664 &first_block, &dfops, resblks);
27320369 2665 if (error) {
2451337d 2666 ASSERT(error != -ENOENT);
27320369
DC
2667 goto out_bmap_cancel;
2668 }
2669
c24b5dfa
DC
2670 /*
2671 * If this is a synchronous mount, make sure that the
2672 * remove transaction goes to disk before returning to
2673 * the user.
2674 */
2675 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2676 xfs_trans_set_sync(tp);
2677
8ad7c629 2678 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa
DC
2679 if (error)
2680 goto out_bmap_cancel;
2681
70393313 2682 error = xfs_trans_commit(tp);
c24b5dfa
DC
2683 if (error)
2684 goto std_return;
2685
2cd2ef6a 2686 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2687 xfs_filestream_deassociate(ip);
2688
2689 return 0;
2690
2691 out_bmap_cancel:
2c3234d1 2692 xfs_defer_cancel(&dfops);
c24b5dfa 2693 out_trans_cancel:
4906e215 2694 xfs_trans_cancel(tp);
c24b5dfa
DC
2695 std_return:
2696 return error;
2697}
2698
f6bba201
DC
2699/*
2700 * Enter all inodes for a rename transaction into a sorted array.
2701 */
95afcf5c 2702#define __XFS_SORT_INODES 5
f6bba201
DC
2703STATIC void
2704xfs_sort_for_rename(
95afcf5c
DC
2705 struct xfs_inode *dp1, /* in: old (source) directory inode */
2706 struct xfs_inode *dp2, /* in: new (target) directory inode */
2707 struct xfs_inode *ip1, /* in: inode of old entry */
2708 struct xfs_inode *ip2, /* in: inode of new entry */
2709 struct xfs_inode *wip, /* in: whiteout inode */
2710 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2711 int *num_inodes) /* in/out: inodes in array */
f6bba201 2712{
f6bba201
DC
2713 int i, j;
2714
95afcf5c
DC
2715 ASSERT(*num_inodes == __XFS_SORT_INODES);
2716 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2717
f6bba201
DC
2718 /*
2719 * i_tab contains a list of pointers to inodes. We initialize
2720 * the table here & we'll sort it. We will then use it to
2721 * order the acquisition of the inode locks.
2722 *
2723 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2724 */
95afcf5c
DC
2725 i = 0;
2726 i_tab[i++] = dp1;
2727 i_tab[i++] = dp2;
2728 i_tab[i++] = ip1;
2729 if (ip2)
2730 i_tab[i++] = ip2;
2731 if (wip)
2732 i_tab[i++] = wip;
2733 *num_inodes = i;
f6bba201
DC
2734
2735 /*
2736 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2737 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2738 */
2739 for (i = 0; i < *num_inodes; i++) {
2740 for (j = 1; j < *num_inodes; j++) {
2741 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2742 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2743 i_tab[j] = i_tab[j-1];
2744 i_tab[j-1] = temp;
2745 }
2746 }
2747 }
2748}
2749
310606b0
DC
2750static int
2751xfs_finish_rename(
2752 struct xfs_trans *tp,
2c3234d1 2753 struct xfs_defer_ops *dfops)
310606b0 2754{
310606b0
DC
2755 int error;
2756
2757 /*
2758 * If this is a synchronous mount, make sure that the rename transaction
2759 * goes to disk before returning to the user.
2760 */
2761 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2762 xfs_trans_set_sync(tp);
2763
8ad7c629 2764 error = xfs_defer_finish(&tp, dfops);
310606b0 2765 if (error) {
2c3234d1 2766 xfs_defer_cancel(dfops);
4906e215 2767 xfs_trans_cancel(tp);
310606b0
DC
2768 return error;
2769 }
2770
70393313 2771 return xfs_trans_commit(tp);
310606b0
DC
2772}
2773
d31a1825
CM
2774/*
2775 * xfs_cross_rename()
2776 *
2777 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2778 */
2779STATIC int
2780xfs_cross_rename(
2781 struct xfs_trans *tp,
2782 struct xfs_inode *dp1,
2783 struct xfs_name *name1,
2784 struct xfs_inode *ip1,
2785 struct xfs_inode *dp2,
2786 struct xfs_name *name2,
2787 struct xfs_inode *ip2,
2c3234d1 2788 struct xfs_defer_ops *dfops,
d31a1825
CM
2789 xfs_fsblock_t *first_block,
2790 int spaceres)
2791{
2792 int error = 0;
2793 int ip1_flags = 0;
2794 int ip2_flags = 0;
2795 int dp2_flags = 0;
2796
2797 /* Swap inode number for dirent in first parent */
2798 error = xfs_dir_replace(tp, dp1, name1,
2799 ip2->i_ino,
2c3234d1 2800 first_block, dfops, spaceres);
d31a1825 2801 if (error)
eeacd321 2802 goto out_trans_abort;
d31a1825
CM
2803
2804 /* Swap inode number for dirent in second parent */
2805 error = xfs_dir_replace(tp, dp2, name2,
2806 ip1->i_ino,
2c3234d1 2807 first_block, dfops, spaceres);
d31a1825 2808 if (error)
eeacd321 2809 goto out_trans_abort;
d31a1825
CM
2810
2811 /*
2812 * If we're renaming one or more directories across different parents,
2813 * update the respective ".." entries (and link counts) to match the new
2814 * parents.
2815 */
2816 if (dp1 != dp2) {
2817 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2818
c19b3b05 2819 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2820 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2821 dp1->i_ino, first_block,
2c3234d1 2822 dfops, spaceres);
d31a1825 2823 if (error)
eeacd321 2824 goto out_trans_abort;
d31a1825
CM
2825
2826 /* transfer ip2 ".." reference to dp1 */
c19b3b05 2827 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2828 error = xfs_droplink(tp, dp2);
2829 if (error)
eeacd321 2830 goto out_trans_abort;
d31a1825
CM
2831 error = xfs_bumplink(tp, dp1);
2832 if (error)
eeacd321 2833 goto out_trans_abort;
d31a1825
CM
2834 }
2835
2836 /*
2837 * Although ip1 isn't changed here, userspace needs
2838 * to be warned about the change, so that applications
2839 * relying on it (like backup ones), will properly
2840 * notify the change
2841 */
2842 ip1_flags |= XFS_ICHGTIME_CHG;
2843 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2844 }
2845
c19b3b05 2846 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2847 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2848 dp2->i_ino, first_block,
2c3234d1 2849 dfops, spaceres);
d31a1825 2850 if (error)
eeacd321 2851 goto out_trans_abort;
d31a1825
CM
2852
2853 /* transfer ip1 ".." reference to dp2 */
c19b3b05 2854 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2855 error = xfs_droplink(tp, dp1);
2856 if (error)
eeacd321 2857 goto out_trans_abort;
d31a1825
CM
2858 error = xfs_bumplink(tp, dp2);
2859 if (error)
eeacd321 2860 goto out_trans_abort;
d31a1825
CM
2861 }
2862
2863 /*
2864 * Although ip2 isn't changed here, userspace needs
2865 * to be warned about the change, so that applications
2866 * relying on it (like backup ones), will properly
2867 * notify the change
2868 */
2869 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2870 ip2_flags |= XFS_ICHGTIME_CHG;
2871 }
2872 }
2873
2874 if (ip1_flags) {
2875 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2876 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2877 }
2878 if (ip2_flags) {
2879 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2880 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2881 }
2882 if (dp2_flags) {
2883 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2884 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2885 }
2886 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2887 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2c3234d1 2888 return xfs_finish_rename(tp, dfops);
eeacd321
DC
2889
2890out_trans_abort:
2c3234d1 2891 xfs_defer_cancel(dfops);
4906e215 2892 xfs_trans_cancel(tp);
d31a1825
CM
2893 return error;
2894}
2895
7dcf5c3e
DC
2896/*
2897 * xfs_rename_alloc_whiteout()
2898 *
2899 * Return a referenced, unlinked, unlocked inode that that can be used as a
2900 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2901 * crash between allocating the inode and linking it into the rename transaction
2902 * recovery will free the inode and we won't leak it.
2903 */
2904static int
2905xfs_rename_alloc_whiteout(
2906 struct xfs_inode *dp,
2907 struct xfs_inode **wip)
2908{
2909 struct xfs_inode *tmpfile;
2910 int error;
2911
a1f69417 2912 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
7dcf5c3e
DC
2913 if (error)
2914 return error;
2915
22419ac9
BF
2916 /*
2917 * Prepare the tmpfile inode as if it were created through the VFS.
2918 * Otherwise, the link increment paths will complain about nlink 0->1.
2919 * Drop the link count as done by d_tmpfile(), complete the inode setup
2920 * and flag it as linkable.
2921 */
2922 drop_nlink(VFS_I(tmpfile));
2b3d1d41 2923 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
2924 xfs_finish_inode_setup(tmpfile);
2925 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2926
2927 *wip = tmpfile;
2928 return 0;
2929}
2930
f6bba201
DC
2931/*
2932 * xfs_rename
2933 */
2934int
2935xfs_rename(
7dcf5c3e
DC
2936 struct xfs_inode *src_dp,
2937 struct xfs_name *src_name,
2938 struct xfs_inode *src_ip,
2939 struct xfs_inode *target_dp,
2940 struct xfs_name *target_name,
2941 struct xfs_inode *target_ip,
2942 unsigned int flags)
f6bba201 2943{
7dcf5c3e
DC
2944 struct xfs_mount *mp = src_dp->i_mount;
2945 struct xfs_trans *tp;
2c3234d1 2946 struct xfs_defer_ops dfops;
7dcf5c3e
DC
2947 xfs_fsblock_t first_block;
2948 struct xfs_inode *wip = NULL; /* whiteout inode */
2949 struct xfs_inode *inodes[__XFS_SORT_INODES];
2950 int num_inodes = __XFS_SORT_INODES;
2b93681f 2951 bool new_parent = (src_dp != target_dp);
c19b3b05 2952 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
2953 int spaceres;
2954 int error;
f6bba201
DC
2955
2956 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2957
eeacd321
DC
2958 if ((flags & RENAME_EXCHANGE) && !target_ip)
2959 return -EINVAL;
2960
7dcf5c3e
DC
2961 /*
2962 * If we are doing a whiteout operation, allocate the whiteout inode
2963 * we will be placing at the target and ensure the type is set
2964 * appropriately.
2965 */
2966 if (flags & RENAME_WHITEOUT) {
2967 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2968 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2969 if (error)
2970 return error;
2971
2972 /* setup target dirent info as whiteout */
2973 src_name->type = XFS_DIR3_FT_CHRDEV;
2974 }
f6bba201 2975
7dcf5c3e 2976 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2977 inodes, &num_inodes);
2978
f6bba201 2979 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 2980 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 2981 if (error == -ENOSPC) {
f6bba201 2982 spaceres = 0;
253f4911
CH
2983 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2984 &tp);
f6bba201 2985 }
445883e8 2986 if (error)
253f4911 2987 goto out_release_wip;
f6bba201
DC
2988
2989 /*
2990 * Attach the dquots to the inodes
2991 */
2992 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2993 if (error)
2994 goto out_trans_cancel;
f6bba201
DC
2995
2996 /*
2997 * Lock all the participating inodes. Depending upon whether
2998 * the target_name exists in the target directory, and
2999 * whether the target directory is the same as the source
3000 * directory, we can lock from 2 to 4 inodes.
3001 */
3002 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3003
3004 /*
3005 * Join all the inodes to the transaction. From this point on,
3006 * we can rely on either trans_commit or trans_cancel to unlock
3007 * them.
3008 */
65523218 3009 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 3010 if (new_parent)
65523218 3011 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
3012 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3013 if (target_ip)
3014 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
3015 if (wip)
3016 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
3017
3018 /*
3019 * If we are using project inheritance, we only allow renames
3020 * into our tree when the project IDs are the same; else the
3021 * tree quota mechanism would be circumvented.
3022 */
3023 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3024 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 3025 error = -EXDEV;
445883e8 3026 goto out_trans_cancel;
f6bba201
DC
3027 }
3028
2c3234d1 3029 xfs_defer_init(&dfops, &first_block);
8804630e 3030 tp->t_agfl_dfops = &dfops;
445883e8 3031
eeacd321
DC
3032 /* RENAME_EXCHANGE is unique from here on. */
3033 if (flags & RENAME_EXCHANGE)
3034 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3035 target_dp, target_name, target_ip,
2c3234d1 3036 &dfops, &first_block, spaceres);
d31a1825 3037
f6bba201
DC
3038 /*
3039 * Set up the target.
3040 */
3041 if (target_ip == NULL) {
3042 /*
3043 * If there's no space reservation, check the entry will
3044 * fit before actually inserting it.
3045 */
94f3cad5
ES
3046 if (!spaceres) {
3047 error = xfs_dir_canenter(tp, target_dp, target_name);
3048 if (error)
445883e8 3049 goto out_trans_cancel;
94f3cad5 3050 }
f6bba201
DC
3051 /*
3052 * If target does not exist and the rename crosses
3053 * directories, adjust the target directory link count
3054 * to account for the ".." reference from the new entry.
3055 */
3056 error = xfs_dir_createname(tp, target_dp, target_name,
3057 src_ip->i_ino, &first_block,
2c3234d1 3058 &dfops, spaceres);
f6bba201 3059 if (error)
4906e215 3060 goto out_bmap_cancel;
f6bba201
DC
3061
3062 xfs_trans_ichgtime(tp, target_dp,
3063 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3064
3065 if (new_parent && src_is_directory) {
3066 error = xfs_bumplink(tp, target_dp);
3067 if (error)
4906e215 3068 goto out_bmap_cancel;
f6bba201
DC
3069 }
3070 } else { /* target_ip != NULL */
3071 /*
3072 * If target exists and it's a directory, check that both
3073 * target and source are directories and that target can be
3074 * destroyed, or that neither is a directory.
3075 */
c19b3b05 3076 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
f6bba201
DC
3077 /*
3078 * Make sure target dir is empty.
3079 */
3080 if (!(xfs_dir_isempty(target_ip)) ||
54d7b5c1 3081 (VFS_I(target_ip)->i_nlink > 2)) {
2451337d 3082 error = -EEXIST;
445883e8 3083 goto out_trans_cancel;
f6bba201
DC
3084 }
3085 }
3086
3087 /*
3088 * Link the source inode under the target name.
3089 * If the source inode is a directory and we are moving
3090 * it across directories, its ".." entry will be
3091 * inconsistent until we replace that down below.
3092 *
3093 * In case there is already an entry with the same
3094 * name at the destination directory, remove it first.
3095 */
3096 error = xfs_dir_replace(tp, target_dp, target_name,
3097 src_ip->i_ino,
2c3234d1 3098 &first_block, &dfops, spaceres);
f6bba201 3099 if (error)
4906e215 3100 goto out_bmap_cancel;
f6bba201
DC
3101
3102 xfs_trans_ichgtime(tp, target_dp,
3103 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3104
3105 /*
3106 * Decrement the link count on the target since the target
3107 * dir no longer points to it.
3108 */
3109 error = xfs_droplink(tp, target_ip);
3110 if (error)
4906e215 3111 goto out_bmap_cancel;
f6bba201
DC
3112
3113 if (src_is_directory) {
3114 /*
3115 * Drop the link from the old "." entry.
3116 */
3117 error = xfs_droplink(tp, target_ip);
3118 if (error)
4906e215 3119 goto out_bmap_cancel;
f6bba201
DC
3120 }
3121 } /* target_ip != NULL */
3122
3123 /*
3124 * Remove the source.
3125 */
3126 if (new_parent && src_is_directory) {
3127 /*
3128 * Rewrite the ".." entry to point to the new
3129 * directory.
3130 */
3131 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3132 target_dp->i_ino,
2c3234d1 3133 &first_block, &dfops, spaceres);
2451337d 3134 ASSERT(error != -EEXIST);
f6bba201 3135 if (error)
4906e215 3136 goto out_bmap_cancel;
f6bba201
DC
3137 }
3138
3139 /*
3140 * We always want to hit the ctime on the source inode.
3141 *
3142 * This isn't strictly required by the standards since the source
3143 * inode isn't really being changed, but old unix file systems did
3144 * it and some incremental backup programs won't work without it.
3145 */
3146 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3147 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3148
3149 /*
3150 * Adjust the link count on src_dp. This is necessary when
3151 * renaming a directory, either within one parent when
3152 * the target existed, or across two parent directories.
3153 */
3154 if (src_is_directory && (new_parent || target_ip != NULL)) {
3155
3156 /*
3157 * Decrement link count on src_directory since the
3158 * entry that's moved no longer points to it.
3159 */
3160 error = xfs_droplink(tp, src_dp);
3161 if (error)
4906e215 3162 goto out_bmap_cancel;
f6bba201
DC
3163 }
3164
7dcf5c3e
DC
3165 /*
3166 * For whiteouts, we only need to update the source dirent with the
3167 * inode number of the whiteout inode rather than removing it
3168 * altogether.
3169 */
3170 if (wip) {
3171 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
2c3234d1 3172 &first_block, &dfops, spaceres);
7dcf5c3e
DC
3173 } else
3174 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2c3234d1 3175 &first_block, &dfops, spaceres);
f6bba201 3176 if (error)
4906e215 3177 goto out_bmap_cancel;
f6bba201
DC
3178
3179 /*
7dcf5c3e
DC
3180 * For whiteouts, we need to bump the link count on the whiteout inode.
3181 * This means that failures all the way up to this point leave the inode
3182 * on the unlinked list and so cleanup is a simple matter of dropping
3183 * the remaining reference to it. If we fail here after bumping the link
3184 * count, we're shutting down the filesystem so we'll never see the
3185 * intermediate state on disk.
f6bba201 3186 */
7dcf5c3e 3187 if (wip) {
54d7b5c1 3188 ASSERT(VFS_I(wip)->i_nlink == 0);
7dcf5c3e
DC
3189 error = xfs_bumplink(tp, wip);
3190 if (error)
4906e215 3191 goto out_bmap_cancel;
7dcf5c3e
DC
3192 error = xfs_iunlink_remove(tp, wip);
3193 if (error)
4906e215 3194 goto out_bmap_cancel;
7dcf5c3e 3195 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3196
7dcf5c3e
DC
3197 /*
3198 * Now we have a real link, clear the "I'm a tmpfile" state
3199 * flag from the inode so it doesn't accidentally get misused in
3200 * future.
3201 */
3202 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3203 }
3204
f6bba201
DC
3205 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3206 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3207 if (new_parent)
3208 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3209
2c3234d1 3210 error = xfs_finish_rename(tp, &dfops);
7dcf5c3e
DC
3211 if (wip)
3212 IRELE(wip);
3213 return error;
f6bba201 3214
445883e8 3215out_bmap_cancel:
2c3234d1 3216 xfs_defer_cancel(&dfops);
445883e8 3217out_trans_cancel:
4906e215 3218 xfs_trans_cancel(tp);
253f4911 3219out_release_wip:
7dcf5c3e
DC
3220 if (wip)
3221 IRELE(wip);
f6bba201
DC
3222 return error;
3223}
3224
5c4d97d0
DC
3225STATIC int
3226xfs_iflush_cluster(
19429363
DC
3227 struct xfs_inode *ip,
3228 struct xfs_buf *bp)
1da177e4 3229{
19429363 3230 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3231 struct xfs_perag *pag;
3232 unsigned long first_index, mask;
3233 unsigned long inodes_per_cluster;
19429363
DC
3234 int cilist_size;
3235 struct xfs_inode **cilist;
3236 struct xfs_inode *cip;
5c4d97d0
DC
3237 int nr_found;
3238 int clcount = 0;
3239 int bufwasdelwri;
1da177e4 3240 int i;
1da177e4 3241
5c4d97d0 3242 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3243
0f49efd8 3244 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
19429363
DC
3245 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3246 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3247 if (!cilist)
5c4d97d0 3248 goto out_put;
1da177e4 3249
0f49efd8 3250 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3251 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3252 rcu_read_lock();
3253 /* really need a gang lookup range call here */
19429363 3254 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
5c4d97d0
DC
3255 first_index, inodes_per_cluster);
3256 if (nr_found == 0)
3257 goto out_free;
3258
3259 for (i = 0; i < nr_found; i++) {
19429363
DC
3260 cip = cilist[i];
3261 if (cip == ip)
bad55843 3262 continue;
1a3e8f3d
DC
3263
3264 /*
3265 * because this is an RCU protected lookup, we could find a
3266 * recently freed or even reallocated inode during the lookup.
3267 * We need to check under the i_flags_lock for a valid inode
3268 * here. Skip it if it is not valid or the wrong inode.
3269 */
19429363
DC
3270 spin_lock(&cip->i_flags_lock);
3271 if (!cip->i_ino ||
3272 __xfs_iflags_test(cip, XFS_ISTALE)) {
3273 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3274 continue;
3275 }
5a90e53e
DC
3276
3277 /*
3278 * Once we fall off the end of the cluster, no point checking
3279 * any more inodes in the list because they will also all be
3280 * outside the cluster.
3281 */
19429363
DC
3282 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3283 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3284 break;
3285 }
19429363 3286 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3287
bad55843
DC
3288 /*
3289 * Do an un-protected check to see if the inode is dirty and
3290 * is a candidate for flushing. These checks will be repeated
3291 * later after the appropriate locks are acquired.
3292 */
19429363 3293 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3294 continue;
bad55843
DC
3295
3296 /*
3297 * Try to get locks. If any are unavailable or it is pinned,
3298 * then this inode cannot be flushed and is skipped.
3299 */
3300
19429363 3301 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3302 continue;
19429363
DC
3303 if (!xfs_iflock_nowait(cip)) {
3304 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3305 continue;
3306 }
19429363
DC
3307 if (xfs_ipincount(cip)) {
3308 xfs_ifunlock(cip);
3309 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3310 continue;
3311 }
3312
8a17d7dd
DC
3313
3314 /*
3315 * Check the inode number again, just to be certain we are not
3316 * racing with freeing in xfs_reclaim_inode(). See the comments
3317 * in that function for more information as to why the initial
3318 * check is not sufficient.
3319 */
19429363
DC
3320 if (!cip->i_ino) {
3321 xfs_ifunlock(cip);
3322 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3323 continue;
3324 }
3325
3326 /*
3327 * arriving here means that this inode can be flushed. First
3328 * re-check that it's dirty before flushing.
3329 */
19429363 3330 if (!xfs_inode_clean(cip)) {
33540408 3331 int error;
19429363 3332 error = xfs_iflush_int(cip, bp);
bad55843 3333 if (error) {
19429363 3334 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3335 goto cluster_corrupt_out;
3336 }
3337 clcount++;
3338 } else {
19429363 3339 xfs_ifunlock(cip);
bad55843 3340 }
19429363 3341 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3342 }
3343
3344 if (clcount) {
ff6d6af2
BD
3345 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3346 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3347 }
3348
3349out_free:
1a3e8f3d 3350 rcu_read_unlock();
19429363 3351 kmem_free(cilist);
44b56e0a
DC
3352out_put:
3353 xfs_perag_put(pag);
bad55843
DC
3354 return 0;
3355
3356
3357cluster_corrupt_out:
3358 /*
3359 * Corruption detected in the clustering loop. Invalidate the
3360 * inode buffer and shut down the filesystem.
3361 */
1a3e8f3d 3362 rcu_read_unlock();
bad55843 3363 /*
43ff2122 3364 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3365 * brelse can handle it with no problems. If not, shut down the
3366 * filesystem before releasing the buffer.
3367 */
43ff2122 3368 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3369 if (bufwasdelwri)
3370 xfs_buf_relse(bp);
3371
3372 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3373
3374 if (!bufwasdelwri) {
3375 /*
3376 * Just like incore_relse: if we have b_iodone functions,
3377 * mark the buffer as an error and call them. Otherwise
3378 * mark it as stale and brelse.
3379 */
cb669ca5 3380 if (bp->b_iodone) {
b0388bf1 3381 bp->b_flags &= ~XBF_DONE;
c867cb61 3382 xfs_buf_stale(bp);
2451337d 3383 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3384 xfs_buf_ioend(bp);
bad55843 3385 } else {
c867cb61 3386 xfs_buf_stale(bp);
bad55843
DC
3387 xfs_buf_relse(bp);
3388 }
3389 }
3390
3391 /*
3392 * Unlocks the flush lock
3393 */
19429363
DC
3394 xfs_iflush_abort(cip, false);
3395 kmem_free(cilist);
44b56e0a 3396 xfs_perag_put(pag);
2451337d 3397 return -EFSCORRUPTED;
bad55843
DC
3398}
3399
1da177e4 3400/*
4c46819a
CH
3401 * Flush dirty inode metadata into the backing buffer.
3402 *
3403 * The caller must have the inode lock and the inode flush lock held. The
3404 * inode lock will still be held upon return to the caller, and the inode
3405 * flush lock will be released after the inode has reached the disk.
3406 *
3407 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3408 */
3409int
3410xfs_iflush(
4c46819a
CH
3411 struct xfs_inode *ip,
3412 struct xfs_buf **bpp)
1da177e4 3413{
4c46819a 3414 struct xfs_mount *mp = ip->i_mount;
b1438f47 3415 struct xfs_buf *bp = NULL;
4c46819a 3416 struct xfs_dinode *dip;
1da177e4 3417 int error;
1da177e4 3418
ff6d6af2 3419 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3420
579aa9ca 3421 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3422 ASSERT(xfs_isiflocked(ip));
1da177e4 3423 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3424 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3425
4c46819a 3426 *bpp = NULL;
1da177e4 3427
1da177e4
LT
3428 xfs_iunpin_wait(ip);
3429
4b6a4688
DC
3430 /*
3431 * For stale inodes we cannot rely on the backing buffer remaining
3432 * stale in cache for the remaining life of the stale inode and so
475ee413 3433 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3434 * inodes below. We have to check this after ensuring the inode is
3435 * unpinned so that it is safe to reclaim the stale inode after the
3436 * flush call.
3437 */
3438 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3439 xfs_ifunlock(ip);
3440 return 0;
3441 }
3442
1da177e4
LT
3443 /*
3444 * This may have been unpinned because the filesystem is shutting
3445 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3446 * to disk, because the log record didn't make it to disk.
3447 *
3448 * We also have to remove the log item from the AIL in this case,
3449 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3450 */
3451 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3452 error = -EIO;
32ce90a4 3453 goto abort_out;
1da177e4
LT
3454 }
3455
a3f74ffb 3456 /*
b1438f47
DC
3457 * Get the buffer containing the on-disk inode. We are doing a try-lock
3458 * operation here, so we may get an EAGAIN error. In that case, we
3459 * simply want to return with the inode still dirty.
3460 *
3461 * If we get any other error, we effectively have a corruption situation
3462 * and we cannot flush the inode, so we treat it the same as failing
3463 * xfs_iflush_int().
a3f74ffb 3464 */
475ee413
CH
3465 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3466 0);
b1438f47 3467 if (error == -EAGAIN) {
a3f74ffb
DC
3468 xfs_ifunlock(ip);
3469 return error;
3470 }
b1438f47
DC
3471 if (error)
3472 goto corrupt_out;
a3f74ffb 3473
1da177e4
LT
3474 /*
3475 * First flush out the inode that xfs_iflush was called with.
3476 */
3477 error = xfs_iflush_int(ip, bp);
bad55843 3478 if (error)
1da177e4 3479 goto corrupt_out;
1da177e4 3480
a3f74ffb
DC
3481 /*
3482 * If the buffer is pinned then push on the log now so we won't
3483 * get stuck waiting in the write for too long.
3484 */
811e64c7 3485 if (xfs_buf_ispinned(bp))
a14a348b 3486 xfs_log_force(mp, 0);
a3f74ffb 3487
1da177e4
LT
3488 /*
3489 * inode clustering:
3490 * see if other inodes can be gathered into this write
3491 */
bad55843
DC
3492 error = xfs_iflush_cluster(ip, bp);
3493 if (error)
3494 goto cluster_corrupt_out;
1da177e4 3495
4c46819a
CH
3496 *bpp = bp;
3497 return 0;
1da177e4
LT
3498
3499corrupt_out:
b1438f47
DC
3500 if (bp)
3501 xfs_buf_relse(bp);
7d04a335 3502 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3503cluster_corrupt_out:
2451337d 3504 error = -EFSCORRUPTED;
32ce90a4 3505abort_out:
1da177e4
LT
3506 /*
3507 * Unlocks the flush lock
3508 */
04913fdd 3509 xfs_iflush_abort(ip, false);
32ce90a4 3510 return error;
1da177e4
LT
3511}
3512
9cfb9b47
DW
3513/*
3514 * If there are inline format data / attr forks attached to this inode,
3515 * make sure they're not corrupt.
3516 */
3517bool
3518xfs_inode_verify_forks(
3519 struct xfs_inode *ip)
3520{
22431bf3 3521 struct xfs_ifork *ifp;
9cfb9b47
DW
3522 xfs_failaddr_t fa;
3523
3524 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3525 if (fa) {
22431bf3
DW
3526 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3527 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3528 ifp->if_u1.if_data, ifp->if_bytes, fa);
9cfb9b47
DW
3529 return false;
3530 }
3531
3532 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3533 if (fa) {
22431bf3
DW
3534 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3535 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3536 ifp ? ifp->if_u1.if_data : NULL,
3537 ifp ? ifp->if_bytes : 0, fa);
9cfb9b47
DW
3538 return false;
3539 }
3540 return true;
3541}
3542
1da177e4
LT
3543STATIC int
3544xfs_iflush_int(
93848a99
CH
3545 struct xfs_inode *ip,
3546 struct xfs_buf *bp)
1da177e4 3547{
93848a99
CH
3548 struct xfs_inode_log_item *iip = ip->i_itemp;
3549 struct xfs_dinode *dip;
3550 struct xfs_mount *mp = ip->i_mount;
1da177e4 3551
579aa9ca 3552 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3553 ASSERT(xfs_isiflocked(ip));
1da177e4 3554 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3555 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3556 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3557 ASSERT(ip->i_d.di_version > 1);
1da177e4 3558
1da177e4 3559 /* set *dip = inode's place in the buffer */
88ee2df7 3560 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3561
69ef921b 3562 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3563 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939 3564 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3565 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
6a19d939 3566 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3567 goto corrupt_out;
3568 }
c19b3b05 3569 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4
LT
3570 if (XFS_TEST_ERROR(
3571 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3572 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
9e24cfd0 3573 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939 3574 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3575 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
6a19d939 3576 __func__, ip->i_ino, ip);
1da177e4
LT
3577 goto corrupt_out;
3578 }
c19b3b05 3579 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4
LT
3580 if (XFS_TEST_ERROR(
3581 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3582 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3583 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
9e24cfd0 3584 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939 3585 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3586 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
6a19d939 3587 __func__, ip->i_ino, ip);
1da177e4
LT
3588 goto corrupt_out;
3589 }
3590 }
3591 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
9e24cfd0 3592 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3593 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3594 "%s: detected corrupt incore inode %Lu, "
c9690043 3595 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
6a19d939 3596 __func__, ip->i_ino,
1da177e4 3597 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3598 ip->i_d.di_nblocks, ip);
1da177e4
LT
3599 goto corrupt_out;
3600 }
3601 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3602 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939 3603 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3604 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
6a19d939 3605 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3606 goto corrupt_out;
3607 }
e60896d8 3608
1da177e4 3609 /*
263997a6 3610 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3611 * di_flushiter count for correct sequencing. We bump the flush
3612 * iteration count so we can detect flushes which postdate a log record
3613 * during recovery. This is redundant as we now log every change and
3614 * hence this can't happen but we need to still do it to ensure
3615 * backwards compatibility with old kernels that predate logging all
3616 * inode changes.
1da177e4 3617 */
e60896d8
DC
3618 if (ip->i_d.di_version < 3)
3619 ip->i_d.di_flushiter++;
1da177e4 3620
9cfb9b47
DW
3621 /* Check the inline fork data before we write out. */
3622 if (!xfs_inode_verify_forks(ip))
005c5db8
DW
3623 goto corrupt_out;
3624
1da177e4 3625 /*
3987848c
DC
3626 * Copy the dirty parts of the inode into the on-disk inode. We always
3627 * copy out the core of the inode, because if the inode is dirty at all
3628 * the core must be.
1da177e4 3629 */
93f958f9 3630 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3631
3632 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3633 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3634 ip->i_d.di_flushiter = 0;
3635
005c5db8
DW
3636 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3637 if (XFS_IFORK_Q(ip))
3638 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3639 xfs_inobp_check(mp, bp);
3640
3641 /*
f5d8d5c4
CH
3642 * We've recorded everything logged in the inode, so we'd like to clear
3643 * the ili_fields bits so we don't log and flush things unnecessarily.
3644 * However, we can't stop logging all this information until the data
3645 * we've copied into the disk buffer is written to disk. If we did we
3646 * might overwrite the copy of the inode in the log with all the data
3647 * after re-logging only part of it, and in the face of a crash we
3648 * wouldn't have all the data we need to recover.
1da177e4 3649 *
f5d8d5c4
CH
3650 * What we do is move the bits to the ili_last_fields field. When
3651 * logging the inode, these bits are moved back to the ili_fields field.
3652 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3653 * know that the information those bits represent is permanently on
3654 * disk. As long as the flush completes before the inode is logged
3655 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3656 *
f5d8d5c4
CH
3657 * We can play with the ili_fields bits here, because the inode lock
3658 * must be held exclusively in order to set bits there and the flush
3659 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3660 * done routine can tell whether or not to look in the AIL. Also, store
3661 * the current LSN of the inode so that we can tell whether the item has
3662 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3663 * need the AIL lock, because it is a 64 bit value that cannot be read
3664 * atomically.
1da177e4 3665 */
93848a99
CH
3666 iip->ili_last_fields = iip->ili_fields;
3667 iip->ili_fields = 0;
fc0561ce 3668 iip->ili_fsync_fields = 0;
93848a99 3669 iip->ili_logged = 1;
1da177e4 3670
93848a99
CH
3671 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3672 &iip->ili_item.li_lsn);
1da177e4 3673
93848a99
CH
3674 /*
3675 * Attach the function xfs_iflush_done to the inode's
3676 * buffer. This will remove the inode from the AIL
3677 * and unlock the inode's flush lock when the inode is
3678 * completely written to disk.
3679 */
3680 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3681
93848a99
CH
3682 /* generate the checksum. */
3683 xfs_dinode_calc_crc(mp, dip);
1da177e4 3684
643c8c05 3685 ASSERT(!list_empty(&bp->b_li_list));
93848a99 3686 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3687 return 0;
3688
3689corrupt_out:
2451337d 3690 return -EFSCORRUPTED;
1da177e4 3691}