]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_inode.c
xfs: unlock the inode before log force in xfs_change_file_space
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451 25#include "xfs_inum.h"
1da177e4
LT
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_sb.h"
29#include "xfs_ag.h"
1da177e4 30#include "xfs_mount.h"
1da177e4 31#include "xfs_bmap_btree.h"
a844f451 32#include "xfs_alloc_btree.h"
1da177e4 33#include "xfs_ialloc_btree.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4 35#include "xfs_dinode.h"
1da177e4 36#include "xfs_inode.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451
NS
38#include "xfs_inode_item.h"
39#include "xfs_btree.h"
40#include "xfs_alloc.h"
41#include "xfs_ialloc.h"
42#include "xfs_bmap.h"
1da177e4 43#include "xfs_error.h"
1da177e4 44#include "xfs_utils.h"
1da177e4 45#include "xfs_quota.h"
2a82b8be 46#include "xfs_filestream.h"
739bfb2a 47#include "xfs_vnodeops.h"
0b1b213f 48#include "xfs_trace.h"
1da177e4 49
1da177e4
LT
50kmem_zone_t *xfs_ifork_zone;
51kmem_zone_t *xfs_inode_zone;
1da177e4
LT
52
53/*
8f04c47a 54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
55 * freed from a file in a single transaction.
56 */
57#define XFS_ITRUNC_MAX_EXTENTS 2
58
59STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
63
1da177e4
LT
64#ifdef DEBUG
65/*
66 * Make sure that the extents in the given memory buffer
67 * are valid.
68 */
69STATIC void
70xfs_validate_extents(
4eea22f0 71 xfs_ifork_t *ifp,
1da177e4 72 int nrecs,
1da177e4
LT
73 xfs_exntfmt_t fmt)
74{
75 xfs_bmbt_irec_t irec;
a6f64d4a 76 xfs_bmbt_rec_host_t rec;
1da177e4
LT
77 int i;
78
79 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
80 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
81 rec.l0 = get_unaligned(&ep->l0);
82 rec.l1 = get_unaligned(&ep->l1);
83 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
84 if (fmt == XFS_EXTFMT_NOSTATE)
85 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
86 }
87}
88#else /* DEBUG */
a6f64d4a 89#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
90#endif /* DEBUG */
91
92/*
93 * Check that none of the inode's in the buffer have a next
94 * unlinked field of 0.
95 */
96#if defined(DEBUG)
97void
98xfs_inobp_check(
99 xfs_mount_t *mp,
100 xfs_buf_t *bp)
101{
102 int i;
103 int j;
104 xfs_dinode_t *dip;
105
106 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
107
108 for (i = 0; i < j; i++) {
109 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
110 i * mp->m_sb.sb_inodesize);
111 if (!dip->di_next_unlinked) {
53487786
DC
112 xfs_alert(mp,
113 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
1da177e4
LT
114 bp);
115 ASSERT(dip->di_next_unlinked);
116 }
117 }
118}
119#endif
120
4ae29b43
DC
121/*
122 * Find the buffer associated with the given inode map
123 * We do basic validation checks on the buffer once it has been
124 * retrieved from disk.
125 */
126STATIC int
127xfs_imap_to_bp(
128 xfs_mount_t *mp,
129 xfs_trans_t *tp,
92bfc6e7 130 struct xfs_imap *imap,
4ae29b43
DC
131 xfs_buf_t **bpp,
132 uint buf_flags,
b48d8d64 133 uint iget_flags)
4ae29b43
DC
134{
135 int error;
136 int i;
137 int ni;
138 xfs_buf_t *bp;
139
140 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 141 (int)imap->im_len, buf_flags, &bp);
4ae29b43 142 if (error) {
a3f74ffb 143 if (error != EAGAIN) {
0b932ccc
DC
144 xfs_warn(mp,
145 "%s: xfs_trans_read_buf() returned error %d.",
146 __func__, error);
a3f74ffb 147 } else {
0cadda1c 148 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb 149 }
4ae29b43
DC
150 return error;
151 }
152
153 /*
154 * Validate the magic number and version of every inode in the buffer
155 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
156 */
157#ifdef DEBUG
158 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
159#else /* usual case */
160 ni = 1;
161#endif
162
163 for (i = 0; i < ni; i++) {
164 int di_ok;
165 xfs_dinode_t *dip;
166
167 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
168 (i << mp->m_sb.sb_inodelog));
69ef921b 169 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
81591fe2 170 XFS_DINODE_GOOD_VERSION(dip->di_version);
4ae29b43
DC
171 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
172 XFS_ERRTAG_ITOBP_INOTOBP,
173 XFS_RANDOM_ITOBP_INOTOBP))) {
1920779e 174 if (iget_flags & XFS_IGET_UNTRUSTED) {
4ae29b43
DC
175 xfs_trans_brelse(tp, bp);
176 return XFS_ERROR(EINVAL);
177 }
178 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
179 XFS_ERRLEVEL_HIGH, mp, dip);
180#ifdef DEBUG
0b932ccc
DC
181 xfs_emerg(mp,
182 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
4ae29b43 183 (unsigned long long)imap->im_blkno, i,
81591fe2 184 be16_to_cpu(dip->di_magic));
0b932ccc 185 ASSERT(0);
4ae29b43
DC
186#endif
187 xfs_trans_brelse(tp, bp);
188 return XFS_ERROR(EFSCORRUPTED);
189 }
190 }
191
192 xfs_inobp_check(mp, bp);
193
194 /*
195 * Mark the buffer as an inode buffer now that it looks good
196 */
197 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
198
199 *bpp = bp;
200 return 0;
201}
202
1da177e4
LT
203/*
204 * This routine is called to map an inode number within a file
205 * system to the buffer containing the on-disk version of the
206 * inode. It returns a pointer to the buffer containing the
207 * on-disk inode in the bpp parameter, and in the dip parameter
208 * it returns a pointer to the on-disk inode within that buffer.
209 *
210 * If a non-zero error is returned, then the contents of bpp and
211 * dipp are undefined.
212 *
213 * Use xfs_imap() to determine the size and location of the
214 * buffer to read from disk.
215 */
c679eef0 216int
1da177e4
LT
217xfs_inotobp(
218 xfs_mount_t *mp,
219 xfs_trans_t *tp,
220 xfs_ino_t ino,
221 xfs_dinode_t **dipp,
222 xfs_buf_t **bpp,
c679eef0
CH
223 int *offset,
224 uint imap_flags)
1da177e4 225{
92bfc6e7 226 struct xfs_imap imap;
1da177e4
LT
227 xfs_buf_t *bp;
228 int error;
1da177e4 229
1da177e4 230 imap.im_blkno = 0;
a1941895 231 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
4ae29b43 232 if (error)
1da177e4 233 return error;
1da177e4 234
0cadda1c 235 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
4ae29b43 236 if (error)
1da177e4 237 return error;
1da177e4 238
1da177e4
LT
239 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
240 *bpp = bp;
241 *offset = imap.im_boffset;
242 return 0;
243}
244
245
246/*
247 * This routine is called to map an inode to the buffer containing
248 * the on-disk version of the inode. It returns a pointer to the
249 * buffer containing the on-disk inode in the bpp parameter, and in
250 * the dip parameter it returns a pointer to the on-disk inode within
251 * that buffer.
252 *
253 * If a non-zero error is returned, then the contents of bpp and
254 * dipp are undefined.
255 *
76d8b277
CH
256 * The inode is expected to already been mapped to its buffer and read
257 * in once, thus we can use the mapping information stored in the inode
258 * rather than calling xfs_imap(). This allows us to avoid the overhead
259 * of looking at the inode btree for small block file systems
94e1b69d 260 * (see xfs_imap()).
1da177e4
LT
261 */
262int
263xfs_itobp(
264 xfs_mount_t *mp,
265 xfs_trans_t *tp,
266 xfs_inode_t *ip,
267 xfs_dinode_t **dipp,
268 xfs_buf_t **bpp,
a3f74ffb 269 uint buf_flags)
1da177e4
LT
270{
271 xfs_buf_t *bp;
272 int error;
1da177e4 273
92bfc6e7 274 ASSERT(ip->i_imap.im_blkno != 0);
1da177e4 275
92bfc6e7 276 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
4ae29b43 277 if (error)
1da177e4 278 return error;
1da177e4 279
a3f74ffb 280 if (!bp) {
0cadda1c 281 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb
DC
282 ASSERT(tp == NULL);
283 *bpp = NULL;
284 return EAGAIN;
285 }
286
92bfc6e7 287 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
288 *bpp = bp;
289 return 0;
290}
291
292/*
293 * Move inode type and inode format specific information from the
294 * on-disk inode to the in-core inode. For fifos, devs, and sockets
295 * this means set if_rdev to the proper value. For files, directories,
296 * and symlinks this means to bring in the in-line data or extent
297 * pointers. For a file in B-tree format, only the root is immediately
298 * brought in-core. The rest will be in-lined in if_extents when it
299 * is first referenced (see xfs_iread_extents()).
300 */
301STATIC int
302xfs_iformat(
303 xfs_inode_t *ip,
304 xfs_dinode_t *dip)
305{
306 xfs_attr_shortform_t *atp;
307 int size;
308 int error;
309 xfs_fsize_t di_size;
310 ip->i_df.if_ext_max =
311 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
312 error = 0;
313
81591fe2
CH
314 if (unlikely(be32_to_cpu(dip->di_nextents) +
315 be16_to_cpu(dip->di_anextents) >
316 be64_to_cpu(dip->di_nblocks))) {
65333b4c 317 xfs_warn(ip->i_mount,
3762ec6b 318 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 319 (unsigned long long)ip->i_ino,
81591fe2
CH
320 (int)(be32_to_cpu(dip->di_nextents) +
321 be16_to_cpu(dip->di_anextents)),
1da177e4 322 (unsigned long long)
81591fe2 323 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
324 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
325 ip->i_mount, dip);
326 return XFS_ERROR(EFSCORRUPTED);
327 }
328
81591fe2 329 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
65333b4c 330 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 331 (unsigned long long)ip->i_ino,
81591fe2 332 dip->di_forkoff);
1da177e4
LT
333 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
334 ip->i_mount, dip);
335 return XFS_ERROR(EFSCORRUPTED);
336 }
337
b89d4208
CH
338 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
339 !ip->i_mount->m_rtdev_targp)) {
65333b4c 340 xfs_warn(ip->i_mount,
b89d4208
CH
341 "corrupt dinode %Lu, has realtime flag set.",
342 ip->i_ino);
343 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
344 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
345 return XFS_ERROR(EFSCORRUPTED);
346 }
347
1da177e4
LT
348 switch (ip->i_d.di_mode & S_IFMT) {
349 case S_IFIFO:
350 case S_IFCHR:
351 case S_IFBLK:
352 case S_IFSOCK:
81591fe2 353 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
354 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
355 ip->i_mount, dip);
356 return XFS_ERROR(EFSCORRUPTED);
357 }
358 ip->i_d.di_size = 0;
ba87ea69 359 ip->i_size = 0;
81591fe2 360 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
361 break;
362
363 case S_IFREG:
364 case S_IFLNK:
365 case S_IFDIR:
81591fe2 366 switch (dip->di_format) {
1da177e4
LT
367 case XFS_DINODE_FMT_LOCAL:
368 /*
369 * no local regular files yet
370 */
abbede1b 371 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
65333b4c
DC
372 xfs_warn(ip->i_mount,
373 "corrupt inode %Lu (local format for regular file).",
1da177e4
LT
374 (unsigned long long) ip->i_ino);
375 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
376 XFS_ERRLEVEL_LOW,
377 ip->i_mount, dip);
378 return XFS_ERROR(EFSCORRUPTED);
379 }
380
81591fe2 381 di_size = be64_to_cpu(dip->di_size);
1da177e4 382 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
65333b4c
DC
383 xfs_warn(ip->i_mount,
384 "corrupt inode %Lu (bad size %Ld for local inode).",
1da177e4
LT
385 (unsigned long long) ip->i_ino,
386 (long long) di_size);
387 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
388 XFS_ERRLEVEL_LOW,
389 ip->i_mount, dip);
390 return XFS_ERROR(EFSCORRUPTED);
391 }
392
393 size = (int)di_size;
394 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
395 break;
396 case XFS_DINODE_FMT_EXTENTS:
397 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
398 break;
399 case XFS_DINODE_FMT_BTREE:
400 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
401 break;
402 default:
403 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
404 ip->i_mount);
405 return XFS_ERROR(EFSCORRUPTED);
406 }
407 break;
408
409 default:
410 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
411 return XFS_ERROR(EFSCORRUPTED);
412 }
413 if (error) {
414 return error;
415 }
416 if (!XFS_DFORK_Q(dip))
417 return 0;
418 ASSERT(ip->i_afp == NULL);
4a7edddc 419 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
1da177e4
LT
420 ip->i_afp->if_ext_max =
421 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
81591fe2 422 switch (dip->di_aformat) {
1da177e4
LT
423 case XFS_DINODE_FMT_LOCAL:
424 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 425 size = be16_to_cpu(atp->hdr.totsize);
2809f76a
CH
426
427 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
65333b4c
DC
428 xfs_warn(ip->i_mount,
429 "corrupt inode %Lu (bad attr fork size %Ld).",
2809f76a
CH
430 (unsigned long long) ip->i_ino,
431 (long long) size);
432 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
433 XFS_ERRLEVEL_LOW,
434 ip->i_mount, dip);
435 return XFS_ERROR(EFSCORRUPTED);
436 }
437
1da177e4
LT
438 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
439 break;
440 case XFS_DINODE_FMT_EXTENTS:
441 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
442 break;
443 case XFS_DINODE_FMT_BTREE:
444 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
445 break;
446 default:
447 error = XFS_ERROR(EFSCORRUPTED);
448 break;
449 }
450 if (error) {
451 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
452 ip->i_afp = NULL;
453 xfs_idestroy_fork(ip, XFS_DATA_FORK);
454 }
455 return error;
456}
457
458/*
459 * The file is in-lined in the on-disk inode.
460 * If it fits into if_inline_data, then copy
461 * it there, otherwise allocate a buffer for it
462 * and copy the data there. Either way, set
463 * if_data to point at the data.
464 * If we allocate a buffer for the data, make
465 * sure that its size is a multiple of 4 and
466 * record the real size in i_real_bytes.
467 */
468STATIC int
469xfs_iformat_local(
470 xfs_inode_t *ip,
471 xfs_dinode_t *dip,
472 int whichfork,
473 int size)
474{
475 xfs_ifork_t *ifp;
476 int real_size;
477
478 /*
479 * If the size is unreasonable, then something
480 * is wrong and we just bail out rather than crash in
481 * kmem_alloc() or memcpy() below.
482 */
483 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c
DC
484 xfs_warn(ip->i_mount,
485 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
1da177e4
LT
486 (unsigned long long) ip->i_ino, size,
487 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
488 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
489 ip->i_mount, dip);
490 return XFS_ERROR(EFSCORRUPTED);
491 }
492 ifp = XFS_IFORK_PTR(ip, whichfork);
493 real_size = 0;
494 if (size == 0)
495 ifp->if_u1.if_data = NULL;
496 else if (size <= sizeof(ifp->if_u2.if_inline_data))
497 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
498 else {
499 real_size = roundup(size, 4);
4a7edddc 500 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
501 }
502 ifp->if_bytes = size;
503 ifp->if_real_bytes = real_size;
504 if (size)
505 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
506 ifp->if_flags &= ~XFS_IFEXTENTS;
507 ifp->if_flags |= XFS_IFINLINE;
508 return 0;
509}
510
511/*
512 * The file consists of a set of extents all
513 * of which fit into the on-disk inode.
514 * If there are few enough extents to fit into
515 * the if_inline_ext, then copy them there.
516 * Otherwise allocate a buffer for them and copy
517 * them into it. Either way, set if_extents
518 * to point at the extents.
519 */
520STATIC int
521xfs_iformat_extents(
522 xfs_inode_t *ip,
523 xfs_dinode_t *dip,
524 int whichfork)
525{
a6f64d4a 526 xfs_bmbt_rec_t *dp;
1da177e4
LT
527 xfs_ifork_t *ifp;
528 int nex;
1da177e4
LT
529 int size;
530 int i;
531
532 ifp = XFS_IFORK_PTR(ip, whichfork);
533 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
534 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
535
536 /*
537 * If the number of extents is unreasonable, then something
538 * is wrong and we just bail out rather than crash in
539 * kmem_alloc() or memcpy() below.
540 */
541 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c 542 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
543 (unsigned long long) ip->i_ino, nex);
544 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
545 ip->i_mount, dip);
546 return XFS_ERROR(EFSCORRUPTED);
547 }
548
4eea22f0 549 ifp->if_real_bytes = 0;
1da177e4
LT
550 if (nex == 0)
551 ifp->if_u1.if_extents = NULL;
552 else if (nex <= XFS_INLINE_EXTS)
553 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
554 else
555 xfs_iext_add(ifp, 0, nex);
556
1da177e4 557 ifp->if_bytes = size;
1da177e4
LT
558 if (size) {
559 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 560 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 561 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 562 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
563 ep->l0 = get_unaligned_be64(&dp->l0);
564 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 565 }
3a59c94c 566 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
567 if (whichfork != XFS_DATA_FORK ||
568 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
569 if (unlikely(xfs_check_nostate_extents(
4eea22f0 570 ifp, 0, nex))) {
1da177e4
LT
571 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
572 XFS_ERRLEVEL_LOW,
573 ip->i_mount);
574 return XFS_ERROR(EFSCORRUPTED);
575 }
576 }
577 ifp->if_flags |= XFS_IFEXTENTS;
578 return 0;
579}
580
581/*
582 * The file has too many extents to fit into
583 * the inode, so they are in B-tree format.
584 * Allocate a buffer for the root of the B-tree
585 * and copy the root into it. The i_extents
586 * field will remain NULL until all of the
587 * extents are read in (when they are needed).
588 */
589STATIC int
590xfs_iformat_btree(
591 xfs_inode_t *ip,
592 xfs_dinode_t *dip,
593 int whichfork)
594{
595 xfs_bmdr_block_t *dfp;
596 xfs_ifork_t *ifp;
597 /* REFERENCED */
598 int nrecs;
599 int size;
600
601 ifp = XFS_IFORK_PTR(ip, whichfork);
602 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
603 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 604 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
605
606 /*
607 * blow out if -- fork has less extents than can fit in
608 * fork (fork shouldn't be a btree format), root btree
609 * block has more records than can fit into the fork,
610 * or the number of extents is greater than the number of
611 * blocks.
612 */
613 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
614 || XFS_BMDR_SPACE_CALC(nrecs) >
615 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
616 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
65333b4c 617 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
1da177e4 618 (unsigned long long) ip->i_ino);
65333b4c
DC
619 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
620 ip->i_mount, dip);
1da177e4
LT
621 return XFS_ERROR(EFSCORRUPTED);
622 }
623
624 ifp->if_broot_bytes = size;
4a7edddc 625 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
1da177e4
LT
626 ASSERT(ifp->if_broot != NULL);
627 /*
628 * Copy and convert from the on-disk structure
629 * to the in-memory structure.
630 */
60197e8d
CH
631 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
632 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
633 ifp->if_broot, size);
1da177e4
LT
634 ifp->if_flags &= ~XFS_IFEXTENTS;
635 ifp->if_flags |= XFS_IFBROOT;
636
637 return 0;
638}
639
d96f8f89 640STATIC void
347d1c01
CH
641xfs_dinode_from_disk(
642 xfs_icdinode_t *to,
81591fe2 643 xfs_dinode_t *from)
1da177e4 644{
347d1c01
CH
645 to->di_magic = be16_to_cpu(from->di_magic);
646 to->di_mode = be16_to_cpu(from->di_mode);
647 to->di_version = from ->di_version;
648 to->di_format = from->di_format;
649 to->di_onlink = be16_to_cpu(from->di_onlink);
650 to->di_uid = be32_to_cpu(from->di_uid);
651 to->di_gid = be32_to_cpu(from->di_gid);
652 to->di_nlink = be32_to_cpu(from->di_nlink);
6743099c
AM
653 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
654 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
347d1c01
CH
655 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
656 to->di_flushiter = be16_to_cpu(from->di_flushiter);
657 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
658 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
659 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
660 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
661 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
662 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
663 to->di_size = be64_to_cpu(from->di_size);
664 to->di_nblocks = be64_to_cpu(from->di_nblocks);
665 to->di_extsize = be32_to_cpu(from->di_extsize);
666 to->di_nextents = be32_to_cpu(from->di_nextents);
667 to->di_anextents = be16_to_cpu(from->di_anextents);
668 to->di_forkoff = from->di_forkoff;
669 to->di_aformat = from->di_aformat;
670 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
671 to->di_dmstate = be16_to_cpu(from->di_dmstate);
672 to->di_flags = be16_to_cpu(from->di_flags);
673 to->di_gen = be32_to_cpu(from->di_gen);
674}
675
676void
677xfs_dinode_to_disk(
81591fe2 678 xfs_dinode_t *to,
347d1c01
CH
679 xfs_icdinode_t *from)
680{
681 to->di_magic = cpu_to_be16(from->di_magic);
682 to->di_mode = cpu_to_be16(from->di_mode);
683 to->di_version = from ->di_version;
684 to->di_format = from->di_format;
685 to->di_onlink = cpu_to_be16(from->di_onlink);
686 to->di_uid = cpu_to_be32(from->di_uid);
687 to->di_gid = cpu_to_be32(from->di_gid);
688 to->di_nlink = cpu_to_be32(from->di_nlink);
6743099c
AM
689 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
690 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
347d1c01
CH
691 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
692 to->di_flushiter = cpu_to_be16(from->di_flushiter);
693 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
694 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
695 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
696 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
697 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
698 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
699 to->di_size = cpu_to_be64(from->di_size);
700 to->di_nblocks = cpu_to_be64(from->di_nblocks);
701 to->di_extsize = cpu_to_be32(from->di_extsize);
702 to->di_nextents = cpu_to_be32(from->di_nextents);
703 to->di_anextents = cpu_to_be16(from->di_anextents);
704 to->di_forkoff = from->di_forkoff;
705 to->di_aformat = from->di_aformat;
706 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
707 to->di_dmstate = cpu_to_be16(from->di_dmstate);
708 to->di_flags = cpu_to_be16(from->di_flags);
709 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
710}
711
712STATIC uint
713_xfs_dic2xflags(
1da177e4
LT
714 __uint16_t di_flags)
715{
716 uint flags = 0;
717
718 if (di_flags & XFS_DIFLAG_ANY) {
719 if (di_flags & XFS_DIFLAG_REALTIME)
720 flags |= XFS_XFLAG_REALTIME;
721 if (di_flags & XFS_DIFLAG_PREALLOC)
722 flags |= XFS_XFLAG_PREALLOC;
723 if (di_flags & XFS_DIFLAG_IMMUTABLE)
724 flags |= XFS_XFLAG_IMMUTABLE;
725 if (di_flags & XFS_DIFLAG_APPEND)
726 flags |= XFS_XFLAG_APPEND;
727 if (di_flags & XFS_DIFLAG_SYNC)
728 flags |= XFS_XFLAG_SYNC;
729 if (di_flags & XFS_DIFLAG_NOATIME)
730 flags |= XFS_XFLAG_NOATIME;
731 if (di_flags & XFS_DIFLAG_NODUMP)
732 flags |= XFS_XFLAG_NODUMP;
733 if (di_flags & XFS_DIFLAG_RTINHERIT)
734 flags |= XFS_XFLAG_RTINHERIT;
735 if (di_flags & XFS_DIFLAG_PROJINHERIT)
736 flags |= XFS_XFLAG_PROJINHERIT;
737 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
738 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
739 if (di_flags & XFS_DIFLAG_EXTSIZE)
740 flags |= XFS_XFLAG_EXTSIZE;
741 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
742 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
743 if (di_flags & XFS_DIFLAG_NODEFRAG)
744 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
745 if (di_flags & XFS_DIFLAG_FILESTREAM)
746 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
747 }
748
749 return flags;
750}
751
752uint
753xfs_ip2xflags(
754 xfs_inode_t *ip)
755{
347d1c01 756 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 757
a916e2bd 758 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 759 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
760}
761
762uint
763xfs_dic2xflags(
45ba598e 764 xfs_dinode_t *dip)
1da177e4 765{
81591fe2 766 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 767 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
768}
769
07c8f675 770/*
24f211ba 771 * Read the disk inode attributes into the in-core inode structure.
1da177e4
LT
772 */
773int
774xfs_iread(
775 xfs_mount_t *mp,
776 xfs_trans_t *tp,
24f211ba 777 xfs_inode_t *ip,
24f211ba 778 uint iget_flags)
1da177e4
LT
779{
780 xfs_buf_t *bp;
781 xfs_dinode_t *dip;
1da177e4
LT
782 int error;
783
1da177e4 784 /*
92bfc6e7 785 * Fill in the location information in the in-core inode.
1da177e4 786 */
24f211ba 787 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
76d8b277 788 if (error)
24f211ba 789 return error;
76d8b277
CH
790
791 /*
92bfc6e7 792 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 793 */
92bfc6e7 794 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
0cadda1c 795 XBF_LOCK, iget_flags);
9ed0451e 796 if (error)
24f211ba 797 return error;
92bfc6e7 798 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 799
1da177e4
LT
800 /*
801 * If we got something that isn't an inode it means someone
802 * (nfs or dmi) has a stale handle.
803 */
69ef921b 804 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
1da177e4 805#ifdef DEBUG
53487786
DC
806 xfs_alert(mp,
807 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
808 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
1da177e4 809#endif /* DEBUG */
9ed0451e
CH
810 error = XFS_ERROR(EINVAL);
811 goto out_brelse;
1da177e4
LT
812 }
813
814 /*
815 * If the on-disk inode is already linked to a directory
816 * entry, copy all of the inode into the in-core inode.
817 * xfs_iformat() handles copying in the inode format
818 * specific information.
819 * Otherwise, just get the truly permanent information.
820 */
81591fe2
CH
821 if (dip->di_mode) {
822 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
823 error = xfs_iformat(ip, dip);
824 if (error) {
1da177e4 825#ifdef DEBUG
53487786
DC
826 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
827 __func__, error);
1da177e4 828#endif /* DEBUG */
9ed0451e 829 goto out_brelse;
1da177e4
LT
830 }
831 } else {
81591fe2
CH
832 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
833 ip->i_d.di_version = dip->di_version;
834 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
835 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
836 /*
837 * Make sure to pull in the mode here as well in
838 * case the inode is released without being used.
839 * This ensures that xfs_inactive() will see that
840 * the inode is already free and not try to mess
841 * with the uninitialized part of it.
842 */
843 ip->i_d.di_mode = 0;
844 /*
845 * Initialize the per-fork minima and maxima for a new
846 * inode here. xfs_iformat will do it for old inodes.
847 */
848 ip->i_df.if_ext_max =
849 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
850 }
851
1da177e4
LT
852 /*
853 * The inode format changed when we moved the link count and
854 * made it 32 bits long. If this is an old format inode,
855 * convert it in memory to look like a new one. If it gets
856 * flushed to disk we will convert back before flushing or
857 * logging it. We zero out the new projid field and the old link
858 * count field. We'll handle clearing the pad field (the remains
859 * of the old uuid field) when we actually convert the inode to
860 * the new format. We don't change the version number so that we
861 * can distinguish this from a real new format inode.
862 */
51ce16d5 863 if (ip->i_d.di_version == 1) {
1da177e4
LT
864 ip->i_d.di_nlink = ip->i_d.di_onlink;
865 ip->i_d.di_onlink = 0;
6743099c 866 xfs_set_projid(ip, 0);
1da177e4
LT
867 }
868
869 ip->i_delayed_blks = 0;
ba87ea69 870 ip->i_size = ip->i_d.di_size;
1da177e4
LT
871
872 /*
873 * Mark the buffer containing the inode as something to keep
874 * around for a while. This helps to keep recently accessed
875 * meta-data in-core longer.
876 */
821eb21d 877 xfs_buf_set_ref(bp, XFS_INO_REF);
1da177e4
LT
878
879 /*
880 * Use xfs_trans_brelse() to release the buffer containing the
881 * on-disk inode, because it was acquired with xfs_trans_read_buf()
882 * in xfs_itobp() above. If tp is NULL, this is just a normal
883 * brelse(). If we're within a transaction, then xfs_trans_brelse()
884 * will only release the buffer if it is not dirty within the
885 * transaction. It will be OK to release the buffer in this case,
886 * because inodes on disk are never destroyed and we will be
887 * locking the new in-core inode before putting it in the hash
888 * table where other processes can find it. Thus we don't have
889 * to worry about the inode being changed just because we released
890 * the buffer.
891 */
9ed0451e
CH
892 out_brelse:
893 xfs_trans_brelse(tp, bp);
9ed0451e 894 return error;
1da177e4
LT
895}
896
897/*
898 * Read in extents from a btree-format inode.
899 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
900 */
901int
902xfs_iread_extents(
903 xfs_trans_t *tp,
904 xfs_inode_t *ip,
905 int whichfork)
906{
907 int error;
908 xfs_ifork_t *ifp;
4eea22f0 909 xfs_extnum_t nextents;
1da177e4
LT
910
911 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
912 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
913 ip->i_mount);
914 return XFS_ERROR(EFSCORRUPTED);
915 }
4eea22f0 916 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1da177e4 917 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 918
1da177e4
LT
919 /*
920 * We know that the size is valid (it's checked in iformat_btree)
921 */
4eea22f0 922 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 923 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 924 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
925 error = xfs_bmap_read_extents(tp, ip, whichfork);
926 if (error) {
4eea22f0 927 xfs_iext_destroy(ifp);
1da177e4
LT
928 ifp->if_flags &= ~XFS_IFEXTENTS;
929 return error;
930 }
a6f64d4a 931 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
932 return 0;
933}
934
935/*
936 * Allocate an inode on disk and return a copy of its in-core version.
937 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
938 * appropriately within the inode. The uid and gid for the inode are
939 * set according to the contents of the given cred structure.
940 *
941 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
942 * has a free inode available, call xfs_iget()
943 * to obtain the in-core version of the allocated inode. Finally,
944 * fill in the inode and log its initial contents. In this case,
945 * ialloc_context would be set to NULL and call_again set to false.
946 *
947 * If xfs_dialloc() does not have an available inode,
948 * it will replenish its supply by doing an allocation. Since we can
949 * only do one allocation within a transaction without deadlocks, we
950 * must commit the current transaction before returning the inode itself.
951 * In this case, therefore, we will set call_again to true and return.
952 * The caller should then commit the current transaction, start a new
953 * transaction, and call xfs_ialloc() again to actually get the inode.
954 *
955 * To ensure that some other process does not grab the inode that
956 * was allocated during the first call to xfs_ialloc(), this routine
957 * also returns the [locked] bp pointing to the head of the freelist
958 * as ialloc_context. The caller should hold this buffer across
959 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
960 *
961 * If we are allocating quota inodes, we do not have a parent inode
962 * to attach to or associate with (i.e. pip == NULL) because they
963 * are not linked into the directory structure - they are attached
964 * directly to the superblock - and so have no parent.
1da177e4
LT
965 */
966int
967xfs_ialloc(
968 xfs_trans_t *tp,
969 xfs_inode_t *pip,
970 mode_t mode,
31b084ae 971 xfs_nlink_t nlink,
1da177e4 972 xfs_dev_t rdev,
6743099c 973 prid_t prid,
1da177e4
LT
974 int okalloc,
975 xfs_buf_t **ialloc_context,
976 boolean_t *call_again,
977 xfs_inode_t **ipp)
978{
979 xfs_ino_t ino;
980 xfs_inode_t *ip;
1da177e4
LT
981 uint flags;
982 int error;
dff35fd4 983 timespec_t tv;
bf904248 984 int filestreams = 0;
1da177e4
LT
985
986 /*
987 * Call the space management code to pick
988 * the on-disk inode to be allocated.
989 */
b11f94d5 990 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 991 ialloc_context, call_again, &ino);
bf904248 992 if (error)
1da177e4 993 return error;
1da177e4
LT
994 if (*call_again || ino == NULLFSINO) {
995 *ipp = NULL;
996 return 0;
997 }
998 ASSERT(*ialloc_context == NULL);
999
1000 /*
1001 * Get the in-core inode with the lock held exclusively.
1002 * This is because we're setting fields here we need
1003 * to prevent others from looking at until we're done.
1004 */
ec3ba85f
CH
1005 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1006 XFS_ILOCK_EXCL, &ip);
bf904248 1007 if (error)
1da177e4 1008 return error;
1da177e4
LT
1009 ASSERT(ip != NULL);
1010
1da177e4
LT
1011 ip->i_d.di_mode = (__uint16_t)mode;
1012 ip->i_d.di_onlink = 0;
1013 ip->i_d.di_nlink = nlink;
1014 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1015 ip->i_d.di_uid = current_fsuid();
1016 ip->i_d.di_gid = current_fsgid();
6743099c 1017 xfs_set_projid(ip, prid);
1da177e4
LT
1018 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1019
1020 /*
1021 * If the superblock version is up to where we support new format
1022 * inodes and this is currently an old format inode, then change
1023 * the inode version number now. This way we only do the conversion
1024 * here rather than here and in the flush/logging code.
1025 */
62118709 1026 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1027 ip->i_d.di_version == 1) {
1028 ip->i_d.di_version = 2;
1da177e4
LT
1029 /*
1030 * We've already zeroed the old link count, the projid field,
1031 * and the pad field.
1032 */
1033 }
1034
1035 /*
1036 * Project ids won't be stored on disk if we are using a version 1 inode.
1037 */
51ce16d5 1038 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1039 xfs_bump_ino_vers2(tp, ip);
1040
bd186aa9 1041 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 1042 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 1043 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
1044 ip->i_d.di_mode |= S_ISGID;
1045 }
1046 }
1047
1048 /*
1049 * If the group ID of the new file does not match the effective group
1050 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1051 * (and only if the irix_sgid_inherit compatibility variable is set).
1052 */
1053 if ((irix_sgid_inherit) &&
1054 (ip->i_d.di_mode & S_ISGID) &&
1055 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1056 ip->i_d.di_mode &= ~S_ISGID;
1057 }
1058
1059 ip->i_d.di_size = 0;
ba87ea69 1060 ip->i_size = 0;
1da177e4
LT
1061 ip->i_d.di_nextents = 0;
1062 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1063
1064 nanotime(&tv);
1065 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1066 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1067 ip->i_d.di_atime = ip->i_d.di_mtime;
1068 ip->i_d.di_ctime = ip->i_d.di_mtime;
1069
1da177e4
LT
1070 /*
1071 * di_gen will have been taken care of in xfs_iread.
1072 */
1073 ip->i_d.di_extsize = 0;
1074 ip->i_d.di_dmevmask = 0;
1075 ip->i_d.di_dmstate = 0;
1076 ip->i_d.di_flags = 0;
1077 flags = XFS_ILOG_CORE;
1078 switch (mode & S_IFMT) {
1079 case S_IFIFO:
1080 case S_IFCHR:
1081 case S_IFBLK:
1082 case S_IFSOCK:
1083 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1084 ip->i_df.if_u2.if_rdev = rdev;
1085 ip->i_df.if_flags = 0;
1086 flags |= XFS_ILOG_DEV;
1087 break;
1088 case S_IFREG:
bf904248
DC
1089 /*
1090 * we can't set up filestreams until after the VFS inode
1091 * is set up properly.
1092 */
1093 if (pip && xfs_inode_is_filestream(pip))
1094 filestreams = 1;
2a82b8be 1095 /* fall through */
1da177e4 1096 case S_IFDIR:
b11f94d5 1097 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1098 uint di_flags = 0;
1099
abbede1b 1100 if (S_ISDIR(mode)) {
365ca83d
NS
1101 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1102 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1103 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1104 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1105 ip->i_d.di_extsize = pip->i_d.di_extsize;
1106 }
abbede1b 1107 } else if (S_ISREG(mode)) {
613d7043 1108 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1109 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1110 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1111 di_flags |= XFS_DIFLAG_EXTSIZE;
1112 ip->i_d.di_extsize = pip->i_d.di_extsize;
1113 }
1da177e4
LT
1114 }
1115 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1116 xfs_inherit_noatime)
365ca83d 1117 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1118 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1119 xfs_inherit_nodump)
365ca83d 1120 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1121 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1122 xfs_inherit_sync)
365ca83d 1123 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1124 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1125 xfs_inherit_nosymlinks)
365ca83d
NS
1126 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1127 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1128 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1129 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1130 xfs_inherit_nodefrag)
1131 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1132 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1133 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1134 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1135 }
1136 /* FALLTHROUGH */
1137 case S_IFLNK:
1138 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1139 ip->i_df.if_flags = XFS_IFEXTENTS;
1140 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1141 ip->i_df.if_u1.if_extents = NULL;
1142 break;
1143 default:
1144 ASSERT(0);
1145 }
1146 /*
1147 * Attribute fork settings for new inode.
1148 */
1149 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1150 ip->i_d.di_anextents = 0;
1151
1152 /*
1153 * Log the new values stuffed into the inode.
1154 */
ec3ba85f 1155 xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
1156 xfs_trans_log_inode(tp, ip, flags);
1157
b83bd138 1158 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1159 xfs_setup_inode(ip);
1da177e4 1160
bf904248
DC
1161 /* now we have set up the vfs inode we can associate the filestream */
1162 if (filestreams) {
1163 error = xfs_filestream_associate(pip, ip);
1164 if (error < 0)
1165 return -error;
1166 if (!error)
1167 xfs_iflags_set(ip, XFS_IFILESTREAM);
1168 }
1169
1da177e4
LT
1170 *ipp = ip;
1171 return 0;
1172}
1173
1174/*
1175 * Check to make sure that there are no blocks allocated to the
1176 * file beyond the size of the file. We don't check this for
1177 * files with fixed size extents or real time extents, but we
1178 * at least do it for regular files.
1179 */
1180#ifdef DEBUG
8f04c47a 1181STATIC void
1da177e4 1182xfs_isize_check(
8f04c47a
CH
1183 struct xfs_inode *ip,
1184 xfs_fsize_t isize)
1da177e4 1185{
8f04c47a
CH
1186 struct xfs_mount *mp = ip->i_mount;
1187 xfs_fileoff_t map_first;
1188 int nimaps;
1189 xfs_bmbt_irec_t imaps[2];
5c8ed202 1190 int error;
1da177e4 1191
abbede1b 1192 if (!S_ISREG(ip->i_d.di_mode))
1da177e4
LT
1193 return;
1194
71ddabb9
ES
1195 if (XFS_IS_REALTIME_INODE(ip))
1196 return;
1197
1198 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1199 return;
1200
1201 nimaps = 2;
1202 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1203 /*
1204 * The filesystem could be shutting down, so bmapi may return
1205 * an error.
1206 */
5c8ed202 1207 error = xfs_bmapi_read(ip, map_first,
1da177e4 1208 (XFS_B_TO_FSB(mp,
5c8ed202
DC
1209 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) - map_first),
1210 imaps, &nimaps, XFS_BMAPI_ENTIRE);
1211 if (error)
1212 return;
1da177e4
LT
1213 ASSERT(nimaps == 1);
1214 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1215}
8f04c47a
CH
1216#else /* DEBUG */
1217#define xfs_isize_check(ip, isize)
1da177e4
LT
1218#endif /* DEBUG */
1219
1220/*
8f04c47a
CH
1221 * Free up the underlying blocks past new_size. The new size must be smaller
1222 * than the current size. This routine can be used both for the attribute and
1223 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1224 *
f6485057
DC
1225 * The transaction passed to this routine must have made a permanent log
1226 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1227 * given transaction and start new ones, so make sure everything involved in
1228 * the transaction is tidy before calling here. Some transaction will be
1229 * returned to the caller to be committed. The incoming transaction must
1230 * already include the inode, and both inode locks must be held exclusively.
1231 * The inode must also be "held" within the transaction. On return the inode
1232 * will be "held" within the returned transaction. This routine does NOT
1233 * require any disk space to be reserved for it within the transaction.
1da177e4 1234 *
f6485057
DC
1235 * If we get an error, we must return with the inode locked and linked into the
1236 * current transaction. This keeps things simple for the higher level code,
1237 * because it always knows that the inode is locked and held in the transaction
1238 * that returns to it whether errors occur or not. We don't mark the inode
1239 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1240 */
1241int
8f04c47a
CH
1242xfs_itruncate_extents(
1243 struct xfs_trans **tpp,
1244 struct xfs_inode *ip,
1245 int whichfork,
1246 xfs_fsize_t new_size)
1da177e4 1247{
8f04c47a
CH
1248 struct xfs_mount *mp = ip->i_mount;
1249 struct xfs_trans *tp = *tpp;
1250 struct xfs_trans *ntp;
1251 xfs_bmap_free_t free_list;
1252 xfs_fsblock_t first_block;
1253 xfs_fileoff_t first_unmap_block;
1254 xfs_fileoff_t last_block;
1255 xfs_filblks_t unmap_len;
1256 int committed;
1257 int error = 0;
1258 int done = 0;
1da177e4 1259
579aa9ca 1260 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
8f04c47a
CH
1261 ASSERT(new_size <= ip->i_size);
1262 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1263 ASSERT(ip->i_itemp != NULL);
898621d5 1264 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1265 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4
LT
1266
1267 /*
1268 * Since it is possible for space to become allocated beyond
1269 * the end of the file (in a crash where the space is allocated
1270 * but the inode size is not yet updated), simply remove any
1271 * blocks which show up between the new EOF and the maximum
1272 * possible file size. If the first block to be removed is
1273 * beyond the maximum file size (ie it is the same as last_block),
1274 * then there is nothing to do.
1275 */
8f04c47a 1276 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1da177e4 1277 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
8f04c47a
CH
1278 if (first_unmap_block == last_block)
1279 return 0;
1280
1281 ASSERT(first_unmap_block < last_block);
1282 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1283 while (!done) {
9d87c319 1284 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1285 error = xfs_bunmapi(tp, ip,
3e57ecf6 1286 first_unmap_block, unmap_len,
8f04c47a 1287 xfs_bmapi_aflag(whichfork),
1da177e4 1288 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1289 &first_block, &free_list,
b4e9181e 1290 &done);
8f04c47a
CH
1291 if (error)
1292 goto out_bmap_cancel;
1da177e4
LT
1293
1294 /*
1295 * Duplicate the transaction that has the permanent
1296 * reservation and commit the old transaction.
1297 */
8f04c47a 1298 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1299 if (committed)
8f04c47a
CH
1300 xfs_trans_ijoin(tp, ip);
1301 if (error)
1302 goto out_bmap_cancel;
1da177e4
LT
1303
1304 if (committed) {
1305 /*
f6485057 1306 * Mark the inode dirty so it will be logged and
e5720eec 1307 * moved forward in the log as part of every commit.
1da177e4 1308 */
8f04c47a 1309 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1310 }
f6485057 1311
8f04c47a
CH
1312 ntp = xfs_trans_dup(tp);
1313 error = xfs_trans_commit(tp, 0);
1314 tp = ntp;
e5720eec 1315
8f04c47a 1316 xfs_trans_ijoin(tp, ip);
f6485057 1317
cc09c0dc 1318 if (error)
8f04c47a
CH
1319 goto out;
1320
cc09c0dc 1321 /*
8f04c47a 1322 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1323 * reference that we gained in xfs_trans_dup()
1324 */
8f04c47a
CH
1325 xfs_log_ticket_put(tp->t_ticket);
1326 error = xfs_trans_reserve(tp, 0,
f6485057
DC
1327 XFS_ITRUNCATE_LOG_RES(mp), 0,
1328 XFS_TRANS_PERM_LOG_RES,
1329 XFS_ITRUNCATE_LOG_COUNT);
1330 if (error)
8f04c47a 1331 goto out;
1da177e4 1332 }
8f04c47a
CH
1333
1334out:
1335 *tpp = tp;
1336 return error;
1337out_bmap_cancel:
1da177e4 1338 /*
8f04c47a
CH
1339 * If the bunmapi call encounters an error, return to the caller where
1340 * the transaction can be properly aborted. We just need to make sure
1341 * we're not holding any resources that we were not when we came in.
1da177e4 1342 */
8f04c47a
CH
1343 xfs_bmap_cancel(&free_list);
1344 goto out;
1345}
1346
1347int
1348xfs_itruncate_data(
1349 struct xfs_trans **tpp,
1350 struct xfs_inode *ip,
1351 xfs_fsize_t new_size)
1352{
1353 int error;
1354
1355 trace_xfs_itruncate_data_start(ip, new_size);
1356
1357 /*
1358 * The first thing we do is set the size to new_size permanently on
1359 * disk. This way we don't have to worry about anyone ever being able
1360 * to look at the data being freed even in the face of a crash.
1361 * What we're getting around here is the case where we free a block, it
1362 * is allocated to another file, it is written to, and then we crash.
1363 * If the new data gets written to the file but the log buffers
1364 * containing the free and reallocation don't, then we'd end up with
1365 * garbage in the blocks being freed. As long as we make the new_size
1366 * permanent before actually freeing any blocks it doesn't matter if
1367 * they get written to.
1368 */
1369 if (ip->i_d.di_nextents > 0) {
ba87ea69 1370 /*
8f04c47a
CH
1371 * If we are not changing the file size then do not update
1372 * the on-disk file size - we may be called from
1373 * xfs_inactive_free_eofblocks(). If we update the on-disk
1374 * file size and then the system crashes before the contents
1375 * of the file are flushed to disk then the files may be
1376 * full of holes (ie NULL files bug).
ba87ea69
LM
1377 */
1378 if (ip->i_size != new_size) {
1379 ip->i_d.di_size = new_size;
1380 ip->i_size = new_size;
8f04c47a 1381 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
ba87ea69 1382 }
1da177e4 1383 }
8f04c47a
CH
1384
1385 error = xfs_itruncate_extents(tpp, ip, XFS_DATA_FORK, new_size);
1386 if (error)
1387 return error;
1388
1389 /*
1390 * If we are not changing the file size then do not update the on-disk
1391 * file size - we may be called from xfs_inactive_free_eofblocks().
1392 * If we update the on-disk file size and then the system crashes
1393 * before the contents of the file are flushed to disk then the files
1394 * may be full of holes (ie NULL files bug).
1395 */
1396 xfs_isize_check(ip, new_size);
1397 if (ip->i_size != new_size) {
1398 ip->i_d.di_size = new_size;
1399 ip->i_size = new_size;
1400 }
1401
1402 ASSERT(new_size != 0 || ip->i_delayed_blks == 0);
1403 ASSERT(new_size != 0 || ip->i_d.di_nextents == 0);
1404
1405 /*
1406 * Always re-log the inode so that our permanent transaction can keep
1407 * on rolling it forward in the log.
1408 */
1409 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1410
1411 trace_xfs_itruncate_data_end(ip, new_size);
1da177e4
LT
1412 return 0;
1413}
1414
1da177e4
LT
1415/*
1416 * This is called when the inode's link count goes to 0.
1417 * We place the on-disk inode on a list in the AGI. It
1418 * will be pulled from this list when the inode is freed.
1419 */
1420int
1421xfs_iunlink(
1422 xfs_trans_t *tp,
1423 xfs_inode_t *ip)
1424{
1425 xfs_mount_t *mp;
1426 xfs_agi_t *agi;
1427 xfs_dinode_t *dip;
1428 xfs_buf_t *agibp;
1429 xfs_buf_t *ibp;
1da177e4
LT
1430 xfs_agino_t agino;
1431 short bucket_index;
1432 int offset;
1433 int error;
1da177e4
LT
1434
1435 ASSERT(ip->i_d.di_nlink == 0);
1436 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1437
1438 mp = tp->t_mountp;
1439
1da177e4
LT
1440 /*
1441 * Get the agi buffer first. It ensures lock ordering
1442 * on the list.
1443 */
5e1be0fb 1444 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1445 if (error)
1da177e4 1446 return error;
1da177e4 1447 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1448
1da177e4
LT
1449 /*
1450 * Get the index into the agi hash table for the
1451 * list this inode will go on.
1452 */
1453 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1454 ASSERT(agino != 0);
1455 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1456 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1457 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1458
69ef921b 1459 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1460 /*
1461 * There is already another inode in the bucket we need
1462 * to add ourselves to. Add us at the front of the list.
1463 * Here we put the head pointer into our next pointer,
1464 * and then we fall through to point the head at us.
1465 */
0cadda1c 1466 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
c319b58b
VA
1467 if (error)
1468 return error;
1469
69ef921b 1470 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1471 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1472 offset = ip->i_imap.im_boffset +
1da177e4
LT
1473 offsetof(xfs_dinode_t, di_next_unlinked);
1474 xfs_trans_inode_buf(tp, ibp);
1475 xfs_trans_log_buf(tp, ibp, offset,
1476 (offset + sizeof(xfs_agino_t) - 1));
1477 xfs_inobp_check(mp, ibp);
1478 }
1479
1480 /*
1481 * Point the bucket head pointer at the inode being inserted.
1482 */
1483 ASSERT(agino != 0);
16259e7d 1484 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1485 offset = offsetof(xfs_agi_t, agi_unlinked) +
1486 (sizeof(xfs_agino_t) * bucket_index);
1487 xfs_trans_log_buf(tp, agibp, offset,
1488 (offset + sizeof(xfs_agino_t) - 1));
1489 return 0;
1490}
1491
1492/*
1493 * Pull the on-disk inode from the AGI unlinked list.
1494 */
1495STATIC int
1496xfs_iunlink_remove(
1497 xfs_trans_t *tp,
1498 xfs_inode_t *ip)
1499{
1500 xfs_ino_t next_ino;
1501 xfs_mount_t *mp;
1502 xfs_agi_t *agi;
1503 xfs_dinode_t *dip;
1504 xfs_buf_t *agibp;
1505 xfs_buf_t *ibp;
1506 xfs_agnumber_t agno;
1da177e4
LT
1507 xfs_agino_t agino;
1508 xfs_agino_t next_agino;
1509 xfs_buf_t *last_ibp;
6fdf8ccc 1510 xfs_dinode_t *last_dip = NULL;
1da177e4 1511 short bucket_index;
6fdf8ccc 1512 int offset, last_offset = 0;
1da177e4 1513 int error;
1da177e4 1514
1da177e4 1515 mp = tp->t_mountp;
1da177e4 1516 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1517
1518 /*
1519 * Get the agi buffer first. It ensures lock ordering
1520 * on the list.
1521 */
5e1be0fb
CH
1522 error = xfs_read_agi(mp, tp, agno, &agibp);
1523 if (error)
1da177e4 1524 return error;
5e1be0fb 1525
1da177e4 1526 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1527
1da177e4
LT
1528 /*
1529 * Get the index into the agi hash table for the
1530 * list this inode will go on.
1531 */
1532 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1533 ASSERT(agino != 0);
1534 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 1535 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
1536 ASSERT(agi->agi_unlinked[bucket_index]);
1537
16259e7d 1538 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1539 /*
1540 * We're at the head of the list. Get the inode's
1541 * on-disk buffer to see if there is anyone after us
1542 * on the list. Only modify our next pointer if it
1543 * is not already NULLAGINO. This saves us the overhead
1544 * of dealing with the buffer when there is no need to
1545 * change it.
1546 */
0cadda1c 1547 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1da177e4 1548 if (error) {
0b932ccc
DC
1549 xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1550 __func__, error);
1da177e4
LT
1551 return error;
1552 }
347d1c01 1553 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1554 ASSERT(next_agino != 0);
1555 if (next_agino != NULLAGINO) {
347d1c01 1556 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1557 offset = ip->i_imap.im_boffset +
1da177e4
LT
1558 offsetof(xfs_dinode_t, di_next_unlinked);
1559 xfs_trans_inode_buf(tp, ibp);
1560 xfs_trans_log_buf(tp, ibp, offset,
1561 (offset + sizeof(xfs_agino_t) - 1));
1562 xfs_inobp_check(mp, ibp);
1563 } else {
1564 xfs_trans_brelse(tp, ibp);
1565 }
1566 /*
1567 * Point the bucket head pointer at the next inode.
1568 */
1569 ASSERT(next_agino != 0);
1570 ASSERT(next_agino != agino);
16259e7d 1571 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1572 offset = offsetof(xfs_agi_t, agi_unlinked) +
1573 (sizeof(xfs_agino_t) * bucket_index);
1574 xfs_trans_log_buf(tp, agibp, offset,
1575 (offset + sizeof(xfs_agino_t) - 1));
1576 } else {
1577 /*
1578 * We need to search the list for the inode being freed.
1579 */
16259e7d 1580 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1581 last_ibp = NULL;
1582 while (next_agino != agino) {
1583 /*
1584 * If the last inode wasn't the one pointing to
1585 * us, then release its buffer since we're not
1586 * going to do anything with it.
1587 */
1588 if (last_ibp != NULL) {
1589 xfs_trans_brelse(tp, last_ibp);
1590 }
1591 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1592 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
c679eef0 1593 &last_ibp, &last_offset, 0);
1da177e4 1594 if (error) {
0b932ccc
DC
1595 xfs_warn(mp,
1596 "%s: xfs_inotobp() returned error %d.",
1597 __func__, error);
1da177e4
LT
1598 return error;
1599 }
347d1c01 1600 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1601 ASSERT(next_agino != NULLAGINO);
1602 ASSERT(next_agino != 0);
1603 }
1604 /*
1605 * Now last_ibp points to the buffer previous to us on
1606 * the unlinked list. Pull us from the list.
1607 */
0cadda1c 1608 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1da177e4 1609 if (error) {
0b932ccc
DC
1610 xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1611 __func__, error);
1da177e4
LT
1612 return error;
1613 }
347d1c01 1614 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1615 ASSERT(next_agino != 0);
1616 ASSERT(next_agino != agino);
1617 if (next_agino != NULLAGINO) {
347d1c01 1618 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1619 offset = ip->i_imap.im_boffset +
1da177e4
LT
1620 offsetof(xfs_dinode_t, di_next_unlinked);
1621 xfs_trans_inode_buf(tp, ibp);
1622 xfs_trans_log_buf(tp, ibp, offset,
1623 (offset + sizeof(xfs_agino_t) - 1));
1624 xfs_inobp_check(mp, ibp);
1625 } else {
1626 xfs_trans_brelse(tp, ibp);
1627 }
1628 /*
1629 * Point the previous inode on the list to the next inode.
1630 */
347d1c01 1631 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
1632 ASSERT(next_agino != 0);
1633 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1634 xfs_trans_inode_buf(tp, last_ibp);
1635 xfs_trans_log_buf(tp, last_ibp, offset,
1636 (offset + sizeof(xfs_agino_t) - 1));
1637 xfs_inobp_check(mp, last_ibp);
1638 }
1639 return 0;
1640}
1641
5b3eed75
DC
1642/*
1643 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1644 * inodes that are in memory - they all must be marked stale and attached to
1645 * the cluster buffer.
1646 */
2a30f36d 1647STATIC int
1da177e4
LT
1648xfs_ifree_cluster(
1649 xfs_inode_t *free_ip,
1650 xfs_trans_t *tp,
1651 xfs_ino_t inum)
1652{
1653 xfs_mount_t *mp = free_ip->i_mount;
1654 int blks_per_cluster;
1655 int nbufs;
1656 int ninodes;
5b257b4a 1657 int i, j;
1da177e4
LT
1658 xfs_daddr_t blkno;
1659 xfs_buf_t *bp;
5b257b4a 1660 xfs_inode_t *ip;
1da177e4
LT
1661 xfs_inode_log_item_t *iip;
1662 xfs_log_item_t *lip;
5017e97d 1663 struct xfs_perag *pag;
1da177e4 1664
5017e97d 1665 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
1666 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1667 blks_per_cluster = 1;
1668 ninodes = mp->m_sb.sb_inopblock;
1669 nbufs = XFS_IALLOC_BLOCKS(mp);
1670 } else {
1671 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1672 mp->m_sb.sb_blocksize;
1673 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1674 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1675 }
1676
1da177e4
LT
1677 for (j = 0; j < nbufs; j++, inum += ninodes) {
1678 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1679 XFS_INO_TO_AGBNO(mp, inum));
1680
5b257b4a
DC
1681 /*
1682 * We obtain and lock the backing buffer first in the process
1683 * here, as we have to ensure that any dirty inode that we
1684 * can't get the flush lock on is attached to the buffer.
1685 * If we scan the in-memory inodes first, then buffer IO can
1686 * complete before we get a lock on it, and hence we may fail
1687 * to mark all the active inodes on the buffer stale.
1688 */
1689 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1690 mp->m_bsize * blks_per_cluster,
1691 XBF_LOCK);
1692
2a30f36d
CS
1693 if (!bp)
1694 return ENOMEM;
5b257b4a
DC
1695 /*
1696 * Walk the inodes already attached to the buffer and mark them
1697 * stale. These will all have the flush locks held, so an
5b3eed75
DC
1698 * in-memory inode walk can't lock them. By marking them all
1699 * stale first, we will not attempt to lock them in the loop
1700 * below as the XFS_ISTALE flag will be set.
5b257b4a 1701 */
adadbeef 1702 lip = bp->b_fspriv;
5b257b4a
DC
1703 while (lip) {
1704 if (lip->li_type == XFS_LI_INODE) {
1705 iip = (xfs_inode_log_item_t *)lip;
1706 ASSERT(iip->ili_logged == 1);
ca30b2a7 1707 lip->li_cb = xfs_istale_done;
5b257b4a
DC
1708 xfs_trans_ail_copy_lsn(mp->m_ail,
1709 &iip->ili_flush_lsn,
1710 &iip->ili_item.li_lsn);
1711 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
1712 }
1713 lip = lip->li_bio_list;
1714 }
1da177e4 1715
5b3eed75 1716
1da177e4 1717 /*
5b257b4a
DC
1718 * For each inode in memory attempt to add it to the inode
1719 * buffer and set it up for being staled on buffer IO
1720 * completion. This is safe as we've locked out tail pushing
1721 * and flushing by locking the buffer.
1da177e4 1722 *
5b257b4a
DC
1723 * We have already marked every inode that was part of a
1724 * transaction stale above, which means there is no point in
1725 * even trying to lock them.
1da177e4 1726 */
1da177e4 1727 for (i = 0; i < ninodes; i++) {
5b3eed75 1728retry:
1a3e8f3d 1729 rcu_read_lock();
da353b0d
DC
1730 ip = radix_tree_lookup(&pag->pag_ici_root,
1731 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 1732
1a3e8f3d
DC
1733 /* Inode not in memory, nothing to do */
1734 if (!ip) {
1735 rcu_read_unlock();
1da177e4
LT
1736 continue;
1737 }
1738
1a3e8f3d
DC
1739 /*
1740 * because this is an RCU protected lookup, we could
1741 * find a recently freed or even reallocated inode
1742 * during the lookup. We need to check under the
1743 * i_flags_lock for a valid inode here. Skip it if it
1744 * is not valid, the wrong inode or stale.
1745 */
1746 spin_lock(&ip->i_flags_lock);
1747 if (ip->i_ino != inum + i ||
1748 __xfs_iflags_test(ip, XFS_ISTALE)) {
1749 spin_unlock(&ip->i_flags_lock);
1750 rcu_read_unlock();
1751 continue;
1752 }
1753 spin_unlock(&ip->i_flags_lock);
1754
5b3eed75
DC
1755 /*
1756 * Don't try to lock/unlock the current inode, but we
1757 * _cannot_ skip the other inodes that we did not find
1758 * in the list attached to the buffer and are not
1759 * already marked stale. If we can't lock it, back off
1760 * and retry.
1761 */
5b257b4a
DC
1762 if (ip != free_ip &&
1763 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 1764 rcu_read_unlock();
5b3eed75
DC
1765 delay(1);
1766 goto retry;
1da177e4 1767 }
1a3e8f3d 1768 rcu_read_unlock();
1da177e4 1769
5b3eed75 1770 xfs_iflock(ip);
5b257b4a 1771 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 1772
5b3eed75
DC
1773 /*
1774 * we don't need to attach clean inodes or those only
1775 * with unlogged changes (which we throw away, anyway).
1776 */
1da177e4 1777 iip = ip->i_itemp;
5b3eed75 1778 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 1779 ASSERT(ip != free_ip);
1da177e4
LT
1780 ip->i_update_core = 0;
1781 xfs_ifunlock(ip);
1782 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1783 continue;
1784 }
1785
1786 iip->ili_last_fields = iip->ili_format.ilf_fields;
1787 iip->ili_format.ilf_fields = 0;
1788 iip->ili_logged = 1;
7b2e2a31
DC
1789 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1790 &iip->ili_item.li_lsn);
1da177e4 1791
ca30b2a7
CH
1792 xfs_buf_attach_iodone(bp, xfs_istale_done,
1793 &iip->ili_item);
5b257b4a
DC
1794
1795 if (ip != free_ip)
1da177e4 1796 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
1797 }
1798
5b3eed75 1799 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
1800 xfs_trans_binval(tp, bp);
1801 }
1802
5017e97d 1803 xfs_perag_put(pag);
2a30f36d 1804 return 0;
1da177e4
LT
1805}
1806
1807/*
1808 * This is called to return an inode to the inode free list.
1809 * The inode should already be truncated to 0 length and have
1810 * no pages associated with it. This routine also assumes that
1811 * the inode is already a part of the transaction.
1812 *
1813 * The on-disk copy of the inode will have been added to the list
1814 * of unlinked inodes in the AGI. We need to remove the inode from
1815 * that list atomically with respect to freeing it here.
1816 */
1817int
1818xfs_ifree(
1819 xfs_trans_t *tp,
1820 xfs_inode_t *ip,
1821 xfs_bmap_free_t *flist)
1822{
1823 int error;
1824 int delete;
1825 xfs_ino_t first_ino;
c319b58b
VA
1826 xfs_dinode_t *dip;
1827 xfs_buf_t *ibp;
1da177e4 1828
579aa9ca 1829 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
1830 ASSERT(ip->i_d.di_nlink == 0);
1831 ASSERT(ip->i_d.di_nextents == 0);
1832 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 1833 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
abbede1b 1834 (!S_ISREG(ip->i_d.di_mode)));
1da177e4
LT
1835 ASSERT(ip->i_d.di_nblocks == 0);
1836
1837 /*
1838 * Pull the on-disk inode from the AGI unlinked list.
1839 */
1840 error = xfs_iunlink_remove(tp, ip);
1841 if (error != 0) {
1842 return error;
1843 }
1844
1845 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1846 if (error != 0) {
1847 return error;
1848 }
1849 ip->i_d.di_mode = 0; /* mark incore inode as free */
1850 ip->i_d.di_flags = 0;
1851 ip->i_d.di_dmevmask = 0;
1852 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1853 ip->i_df.if_ext_max =
1854 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
1855 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1856 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1857 /*
1858 * Bump the generation count so no one will be confused
1859 * by reincarnations of this inode.
1860 */
1861 ip->i_d.di_gen++;
c319b58b 1862
1da177e4
LT
1863 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1864
0cadda1c 1865 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
c319b58b
VA
1866 if (error)
1867 return error;
1868
1869 /*
1870 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1871 * from picking up this inode when it is reclaimed (its incore state
1872 * initialzed but not flushed to disk yet). The in-core di_mode is
1873 * already cleared and a corresponding transaction logged.
1874 * The hack here just synchronizes the in-core to on-disk
1875 * di_mode value in advance before the actual inode sync to disk.
1876 * This is OK because the inode is already unlinked and would never
1877 * change its di_mode again for this inode generation.
1878 * This is a temporary hack that would require a proper fix
1879 * in the future.
1880 */
81591fe2 1881 dip->di_mode = 0;
c319b58b 1882
1da177e4 1883 if (delete) {
2a30f36d 1884 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4
LT
1885 }
1886
2a30f36d 1887 return error;
1da177e4
LT
1888}
1889
1890/*
1891 * Reallocate the space for if_broot based on the number of records
1892 * being added or deleted as indicated in rec_diff. Move the records
1893 * and pointers in if_broot to fit the new size. When shrinking this
1894 * will eliminate holes between the records and pointers created by
1895 * the caller. When growing this will create holes to be filled in
1896 * by the caller.
1897 *
1898 * The caller must not request to add more records than would fit in
1899 * the on-disk inode root. If the if_broot is currently NULL, then
1900 * if we adding records one will be allocated. The caller must also
1901 * not request that the number of records go below zero, although
1902 * it can go to zero.
1903 *
1904 * ip -- the inode whose if_broot area is changing
1905 * ext_diff -- the change in the number of records, positive or negative,
1906 * requested for the if_broot array.
1907 */
1908void
1909xfs_iroot_realloc(
1910 xfs_inode_t *ip,
1911 int rec_diff,
1912 int whichfork)
1913{
60197e8d 1914 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
1915 int cur_max;
1916 xfs_ifork_t *ifp;
7cc95a82 1917 struct xfs_btree_block *new_broot;
1da177e4
LT
1918 int new_max;
1919 size_t new_size;
1920 char *np;
1921 char *op;
1922
1923 /*
1924 * Handle the degenerate case quietly.
1925 */
1926 if (rec_diff == 0) {
1927 return;
1928 }
1929
1930 ifp = XFS_IFORK_PTR(ip, whichfork);
1931 if (rec_diff > 0) {
1932 /*
1933 * If there wasn't any memory allocated before, just
1934 * allocate it now and get out.
1935 */
1936 if (ifp->if_broot_bytes == 0) {
1937 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
4a7edddc 1938 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
1939 ifp->if_broot_bytes = (int)new_size;
1940 return;
1941 }
1942
1943 /*
1944 * If there is already an existing if_broot, then we need
1945 * to realloc() it and shift the pointers to their new
1946 * location. The records don't change location because
1947 * they are kept butted up against the btree block header.
1948 */
60197e8d 1949 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
1950 new_max = cur_max + rec_diff;
1951 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 1952 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4 1953 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
4a7edddc 1954 KM_SLEEP | KM_NOFS);
60197e8d
CH
1955 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1956 ifp->if_broot_bytes);
1957 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1958 (int)new_size);
1da177e4
LT
1959 ifp->if_broot_bytes = (int)new_size;
1960 ASSERT(ifp->if_broot_bytes <=
1961 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1962 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1963 return;
1964 }
1965
1966 /*
1967 * rec_diff is less than 0. In this case, we are shrinking the
1968 * if_broot buffer. It must already exist. If we go to zero
1969 * records, just get rid of the root and clear the status bit.
1970 */
1971 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 1972 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
1973 new_max = cur_max + rec_diff;
1974 ASSERT(new_max >= 0);
1975 if (new_max > 0)
1976 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1977 else
1978 new_size = 0;
1979 if (new_size > 0) {
4a7edddc 1980 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
1981 /*
1982 * First copy over the btree block header.
1983 */
7cc95a82 1984 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
1985 } else {
1986 new_broot = NULL;
1987 ifp->if_flags &= ~XFS_IFBROOT;
1988 }
1989
1990 /*
1991 * Only copy the records and pointers if there are any.
1992 */
1993 if (new_max > 0) {
1994 /*
1995 * First copy the records.
1996 */
136341b4
CH
1997 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1998 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
1999 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2000
2001 /*
2002 * Then copy the pointers.
2003 */
60197e8d 2004 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2005 ifp->if_broot_bytes);
60197e8d 2006 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2007 (int)new_size);
2008 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2009 }
f0e2d93c 2010 kmem_free(ifp->if_broot);
1da177e4
LT
2011 ifp->if_broot = new_broot;
2012 ifp->if_broot_bytes = (int)new_size;
2013 ASSERT(ifp->if_broot_bytes <=
2014 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2015 return;
2016}
2017
2018
1da177e4
LT
2019/*
2020 * This is called when the amount of space needed for if_data
2021 * is increased or decreased. The change in size is indicated by
2022 * the number of bytes that need to be added or deleted in the
2023 * byte_diff parameter.
2024 *
2025 * If the amount of space needed has decreased below the size of the
2026 * inline buffer, then switch to using the inline buffer. Otherwise,
2027 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2028 * to what is needed.
2029 *
2030 * ip -- the inode whose if_data area is changing
2031 * byte_diff -- the change in the number of bytes, positive or negative,
2032 * requested for the if_data array.
2033 */
2034void
2035xfs_idata_realloc(
2036 xfs_inode_t *ip,
2037 int byte_diff,
2038 int whichfork)
2039{
2040 xfs_ifork_t *ifp;
2041 int new_size;
2042 int real_size;
2043
2044 if (byte_diff == 0) {
2045 return;
2046 }
2047
2048 ifp = XFS_IFORK_PTR(ip, whichfork);
2049 new_size = (int)ifp->if_bytes + byte_diff;
2050 ASSERT(new_size >= 0);
2051
2052 if (new_size == 0) {
2053 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2054 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2055 }
2056 ifp->if_u1.if_data = NULL;
2057 real_size = 0;
2058 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2059 /*
2060 * If the valid extents/data can fit in if_inline_ext/data,
2061 * copy them from the malloc'd vector and free it.
2062 */
2063 if (ifp->if_u1.if_data == NULL) {
2064 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2065 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2066 ASSERT(ifp->if_real_bytes != 0);
2067 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2068 new_size);
f0e2d93c 2069 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2070 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2071 }
2072 real_size = 0;
2073 } else {
2074 /*
2075 * Stuck with malloc/realloc.
2076 * For inline data, the underlying buffer must be
2077 * a multiple of 4 bytes in size so that it can be
2078 * logged and stay on word boundaries. We enforce
2079 * that here.
2080 */
2081 real_size = roundup(new_size, 4);
2082 if (ifp->if_u1.if_data == NULL) {
2083 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2084 ifp->if_u1.if_data = kmem_alloc(real_size,
2085 KM_SLEEP | KM_NOFS);
1da177e4
LT
2086 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2087 /*
2088 * Only do the realloc if the underlying size
2089 * is really changing.
2090 */
2091 if (ifp->if_real_bytes != real_size) {
2092 ifp->if_u1.if_data =
2093 kmem_realloc(ifp->if_u1.if_data,
2094 real_size,
2095 ifp->if_real_bytes,
4a7edddc 2096 KM_SLEEP | KM_NOFS);
1da177e4
LT
2097 }
2098 } else {
2099 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2100 ifp->if_u1.if_data = kmem_alloc(real_size,
2101 KM_SLEEP | KM_NOFS);
1da177e4
LT
2102 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2103 ifp->if_bytes);
2104 }
2105 }
2106 ifp->if_real_bytes = real_size;
2107 ifp->if_bytes = new_size;
2108 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2109}
2110
1da177e4
LT
2111void
2112xfs_idestroy_fork(
2113 xfs_inode_t *ip,
2114 int whichfork)
2115{
2116 xfs_ifork_t *ifp;
2117
2118 ifp = XFS_IFORK_PTR(ip, whichfork);
2119 if (ifp->if_broot != NULL) {
f0e2d93c 2120 kmem_free(ifp->if_broot);
1da177e4
LT
2121 ifp->if_broot = NULL;
2122 }
2123
2124 /*
2125 * If the format is local, then we can't have an extents
2126 * array so just look for an inline data array. If we're
2127 * not local then we may or may not have an extents list,
2128 * so check and free it up if we do.
2129 */
2130 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2131 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2132 (ifp->if_u1.if_data != NULL)) {
2133 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2134 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2135 ifp->if_u1.if_data = NULL;
2136 ifp->if_real_bytes = 0;
2137 }
2138 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2139 ((ifp->if_flags & XFS_IFEXTIREC) ||
2140 ((ifp->if_u1.if_extents != NULL) &&
2141 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2142 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2143 xfs_iext_destroy(ifp);
1da177e4
LT
2144 }
2145 ASSERT(ifp->if_u1.if_extents == NULL ||
2146 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2147 ASSERT(ifp->if_real_bytes == 0);
2148 if (whichfork == XFS_ATTR_FORK) {
2149 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2150 ip->i_afp = NULL;
2151 }
2152}
2153
1da177e4 2154/*
60ec6783
CH
2155 * This is called to unpin an inode. The caller must have the inode locked
2156 * in at least shared mode so that the buffer cannot be subsequently pinned
2157 * once someone is waiting for it to be unpinned.
1da177e4 2158 */
60ec6783
CH
2159static void
2160xfs_iunpin_nowait(
2161 struct xfs_inode *ip)
1da177e4 2162{
579aa9ca 2163 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2164
4aaf15d1
DC
2165 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2166
a3f74ffb 2167 /* Give the log a push to start the unpinning I/O */
60ec6783 2168 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2169
a3f74ffb 2170}
1da177e4 2171
777df5af 2172void
a3f74ffb 2173xfs_iunpin_wait(
60ec6783 2174 struct xfs_inode *ip)
a3f74ffb 2175{
60ec6783
CH
2176 if (xfs_ipincount(ip)) {
2177 xfs_iunpin_nowait(ip);
2178 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2179 }
1da177e4
LT
2180}
2181
1da177e4
LT
2182/*
2183 * xfs_iextents_copy()
2184 *
2185 * This is called to copy the REAL extents (as opposed to the delayed
2186 * allocation extents) from the inode into the given buffer. It
2187 * returns the number of bytes copied into the buffer.
2188 *
2189 * If there are no delayed allocation extents, then we can just
2190 * memcpy() the extents into the buffer. Otherwise, we need to
2191 * examine each extent in turn and skip those which are delayed.
2192 */
2193int
2194xfs_iextents_copy(
2195 xfs_inode_t *ip,
a6f64d4a 2196 xfs_bmbt_rec_t *dp,
1da177e4
LT
2197 int whichfork)
2198{
2199 int copied;
1da177e4
LT
2200 int i;
2201 xfs_ifork_t *ifp;
2202 int nrecs;
2203 xfs_fsblock_t start_block;
2204
2205 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2206 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2207 ASSERT(ifp->if_bytes > 0);
2208
2209 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2210 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2211 ASSERT(nrecs > 0);
2212
2213 /*
2214 * There are some delayed allocation extents in the
2215 * inode, so copy the extents one at a time and skip
2216 * the delayed ones. There must be at least one
2217 * non-delayed extent.
2218 */
1da177e4
LT
2219 copied = 0;
2220 for (i = 0; i < nrecs; i++) {
a6f64d4a 2221 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4 2222 start_block = xfs_bmbt_get_startblock(ep);
9d87c319 2223 if (isnullstartblock(start_block)) {
1da177e4
LT
2224 /*
2225 * It's a delayed allocation extent, so skip it.
2226 */
1da177e4
LT
2227 continue;
2228 }
2229
2230 /* Translate to on disk format */
cd8b0a97
CH
2231 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2232 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2233 dp++;
1da177e4
LT
2234 copied++;
2235 }
2236 ASSERT(copied != 0);
a6f64d4a 2237 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2238
2239 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2240}
2241
2242/*
2243 * Each of the following cases stores data into the same region
2244 * of the on-disk inode, so only one of them can be valid at
2245 * any given time. While it is possible to have conflicting formats
2246 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2247 * in EXTENTS format, this can only happen when the fork has
2248 * changed formats after being modified but before being flushed.
2249 * In these cases, the format always takes precedence, because the
2250 * format indicates the current state of the fork.
2251 */
2252/*ARGSUSED*/
e4ac967b 2253STATIC void
1da177e4
LT
2254xfs_iflush_fork(
2255 xfs_inode_t *ip,
2256 xfs_dinode_t *dip,
2257 xfs_inode_log_item_t *iip,
2258 int whichfork,
2259 xfs_buf_t *bp)
2260{
2261 char *cp;
2262 xfs_ifork_t *ifp;
2263 xfs_mount_t *mp;
2264#ifdef XFS_TRANS_DEBUG
2265 int first;
2266#endif
2267 static const short brootflag[2] =
2268 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2269 static const short dataflag[2] =
2270 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2271 static const short extflag[2] =
2272 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2273
e4ac967b
DC
2274 if (!iip)
2275 return;
1da177e4
LT
2276 ifp = XFS_IFORK_PTR(ip, whichfork);
2277 /*
2278 * This can happen if we gave up in iformat in an error path,
2279 * for the attribute fork.
2280 */
e4ac967b 2281 if (!ifp) {
1da177e4 2282 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2283 return;
1da177e4
LT
2284 }
2285 cp = XFS_DFORK_PTR(dip, whichfork);
2286 mp = ip->i_mount;
2287 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2288 case XFS_DINODE_FMT_LOCAL:
2289 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2290 (ifp->if_bytes > 0)) {
2291 ASSERT(ifp->if_u1.if_data != NULL);
2292 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2293 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2294 }
1da177e4
LT
2295 break;
2296
2297 case XFS_DINODE_FMT_EXTENTS:
2298 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2299 !(iip->ili_format.ilf_fields & extflag[whichfork]));
1da177e4
LT
2300 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2301 (ifp->if_bytes > 0)) {
ab1908a5 2302 ASSERT(xfs_iext_get_ext(ifp, 0));
1da177e4
LT
2303 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2304 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2305 whichfork);
2306 }
2307 break;
2308
2309 case XFS_DINODE_FMT_BTREE:
2310 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2311 (ifp->if_broot_bytes > 0)) {
2312 ASSERT(ifp->if_broot != NULL);
2313 ASSERT(ifp->if_broot_bytes <=
2314 (XFS_IFORK_SIZE(ip, whichfork) +
2315 XFS_BROOT_SIZE_ADJ));
60197e8d 2316 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2317 (xfs_bmdr_block_t *)cp,
2318 XFS_DFORK_SIZE(dip, mp, whichfork));
2319 }
2320 break;
2321
2322 case XFS_DINODE_FMT_DEV:
2323 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2324 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2325 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2326 }
2327 break;
2328
2329 case XFS_DINODE_FMT_UUID:
2330 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2331 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2332 memcpy(XFS_DFORK_DPTR(dip),
2333 &ip->i_df.if_u2.if_uuid,
2334 sizeof(uuid_t));
1da177e4
LT
2335 }
2336 break;
2337
2338 default:
2339 ASSERT(0);
2340 break;
2341 }
1da177e4
LT
2342}
2343
bad55843
DC
2344STATIC int
2345xfs_iflush_cluster(
2346 xfs_inode_t *ip,
2347 xfs_buf_t *bp)
2348{
2349 xfs_mount_t *mp = ip->i_mount;
5017e97d 2350 struct xfs_perag *pag;
bad55843 2351 unsigned long first_index, mask;
c8f5f12e 2352 unsigned long inodes_per_cluster;
bad55843
DC
2353 int ilist_size;
2354 xfs_inode_t **ilist;
2355 xfs_inode_t *iq;
bad55843
DC
2356 int nr_found;
2357 int clcount = 0;
2358 int bufwasdelwri;
2359 int i;
2360
5017e97d 2361 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
bad55843 2362
c8f5f12e
DC
2363 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2364 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2365 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843 2366 if (!ilist)
44b56e0a 2367 goto out_put;
bad55843
DC
2368
2369 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2370 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
1a3e8f3d 2371 rcu_read_lock();
bad55843
DC
2372 /* really need a gang lookup range call here */
2373 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2374 first_index, inodes_per_cluster);
bad55843
DC
2375 if (nr_found == 0)
2376 goto out_free;
2377
2378 for (i = 0; i < nr_found; i++) {
2379 iq = ilist[i];
2380 if (iq == ip)
2381 continue;
1a3e8f3d
DC
2382
2383 /*
2384 * because this is an RCU protected lookup, we could find a
2385 * recently freed or even reallocated inode during the lookup.
2386 * We need to check under the i_flags_lock for a valid inode
2387 * here. Skip it if it is not valid or the wrong inode.
2388 */
2389 spin_lock(&ip->i_flags_lock);
2390 if (!ip->i_ino ||
2391 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2392 spin_unlock(&ip->i_flags_lock);
2393 continue;
2394 }
2395 spin_unlock(&ip->i_flags_lock);
2396
bad55843
DC
2397 /*
2398 * Do an un-protected check to see if the inode is dirty and
2399 * is a candidate for flushing. These checks will be repeated
2400 * later after the appropriate locks are acquired.
2401 */
33540408 2402 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2403 continue;
bad55843
DC
2404
2405 /*
2406 * Try to get locks. If any are unavailable or it is pinned,
2407 * then this inode cannot be flushed and is skipped.
2408 */
2409
2410 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2411 continue;
2412 if (!xfs_iflock_nowait(iq)) {
2413 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2414 continue;
2415 }
2416 if (xfs_ipincount(iq)) {
2417 xfs_ifunlock(iq);
2418 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2419 continue;
2420 }
2421
2422 /*
2423 * arriving here means that this inode can be flushed. First
2424 * re-check that it's dirty before flushing.
2425 */
33540408
DC
2426 if (!xfs_inode_clean(iq)) {
2427 int error;
bad55843
DC
2428 error = xfs_iflush_int(iq, bp);
2429 if (error) {
2430 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2431 goto cluster_corrupt_out;
2432 }
2433 clcount++;
2434 } else {
2435 xfs_ifunlock(iq);
2436 }
2437 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2438 }
2439
2440 if (clcount) {
2441 XFS_STATS_INC(xs_icluster_flushcnt);
2442 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2443 }
2444
2445out_free:
1a3e8f3d 2446 rcu_read_unlock();
f0e2d93c 2447 kmem_free(ilist);
44b56e0a
DC
2448out_put:
2449 xfs_perag_put(pag);
bad55843
DC
2450 return 0;
2451
2452
2453cluster_corrupt_out:
2454 /*
2455 * Corruption detected in the clustering loop. Invalidate the
2456 * inode buffer and shut down the filesystem.
2457 */
1a3e8f3d 2458 rcu_read_unlock();
bad55843
DC
2459 /*
2460 * Clean up the buffer. If it was B_DELWRI, just release it --
2461 * brelse can handle it with no problems. If not, shut down the
2462 * filesystem before releasing the buffer.
2463 */
2464 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2465 if (bufwasdelwri)
2466 xfs_buf_relse(bp);
2467
2468 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2469
2470 if (!bufwasdelwri) {
2471 /*
2472 * Just like incore_relse: if we have b_iodone functions,
2473 * mark the buffer as an error and call them. Otherwise
2474 * mark it as stale and brelse.
2475 */
cb669ca5 2476 if (bp->b_iodone) {
bad55843
DC
2477 XFS_BUF_UNDONE(bp);
2478 XFS_BUF_STALE(bp);
5a52c2a5 2479 xfs_buf_ioerror(bp, EIO);
1a1a3e97 2480 xfs_buf_ioend(bp, 0);
bad55843
DC
2481 } else {
2482 XFS_BUF_STALE(bp);
2483 xfs_buf_relse(bp);
2484 }
2485 }
2486
2487 /*
2488 * Unlocks the flush lock
2489 */
2490 xfs_iflush_abort(iq);
f0e2d93c 2491 kmem_free(ilist);
44b56e0a 2492 xfs_perag_put(pag);
bad55843
DC
2493 return XFS_ERROR(EFSCORRUPTED);
2494}
2495
1da177e4
LT
2496/*
2497 * xfs_iflush() will write a modified inode's changes out to the
2498 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
2499 * in at least shared mode and the inode flush completion must be
2500 * active as well. The inode lock will still be held upon return from
1da177e4 2501 * the call and the caller is free to unlock it.
c63942d3 2502 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
2503 * The flags indicate how the inode's buffer should be written out.
2504 */
2505int
2506xfs_iflush(
2507 xfs_inode_t *ip,
2508 uint flags)
2509{
2510 xfs_inode_log_item_t *iip;
2511 xfs_buf_t *bp;
2512 xfs_dinode_t *dip;
2513 xfs_mount_t *mp;
2514 int error;
1da177e4
LT
2515
2516 XFS_STATS_INC(xs_iflush_count);
2517
579aa9ca 2518 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 2519 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
2520 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2521 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2522
2523 iip = ip->i_itemp;
2524 mp = ip->i_mount;
2525
1da177e4 2526 /*
a3f74ffb 2527 * We can't flush the inode until it is unpinned, so wait for it if we
25985edc 2528 * are allowed to block. We know no one new can pin it, because we are
a3f74ffb
DC
2529 * holding the inode lock shared and you need to hold it exclusively to
2530 * pin the inode.
2531 *
2532 * If we are not allowed to block, force the log out asynchronously so
2533 * that when we come back the inode will be unpinned. If other inodes
2534 * in the same cluster are dirty, they will probably write the inode
2535 * out for us if they occur after the log force completes.
1da177e4 2536 */
c854363e 2537 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
a3f74ffb
DC
2538 xfs_iunpin_nowait(ip);
2539 xfs_ifunlock(ip);
2540 return EAGAIN;
2541 }
1da177e4
LT
2542 xfs_iunpin_wait(ip);
2543
4b6a4688
DC
2544 /*
2545 * For stale inodes we cannot rely on the backing buffer remaining
2546 * stale in cache for the remaining life of the stale inode and so
2547 * xfs_itobp() below may give us a buffer that no longer contains
2548 * inodes below. We have to check this after ensuring the inode is
2549 * unpinned so that it is safe to reclaim the stale inode after the
2550 * flush call.
2551 */
2552 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2553 xfs_ifunlock(ip);
2554 return 0;
2555 }
2556
1da177e4
LT
2557 /*
2558 * This may have been unpinned because the filesystem is shutting
2559 * down forcibly. If that's the case we must not write this inode
2560 * to disk, because the log record didn't make it to disk!
2561 */
2562 if (XFS_FORCED_SHUTDOWN(mp)) {
2563 ip->i_update_core = 0;
2564 if (iip)
2565 iip->ili_format.ilf_fields = 0;
2566 xfs_ifunlock(ip);
2567 return XFS_ERROR(EIO);
2568 }
2569
a3f74ffb
DC
2570 /*
2571 * Get the buffer containing the on-disk inode.
2572 */
76d8b277 2573 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
1bfd8d04 2574 (flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
a3f74ffb
DC
2575 if (error || !bp) {
2576 xfs_ifunlock(ip);
2577 return error;
2578 }
2579
1da177e4
LT
2580 /*
2581 * First flush out the inode that xfs_iflush was called with.
2582 */
2583 error = xfs_iflush_int(ip, bp);
bad55843 2584 if (error)
1da177e4 2585 goto corrupt_out;
1da177e4 2586
a3f74ffb
DC
2587 /*
2588 * If the buffer is pinned then push on the log now so we won't
2589 * get stuck waiting in the write for too long.
2590 */
811e64c7 2591 if (xfs_buf_ispinned(bp))
a14a348b 2592 xfs_log_force(mp, 0);
a3f74ffb 2593
1da177e4
LT
2594 /*
2595 * inode clustering:
2596 * see if other inodes can be gathered into this write
2597 */
bad55843
DC
2598 error = xfs_iflush_cluster(ip, bp);
2599 if (error)
2600 goto cluster_corrupt_out;
1da177e4 2601
c854363e 2602 if (flags & SYNC_WAIT)
c2b006c1
CH
2603 error = xfs_bwrite(bp);
2604 else
61551f1e 2605 xfs_buf_delwri_queue(bp);
c2b006c1
CH
2606
2607 xfs_buf_relse(bp);
1da177e4
LT
2608 return error;
2609
2610corrupt_out:
2611 xfs_buf_relse(bp);
7d04a335 2612 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 2613cluster_corrupt_out:
1da177e4
LT
2614 /*
2615 * Unlocks the flush lock
2616 */
bad55843 2617 xfs_iflush_abort(ip);
1da177e4
LT
2618 return XFS_ERROR(EFSCORRUPTED);
2619}
2620
2621
2622STATIC int
2623xfs_iflush_int(
2624 xfs_inode_t *ip,
2625 xfs_buf_t *bp)
2626{
2627 xfs_inode_log_item_t *iip;
2628 xfs_dinode_t *dip;
2629 xfs_mount_t *mp;
2630#ifdef XFS_TRANS_DEBUG
2631 int first;
2632#endif
1da177e4 2633
579aa9ca 2634 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 2635 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
2636 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2637 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2638
2639 iip = ip->i_itemp;
2640 mp = ip->i_mount;
2641
1da177e4 2642 /* set *dip = inode's place in the buffer */
92bfc6e7 2643 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
2644
2645 /*
2646 * Clear i_update_core before copying out the data.
2647 * This is for coordination with our timestamp updates
2648 * that don't hold the inode lock. They will always
2649 * update the timestamps BEFORE setting i_update_core,
2650 * so if we clear i_update_core after they set it we
2651 * are guaranteed to see their updates to the timestamps.
2652 * I believe that this depends on strongly ordered memory
2653 * semantics, but we have that. We use the SYNCHRONIZE
2654 * macro to make sure that the compiler does not reorder
2655 * the i_update_core access below the data copy below.
2656 */
2657 ip->i_update_core = 0;
2658 SYNCHRONIZE();
2659
42fe2b1f 2660 /*
f9581b14 2661 * Make sure to get the latest timestamps from the Linux inode.
42fe2b1f 2662 */
f9581b14 2663 xfs_synchronize_times(ip);
42fe2b1f 2664
69ef921b 2665 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 2666 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
2667 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2668 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2669 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
2670 goto corrupt_out;
2671 }
2672 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2673 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
2674 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2675 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2676 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
2677 goto corrupt_out;
2678 }
abbede1b 2679 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
2680 if (XFS_TEST_ERROR(
2681 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2682 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2683 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
2684 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2685 "%s: Bad regular inode %Lu, ptr 0x%p",
2686 __func__, ip->i_ino, ip);
1da177e4
LT
2687 goto corrupt_out;
2688 }
abbede1b 2689 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
2690 if (XFS_TEST_ERROR(
2691 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2692 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2693 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2694 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
2695 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2696 "%s: Bad directory inode %Lu, ptr 0x%p",
2697 __func__, ip->i_ino, ip);
1da177e4
LT
2698 goto corrupt_out;
2699 }
2700 }
2701 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2702 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2703 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
2704 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2705 "%s: detected corrupt incore inode %Lu, "
2706 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2707 __func__, ip->i_ino,
1da177e4 2708 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 2709 ip->i_d.di_nblocks, ip);
1da177e4
LT
2710 goto corrupt_out;
2711 }
2712 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2713 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
2714 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2715 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2716 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
2717 goto corrupt_out;
2718 }
2719 /*
2720 * bump the flush iteration count, used to detect flushes which
2721 * postdate a log record during recovery.
2722 */
2723
2724 ip->i_d.di_flushiter++;
2725
2726 /*
2727 * Copy the dirty parts of the inode into the on-disk
2728 * inode. We always copy out the core of the inode,
2729 * because if the inode is dirty at all the core must
2730 * be.
2731 */
81591fe2 2732 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
2733
2734 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2735 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2736 ip->i_d.di_flushiter = 0;
2737
2738 /*
2739 * If this is really an old format inode and the superblock version
2740 * has not been updated to support only new format inodes, then
2741 * convert back to the old inode format. If the superblock version
2742 * has been updated, then make the conversion permanent.
2743 */
51ce16d5
CH
2744 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2745 if (ip->i_d.di_version == 1) {
62118709 2746 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
2747 /*
2748 * Convert it back.
2749 */
2750 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 2751 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
2752 } else {
2753 /*
2754 * The superblock version has already been bumped,
2755 * so just make the conversion to the new inode
2756 * format permanent.
2757 */
51ce16d5
CH
2758 ip->i_d.di_version = 2;
2759 dip->di_version = 2;
1da177e4 2760 ip->i_d.di_onlink = 0;
81591fe2 2761 dip->di_onlink = 0;
1da177e4 2762 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
2763 memset(&(dip->di_pad[0]), 0,
2764 sizeof(dip->di_pad));
6743099c 2765 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
2766 }
2767 }
2768
e4ac967b
DC
2769 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2770 if (XFS_IFORK_Q(ip))
2771 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
2772 xfs_inobp_check(mp, bp);
2773
2774 /*
2775 * We've recorded everything logged in the inode, so we'd
2776 * like to clear the ilf_fields bits so we don't log and
2777 * flush things unnecessarily. However, we can't stop
2778 * logging all this information until the data we've copied
2779 * into the disk buffer is written to disk. If we did we might
2780 * overwrite the copy of the inode in the log with all the
2781 * data after re-logging only part of it, and in the face of
2782 * a crash we wouldn't have all the data we need to recover.
2783 *
2784 * What we do is move the bits to the ili_last_fields field.
2785 * When logging the inode, these bits are moved back to the
2786 * ilf_fields field. In the xfs_iflush_done() routine we
2787 * clear ili_last_fields, since we know that the information
2788 * those bits represent is permanently on disk. As long as
2789 * the flush completes before the inode is logged again, then
2790 * both ilf_fields and ili_last_fields will be cleared.
2791 *
2792 * We can play with the ilf_fields bits here, because the inode
2793 * lock must be held exclusively in order to set bits there
2794 * and the flush lock protects the ili_last_fields bits.
2795 * Set ili_logged so the flush done
2796 * routine can tell whether or not to look in the AIL.
2797 * Also, store the current LSN of the inode so that we can tell
2798 * whether the item has moved in the AIL from xfs_iflush_done().
2799 * In order to read the lsn we need the AIL lock, because
2800 * it is a 64 bit value that cannot be read atomically.
2801 */
2802 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
2803 iip->ili_last_fields = iip->ili_format.ilf_fields;
2804 iip->ili_format.ilf_fields = 0;
2805 iip->ili_logged = 1;
2806
7b2e2a31
DC
2807 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2808 &iip->ili_item.li_lsn);
1da177e4
LT
2809
2810 /*
2811 * Attach the function xfs_iflush_done to the inode's
2812 * buffer. This will remove the inode from the AIL
2813 * and unlock the inode's flush lock when the inode is
2814 * completely written to disk.
2815 */
ca30b2a7 2816 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 2817
adadbeef 2818 ASSERT(bp->b_fspriv != NULL);
cb669ca5 2819 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
2820 } else {
2821 /*
2822 * We're flushing an inode which is not in the AIL and has
2823 * not been logged but has i_update_core set. For this
2824 * case we can use a B_DELWRI flush and immediately drop
2825 * the inode flush lock because we can avoid the whole
2826 * AIL state thing. It's OK to drop the flush lock now,
2827 * because we've already locked the buffer and to do anything
2828 * you really need both.
2829 */
2830 if (iip != NULL) {
2831 ASSERT(iip->ili_logged == 0);
2832 ASSERT(iip->ili_last_fields == 0);
2833 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2834 }
2835 xfs_ifunlock(ip);
2836 }
2837
2838 return 0;
2839
2840corrupt_out:
2841 return XFS_ERROR(EFSCORRUPTED);
2842}
2843
4eea22f0
MK
2844/*
2845 * Return a pointer to the extent record at file index idx.
2846 */
a6f64d4a 2847xfs_bmbt_rec_host_t *
4eea22f0
MK
2848xfs_iext_get_ext(
2849 xfs_ifork_t *ifp, /* inode fork pointer */
2850 xfs_extnum_t idx) /* index of target extent */
2851{
2852 ASSERT(idx >= 0);
87bef181
CH
2853 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2854
0293ce3a
MK
2855 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2856 return ifp->if_u1.if_ext_irec->er_extbuf;
2857 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2858 xfs_ext_irec_t *erp; /* irec pointer */
2859 int erp_idx = 0; /* irec index */
2860 xfs_extnum_t page_idx = idx; /* ext index in target list */
2861
2862 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2863 return &erp->er_extbuf[page_idx];
2864 } else if (ifp->if_bytes) {
4eea22f0
MK
2865 return &ifp->if_u1.if_extents[idx];
2866 } else {
2867 return NULL;
2868 }
2869}
2870
2871/*
2872 * Insert new item(s) into the extent records for incore inode
2873 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2874 */
2875void
2876xfs_iext_insert(
6ef35544 2877 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0
MK
2878 xfs_extnum_t idx, /* starting index of new items */
2879 xfs_extnum_t count, /* number of inserted items */
6ef35544
CH
2880 xfs_bmbt_irec_t *new, /* items to insert */
2881 int state) /* type of extent conversion */
4eea22f0 2882{
6ef35544 2883 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
2884 xfs_extnum_t i; /* extent record index */
2885
0b1b213f
CH
2886 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2887
4eea22f0
MK
2888 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2889 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
2890 for (i = idx; i < idx + count; i++, new++)
2891 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
2892}
2893
2894/*
2895 * This is called when the amount of space required for incore file
2896 * extents needs to be increased. The ext_diff parameter stores the
2897 * number of new extents being added and the idx parameter contains
2898 * the extent index where the new extents will be added. If the new
2899 * extents are being appended, then we just need to (re)allocate and
2900 * initialize the space. Otherwise, if the new extents are being
2901 * inserted into the middle of the existing entries, a bit more work
2902 * is required to make room for the new extents to be inserted. The
2903 * caller is responsible for filling in the new extent entries upon
2904 * return.
2905 */
2906void
2907xfs_iext_add(
2908 xfs_ifork_t *ifp, /* inode fork pointer */
2909 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 2910 int ext_diff) /* number of extents to add */
4eea22f0
MK
2911{
2912 int byte_diff; /* new bytes being added */
2913 int new_size; /* size of extents after adding */
2914 xfs_extnum_t nextents; /* number of extents in file */
2915
2916 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2917 ASSERT((idx >= 0) && (idx <= nextents));
2918 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2919 new_size = ifp->if_bytes + byte_diff;
2920 /*
2921 * If the new number of extents (nextents + ext_diff)
2922 * fits inside the inode, then continue to use the inline
2923 * extent buffer.
2924 */
2925 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2926 if (idx < nextents) {
2927 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2928 &ifp->if_u2.if_inline_ext[idx],
2929 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2930 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2931 }
2932 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2933 ifp->if_real_bytes = 0;
2934 }
2935 /*
2936 * Otherwise use a linear (direct) extent list.
2937 * If the extents are currently inside the inode,
2938 * xfs_iext_realloc_direct will switch us from
2939 * inline to direct extent allocation mode.
2940 */
0293ce3a 2941 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
2942 xfs_iext_realloc_direct(ifp, new_size);
2943 if (idx < nextents) {
2944 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2945 &ifp->if_u1.if_extents[idx],
2946 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2947 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2948 }
2949 }
0293ce3a
MK
2950 /* Indirection array */
2951 else {
2952 xfs_ext_irec_t *erp;
2953 int erp_idx = 0;
2954 int page_idx = idx;
2955
2956 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2957 if (ifp->if_flags & XFS_IFEXTIREC) {
2958 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2959 } else {
2960 xfs_iext_irec_init(ifp);
2961 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2962 erp = ifp->if_u1.if_ext_irec;
2963 }
2964 /* Extents fit in target extent page */
2965 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2966 if (page_idx < erp->er_extcount) {
2967 memmove(&erp->er_extbuf[page_idx + ext_diff],
2968 &erp->er_extbuf[page_idx],
2969 (erp->er_extcount - page_idx) *
2970 sizeof(xfs_bmbt_rec_t));
2971 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2972 }
2973 erp->er_extcount += ext_diff;
2974 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2975 }
2976 /* Insert a new extent page */
2977 else if (erp) {
2978 xfs_iext_add_indirect_multi(ifp,
2979 erp_idx, page_idx, ext_diff);
2980 }
2981 /*
2982 * If extent(s) are being appended to the last page in
2983 * the indirection array and the new extent(s) don't fit
2984 * in the page, then erp is NULL and erp_idx is set to
2985 * the next index needed in the indirection array.
2986 */
2987 else {
2988 int count = ext_diff;
2989
2990 while (count) {
2991 erp = xfs_iext_irec_new(ifp, erp_idx);
2992 erp->er_extcount = count;
2993 count -= MIN(count, (int)XFS_LINEAR_EXTS);
2994 if (count) {
2995 erp_idx++;
2996 }
2997 }
2998 }
2999 }
4eea22f0
MK
3000 ifp->if_bytes = new_size;
3001}
3002
0293ce3a
MK
3003/*
3004 * This is called when incore extents are being added to the indirection
3005 * array and the new extents do not fit in the target extent list. The
3006 * erp_idx parameter contains the irec index for the target extent list
3007 * in the indirection array, and the idx parameter contains the extent
3008 * index within the list. The number of extents being added is stored
3009 * in the count parameter.
3010 *
3011 * |-------| |-------|
3012 * | | | | idx - number of extents before idx
3013 * | idx | | count |
3014 * | | | | count - number of extents being inserted at idx
3015 * |-------| |-------|
3016 * | count | | nex2 | nex2 - number of extents after idx + count
3017 * |-------| |-------|
3018 */
3019void
3020xfs_iext_add_indirect_multi(
3021 xfs_ifork_t *ifp, /* inode fork pointer */
3022 int erp_idx, /* target extent irec index */
3023 xfs_extnum_t idx, /* index within target list */
3024 int count) /* new extents being added */
3025{
3026 int byte_diff; /* new bytes being added */
3027 xfs_ext_irec_t *erp; /* pointer to irec entry */
3028 xfs_extnum_t ext_diff; /* number of extents to add */
3029 xfs_extnum_t ext_cnt; /* new extents still needed */
3030 xfs_extnum_t nex2; /* extents after idx + count */
3031 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3032 int nlists; /* number of irec's (lists) */
3033
3034 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3035 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3036 nex2 = erp->er_extcount - idx;
3037 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3038
3039 /*
3040 * Save second part of target extent list
3041 * (all extents past */
3042 if (nex2) {
3043 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3044 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3045 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3046 erp->er_extcount -= nex2;
3047 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3048 memset(&erp->er_extbuf[idx], 0, byte_diff);
3049 }
3050
3051 /*
3052 * Add the new extents to the end of the target
3053 * list, then allocate new irec record(s) and
3054 * extent buffer(s) as needed to store the rest
3055 * of the new extents.
3056 */
3057 ext_cnt = count;
3058 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3059 if (ext_diff) {
3060 erp->er_extcount += ext_diff;
3061 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3062 ext_cnt -= ext_diff;
3063 }
3064 while (ext_cnt) {
3065 erp_idx++;
3066 erp = xfs_iext_irec_new(ifp, erp_idx);
3067 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3068 erp->er_extcount = ext_diff;
3069 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3070 ext_cnt -= ext_diff;
3071 }
3072
3073 /* Add nex2 extents back to indirection array */
3074 if (nex2) {
3075 xfs_extnum_t ext_avail;
3076 int i;
3077
3078 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3079 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3080 i = 0;
3081 /*
3082 * If nex2 extents fit in the current page, append
3083 * nex2_ep after the new extents.
3084 */
3085 if (nex2 <= ext_avail) {
3086 i = erp->er_extcount;
3087 }
3088 /*
3089 * Otherwise, check if space is available in the
3090 * next page.
3091 */
3092 else if ((erp_idx < nlists - 1) &&
3093 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3094 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3095 erp_idx++;
3096 erp++;
3097 /* Create a hole for nex2 extents */
3098 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3099 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3100 }
3101 /*
3102 * Final choice, create a new extent page for
3103 * nex2 extents.
3104 */
3105 else {
3106 erp_idx++;
3107 erp = xfs_iext_irec_new(ifp, erp_idx);
3108 }
3109 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3110 kmem_free(nex2_ep);
0293ce3a
MK
3111 erp->er_extcount += nex2;
3112 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3113 }
3114}
3115
4eea22f0
MK
3116/*
3117 * This is called when the amount of space required for incore file
3118 * extents needs to be decreased. The ext_diff parameter stores the
3119 * number of extents to be removed and the idx parameter contains
3120 * the extent index where the extents will be removed from.
0293ce3a
MK
3121 *
3122 * If the amount of space needed has decreased below the linear
3123 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3124 * extent array. Otherwise, use kmem_realloc() to adjust the
3125 * size to what is needed.
4eea22f0
MK
3126 */
3127void
3128xfs_iext_remove(
6ef35544 3129 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0 3130 xfs_extnum_t idx, /* index to begin removing exts */
6ef35544
CH
3131 int ext_diff, /* number of extents to remove */
3132 int state) /* type of extent conversion */
4eea22f0 3133{
6ef35544 3134 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3135 xfs_extnum_t nextents; /* number of extents in file */
3136 int new_size; /* size of extents after removal */
3137
0b1b213f
CH
3138 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3139
4eea22f0
MK
3140 ASSERT(ext_diff > 0);
3141 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3142 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3143
3144 if (new_size == 0) {
3145 xfs_iext_destroy(ifp);
0293ce3a
MK
3146 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3147 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3148 } else if (ifp->if_real_bytes) {
3149 xfs_iext_remove_direct(ifp, idx, ext_diff);
3150 } else {
3151 xfs_iext_remove_inline(ifp, idx, ext_diff);
3152 }
3153 ifp->if_bytes = new_size;
3154}
3155
3156/*
3157 * This removes ext_diff extents from the inline buffer, beginning
3158 * at extent index idx.
3159 */
3160void
3161xfs_iext_remove_inline(
3162 xfs_ifork_t *ifp, /* inode fork pointer */
3163 xfs_extnum_t idx, /* index to begin removing exts */
3164 int ext_diff) /* number of extents to remove */
3165{
3166 int nextents; /* number of extents in file */
3167
0293ce3a 3168 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3169 ASSERT(idx < XFS_INLINE_EXTS);
3170 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3171 ASSERT(((nextents - ext_diff) > 0) &&
3172 (nextents - ext_diff) < XFS_INLINE_EXTS);
3173
3174 if (idx + ext_diff < nextents) {
3175 memmove(&ifp->if_u2.if_inline_ext[idx],
3176 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3177 (nextents - (idx + ext_diff)) *
3178 sizeof(xfs_bmbt_rec_t));
3179 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3180 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3181 } else {
3182 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3183 ext_diff * sizeof(xfs_bmbt_rec_t));
3184 }
3185}
3186
3187/*
3188 * This removes ext_diff extents from a linear (direct) extent list,
3189 * beginning at extent index idx. If the extents are being removed
3190 * from the end of the list (ie. truncate) then we just need to re-
3191 * allocate the list to remove the extra space. Otherwise, if the
3192 * extents are being removed from the middle of the existing extent
3193 * entries, then we first need to move the extent records beginning
3194 * at idx + ext_diff up in the list to overwrite the records being
3195 * removed, then remove the extra space via kmem_realloc.
3196 */
3197void
3198xfs_iext_remove_direct(
3199 xfs_ifork_t *ifp, /* inode fork pointer */
3200 xfs_extnum_t idx, /* index to begin removing exts */
3201 int ext_diff) /* number of extents to remove */
3202{
3203 xfs_extnum_t nextents; /* number of extents in file */
3204 int new_size; /* size of extents after removal */
3205
0293ce3a 3206 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3207 new_size = ifp->if_bytes -
3208 (ext_diff * sizeof(xfs_bmbt_rec_t));
3209 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3210
3211 if (new_size == 0) {
3212 xfs_iext_destroy(ifp);
3213 return;
3214 }
3215 /* Move extents up in the list (if needed) */
3216 if (idx + ext_diff < nextents) {
3217 memmove(&ifp->if_u1.if_extents[idx],
3218 &ifp->if_u1.if_extents[idx + ext_diff],
3219 (nextents - (idx + ext_diff)) *
3220 sizeof(xfs_bmbt_rec_t));
3221 }
3222 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3223 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3224 /*
3225 * Reallocate the direct extent list. If the extents
3226 * will fit inside the inode then xfs_iext_realloc_direct
3227 * will switch from direct to inline extent allocation
3228 * mode for us.
3229 */
3230 xfs_iext_realloc_direct(ifp, new_size);
3231 ifp->if_bytes = new_size;
3232}
3233
0293ce3a
MK
3234/*
3235 * This is called when incore extents are being removed from the
3236 * indirection array and the extents being removed span multiple extent
3237 * buffers. The idx parameter contains the file extent index where we
3238 * want to begin removing extents, and the count parameter contains
3239 * how many extents need to be removed.
3240 *
3241 * |-------| |-------|
3242 * | nex1 | | | nex1 - number of extents before idx
3243 * |-------| | count |
3244 * | | | | count - number of extents being removed at idx
3245 * | count | |-------|
3246 * | | | nex2 | nex2 - number of extents after idx + count
3247 * |-------| |-------|
3248 */
3249void
3250xfs_iext_remove_indirect(
3251 xfs_ifork_t *ifp, /* inode fork pointer */
3252 xfs_extnum_t idx, /* index to begin removing extents */
3253 int count) /* number of extents to remove */
3254{
3255 xfs_ext_irec_t *erp; /* indirection array pointer */
3256 int erp_idx = 0; /* indirection array index */
3257 xfs_extnum_t ext_cnt; /* extents left to remove */
3258 xfs_extnum_t ext_diff; /* extents to remove in current list */
3259 xfs_extnum_t nex1; /* number of extents before idx */
3260 xfs_extnum_t nex2; /* extents after idx + count */
0293ce3a
MK
3261 int page_idx = idx; /* index in target extent list */
3262
3263 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3264 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3265 ASSERT(erp != NULL);
0293ce3a
MK
3266 nex1 = page_idx;
3267 ext_cnt = count;
3268 while (ext_cnt) {
3269 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3270 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3271 /*
3272 * Check for deletion of entire list;
3273 * xfs_iext_irec_remove() updates extent offsets.
3274 */
3275 if (ext_diff == erp->er_extcount) {
3276 xfs_iext_irec_remove(ifp, erp_idx);
3277 ext_cnt -= ext_diff;
3278 nex1 = 0;
3279 if (ext_cnt) {
3280 ASSERT(erp_idx < ifp->if_real_bytes /
3281 XFS_IEXT_BUFSZ);
3282 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3283 nex1 = 0;
3284 continue;
3285 } else {
3286 break;
3287 }
3288 }
3289 /* Move extents up (if needed) */
3290 if (nex2) {
3291 memmove(&erp->er_extbuf[nex1],
3292 &erp->er_extbuf[nex1 + ext_diff],
3293 nex2 * sizeof(xfs_bmbt_rec_t));
3294 }
3295 /* Zero out rest of page */
3296 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3297 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3298 /* Update remaining counters */
3299 erp->er_extcount -= ext_diff;
3300 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3301 ext_cnt -= ext_diff;
3302 nex1 = 0;
3303 erp_idx++;
3304 erp++;
3305 }
3306 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3307 xfs_iext_irec_compact(ifp);
3308}
3309
4eea22f0
MK
3310/*
3311 * Create, destroy, or resize a linear (direct) block of extents.
3312 */
3313void
3314xfs_iext_realloc_direct(
3315 xfs_ifork_t *ifp, /* inode fork pointer */
3316 int new_size) /* new size of extents */
3317{
3318 int rnew_size; /* real new size of extents */
3319
3320 rnew_size = new_size;
3321
0293ce3a
MK
3322 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3323 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3324 (new_size != ifp->if_real_bytes)));
3325
4eea22f0
MK
3326 /* Free extent records */
3327 if (new_size == 0) {
3328 xfs_iext_destroy(ifp);
3329 }
3330 /* Resize direct extent list and zero any new bytes */
3331 else if (ifp->if_real_bytes) {
3332 /* Check if extents will fit inside the inode */
3333 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3334 xfs_iext_direct_to_inline(ifp, new_size /
3335 (uint)sizeof(xfs_bmbt_rec_t));
3336 ifp->if_bytes = new_size;
3337 return;
3338 }
16a087d8 3339 if (!is_power_of_2(new_size)){
40ebd81d 3340 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3341 }
3342 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3343 ifp->if_u1.if_extents =
4eea22f0
MK
3344 kmem_realloc(ifp->if_u1.if_extents,
3345 rnew_size,
6785073b 3346 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3347 }
3348 if (rnew_size > ifp->if_real_bytes) {
3349 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3350 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3351 rnew_size - ifp->if_real_bytes);
3352 }
3353 }
3354 /*
3355 * Switch from the inline extent buffer to a direct
3356 * extent list. Be sure to include the inline extent
3357 * bytes in new_size.
3358 */
3359 else {
3360 new_size += ifp->if_bytes;
16a087d8 3361 if (!is_power_of_2(new_size)) {
40ebd81d 3362 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3363 }
3364 xfs_iext_inline_to_direct(ifp, rnew_size);
3365 }
3366 ifp->if_real_bytes = rnew_size;
3367 ifp->if_bytes = new_size;
3368}
3369
3370/*
3371 * Switch from linear (direct) extent records to inline buffer.
3372 */
3373void
3374xfs_iext_direct_to_inline(
3375 xfs_ifork_t *ifp, /* inode fork pointer */
3376 xfs_extnum_t nextents) /* number of extents in file */
3377{
3378 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3379 ASSERT(nextents <= XFS_INLINE_EXTS);
3380 /*
3381 * The inline buffer was zeroed when we switched
3382 * from inline to direct extent allocation mode,
3383 * so we don't need to clear it here.
3384 */
3385 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3386 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3387 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3388 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3389 ifp->if_real_bytes = 0;
3390}
3391
3392/*
3393 * Switch from inline buffer to linear (direct) extent records.
3394 * new_size should already be rounded up to the next power of 2
3395 * by the caller (when appropriate), so use new_size as it is.
3396 * However, since new_size may be rounded up, we can't update
3397 * if_bytes here. It is the caller's responsibility to update
3398 * if_bytes upon return.
3399 */
3400void
3401xfs_iext_inline_to_direct(
3402 xfs_ifork_t *ifp, /* inode fork pointer */
3403 int new_size) /* number of extents in file */
3404{
6785073b 3405 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3406 memset(ifp->if_u1.if_extents, 0, new_size);
3407 if (ifp->if_bytes) {
3408 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3409 ifp->if_bytes);
3410 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3411 sizeof(xfs_bmbt_rec_t));
3412 }
3413 ifp->if_real_bytes = new_size;
3414}
3415
0293ce3a
MK
3416/*
3417 * Resize an extent indirection array to new_size bytes.
3418 */
d96f8f89 3419STATIC void
0293ce3a
MK
3420xfs_iext_realloc_indirect(
3421 xfs_ifork_t *ifp, /* inode fork pointer */
3422 int new_size) /* new indirection array size */
3423{
3424 int nlists; /* number of irec's (ex lists) */
3425 int size; /* current indirection array size */
3426
3427 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3428 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3429 size = nlists * sizeof(xfs_ext_irec_t);
3430 ASSERT(ifp->if_real_bytes);
3431 ASSERT((new_size >= 0) && (new_size != size));
3432 if (new_size == 0) {
3433 xfs_iext_destroy(ifp);
3434 } else {
3435 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3436 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3437 new_size, size, KM_NOFS);
0293ce3a
MK
3438 }
3439}
3440
3441/*
3442 * Switch from indirection array to linear (direct) extent allocations.
3443 */
d96f8f89 3444STATIC void
0293ce3a
MK
3445xfs_iext_indirect_to_direct(
3446 xfs_ifork_t *ifp) /* inode fork pointer */
3447{
a6f64d4a 3448 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
3449 xfs_extnum_t nextents; /* number of extents in file */
3450 int size; /* size of file extents */
3451
3452 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3453 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3454 ASSERT(nextents <= XFS_LINEAR_EXTS);
3455 size = nextents * sizeof(xfs_bmbt_rec_t);
3456
71a8c87f 3457 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
3458 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3459
3460 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 3461 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3462 ifp->if_flags &= ~XFS_IFEXTIREC;
3463 ifp->if_u1.if_extents = ep;
3464 ifp->if_bytes = size;
3465 if (nextents < XFS_LINEAR_EXTS) {
3466 xfs_iext_realloc_direct(ifp, size);
3467 }
3468}
3469
4eea22f0
MK
3470/*
3471 * Free incore file extents.
3472 */
3473void
3474xfs_iext_destroy(
3475 xfs_ifork_t *ifp) /* inode fork pointer */
3476{
0293ce3a
MK
3477 if (ifp->if_flags & XFS_IFEXTIREC) {
3478 int erp_idx;
3479 int nlists;
3480
3481 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3482 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3483 xfs_iext_irec_remove(ifp, erp_idx);
3484 }
3485 ifp->if_flags &= ~XFS_IFEXTIREC;
3486 } else if (ifp->if_real_bytes) {
f0e2d93c 3487 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3488 } else if (ifp->if_bytes) {
3489 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3490 sizeof(xfs_bmbt_rec_t));
3491 }
3492 ifp->if_u1.if_extents = NULL;
3493 ifp->if_real_bytes = 0;
3494 ifp->if_bytes = 0;
3495}
0293ce3a 3496
8867bc9b
MK
3497/*
3498 * Return a pointer to the extent record for file system block bno.
3499 */
a6f64d4a 3500xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
3501xfs_iext_bno_to_ext(
3502 xfs_ifork_t *ifp, /* inode fork pointer */
3503 xfs_fileoff_t bno, /* block number to search for */
3504 xfs_extnum_t *idxp) /* index of target extent */
3505{
a6f64d4a 3506 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 3507 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 3508 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 3509 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 3510 int high; /* upper boundary in search */
8867bc9b 3511 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 3512 int low; /* lower boundary in search */
8867bc9b
MK
3513 xfs_extnum_t nextents; /* number of file extents */
3514 xfs_fileoff_t startoff = 0; /* start offset of extent */
3515
3516 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3517 if (nextents == 0) {
3518 *idxp = 0;
3519 return NULL;
3520 }
3521 low = 0;
3522 if (ifp->if_flags & XFS_IFEXTIREC) {
3523 /* Find target extent list */
3524 int erp_idx = 0;
3525 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3526 base = erp->er_extbuf;
3527 high = erp->er_extcount - 1;
3528 } else {
3529 base = ifp->if_u1.if_extents;
3530 high = nextents - 1;
3531 }
3532 /* Binary search extent records */
3533 while (low <= high) {
3534 idx = (low + high) >> 1;
3535 ep = base + idx;
3536 startoff = xfs_bmbt_get_startoff(ep);
3537 blockcount = xfs_bmbt_get_blockcount(ep);
3538 if (bno < startoff) {
3539 high = idx - 1;
3540 } else if (bno >= startoff + blockcount) {
3541 low = idx + 1;
3542 } else {
3543 /* Convert back to file-based extent index */
3544 if (ifp->if_flags & XFS_IFEXTIREC) {
3545 idx += erp->er_extoff;
3546 }
3547 *idxp = idx;
3548 return ep;
3549 }
3550 }
3551 /* Convert back to file-based extent index */
3552 if (ifp->if_flags & XFS_IFEXTIREC) {
3553 idx += erp->er_extoff;
3554 }
3555 if (bno >= startoff + blockcount) {
3556 if (++idx == nextents) {
3557 ep = NULL;
3558 } else {
3559 ep = xfs_iext_get_ext(ifp, idx);
3560 }
3561 }
3562 *idxp = idx;
3563 return ep;
3564}
3565
0293ce3a
MK
3566/*
3567 * Return a pointer to the indirection array entry containing the
3568 * extent record for filesystem block bno. Store the index of the
3569 * target irec in *erp_idxp.
3570 */
8867bc9b 3571xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
3572xfs_iext_bno_to_irec(
3573 xfs_ifork_t *ifp, /* inode fork pointer */
3574 xfs_fileoff_t bno, /* block number to search for */
3575 int *erp_idxp) /* irec index of target ext list */
3576{
3577 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3578 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 3579 int erp_idx; /* indirection array index */
0293ce3a
MK
3580 int nlists; /* number of extent irec's (lists) */
3581 int high; /* binary search upper limit */
3582 int low; /* binary search lower limit */
3583
3584 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3585 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3586 erp_idx = 0;
3587 low = 0;
3588 high = nlists - 1;
3589 while (low <= high) {
3590 erp_idx = (low + high) >> 1;
3591 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3592 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3593 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3594 high = erp_idx - 1;
3595 } else if (erp_next && bno >=
3596 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3597 low = erp_idx + 1;
3598 } else {
3599 break;
3600 }
3601 }
3602 *erp_idxp = erp_idx;
3603 return erp;
3604}
3605
3606/*
3607 * Return a pointer to the indirection array entry containing the
3608 * extent record at file extent index *idxp. Store the index of the
3609 * target irec in *erp_idxp and store the page index of the target
3610 * extent record in *idxp.
3611 */
3612xfs_ext_irec_t *
3613xfs_iext_idx_to_irec(
3614 xfs_ifork_t *ifp, /* inode fork pointer */
3615 xfs_extnum_t *idxp, /* extent index (file -> page) */
3616 int *erp_idxp, /* pointer to target irec */
3617 int realloc) /* new bytes were just added */
3618{
3619 xfs_ext_irec_t *prev; /* pointer to previous irec */
3620 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3621 int erp_idx; /* indirection array index */
3622 int nlists; /* number of irec's (ex lists) */
3623 int high; /* binary search upper limit */
3624 int low; /* binary search lower limit */
3625 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3626
3627 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
87bef181
CH
3628 ASSERT(page_idx >= 0);
3629 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3630 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3631
0293ce3a
MK
3632 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3633 erp_idx = 0;
3634 low = 0;
3635 high = nlists - 1;
3636
3637 /* Binary search extent irec's */
3638 while (low <= high) {
3639 erp_idx = (low + high) >> 1;
3640 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3641 prev = erp_idx > 0 ? erp - 1 : NULL;
3642 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3643 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3644 high = erp_idx - 1;
3645 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3646 (page_idx == erp->er_extoff + erp->er_extcount &&
3647 !realloc)) {
3648 low = erp_idx + 1;
3649 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3650 erp->er_extcount == XFS_LINEAR_EXTS) {
3651 ASSERT(realloc);
3652 page_idx = 0;
3653 erp_idx++;
3654 erp = erp_idx < nlists ? erp + 1 : NULL;
3655 break;
3656 } else {
3657 page_idx -= erp->er_extoff;
3658 break;
3659 }
3660 }
3661 *idxp = page_idx;
3662 *erp_idxp = erp_idx;
3663 return(erp);
3664}
3665
3666/*
3667 * Allocate and initialize an indirection array once the space needed
3668 * for incore extents increases above XFS_IEXT_BUFSZ.
3669 */
3670void
3671xfs_iext_irec_init(
3672 xfs_ifork_t *ifp) /* inode fork pointer */
3673{
3674 xfs_ext_irec_t *erp; /* indirection array pointer */
3675 xfs_extnum_t nextents; /* number of extents in file */
3676
3677 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3678 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3679 ASSERT(nextents <= XFS_LINEAR_EXTS);
3680
6785073b 3681 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
3682
3683 if (nextents == 0) {
6785073b 3684 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3685 } else if (!ifp->if_real_bytes) {
3686 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3687 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3688 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3689 }
3690 erp->er_extbuf = ifp->if_u1.if_extents;
3691 erp->er_extcount = nextents;
3692 erp->er_extoff = 0;
3693
3694 ifp->if_flags |= XFS_IFEXTIREC;
3695 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3696 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3697 ifp->if_u1.if_ext_irec = erp;
3698
3699 return;
3700}
3701
3702/*
3703 * Allocate and initialize a new entry in the indirection array.
3704 */
3705xfs_ext_irec_t *
3706xfs_iext_irec_new(
3707 xfs_ifork_t *ifp, /* inode fork pointer */
3708 int erp_idx) /* index for new irec */
3709{
3710 xfs_ext_irec_t *erp; /* indirection array pointer */
3711 int i; /* loop counter */
3712 int nlists; /* number of irec's (ex lists) */
3713
3714 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3715 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3716
3717 /* Resize indirection array */
3718 xfs_iext_realloc_indirect(ifp, ++nlists *
3719 sizeof(xfs_ext_irec_t));
3720 /*
3721 * Move records down in the array so the
3722 * new page can use erp_idx.
3723 */
3724 erp = ifp->if_u1.if_ext_irec;
3725 for (i = nlists - 1; i > erp_idx; i--) {
3726 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3727 }
3728 ASSERT(i == erp_idx);
3729
3730 /* Initialize new extent record */
3731 erp = ifp->if_u1.if_ext_irec;
6785073b 3732 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3733 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3734 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3735 erp[erp_idx].er_extcount = 0;
3736 erp[erp_idx].er_extoff = erp_idx > 0 ?
3737 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3738 return (&erp[erp_idx]);
3739}
3740
3741/*
3742 * Remove a record from the indirection array.
3743 */
3744void
3745xfs_iext_irec_remove(
3746 xfs_ifork_t *ifp, /* inode fork pointer */
3747 int erp_idx) /* irec index to remove */
3748{
3749 xfs_ext_irec_t *erp; /* indirection array pointer */
3750 int i; /* loop counter */
3751 int nlists; /* number of irec's (ex lists) */
3752
3753 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3754 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3755 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3756 if (erp->er_extbuf) {
3757 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3758 -erp->er_extcount);
f0e2d93c 3759 kmem_free(erp->er_extbuf);
0293ce3a
MK
3760 }
3761 /* Compact extent records */
3762 erp = ifp->if_u1.if_ext_irec;
3763 for (i = erp_idx; i < nlists - 1; i++) {
3764 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3765 }
3766 /*
3767 * Manually free the last extent record from the indirection
3768 * array. A call to xfs_iext_realloc_indirect() with a size
3769 * of zero would result in a call to xfs_iext_destroy() which
3770 * would in turn call this function again, creating a nasty
3771 * infinite loop.
3772 */
3773 if (--nlists) {
3774 xfs_iext_realloc_indirect(ifp,
3775 nlists * sizeof(xfs_ext_irec_t));
3776 } else {
f0e2d93c 3777 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3778 }
3779 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3780}
3781
3782/*
3783 * This is called to clean up large amounts of unused memory allocated
3784 * by the indirection array. Before compacting anything though, verify
3785 * that the indirection array is still needed and switch back to the
3786 * linear extent list (or even the inline buffer) if possible. The
3787 * compaction policy is as follows:
3788 *
3789 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 3790 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
3791 * No Compaction: Extents occupy at least 50% of allocated space
3792 */
3793void
3794xfs_iext_irec_compact(
3795 xfs_ifork_t *ifp) /* inode fork pointer */
3796{
3797 xfs_extnum_t nextents; /* number of extents in file */
3798 int nlists; /* number of irec's (ex lists) */
3799
3800 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3801 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3802 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3803
3804 if (nextents == 0) {
3805 xfs_iext_destroy(ifp);
3806 } else if (nextents <= XFS_INLINE_EXTS) {
3807 xfs_iext_indirect_to_direct(ifp);
3808 xfs_iext_direct_to_inline(ifp, nextents);
3809 } else if (nextents <= XFS_LINEAR_EXTS) {
3810 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
3811 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3812 xfs_iext_irec_compact_pages(ifp);
3813 }
3814}
3815
3816/*
3817 * Combine extents from neighboring extent pages.
3818 */
3819void
3820xfs_iext_irec_compact_pages(
3821 xfs_ifork_t *ifp) /* inode fork pointer */
3822{
3823 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3824 int erp_idx = 0; /* indirection array index */
3825 int nlists; /* number of irec's (ex lists) */
3826
3827 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3828 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3829 while (erp_idx < nlists - 1) {
3830 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3831 erp_next = erp + 1;
3832 if (erp_next->er_extcount <=
3833 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 3834 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
3835 erp_next->er_extbuf, erp_next->er_extcount *
3836 sizeof(xfs_bmbt_rec_t));
3837 erp->er_extcount += erp_next->er_extcount;
3838 /*
3839 * Free page before removing extent record
3840 * so er_extoffs don't get modified in
3841 * xfs_iext_irec_remove.
3842 */
f0e2d93c 3843 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
3844 erp_next->er_extbuf = NULL;
3845 xfs_iext_irec_remove(ifp, erp_idx + 1);
3846 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3847 } else {
3848 erp_idx++;
3849 }
3850 }
3851}
3852
0293ce3a
MK
3853/*
3854 * This is called to update the er_extoff field in the indirection
3855 * array when extents have been added or removed from one of the
3856 * extent lists. erp_idx contains the irec index to begin updating
3857 * at and ext_diff contains the number of extents that were added
3858 * or removed.
3859 */
3860void
3861xfs_iext_irec_update_extoffs(
3862 xfs_ifork_t *ifp, /* inode fork pointer */
3863 int erp_idx, /* irec index to update */
3864 int ext_diff) /* number of new extents */
3865{
3866 int i; /* loop counter */
3867 int nlists; /* number of irec's (ex lists */
3868
3869 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3870 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3871 for (i = erp_idx; i < nlists; i++) {
3872 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3873 }
3874}