]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_inode.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
3ab78df2 28#include "xfs_defer.h"
a4fbe6ab 29#include "xfs_inode.h"
57062787 30#include "xfs_da_format.h"
c24b5dfa 31#include "xfs_da_btree.h"
c24b5dfa 32#include "xfs_dir2.h"
a844f451 33#include "xfs_attr_sf.h"
c24b5dfa 34#include "xfs_attr.h"
239880ef
DC
35#include "xfs_trans_space.h"
36#include "xfs_trans.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451 38#include "xfs_inode_item.h"
a844f451
NS
39#include "xfs_ialloc.h"
40#include "xfs_bmap.h"
68988114 41#include "xfs_bmap_util.h"
1da177e4 42#include "xfs_error.h"
1da177e4 43#include "xfs_quota.h"
2a82b8be 44#include "xfs_filestream.h"
93848a99 45#include "xfs_cksum.h"
0b1b213f 46#include "xfs_trace.h"
33479e05 47#include "xfs_icache.h"
c24b5dfa 48#include "xfs_symlink.h"
239880ef
DC
49#include "xfs_trans_priv.h"
50#include "xfs_log.h"
a4fbe6ab 51#include "xfs_bmap_btree.h"
aa8968f2 52#include "xfs_reflink.h"
78420281 53#include "xfs_dir2_priv.h"
1da177e4 54
1da177e4 55kmem_zone_t *xfs_inode_zone;
1da177e4
LT
56
57/*
8f04c47a 58 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
59 * freed from a file in a single transaction.
60 */
61#define XFS_ITRUNC_MAX_EXTENTS 2
62
54d7b5c1
DC
63STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
64STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
65STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 66
2a0ec1d9
DC
67/*
68 * helper function to extract extent size hint from inode
69 */
70xfs_extlen_t
71xfs_get_extsz_hint(
72 struct xfs_inode *ip)
73{
74 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
75 return ip->i_d.di_extsize;
76 if (XFS_IS_REALTIME_INODE(ip))
77 return ip->i_mount->m_sb.sb_rextsize;
78 return 0;
79}
80
f7ca3522
DW
81/*
82 * Helper function to extract CoW extent size hint from inode.
83 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
84 * return the greater of the two. If the value is zero (automatic),
85 * use the default size.
f7ca3522
DW
86 */
87xfs_extlen_t
88xfs_get_cowextsz_hint(
89 struct xfs_inode *ip)
90{
91 xfs_extlen_t a, b;
92
93 a = 0;
94 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
95 a = ip->i_d.di_cowextsize;
96 b = xfs_get_extsz_hint(ip);
97
e153aa79
DW
98 a = max(a, b);
99 if (a == 0)
100 return XFS_DEFAULT_COWEXTSZ_HINT;
101 return a;
f7ca3522
DW
102}
103
fa96acad 104/*
efa70be1
CH
105 * These two are wrapper routines around the xfs_ilock() routine used to
106 * centralize some grungy code. They are used in places that wish to lock the
107 * inode solely for reading the extents. The reason these places can't just
108 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
109 * bringing in of the extents from disk for a file in b-tree format. If the
110 * inode is in b-tree format, then we need to lock the inode exclusively until
111 * the extents are read in. Locking it exclusively all the time would limit
112 * our parallelism unnecessarily, though. What we do instead is check to see
113 * if the extents have been read in yet, and only lock the inode exclusively
114 * if they have not.
fa96acad 115 *
efa70be1 116 * The functions return a value which should be given to the corresponding
01f4f327 117 * xfs_iunlock() call.
fa96acad
DC
118 */
119uint
309ecac8
CH
120xfs_ilock_data_map_shared(
121 struct xfs_inode *ip)
fa96acad 122{
309ecac8 123 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 124
309ecac8
CH
125 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
126 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 127 lock_mode = XFS_ILOCK_EXCL;
fa96acad 128 xfs_ilock(ip, lock_mode);
fa96acad
DC
129 return lock_mode;
130}
131
efa70be1
CH
132uint
133xfs_ilock_attr_map_shared(
134 struct xfs_inode *ip)
fa96acad 135{
efa70be1
CH
136 uint lock_mode = XFS_ILOCK_SHARED;
137
138 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
139 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
140 lock_mode = XFS_ILOCK_EXCL;
141 xfs_ilock(ip, lock_mode);
142 return lock_mode;
fa96acad
DC
143}
144
145/*
65523218
CH
146 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
147 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
148 * various combinations of the locks to be obtained.
fa96acad 149 *
653c60b6
DC
150 * The 3 locks should always be ordered so that the IO lock is obtained first,
151 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 152 *
653c60b6
DC
153 * Basic locking order:
154 *
65523218 155 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6
DC
156 *
157 * mmap_sem locking order:
158 *
65523218 159 * i_rwsem -> page lock -> mmap_sem
653c60b6
DC
160 * mmap_sem -> i_mmap_lock -> page_lock
161 *
162 * The difference in mmap_sem locking order mean that we cannot hold the
163 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
164 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
165 * in get_user_pages() to map the user pages into the kernel address space for
65523218 166 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
653c60b6
DC
167 * page faults already hold the mmap_sem.
168 *
169 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 170 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
171 * taken in places where we need to invalidate the page cache in a race
172 * free manner (e.g. truncate, hole punch and other extent manipulation
173 * functions).
fa96acad
DC
174 */
175void
176xfs_ilock(
177 xfs_inode_t *ip,
178 uint lock_flags)
179{
180 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
181
182 /*
183 * You can't set both SHARED and EXCL for the same lock,
184 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
185 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
186 */
187 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
188 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
189 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
190 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
191 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
192 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 193 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 194
65523218
CH
195 if (lock_flags & XFS_IOLOCK_EXCL) {
196 down_write_nested(&VFS_I(ip)->i_rwsem,
197 XFS_IOLOCK_DEP(lock_flags));
198 } else if (lock_flags & XFS_IOLOCK_SHARED) {
199 down_read_nested(&VFS_I(ip)->i_rwsem,
200 XFS_IOLOCK_DEP(lock_flags));
201 }
fa96acad 202
653c60b6
DC
203 if (lock_flags & XFS_MMAPLOCK_EXCL)
204 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
205 else if (lock_flags & XFS_MMAPLOCK_SHARED)
206 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
207
fa96acad
DC
208 if (lock_flags & XFS_ILOCK_EXCL)
209 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
210 else if (lock_flags & XFS_ILOCK_SHARED)
211 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212}
213
214/*
215 * This is just like xfs_ilock(), except that the caller
216 * is guaranteed not to sleep. It returns 1 if it gets
217 * the requested locks and 0 otherwise. If the IO lock is
218 * obtained but the inode lock cannot be, then the IO lock
219 * is dropped before returning.
220 *
221 * ip -- the inode being locked
222 * lock_flags -- this parameter indicates the inode's locks to be
223 * to be locked. See the comment for xfs_ilock() for a list
224 * of valid values.
225 */
226int
227xfs_ilock_nowait(
228 xfs_inode_t *ip,
229 uint lock_flags)
230{
231 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
232
233 /*
234 * You can't set both SHARED and EXCL for the same lock,
235 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
236 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
237 */
238 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
239 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
240 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
241 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
242 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
243 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 244 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
245
246 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 247 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
248 goto out;
249 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 250 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
251 goto out;
252 }
653c60b6
DC
253
254 if (lock_flags & XFS_MMAPLOCK_EXCL) {
255 if (!mrtryupdate(&ip->i_mmaplock))
256 goto out_undo_iolock;
257 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
258 if (!mrtryaccess(&ip->i_mmaplock))
259 goto out_undo_iolock;
260 }
261
fa96acad
DC
262 if (lock_flags & XFS_ILOCK_EXCL) {
263 if (!mrtryupdate(&ip->i_lock))
653c60b6 264 goto out_undo_mmaplock;
fa96acad
DC
265 } else if (lock_flags & XFS_ILOCK_SHARED) {
266 if (!mrtryaccess(&ip->i_lock))
653c60b6 267 goto out_undo_mmaplock;
fa96acad
DC
268 }
269 return 1;
270
653c60b6
DC
271out_undo_mmaplock:
272 if (lock_flags & XFS_MMAPLOCK_EXCL)
273 mrunlock_excl(&ip->i_mmaplock);
274 else if (lock_flags & XFS_MMAPLOCK_SHARED)
275 mrunlock_shared(&ip->i_mmaplock);
276out_undo_iolock:
fa96acad 277 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 278 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 279 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 280 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 281out:
fa96acad
DC
282 return 0;
283}
284
285/*
286 * xfs_iunlock() is used to drop the inode locks acquired with
287 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
288 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
289 * that we know which locks to drop.
290 *
291 * ip -- the inode being unlocked
292 * lock_flags -- this parameter indicates the inode's locks to be
293 * to be unlocked. See the comment for xfs_ilock() for a list
294 * of valid values for this parameter.
295 *
296 */
297void
298xfs_iunlock(
299 xfs_inode_t *ip,
300 uint lock_flags)
301{
302 /*
303 * You can't set both SHARED and EXCL for the same lock,
304 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
305 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
306 */
307 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
308 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
309 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
310 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
311 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
312 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 313 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
314 ASSERT(lock_flags != 0);
315
316 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 317 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 318 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 319 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 320
653c60b6
DC
321 if (lock_flags & XFS_MMAPLOCK_EXCL)
322 mrunlock_excl(&ip->i_mmaplock);
323 else if (lock_flags & XFS_MMAPLOCK_SHARED)
324 mrunlock_shared(&ip->i_mmaplock);
325
fa96acad
DC
326 if (lock_flags & XFS_ILOCK_EXCL)
327 mrunlock_excl(&ip->i_lock);
328 else if (lock_flags & XFS_ILOCK_SHARED)
329 mrunlock_shared(&ip->i_lock);
330
331 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
332}
333
334/*
335 * give up write locks. the i/o lock cannot be held nested
336 * if it is being demoted.
337 */
338void
339xfs_ilock_demote(
340 xfs_inode_t *ip,
341 uint lock_flags)
342{
653c60b6
DC
343 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
344 ASSERT((lock_flags &
345 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
346
347 if (lock_flags & XFS_ILOCK_EXCL)
348 mrdemote(&ip->i_lock);
653c60b6
DC
349 if (lock_flags & XFS_MMAPLOCK_EXCL)
350 mrdemote(&ip->i_mmaplock);
fa96acad 351 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 352 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
353
354 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
355}
356
742ae1e3 357#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
358int
359xfs_isilocked(
360 xfs_inode_t *ip,
361 uint lock_flags)
362{
363 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
364 if (!(lock_flags & XFS_ILOCK_SHARED))
365 return !!ip->i_lock.mr_writer;
366 return rwsem_is_locked(&ip->i_lock.mr_lock);
367 }
368
653c60b6
DC
369 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
370 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
371 return !!ip->i_mmaplock.mr_writer;
372 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
373 }
374
fa96acad
DC
375 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
376 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
377 return !debug_locks ||
378 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
379 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
380 }
381
382 ASSERT(0);
383 return 0;
384}
385#endif
386
c24b5dfa
DC
387#ifdef DEBUG
388int xfs_locked_n;
389int xfs_small_retries;
390int xfs_middle_retries;
391int xfs_lots_retries;
392int xfs_lock_delays;
393#endif
394
b6a9947e
DC
395/*
396 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
397 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
398 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
399 * errors and warnings.
400 */
401#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
402static bool
403xfs_lockdep_subclass_ok(
404 int subclass)
405{
406 return subclass < MAX_LOCKDEP_SUBCLASSES;
407}
408#else
409#define xfs_lockdep_subclass_ok(subclass) (true)
410#endif
411
c24b5dfa 412/*
653c60b6 413 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
414 * value. This can be called for any type of inode lock combination, including
415 * parent locking. Care must be taken to ensure we don't overrun the subclass
416 * storage fields in the class mask we build.
c24b5dfa
DC
417 */
418static inline int
419xfs_lock_inumorder(int lock_mode, int subclass)
420{
0952c818
DC
421 int class = 0;
422
423 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
424 XFS_ILOCK_RTSUM)));
3403ccc0 425 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 426
653c60b6 427 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 428 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 429 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
430 }
431
432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
434 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
435 }
436
0952c818
DC
437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
439 class += subclass << XFS_ILOCK_SHIFT;
440 }
c24b5dfa 441
0952c818 442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
443}
444
445/*
95afcf5c
DC
446 * The following routine will lock n inodes in exclusive mode. We assume the
447 * caller calls us with the inodes in i_ino order.
c24b5dfa 448 *
95afcf5c
DC
449 * We need to detect deadlock where an inode that we lock is in the AIL and we
450 * start waiting for another inode that is locked by a thread in a long running
451 * transaction (such as truncate). This can result in deadlock since the long
452 * running trans might need to wait for the inode we just locked in order to
453 * push the tail and free space in the log.
0952c818
DC
454 *
455 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457 * lock more than one at a time, lockdep will report false positives saying we
458 * have violated locking orders.
c24b5dfa 459 */
0d5a75e9 460static void
c24b5dfa
DC
461xfs_lock_inodes(
462 xfs_inode_t **ips,
463 int inodes,
464 uint lock_mode)
465{
466 int attempts = 0, i, j, try_lock;
467 xfs_log_item_t *lp;
468
0952c818
DC
469 /*
470 * Currently supports between 2 and 5 inodes with exclusive locking. We
471 * support an arbitrary depth of locking here, but absolute limits on
472 * inodes depend on the the type of locking and the limits placed by
473 * lockdep annotations in xfs_lock_inumorder. These are all checked by
474 * the asserts.
475 */
95afcf5c 476 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
478 XFS_ILOCK_EXCL));
479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
480 XFS_ILOCK_SHARED)));
0952c818
DC
481 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
482 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
484 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
485
486 if (lock_mode & XFS_IOLOCK_EXCL) {
487 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
488 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
489 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
490
491 try_lock = 0;
492 i = 0;
c24b5dfa
DC
493again:
494 for (; i < inodes; i++) {
495 ASSERT(ips[i]);
496
95afcf5c 497 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
498 continue;
499
500 /*
95afcf5c
DC
501 * If try_lock is not set yet, make sure all locked inodes are
502 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 503 */
c24b5dfa
DC
504 if (!try_lock) {
505 for (j = (i - 1); j >= 0 && !try_lock; j--) {
506 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 507 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 508 try_lock++;
c24b5dfa
DC
509 }
510 }
511
512 /*
513 * If any of the previous locks we have locked is in the AIL,
514 * we must TRY to get the second and subsequent locks. If
515 * we can't get any, we must release all we have
516 * and try again.
517 */
95afcf5c
DC
518 if (!try_lock) {
519 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
520 continue;
521 }
522
523 /* try_lock means we have an inode locked that is in the AIL. */
524 ASSERT(i != 0);
525 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
526 continue;
c24b5dfa 527
95afcf5c
DC
528 /*
529 * Unlock all previous guys and try again. xfs_iunlock will try
530 * to push the tail if the inode is in the AIL.
531 */
532 attempts++;
533 for (j = i - 1; j >= 0; j--) {
c24b5dfa 534 /*
95afcf5c
DC
535 * Check to see if we've already unlocked this one. Not
536 * the first one going back, and the inode ptr is the
537 * same.
c24b5dfa 538 */
95afcf5c
DC
539 if (j != (i - 1) && ips[j] == ips[j + 1])
540 continue;
c24b5dfa 541
95afcf5c
DC
542 xfs_iunlock(ips[j], lock_mode);
543 }
c24b5dfa 544
95afcf5c
DC
545 if ((attempts % 5) == 0) {
546 delay(1); /* Don't just spin the CPU */
c24b5dfa 547#ifdef DEBUG
95afcf5c 548 xfs_lock_delays++;
c24b5dfa 549#endif
c24b5dfa 550 }
95afcf5c
DC
551 i = 0;
552 try_lock = 0;
553 goto again;
c24b5dfa
DC
554 }
555
556#ifdef DEBUG
557 if (attempts) {
558 if (attempts < 5) xfs_small_retries++;
559 else if (attempts < 100) xfs_middle_retries++;
560 else xfs_lots_retries++;
561 } else {
562 xfs_locked_n++;
563 }
564#endif
565}
566
567/*
653c60b6
DC
568 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
569 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
570 * lock more than one at a time, lockdep will report false positives saying we
571 * have violated locking orders.
c24b5dfa
DC
572 */
573void
574xfs_lock_two_inodes(
575 xfs_inode_t *ip0,
576 xfs_inode_t *ip1,
577 uint lock_mode)
578{
579 xfs_inode_t *temp;
580 int attempts = 0;
581 xfs_log_item_t *lp;
582
65523218
CH
583 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
584 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
653c60b6
DC
585 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
586
c24b5dfa
DC
587 ASSERT(ip0->i_ino != ip1->i_ino);
588
589 if (ip0->i_ino > ip1->i_ino) {
590 temp = ip0;
591 ip0 = ip1;
592 ip1 = temp;
593 }
594
595 again:
596 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
597
598 /*
599 * If the first lock we have locked is in the AIL, we must TRY to get
600 * the second lock. If we can't get it, we must release the first one
601 * and try again.
602 */
603 lp = (xfs_log_item_t *)ip0->i_itemp;
604 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
605 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
606 xfs_iunlock(ip0, lock_mode);
607 if ((++attempts % 5) == 0)
608 delay(1); /* Don't just spin the CPU */
609 goto again;
610 }
611 } else {
612 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
613 }
614}
615
616
fa96acad
DC
617void
618__xfs_iflock(
619 struct xfs_inode *ip)
620{
621 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
622 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
623
624 do {
625 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
626 if (xfs_isiflocked(ip))
627 io_schedule();
628 } while (!xfs_iflock_nowait(ip));
629
630 finish_wait(wq, &wait.wait);
631}
632
1da177e4
LT
633STATIC uint
634_xfs_dic2xflags(
58f88ca2
DC
635 __uint16_t di_flags,
636 uint64_t di_flags2,
637 bool has_attr)
1da177e4
LT
638{
639 uint flags = 0;
640
641 if (di_flags & XFS_DIFLAG_ANY) {
642 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 643 flags |= FS_XFLAG_REALTIME;
1da177e4 644 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 645 flags |= FS_XFLAG_PREALLOC;
1da177e4 646 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 647 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 648 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 649 flags |= FS_XFLAG_APPEND;
1da177e4 650 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 651 flags |= FS_XFLAG_SYNC;
1da177e4 652 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 653 flags |= FS_XFLAG_NOATIME;
1da177e4 654 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 655 flags |= FS_XFLAG_NODUMP;
1da177e4 656 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 657 flags |= FS_XFLAG_RTINHERIT;
1da177e4 658 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 659 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 660 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 661 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 662 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 663 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 664 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 665 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 666 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 667 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 668 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 669 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
670 }
671
58f88ca2
DC
672 if (di_flags2 & XFS_DIFLAG2_ANY) {
673 if (di_flags2 & XFS_DIFLAG2_DAX)
674 flags |= FS_XFLAG_DAX;
f7ca3522
DW
675 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
676 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
677 }
678
679 if (has_attr)
680 flags |= FS_XFLAG_HASATTR;
681
1da177e4
LT
682 return flags;
683}
684
685uint
686xfs_ip2xflags(
58f88ca2 687 struct xfs_inode *ip)
1da177e4 688{
58f88ca2 689 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 690
58f88ca2 691 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
692}
693
c24b5dfa
DC
694/*
695 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
696 * is allowed, otherwise it has to be an exact match. If a CI match is found,
697 * ci_name->name will point to a the actual name (caller must free) or
698 * will be set to NULL if an exact match is found.
699 */
700int
701xfs_lookup(
702 xfs_inode_t *dp,
703 struct xfs_name *name,
704 xfs_inode_t **ipp,
705 struct xfs_name *ci_name)
706{
707 xfs_ino_t inum;
708 int error;
c24b5dfa
DC
709
710 trace_xfs_lookup(dp, name);
711
712 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 713 return -EIO;
c24b5dfa 714
c24b5dfa 715 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 716 if (error)
dbad7c99 717 goto out_unlock;
c24b5dfa
DC
718
719 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
720 if (error)
721 goto out_free_name;
722
723 return 0;
724
725out_free_name:
726 if (ci_name)
727 kmem_free(ci_name->name);
dbad7c99 728out_unlock:
c24b5dfa
DC
729 *ipp = NULL;
730 return error;
731}
732
1da177e4
LT
733/*
734 * Allocate an inode on disk and return a copy of its in-core version.
735 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
736 * appropriately within the inode. The uid and gid for the inode are
737 * set according to the contents of the given cred structure.
738 *
739 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
740 * has a free inode available, call xfs_iget() to obtain the in-core
741 * version of the allocated inode. Finally, fill in the inode and
742 * log its initial contents. In this case, ialloc_context would be
743 * set to NULL.
1da177e4 744 *
cd856db6
CM
745 * If xfs_dialloc() does not have an available inode, it will replenish
746 * its supply by doing an allocation. Since we can only do one
747 * allocation within a transaction without deadlocks, we must commit
748 * the current transaction before returning the inode itself.
749 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
750 * The caller should then commit the current transaction, start a new
751 * transaction, and call xfs_ialloc() again to actually get the inode.
752 *
753 * To ensure that some other process does not grab the inode that
754 * was allocated during the first call to xfs_ialloc(), this routine
755 * also returns the [locked] bp pointing to the head of the freelist
756 * as ialloc_context. The caller should hold this buffer across
757 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
758 *
759 * If we are allocating quota inodes, we do not have a parent inode
760 * to attach to or associate with (i.e. pip == NULL) because they
761 * are not linked into the directory structure - they are attached
762 * directly to the superblock - and so have no parent.
1da177e4 763 */
0d5a75e9 764static int
1da177e4
LT
765xfs_ialloc(
766 xfs_trans_t *tp,
767 xfs_inode_t *pip,
576b1d67 768 umode_t mode,
31b084ae 769 xfs_nlink_t nlink,
1da177e4 770 xfs_dev_t rdev,
6743099c 771 prid_t prid,
1da177e4
LT
772 int okalloc,
773 xfs_buf_t **ialloc_context,
1da177e4
LT
774 xfs_inode_t **ipp)
775{
93848a99 776 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
777 xfs_ino_t ino;
778 xfs_inode_t *ip;
1da177e4
LT
779 uint flags;
780 int error;
e076b0f3 781 struct timespec tv;
3987848c 782 struct inode *inode;
1da177e4
LT
783
784 /*
785 * Call the space management code to pick
786 * the on-disk inode to be allocated.
787 */
b11f94d5 788 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 789 ialloc_context, &ino);
bf904248 790 if (error)
1da177e4 791 return error;
08358906 792 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
793 *ipp = NULL;
794 return 0;
795 }
796 ASSERT(*ialloc_context == NULL);
797
798 /*
799 * Get the in-core inode with the lock held exclusively.
800 * This is because we're setting fields here we need
801 * to prevent others from looking at until we're done.
802 */
93848a99 803 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 804 XFS_ILOCK_EXCL, &ip);
bf904248 805 if (error)
1da177e4 806 return error;
1da177e4 807 ASSERT(ip != NULL);
3987848c 808 inode = VFS_I(ip);
1da177e4 809
263997a6
DC
810 /*
811 * We always convert v1 inodes to v2 now - we only support filesystems
812 * with >= v2 inode capability, so there is no reason for ever leaving
813 * an inode in v1 format.
814 */
815 if (ip->i_d.di_version == 1)
816 ip->i_d.di_version = 2;
817
c19b3b05 818 inode->i_mode = mode;
54d7b5c1 819 set_nlink(inode, nlink);
7aab1b28
DE
820 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
821 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 822 xfs_set_projid(ip, prid);
1da177e4 823
bd186aa9 824 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 825 ip->i_d.di_gid = pip->i_d.di_gid;
c19b3b05
DC
826 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
827 inode->i_mode |= S_ISGID;
1da177e4
LT
828 }
829
830 /*
831 * If the group ID of the new file does not match the effective group
832 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
833 * (and only if the irix_sgid_inherit compatibility variable is set).
834 */
835 if ((irix_sgid_inherit) &&
c19b3b05
DC
836 (inode->i_mode & S_ISGID) &&
837 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
838 inode->i_mode &= ~S_ISGID;
1da177e4
LT
839
840 ip->i_d.di_size = 0;
841 ip->i_d.di_nextents = 0;
842 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 843
c2050a45 844 tv = current_time(inode);
3987848c
DC
845 inode->i_mtime = tv;
846 inode->i_atime = tv;
847 inode->i_ctime = tv;
dff35fd4 848
1da177e4
LT
849 ip->i_d.di_extsize = 0;
850 ip->i_d.di_dmevmask = 0;
851 ip->i_d.di_dmstate = 0;
852 ip->i_d.di_flags = 0;
93848a99
CH
853
854 if (ip->i_d.di_version == 3) {
83e06f21 855 inode->i_version = 1;
93848a99 856 ip->i_d.di_flags2 = 0;
f7ca3522 857 ip->i_d.di_cowextsize = 0;
3987848c
DC
858 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
859 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
93848a99
CH
860 }
861
862
1da177e4
LT
863 flags = XFS_ILOG_CORE;
864 switch (mode & S_IFMT) {
865 case S_IFIFO:
866 case S_IFCHR:
867 case S_IFBLK:
868 case S_IFSOCK:
869 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
870 ip->i_df.if_u2.if_rdev = rdev;
871 ip->i_df.if_flags = 0;
872 flags |= XFS_ILOG_DEV;
873 break;
874 case S_IFREG:
875 case S_IFDIR:
b11f94d5 876 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2
DC
877 uint64_t di_flags2 = 0;
878 uint di_flags = 0;
365ca83d 879
abbede1b 880 if (S_ISDIR(mode)) {
365ca83d
NS
881 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
882 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
883 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
884 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
885 ip->i_d.di_extsize = pip->i_d.di_extsize;
886 }
9336e3a7
DC
887 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
888 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 889 } else if (S_ISREG(mode)) {
613d7043 890 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 891 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
892 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
893 di_flags |= XFS_DIFLAG_EXTSIZE;
894 ip->i_d.di_extsize = pip->i_d.di_extsize;
895 }
1da177e4
LT
896 }
897 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
898 xfs_inherit_noatime)
365ca83d 899 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
901 xfs_inherit_nodump)
365ca83d 902 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
903 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
904 xfs_inherit_sync)
365ca83d 905 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
906 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
907 xfs_inherit_nosymlinks)
365ca83d 908 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
909 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
910 xfs_inherit_nodefrag)
911 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
912 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
913 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2
DC
914 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
915 di_flags2 |= XFS_DIFLAG2_DAX;
916
365ca83d 917 ip->i_d.di_flags |= di_flags;
58f88ca2 918 ip->i_d.di_flags2 |= di_flags2;
1da177e4 919 }
f7ca3522
DW
920 if (pip &&
921 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
922 pip->i_d.di_version == 3 &&
923 ip->i_d.di_version == 3) {
924 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
925 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
926 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
927 }
928 }
1da177e4
LT
929 /* FALLTHROUGH */
930 case S_IFLNK:
931 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
932 ip->i_df.if_flags = XFS_IFEXTENTS;
933 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
934 ip->i_df.if_u1.if_extents = NULL;
935 break;
936 default:
937 ASSERT(0);
938 }
939 /*
940 * Attribute fork settings for new inode.
941 */
942 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
943 ip->i_d.di_anextents = 0;
944
945 /*
946 * Log the new values stuffed into the inode.
947 */
ddc3415a 948 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
949 xfs_trans_log_inode(tp, ip, flags);
950
58c90473 951 /* now that we have an i_mode we can setup the inode structure */
41be8bed 952 xfs_setup_inode(ip);
1da177e4
LT
953
954 *ipp = ip;
955 return 0;
956}
957
e546cb79
DC
958/*
959 * Allocates a new inode from disk and return a pointer to the
960 * incore copy. This routine will internally commit the current
961 * transaction and allocate a new one if the Space Manager needed
962 * to do an allocation to replenish the inode free-list.
963 *
964 * This routine is designed to be called from xfs_create and
965 * xfs_create_dir.
966 *
967 */
968int
969xfs_dir_ialloc(
970 xfs_trans_t **tpp, /* input: current transaction;
971 output: may be a new transaction. */
972 xfs_inode_t *dp, /* directory within whose allocate
973 the inode. */
974 umode_t mode,
975 xfs_nlink_t nlink,
976 xfs_dev_t rdev,
977 prid_t prid, /* project id */
978 int okalloc, /* ok to allocate new space */
979 xfs_inode_t **ipp, /* pointer to inode; it will be
980 locked. */
981 int *committed)
982
983{
984 xfs_trans_t *tp;
e546cb79
DC
985 xfs_inode_t *ip;
986 xfs_buf_t *ialloc_context = NULL;
987 int code;
e546cb79
DC
988 void *dqinfo;
989 uint tflags;
990
991 tp = *tpp;
992 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
993
994 /*
995 * xfs_ialloc will return a pointer to an incore inode if
996 * the Space Manager has an available inode on the free
997 * list. Otherwise, it will do an allocation and replenish
998 * the freelist. Since we can only do one allocation per
999 * transaction without deadlocks, we will need to commit the
1000 * current transaction and start a new one. We will then
1001 * need to call xfs_ialloc again to get the inode.
1002 *
1003 * If xfs_ialloc did an allocation to replenish the freelist,
1004 * it returns the bp containing the head of the freelist as
1005 * ialloc_context. We will hold a lock on it across the
1006 * transaction commit so that no other process can steal
1007 * the inode(s) that we've just allocated.
1008 */
1009 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
1010 &ialloc_context, &ip);
1011
1012 /*
1013 * Return an error if we were unable to allocate a new inode.
1014 * This should only happen if we run out of space on disk or
1015 * encounter a disk error.
1016 */
1017 if (code) {
1018 *ipp = NULL;
1019 return code;
1020 }
1021 if (!ialloc_context && !ip) {
1022 *ipp = NULL;
2451337d 1023 return -ENOSPC;
e546cb79
DC
1024 }
1025
1026 /*
1027 * If the AGI buffer is non-NULL, then we were unable to get an
1028 * inode in one operation. We need to commit the current
1029 * transaction and call xfs_ialloc() again. It is guaranteed
1030 * to succeed the second time.
1031 */
1032 if (ialloc_context) {
1033 /*
1034 * Normally, xfs_trans_commit releases all the locks.
1035 * We call bhold to hang on to the ialloc_context across
1036 * the commit. Holding this buffer prevents any other
1037 * processes from doing any allocations in this
1038 * allocation group.
1039 */
1040 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1041
1042 /*
1043 * We want the quota changes to be associated with the next
1044 * transaction, NOT this one. So, detach the dqinfo from this
1045 * and attach it to the next transaction.
1046 */
1047 dqinfo = NULL;
1048 tflags = 0;
1049 if (tp->t_dqinfo) {
1050 dqinfo = (void *)tp->t_dqinfo;
1051 tp->t_dqinfo = NULL;
1052 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1053 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1054 }
1055
6e3e6d55 1056 code = xfs_trans_roll(&tp, NULL);
2e6db6c4 1057 if (committed != NULL)
e546cb79 1058 *committed = 1;
3d3c8b52 1059
e546cb79
DC
1060 /*
1061 * Re-attach the quota info that we detached from prev trx.
1062 */
1063 if (dqinfo) {
1064 tp->t_dqinfo = dqinfo;
1065 tp->t_flags |= tflags;
1066 }
1067
1068 if (code) {
1069 xfs_buf_relse(ialloc_context);
2e6db6c4 1070 *tpp = tp;
e546cb79
DC
1071 *ipp = NULL;
1072 return code;
1073 }
1074 xfs_trans_bjoin(tp, ialloc_context);
1075
1076 /*
1077 * Call ialloc again. Since we've locked out all
1078 * other allocations in this allocation group,
1079 * this call should always succeed.
1080 */
1081 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1082 okalloc, &ialloc_context, &ip);
1083
1084 /*
1085 * If we get an error at this point, return to the caller
1086 * so that the current transaction can be aborted.
1087 */
1088 if (code) {
1089 *tpp = tp;
1090 *ipp = NULL;
1091 return code;
1092 }
1093 ASSERT(!ialloc_context && ip);
1094
1095 } else {
1096 if (committed != NULL)
1097 *committed = 0;
1098 }
1099
1100 *ipp = ip;
1101 *tpp = tp;
1102
1103 return 0;
1104}
1105
1106/*
54d7b5c1
DC
1107 * Decrement the link count on an inode & log the change. If this causes the
1108 * link count to go to zero, move the inode to AGI unlinked list so that it can
1109 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1110 */
0d5a75e9 1111static int /* error */
e546cb79
DC
1112xfs_droplink(
1113 xfs_trans_t *tp,
1114 xfs_inode_t *ip)
1115{
e546cb79
DC
1116 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1117
e546cb79
DC
1118 drop_nlink(VFS_I(ip));
1119 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1120
54d7b5c1
DC
1121 if (VFS_I(ip)->i_nlink)
1122 return 0;
1123
1124 return xfs_iunlink(tp, ip);
e546cb79
DC
1125}
1126
e546cb79
DC
1127/*
1128 * Increment the link count on an inode & log the change.
1129 */
0d5a75e9 1130static int
e546cb79
DC
1131xfs_bumplink(
1132 xfs_trans_t *tp,
1133 xfs_inode_t *ip)
1134{
1135 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1136
263997a6 1137 ASSERT(ip->i_d.di_version > 1);
e546cb79 1138 inc_nlink(VFS_I(ip));
e546cb79
DC
1139 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1140 return 0;
1141}
1142
c24b5dfa
DC
1143int
1144xfs_create(
1145 xfs_inode_t *dp,
1146 struct xfs_name *name,
1147 umode_t mode,
1148 xfs_dev_t rdev,
1149 xfs_inode_t **ipp)
1150{
1151 int is_dir = S_ISDIR(mode);
1152 struct xfs_mount *mp = dp->i_mount;
1153 struct xfs_inode *ip = NULL;
1154 struct xfs_trans *tp = NULL;
1155 int error;
2c3234d1 1156 struct xfs_defer_ops dfops;
c24b5dfa
DC
1157 xfs_fsblock_t first_block;
1158 bool unlock_dp_on_error = false;
c24b5dfa
DC
1159 prid_t prid;
1160 struct xfs_dquot *udqp = NULL;
1161 struct xfs_dquot *gdqp = NULL;
1162 struct xfs_dquot *pdqp = NULL;
062647a8 1163 struct xfs_trans_res *tres;
c24b5dfa 1164 uint resblks;
c24b5dfa
DC
1165
1166 trace_xfs_create(dp, name);
1167
1168 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1169 return -EIO;
c24b5dfa 1170
163467d3 1171 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1172
1173 /*
1174 * Make sure that we have allocated dquot(s) on disk.
1175 */
7aab1b28
DE
1176 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1177 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1178 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1179 &udqp, &gdqp, &pdqp);
1180 if (error)
1181 return error;
1182
1183 if (is_dir) {
1184 rdev = 0;
1185 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1186 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1187 } else {
1188 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1189 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1190 }
1191
c24b5dfa
DC
1192 /*
1193 * Initially assume that the file does not exist and
1194 * reserve the resources for that case. If that is not
1195 * the case we'll drop the one we have and get a more
1196 * appropriate transaction later.
1197 */
253f4911 1198 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1199 if (error == -ENOSPC) {
c24b5dfa
DC
1200 /* flush outstanding delalloc blocks and retry */
1201 xfs_flush_inodes(mp);
253f4911 1202 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1203 }
2451337d 1204 if (error == -ENOSPC) {
c24b5dfa
DC
1205 /* No space at all so try a "no-allocation" reservation */
1206 resblks = 0;
253f4911 1207 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
c24b5dfa 1208 }
4906e215 1209 if (error)
253f4911 1210 goto out_release_inode;
c24b5dfa 1211
65523218 1212 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1213 unlock_dp_on_error = true;
1214
2c3234d1 1215 xfs_defer_init(&dfops, &first_block);
c24b5dfa
DC
1216
1217 /*
1218 * Reserve disk quota and the inode.
1219 */
1220 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1221 pdqp, resblks, 1, 0);
1222 if (error)
1223 goto out_trans_cancel;
1224
94f3cad5
ES
1225 if (!resblks) {
1226 error = xfs_dir_canenter(tp, dp, name);
1227 if (error)
1228 goto out_trans_cancel;
1229 }
c24b5dfa
DC
1230
1231 /*
1232 * A newly created regular or special file just has one directory
1233 * entry pointing to them, but a directory also the "." entry
1234 * pointing to itself.
1235 */
1236 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
f6106efa 1237 prid, resblks > 0, &ip, NULL);
d6077aa3 1238 if (error)
4906e215 1239 goto out_trans_cancel;
c24b5dfa
DC
1240
1241 /*
1242 * Now we join the directory inode to the transaction. We do not do it
1243 * earlier because xfs_dir_ialloc might commit the previous transaction
1244 * (and release all the locks). An error from here on will result in
1245 * the transaction cancel unlocking dp so don't do it explicitly in the
1246 * error path.
1247 */
65523218 1248 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1249 unlock_dp_on_error = false;
1250
1251 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
2c3234d1 1252 &first_block, &dfops, resblks ?
c24b5dfa
DC
1253 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1254 if (error) {
2451337d 1255 ASSERT(error != -ENOSPC);
4906e215 1256 goto out_trans_cancel;
c24b5dfa
DC
1257 }
1258 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1259 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1260
1261 if (is_dir) {
1262 error = xfs_dir_init(tp, ip, dp);
1263 if (error)
1264 goto out_bmap_cancel;
1265
1266 error = xfs_bumplink(tp, dp);
1267 if (error)
1268 goto out_bmap_cancel;
1269 }
1270
1271 /*
1272 * If this is a synchronous mount, make sure that the
1273 * create transaction goes to disk before returning to
1274 * the user.
1275 */
1276 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1277 xfs_trans_set_sync(tp);
1278
1279 /*
1280 * Attach the dquot(s) to the inodes and modify them incore.
1281 * These ids of the inode couldn't have changed since the new
1282 * inode has been locked ever since it was created.
1283 */
1284 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1285
2c3234d1 1286 error = xfs_defer_finish(&tp, &dfops, NULL);
c24b5dfa
DC
1287 if (error)
1288 goto out_bmap_cancel;
1289
70393313 1290 error = xfs_trans_commit(tp);
c24b5dfa
DC
1291 if (error)
1292 goto out_release_inode;
1293
1294 xfs_qm_dqrele(udqp);
1295 xfs_qm_dqrele(gdqp);
1296 xfs_qm_dqrele(pdqp);
1297
1298 *ipp = ip;
1299 return 0;
1300
1301 out_bmap_cancel:
2c3234d1 1302 xfs_defer_cancel(&dfops);
c24b5dfa 1303 out_trans_cancel:
4906e215 1304 xfs_trans_cancel(tp);
c24b5dfa
DC
1305 out_release_inode:
1306 /*
58c90473
DC
1307 * Wait until after the current transaction is aborted to finish the
1308 * setup of the inode and release the inode. This prevents recursive
1309 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1310 */
58c90473
DC
1311 if (ip) {
1312 xfs_finish_inode_setup(ip);
c24b5dfa 1313 IRELE(ip);
58c90473 1314 }
c24b5dfa
DC
1315
1316 xfs_qm_dqrele(udqp);
1317 xfs_qm_dqrele(gdqp);
1318 xfs_qm_dqrele(pdqp);
1319
1320 if (unlock_dp_on_error)
65523218 1321 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1322 return error;
1323}
1324
99b6436b
ZYW
1325int
1326xfs_create_tmpfile(
1327 struct xfs_inode *dp,
1328 struct dentry *dentry,
330033d6
BF
1329 umode_t mode,
1330 struct xfs_inode **ipp)
99b6436b
ZYW
1331{
1332 struct xfs_mount *mp = dp->i_mount;
1333 struct xfs_inode *ip = NULL;
1334 struct xfs_trans *tp = NULL;
1335 int error;
99b6436b
ZYW
1336 prid_t prid;
1337 struct xfs_dquot *udqp = NULL;
1338 struct xfs_dquot *gdqp = NULL;
1339 struct xfs_dquot *pdqp = NULL;
1340 struct xfs_trans_res *tres;
1341 uint resblks;
1342
1343 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1344 return -EIO;
99b6436b
ZYW
1345
1346 prid = xfs_get_initial_prid(dp);
1347
1348 /*
1349 * Make sure that we have allocated dquot(s) on disk.
1350 */
1351 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1352 xfs_kgid_to_gid(current_fsgid()), prid,
1353 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1354 &udqp, &gdqp, &pdqp);
1355 if (error)
1356 return error;
1357
1358 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1359 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1360
1361 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1362 if (error == -ENOSPC) {
99b6436b
ZYW
1363 /* No space at all so try a "no-allocation" reservation */
1364 resblks = 0;
253f4911 1365 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
99b6436b 1366 }
4906e215 1367 if (error)
253f4911 1368 goto out_release_inode;
99b6436b
ZYW
1369
1370 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1371 pdqp, resblks, 1, 0);
1372 if (error)
1373 goto out_trans_cancel;
1374
1375 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1376 prid, resblks > 0, &ip, NULL);
d6077aa3 1377 if (error)
4906e215 1378 goto out_trans_cancel;
99b6436b
ZYW
1379
1380 if (mp->m_flags & XFS_MOUNT_WSYNC)
1381 xfs_trans_set_sync(tp);
1382
1383 /*
1384 * Attach the dquot(s) to the inodes and modify them incore.
1385 * These ids of the inode couldn't have changed since the new
1386 * inode has been locked ever since it was created.
1387 */
1388 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1389
99b6436b
ZYW
1390 error = xfs_iunlink(tp, ip);
1391 if (error)
4906e215 1392 goto out_trans_cancel;
99b6436b 1393
70393313 1394 error = xfs_trans_commit(tp);
99b6436b
ZYW
1395 if (error)
1396 goto out_release_inode;
1397
1398 xfs_qm_dqrele(udqp);
1399 xfs_qm_dqrele(gdqp);
1400 xfs_qm_dqrele(pdqp);
1401
330033d6 1402 *ipp = ip;
99b6436b
ZYW
1403 return 0;
1404
99b6436b 1405 out_trans_cancel:
4906e215 1406 xfs_trans_cancel(tp);
99b6436b
ZYW
1407 out_release_inode:
1408 /*
58c90473
DC
1409 * Wait until after the current transaction is aborted to finish the
1410 * setup of the inode and release the inode. This prevents recursive
1411 * transactions and deadlocks from xfs_inactive.
99b6436b 1412 */
58c90473
DC
1413 if (ip) {
1414 xfs_finish_inode_setup(ip);
99b6436b 1415 IRELE(ip);
58c90473 1416 }
99b6436b
ZYW
1417
1418 xfs_qm_dqrele(udqp);
1419 xfs_qm_dqrele(gdqp);
1420 xfs_qm_dqrele(pdqp);
1421
1422 return error;
1423}
1424
c24b5dfa
DC
1425int
1426xfs_link(
1427 xfs_inode_t *tdp,
1428 xfs_inode_t *sip,
1429 struct xfs_name *target_name)
1430{
1431 xfs_mount_t *mp = tdp->i_mount;
1432 xfs_trans_t *tp;
1433 int error;
2c3234d1 1434 struct xfs_defer_ops dfops;
c24b5dfa 1435 xfs_fsblock_t first_block;
c24b5dfa
DC
1436 int resblks;
1437
1438 trace_xfs_link(tdp, target_name);
1439
c19b3b05 1440 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1441
1442 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1443 return -EIO;
c24b5dfa
DC
1444
1445 error = xfs_qm_dqattach(sip, 0);
1446 if (error)
1447 goto std_return;
1448
1449 error = xfs_qm_dqattach(tdp, 0);
1450 if (error)
1451 goto std_return;
1452
c24b5dfa 1453 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1454 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1455 if (error == -ENOSPC) {
c24b5dfa 1456 resblks = 0;
253f4911 1457 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1458 }
4906e215 1459 if (error)
253f4911 1460 goto std_return;
c24b5dfa
DC
1461
1462 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1463
1464 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1465 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1466
1467 /*
1468 * If we are using project inheritance, we only allow hard link
1469 * creation in our tree when the project IDs are the same; else
1470 * the tree quota mechanism could be circumvented.
1471 */
1472 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1473 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1474 error = -EXDEV;
c24b5dfa
DC
1475 goto error_return;
1476 }
1477
94f3cad5
ES
1478 if (!resblks) {
1479 error = xfs_dir_canenter(tp, tdp, target_name);
1480 if (error)
1481 goto error_return;
1482 }
c24b5dfa 1483
2c3234d1 1484 xfs_defer_init(&dfops, &first_block);
c24b5dfa 1485
54d7b5c1
DC
1486 /*
1487 * Handle initial link state of O_TMPFILE inode
1488 */
1489 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1490 error = xfs_iunlink_remove(tp, sip);
1491 if (error)
4906e215 1492 goto error_return;
ab297431
ZYW
1493 }
1494
c24b5dfa 1495 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
2c3234d1 1496 &first_block, &dfops, resblks);
c24b5dfa 1497 if (error)
4906e215 1498 goto error_return;
c24b5dfa
DC
1499 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1500 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1501
1502 error = xfs_bumplink(tp, sip);
1503 if (error)
4906e215 1504 goto error_return;
c24b5dfa
DC
1505
1506 /*
1507 * If this is a synchronous mount, make sure that the
1508 * link transaction goes to disk before returning to
1509 * the user.
1510 */
f6106efa 1511 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1512 xfs_trans_set_sync(tp);
c24b5dfa 1513
2c3234d1 1514 error = xfs_defer_finish(&tp, &dfops, NULL);
c24b5dfa 1515 if (error) {
2c3234d1 1516 xfs_defer_cancel(&dfops);
4906e215 1517 goto error_return;
c24b5dfa
DC
1518 }
1519
70393313 1520 return xfs_trans_commit(tp);
c24b5dfa 1521
c24b5dfa 1522 error_return:
4906e215 1523 xfs_trans_cancel(tp);
c24b5dfa
DC
1524 std_return:
1525 return error;
1526}
1527
1da177e4 1528/*
8f04c47a
CH
1529 * Free up the underlying blocks past new_size. The new size must be smaller
1530 * than the current size. This routine can be used both for the attribute and
1531 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1532 *
f6485057
DC
1533 * The transaction passed to this routine must have made a permanent log
1534 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1535 * given transaction and start new ones, so make sure everything involved in
1536 * the transaction is tidy before calling here. Some transaction will be
1537 * returned to the caller to be committed. The incoming transaction must
1538 * already include the inode, and both inode locks must be held exclusively.
1539 * The inode must also be "held" within the transaction. On return the inode
1540 * will be "held" within the returned transaction. This routine does NOT
1541 * require any disk space to be reserved for it within the transaction.
1da177e4 1542 *
f6485057
DC
1543 * If we get an error, we must return with the inode locked and linked into the
1544 * current transaction. This keeps things simple for the higher level code,
1545 * because it always knows that the inode is locked and held in the transaction
1546 * that returns to it whether errors occur or not. We don't mark the inode
1547 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1548 */
1549int
8f04c47a
CH
1550xfs_itruncate_extents(
1551 struct xfs_trans **tpp,
1552 struct xfs_inode *ip,
1553 int whichfork,
1554 xfs_fsize_t new_size)
1da177e4 1555{
8f04c47a
CH
1556 struct xfs_mount *mp = ip->i_mount;
1557 struct xfs_trans *tp = *tpp;
2c3234d1 1558 struct xfs_defer_ops dfops;
8f04c47a
CH
1559 xfs_fsblock_t first_block;
1560 xfs_fileoff_t first_unmap_block;
1561 xfs_fileoff_t last_block;
1562 xfs_filblks_t unmap_len;
8f04c47a
CH
1563 int error = 0;
1564 int done = 0;
1da177e4 1565
0b56185b
CH
1566 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1567 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1568 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1569 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1570 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1571 ASSERT(ip->i_itemp != NULL);
898621d5 1572 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1573 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1574
673e8e59
CH
1575 trace_xfs_itruncate_extents_start(ip, new_size);
1576
1da177e4
LT
1577 /*
1578 * Since it is possible for space to become allocated beyond
1579 * the end of the file (in a crash where the space is allocated
1580 * but the inode size is not yet updated), simply remove any
1581 * blocks which show up between the new EOF and the maximum
1582 * possible file size. If the first block to be removed is
1583 * beyond the maximum file size (ie it is the same as last_block),
1584 * then there is nothing to do.
1585 */
8f04c47a 1586 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1587 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1588 if (first_unmap_block == last_block)
1589 return 0;
1590
1591 ASSERT(first_unmap_block < last_block);
1592 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1593 while (!done) {
2c3234d1 1594 xfs_defer_init(&dfops, &first_block);
8f04c47a 1595 error = xfs_bunmapi(tp, ip,
3e57ecf6 1596 first_unmap_block, unmap_len,
8f04c47a 1597 xfs_bmapi_aflag(whichfork),
1da177e4 1598 XFS_ITRUNC_MAX_EXTENTS,
2c3234d1 1599 &first_block, &dfops,
b4e9181e 1600 &done);
8f04c47a
CH
1601 if (error)
1602 goto out_bmap_cancel;
1da177e4
LT
1603
1604 /*
1605 * Duplicate the transaction that has the permanent
1606 * reservation and commit the old transaction.
1607 */
2c3234d1 1608 error = xfs_defer_finish(&tp, &dfops, ip);
8f04c47a
CH
1609 if (error)
1610 goto out_bmap_cancel;
1da177e4 1611
2e6db6c4 1612 error = xfs_trans_roll(&tp, ip);
f6485057 1613 if (error)
8f04c47a 1614 goto out;
1da177e4 1615 }
8f04c47a 1616
aa8968f2
DW
1617 /* Remove all pending CoW reservations. */
1618 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
3802a345 1619 last_block, true);
aa8968f2
DW
1620 if (error)
1621 goto out;
1622
1623 /*
1624 * Clear the reflink flag if we truncated everything.
1625 */
83104d44 1626 if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) {
aa8968f2 1627 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
83104d44
DW
1628 xfs_inode_clear_cowblocks_tag(ip);
1629 }
aa8968f2 1630
673e8e59
CH
1631 /*
1632 * Always re-log the inode so that our permanent transaction can keep
1633 * on rolling it forward in the log.
1634 */
1635 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1636
1637 trace_xfs_itruncate_extents_end(ip, new_size);
1638
8f04c47a
CH
1639out:
1640 *tpp = tp;
1641 return error;
1642out_bmap_cancel:
1da177e4 1643 /*
8f04c47a
CH
1644 * If the bunmapi call encounters an error, return to the caller where
1645 * the transaction can be properly aborted. We just need to make sure
1646 * we're not holding any resources that we were not when we came in.
1da177e4 1647 */
2c3234d1 1648 xfs_defer_cancel(&dfops);
8f04c47a
CH
1649 goto out;
1650}
1651
c24b5dfa
DC
1652int
1653xfs_release(
1654 xfs_inode_t *ip)
1655{
1656 xfs_mount_t *mp = ip->i_mount;
1657 int error;
1658
c19b3b05 1659 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1660 return 0;
1661
1662 /* If this is a read-only mount, don't do this (would generate I/O) */
1663 if (mp->m_flags & XFS_MOUNT_RDONLY)
1664 return 0;
1665
1666 if (!XFS_FORCED_SHUTDOWN(mp)) {
1667 int truncated;
1668
c24b5dfa
DC
1669 /*
1670 * If we previously truncated this file and removed old data
1671 * in the process, we want to initiate "early" writeout on
1672 * the last close. This is an attempt to combat the notorious
1673 * NULL files problem which is particularly noticeable from a
1674 * truncate down, buffered (re-)write (delalloc), followed by
1675 * a crash. What we are effectively doing here is
1676 * significantly reducing the time window where we'd otherwise
1677 * be exposed to that problem.
1678 */
1679 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1680 if (truncated) {
1681 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1682 if (ip->i_delayed_blks > 0) {
2451337d 1683 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1684 if (error)
1685 return error;
1686 }
1687 }
1688 }
1689
54d7b5c1 1690 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1691 return 0;
1692
1693 if (xfs_can_free_eofblocks(ip, false)) {
1694
a36b9261
BF
1695 /*
1696 * Check if the inode is being opened, written and closed
1697 * frequently and we have delayed allocation blocks outstanding
1698 * (e.g. streaming writes from the NFS server), truncating the
1699 * blocks past EOF will cause fragmentation to occur.
1700 *
1701 * In this case don't do the truncation, but we have to be
1702 * careful how we detect this case. Blocks beyond EOF show up as
1703 * i_delayed_blks even when the inode is clean, so we need to
1704 * truncate them away first before checking for a dirty release.
1705 * Hence on the first dirty close we will still remove the
1706 * speculative allocation, but after that we will leave it in
1707 * place.
1708 */
1709 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1710 return 0;
c24b5dfa
DC
1711 /*
1712 * If we can't get the iolock just skip truncating the blocks
1713 * past EOF because we could deadlock with the mmap_sem
a36b9261 1714 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1715 * last reference to the inode is dropped, so we'll never leak
1716 * blocks permanently.
c24b5dfa 1717 */
a36b9261
BF
1718 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1719 error = xfs_free_eofblocks(ip);
1720 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1721 if (error)
1722 return error;
1723 }
c24b5dfa
DC
1724
1725 /* delalloc blocks after truncation means it really is dirty */
1726 if (ip->i_delayed_blks)
1727 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1728 }
1729 return 0;
1730}
1731
f7be2d7f
BF
1732/*
1733 * xfs_inactive_truncate
1734 *
1735 * Called to perform a truncate when an inode becomes unlinked.
1736 */
1737STATIC int
1738xfs_inactive_truncate(
1739 struct xfs_inode *ip)
1740{
1741 struct xfs_mount *mp = ip->i_mount;
1742 struct xfs_trans *tp;
1743 int error;
1744
253f4911 1745 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1746 if (error) {
1747 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1748 return error;
1749 }
1750
1751 xfs_ilock(ip, XFS_ILOCK_EXCL);
1752 xfs_trans_ijoin(tp, ip, 0);
1753
1754 /*
1755 * Log the inode size first to prevent stale data exposure in the event
1756 * of a system crash before the truncate completes. See the related
69bca807 1757 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1758 */
1759 ip->i_d.di_size = 0;
1760 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1761
1762 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1763 if (error)
1764 goto error_trans_cancel;
1765
1766 ASSERT(ip->i_d.di_nextents == 0);
1767
70393313 1768 error = xfs_trans_commit(tp);
f7be2d7f
BF
1769 if (error)
1770 goto error_unlock;
1771
1772 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1773 return 0;
1774
1775error_trans_cancel:
4906e215 1776 xfs_trans_cancel(tp);
f7be2d7f
BF
1777error_unlock:
1778 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1779 return error;
1780}
1781
88877d2b
BF
1782/*
1783 * xfs_inactive_ifree()
1784 *
1785 * Perform the inode free when an inode is unlinked.
1786 */
1787STATIC int
1788xfs_inactive_ifree(
1789 struct xfs_inode *ip)
1790{
2c3234d1 1791 struct xfs_defer_ops dfops;
88877d2b 1792 xfs_fsblock_t first_block;
88877d2b
BF
1793 struct xfs_mount *mp = ip->i_mount;
1794 struct xfs_trans *tp;
1795 int error;
1796
9d43b180 1797 /*
76d771b4
CH
1798 * We try to use a per-AG reservation for any block needed by the finobt
1799 * tree, but as the finobt feature predates the per-AG reservation
1800 * support a degraded file system might not have enough space for the
1801 * reservation at mount time. In that case try to dip into the reserved
1802 * pool and pray.
9d43b180
BF
1803 *
1804 * Send a warning if the reservation does happen to fail, as the inode
1805 * now remains allocated and sits on the unlinked list until the fs is
1806 * repaired.
1807 */
76d771b4
CH
1808 if (unlikely(mp->m_inotbt_nores)) {
1809 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1810 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1811 &tp);
1812 } else {
1813 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1814 }
88877d2b 1815 if (error) {
2451337d 1816 if (error == -ENOSPC) {
9d43b180
BF
1817 xfs_warn_ratelimited(mp,
1818 "Failed to remove inode(s) from unlinked list. "
1819 "Please free space, unmount and run xfs_repair.");
1820 } else {
1821 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1822 }
88877d2b
BF
1823 return error;
1824 }
1825
1826 xfs_ilock(ip, XFS_ILOCK_EXCL);
1827 xfs_trans_ijoin(tp, ip, 0);
1828
2c3234d1
DW
1829 xfs_defer_init(&dfops, &first_block);
1830 error = xfs_ifree(tp, ip, &dfops);
88877d2b
BF
1831 if (error) {
1832 /*
1833 * If we fail to free the inode, shut down. The cancel
1834 * might do that, we need to make sure. Otherwise the
1835 * inode might be lost for a long time or forever.
1836 */
1837 if (!XFS_FORCED_SHUTDOWN(mp)) {
1838 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1839 __func__, error);
1840 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1841 }
4906e215 1842 xfs_trans_cancel(tp);
88877d2b
BF
1843 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1844 return error;
1845 }
1846
1847 /*
1848 * Credit the quota account(s). The inode is gone.
1849 */
1850 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1851
1852 /*
d4a97a04
BF
1853 * Just ignore errors at this point. There is nothing we can do except
1854 * to try to keep going. Make sure it's not a silent error.
88877d2b 1855 */
2c3234d1 1856 error = xfs_defer_finish(&tp, &dfops, NULL);
d4a97a04 1857 if (error) {
310a75a3 1858 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
88877d2b 1859 __func__, error);
2c3234d1 1860 xfs_defer_cancel(&dfops);
d4a97a04 1861 }
70393313 1862 error = xfs_trans_commit(tp);
88877d2b
BF
1863 if (error)
1864 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1865 __func__, error);
1866
1867 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1868 return 0;
1869}
1870
c24b5dfa
DC
1871/*
1872 * xfs_inactive
1873 *
1874 * This is called when the vnode reference count for the vnode
1875 * goes to zero. If the file has been unlinked, then it must
1876 * now be truncated. Also, we clear all of the read-ahead state
1877 * kept for the inode here since the file is now closed.
1878 */
74564fb4 1879void
c24b5dfa
DC
1880xfs_inactive(
1881 xfs_inode_t *ip)
1882{
3d3c8b52 1883 struct xfs_mount *mp;
3d3c8b52
JL
1884 int error;
1885 int truncate = 0;
c24b5dfa
DC
1886
1887 /*
1888 * If the inode is already free, then there can be nothing
1889 * to clean up here.
1890 */
c19b3b05 1891 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa
DC
1892 ASSERT(ip->i_df.if_real_bytes == 0);
1893 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1894 return;
c24b5dfa
DC
1895 }
1896
1897 mp = ip->i_mount;
17c12bcd 1898 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1899
c24b5dfa
DC
1900 /* If this is a read-only mount, don't do this (would generate I/O) */
1901 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1902 return;
c24b5dfa 1903
54d7b5c1 1904 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1905 /*
1906 * force is true because we are evicting an inode from the
1907 * cache. Post-eof blocks must be freed, lest we end up with
1908 * broken free space accounting.
1909 */
a36b9261
BF
1910 if (xfs_can_free_eofblocks(ip, true)) {
1911 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1912 xfs_free_eofblocks(ip);
1913 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1914 }
74564fb4
BF
1915
1916 return;
c24b5dfa
DC
1917 }
1918
c19b3b05 1919 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa
DC
1920 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1921 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1922 truncate = 1;
1923
1924 error = xfs_qm_dqattach(ip, 0);
1925 if (error)
74564fb4 1926 return;
c24b5dfa 1927
c19b3b05 1928 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1929 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1930 else if (truncate)
1931 error = xfs_inactive_truncate(ip);
1932 if (error)
74564fb4 1933 return;
c24b5dfa
DC
1934
1935 /*
1936 * If there are attributes associated with the file then blow them away
1937 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1938 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1939 */
6dfe5a04 1940 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1941 error = xfs_attr_inactive(ip);
1942 if (error)
74564fb4 1943 return;
c24b5dfa
DC
1944 }
1945
6dfe5a04 1946 ASSERT(!ip->i_afp);
c24b5dfa 1947 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1948 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1949
1950 /*
1951 * Free the inode.
1952 */
88877d2b
BF
1953 error = xfs_inactive_ifree(ip);
1954 if (error)
74564fb4 1955 return;
c24b5dfa
DC
1956
1957 /*
1958 * Release the dquots held by inode, if any.
1959 */
1960 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1961}
1962
1da177e4 1963/*
54d7b5c1
DC
1964 * This is called when the inode's link count goes to 0 or we are creating a
1965 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1966 * set to true as the link count is dropped to zero by the VFS after we've
1967 * created the file successfully, so we have to add it to the unlinked list
1968 * while the link count is non-zero.
1969 *
1970 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1971 * list when the inode is freed.
1da177e4 1972 */
54d7b5c1 1973STATIC int
1da177e4 1974xfs_iunlink(
54d7b5c1
DC
1975 struct xfs_trans *tp,
1976 struct xfs_inode *ip)
1da177e4 1977{
54d7b5c1 1978 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1979 xfs_agi_t *agi;
1980 xfs_dinode_t *dip;
1981 xfs_buf_t *agibp;
1982 xfs_buf_t *ibp;
1da177e4
LT
1983 xfs_agino_t agino;
1984 short bucket_index;
1985 int offset;
1986 int error;
1da177e4 1987
c19b3b05 1988 ASSERT(VFS_I(ip)->i_mode != 0);
1da177e4 1989
1da177e4
LT
1990 /*
1991 * Get the agi buffer first. It ensures lock ordering
1992 * on the list.
1993 */
5e1be0fb 1994 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1995 if (error)
1da177e4 1996 return error;
1da177e4 1997 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1998
1da177e4
LT
1999 /*
2000 * Get the index into the agi hash table for the
2001 * list this inode will go on.
2002 */
2003 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2004 ASSERT(agino != 0);
2005 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2006 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 2007 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 2008
69ef921b 2009 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
2010 /*
2011 * There is already another inode in the bucket we need
2012 * to add ourselves to. Add us at the front of the list.
2013 * Here we put the head pointer into our next pointer,
2014 * and then we fall through to point the head at us.
2015 */
475ee413
CH
2016 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2017 0, 0);
c319b58b
VA
2018 if (error)
2019 return error;
2020
69ef921b 2021 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2022 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2023 offset = ip->i_imap.im_boffset +
1da177e4 2024 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2025
2026 /* need to recalc the inode CRC if appropriate */
2027 xfs_dinode_calc_crc(mp, dip);
2028
1da177e4
LT
2029 xfs_trans_inode_buf(tp, ibp);
2030 xfs_trans_log_buf(tp, ibp, offset,
2031 (offset + sizeof(xfs_agino_t) - 1));
2032 xfs_inobp_check(mp, ibp);
2033 }
2034
2035 /*
2036 * Point the bucket head pointer at the inode being inserted.
2037 */
2038 ASSERT(agino != 0);
16259e7d 2039 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2040 offset = offsetof(xfs_agi_t, agi_unlinked) +
2041 (sizeof(xfs_agino_t) * bucket_index);
2042 xfs_trans_log_buf(tp, agibp, offset,
2043 (offset + sizeof(xfs_agino_t) - 1));
2044 return 0;
2045}
2046
2047/*
2048 * Pull the on-disk inode from the AGI unlinked list.
2049 */
2050STATIC int
2051xfs_iunlink_remove(
2052 xfs_trans_t *tp,
2053 xfs_inode_t *ip)
2054{
2055 xfs_ino_t next_ino;
2056 xfs_mount_t *mp;
2057 xfs_agi_t *agi;
2058 xfs_dinode_t *dip;
2059 xfs_buf_t *agibp;
2060 xfs_buf_t *ibp;
2061 xfs_agnumber_t agno;
1da177e4
LT
2062 xfs_agino_t agino;
2063 xfs_agino_t next_agino;
2064 xfs_buf_t *last_ibp;
6fdf8ccc 2065 xfs_dinode_t *last_dip = NULL;
1da177e4 2066 short bucket_index;
6fdf8ccc 2067 int offset, last_offset = 0;
1da177e4 2068 int error;
1da177e4 2069
1da177e4 2070 mp = tp->t_mountp;
1da177e4 2071 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2072
2073 /*
2074 * Get the agi buffer first. It ensures lock ordering
2075 * on the list.
2076 */
5e1be0fb
CH
2077 error = xfs_read_agi(mp, tp, agno, &agibp);
2078 if (error)
1da177e4 2079 return error;
5e1be0fb 2080
1da177e4 2081 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2082
1da177e4
LT
2083 /*
2084 * Get the index into the agi hash table for the
2085 * list this inode will go on.
2086 */
2087 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2088 ASSERT(agino != 0);
2089 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2090 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2091 ASSERT(agi->agi_unlinked[bucket_index]);
2092
16259e7d 2093 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2094 /*
475ee413
CH
2095 * We're at the head of the list. Get the inode's on-disk
2096 * buffer to see if there is anyone after us on the list.
2097 * Only modify our next pointer if it is not already NULLAGINO.
2098 * This saves us the overhead of dealing with the buffer when
2099 * there is no need to change it.
1da177e4 2100 */
475ee413
CH
2101 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2102 0, 0);
1da177e4 2103 if (error) {
475ee413 2104 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2105 __func__, error);
1da177e4
LT
2106 return error;
2107 }
347d1c01 2108 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2109 ASSERT(next_agino != 0);
2110 if (next_agino != NULLAGINO) {
347d1c01 2111 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2112 offset = ip->i_imap.im_boffset +
1da177e4 2113 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2114
2115 /* need to recalc the inode CRC if appropriate */
2116 xfs_dinode_calc_crc(mp, dip);
2117
1da177e4
LT
2118 xfs_trans_inode_buf(tp, ibp);
2119 xfs_trans_log_buf(tp, ibp, offset,
2120 (offset + sizeof(xfs_agino_t) - 1));
2121 xfs_inobp_check(mp, ibp);
2122 } else {
2123 xfs_trans_brelse(tp, ibp);
2124 }
2125 /*
2126 * Point the bucket head pointer at the next inode.
2127 */
2128 ASSERT(next_agino != 0);
2129 ASSERT(next_agino != agino);
16259e7d 2130 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2131 offset = offsetof(xfs_agi_t, agi_unlinked) +
2132 (sizeof(xfs_agino_t) * bucket_index);
2133 xfs_trans_log_buf(tp, agibp, offset,
2134 (offset + sizeof(xfs_agino_t) - 1));
2135 } else {
2136 /*
2137 * We need to search the list for the inode being freed.
2138 */
16259e7d 2139 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2140 last_ibp = NULL;
2141 while (next_agino != agino) {
129dbc9a
CH
2142 struct xfs_imap imap;
2143
2144 if (last_ibp)
1da177e4 2145 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2146
2147 imap.im_blkno = 0;
1da177e4 2148 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2149
2150 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2151 if (error) {
2152 xfs_warn(mp,
2153 "%s: xfs_imap returned error %d.",
2154 __func__, error);
2155 return error;
2156 }
2157
2158 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2159 &last_ibp, 0, 0);
1da177e4 2160 if (error) {
0b932ccc 2161 xfs_warn(mp,
129dbc9a 2162 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2163 __func__, error);
1da177e4
LT
2164 return error;
2165 }
129dbc9a
CH
2166
2167 last_offset = imap.im_boffset;
347d1c01 2168 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2169 ASSERT(next_agino != NULLAGINO);
2170 ASSERT(next_agino != 0);
2171 }
475ee413 2172
1da177e4 2173 /*
475ee413
CH
2174 * Now last_ibp points to the buffer previous to us on the
2175 * unlinked list. Pull us from the list.
1da177e4 2176 */
475ee413
CH
2177 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2178 0, 0);
1da177e4 2179 if (error) {
475ee413 2180 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2181 __func__, error);
1da177e4
LT
2182 return error;
2183 }
347d1c01 2184 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2185 ASSERT(next_agino != 0);
2186 ASSERT(next_agino != agino);
2187 if (next_agino != NULLAGINO) {
347d1c01 2188 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2189 offset = ip->i_imap.im_boffset +
1da177e4 2190 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2191
2192 /* need to recalc the inode CRC if appropriate */
2193 xfs_dinode_calc_crc(mp, dip);
2194
1da177e4
LT
2195 xfs_trans_inode_buf(tp, ibp);
2196 xfs_trans_log_buf(tp, ibp, offset,
2197 (offset + sizeof(xfs_agino_t) - 1));
2198 xfs_inobp_check(mp, ibp);
2199 } else {
2200 xfs_trans_brelse(tp, ibp);
2201 }
2202 /*
2203 * Point the previous inode on the list to the next inode.
2204 */
347d1c01 2205 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2206 ASSERT(next_agino != 0);
2207 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2208
2209 /* need to recalc the inode CRC if appropriate */
2210 xfs_dinode_calc_crc(mp, last_dip);
2211
1da177e4
LT
2212 xfs_trans_inode_buf(tp, last_ibp);
2213 xfs_trans_log_buf(tp, last_ibp, offset,
2214 (offset + sizeof(xfs_agino_t) - 1));
2215 xfs_inobp_check(mp, last_ibp);
2216 }
2217 return 0;
2218}
2219
5b3eed75 2220/*
0b8182db 2221 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2222 * inodes that are in memory - they all must be marked stale and attached to
2223 * the cluster buffer.
2224 */
2a30f36d 2225STATIC int
1da177e4 2226xfs_ifree_cluster(
09b56604
BF
2227 xfs_inode_t *free_ip,
2228 xfs_trans_t *tp,
2229 struct xfs_icluster *xic)
1da177e4
LT
2230{
2231 xfs_mount_t *mp = free_ip->i_mount;
2232 int blks_per_cluster;
982e939e 2233 int inodes_per_cluster;
1da177e4 2234 int nbufs;
5b257b4a 2235 int i, j;
3cdaa189 2236 int ioffset;
1da177e4
LT
2237 xfs_daddr_t blkno;
2238 xfs_buf_t *bp;
5b257b4a 2239 xfs_inode_t *ip;
1da177e4
LT
2240 xfs_inode_log_item_t *iip;
2241 xfs_log_item_t *lip;
5017e97d 2242 struct xfs_perag *pag;
09b56604 2243 xfs_ino_t inum;
1da177e4 2244
09b56604 2245 inum = xic->first_ino;
5017e97d 2246 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2247 blks_per_cluster = xfs_icluster_size_fsb(mp);
2248 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2249 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2250
982e939e 2251 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2252 /*
2253 * The allocation bitmap tells us which inodes of the chunk were
2254 * physically allocated. Skip the cluster if an inode falls into
2255 * a sparse region.
2256 */
3cdaa189
BF
2257 ioffset = inum - xic->first_ino;
2258 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2259 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2260 continue;
2261 }
2262
1da177e4
LT
2263 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2264 XFS_INO_TO_AGBNO(mp, inum));
2265
5b257b4a
DC
2266 /*
2267 * We obtain and lock the backing buffer first in the process
2268 * here, as we have to ensure that any dirty inode that we
2269 * can't get the flush lock on is attached to the buffer.
2270 * If we scan the in-memory inodes first, then buffer IO can
2271 * complete before we get a lock on it, and hence we may fail
2272 * to mark all the active inodes on the buffer stale.
2273 */
2274 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2275 mp->m_bsize * blks_per_cluster,
2276 XBF_UNMAPPED);
5b257b4a 2277
2a30f36d 2278 if (!bp)
2451337d 2279 return -ENOMEM;
b0f539de
DC
2280
2281 /*
2282 * This buffer may not have been correctly initialised as we
2283 * didn't read it from disk. That's not important because we are
2284 * only using to mark the buffer as stale in the log, and to
2285 * attach stale cached inodes on it. That means it will never be
2286 * dispatched for IO. If it is, we want to know about it, and we
2287 * want it to fail. We can acheive this by adding a write
2288 * verifier to the buffer.
2289 */
1813dd64 2290 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2291
5b257b4a
DC
2292 /*
2293 * Walk the inodes already attached to the buffer and mark them
2294 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2295 * in-memory inode walk can't lock them. By marking them all
2296 * stale first, we will not attempt to lock them in the loop
2297 * below as the XFS_ISTALE flag will be set.
5b257b4a 2298 */
adadbeef 2299 lip = bp->b_fspriv;
5b257b4a
DC
2300 while (lip) {
2301 if (lip->li_type == XFS_LI_INODE) {
2302 iip = (xfs_inode_log_item_t *)lip;
2303 ASSERT(iip->ili_logged == 1);
ca30b2a7 2304 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2305 xfs_trans_ail_copy_lsn(mp->m_ail,
2306 &iip->ili_flush_lsn,
2307 &iip->ili_item.li_lsn);
2308 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2309 }
2310 lip = lip->li_bio_list;
2311 }
1da177e4 2312
5b3eed75 2313
1da177e4 2314 /*
5b257b4a
DC
2315 * For each inode in memory attempt to add it to the inode
2316 * buffer and set it up for being staled on buffer IO
2317 * completion. This is safe as we've locked out tail pushing
2318 * and flushing by locking the buffer.
1da177e4 2319 *
5b257b4a
DC
2320 * We have already marked every inode that was part of a
2321 * transaction stale above, which means there is no point in
2322 * even trying to lock them.
1da177e4 2323 */
982e939e 2324 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2325retry:
1a3e8f3d 2326 rcu_read_lock();
da353b0d
DC
2327 ip = radix_tree_lookup(&pag->pag_ici_root,
2328 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2329
1a3e8f3d
DC
2330 /* Inode not in memory, nothing to do */
2331 if (!ip) {
2332 rcu_read_unlock();
1da177e4
LT
2333 continue;
2334 }
2335
1a3e8f3d
DC
2336 /*
2337 * because this is an RCU protected lookup, we could
2338 * find a recently freed or even reallocated inode
2339 * during the lookup. We need to check under the
2340 * i_flags_lock for a valid inode here. Skip it if it
2341 * is not valid, the wrong inode or stale.
2342 */
2343 spin_lock(&ip->i_flags_lock);
2344 if (ip->i_ino != inum + i ||
2345 __xfs_iflags_test(ip, XFS_ISTALE)) {
2346 spin_unlock(&ip->i_flags_lock);
2347 rcu_read_unlock();
2348 continue;
2349 }
2350 spin_unlock(&ip->i_flags_lock);
2351
5b3eed75
DC
2352 /*
2353 * Don't try to lock/unlock the current inode, but we
2354 * _cannot_ skip the other inodes that we did not find
2355 * in the list attached to the buffer and are not
2356 * already marked stale. If we can't lock it, back off
2357 * and retry.
2358 */
5b257b4a
DC
2359 if (ip != free_ip &&
2360 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2361 rcu_read_unlock();
5b3eed75
DC
2362 delay(1);
2363 goto retry;
1da177e4 2364 }
1a3e8f3d 2365 rcu_read_unlock();
1da177e4 2366
5b3eed75 2367 xfs_iflock(ip);
5b257b4a 2368 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2369
5b3eed75
DC
2370 /*
2371 * we don't need to attach clean inodes or those only
2372 * with unlogged changes (which we throw away, anyway).
2373 */
1da177e4 2374 iip = ip->i_itemp;
5b3eed75 2375 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2376 ASSERT(ip != free_ip);
1da177e4
LT
2377 xfs_ifunlock(ip);
2378 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2379 continue;
2380 }
2381
f5d8d5c4
CH
2382 iip->ili_last_fields = iip->ili_fields;
2383 iip->ili_fields = 0;
fc0561ce 2384 iip->ili_fsync_fields = 0;
1da177e4 2385 iip->ili_logged = 1;
7b2e2a31
DC
2386 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2387 &iip->ili_item.li_lsn);
1da177e4 2388
ca30b2a7
CH
2389 xfs_buf_attach_iodone(bp, xfs_istale_done,
2390 &iip->ili_item);
5b257b4a
DC
2391
2392 if (ip != free_ip)
1da177e4 2393 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2394 }
2395
5b3eed75 2396 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2397 xfs_trans_binval(tp, bp);
2398 }
2399
5017e97d 2400 xfs_perag_put(pag);
2a30f36d 2401 return 0;
1da177e4
LT
2402}
2403
2404/*
2405 * This is called to return an inode to the inode free list.
2406 * The inode should already be truncated to 0 length and have
2407 * no pages associated with it. This routine also assumes that
2408 * the inode is already a part of the transaction.
2409 *
2410 * The on-disk copy of the inode will have been added to the list
2411 * of unlinked inodes in the AGI. We need to remove the inode from
2412 * that list atomically with respect to freeing it here.
2413 */
2414int
2415xfs_ifree(
2416 xfs_trans_t *tp,
2417 xfs_inode_t *ip,
2c3234d1 2418 struct xfs_defer_ops *dfops)
1da177e4
LT
2419{
2420 int error;
09b56604 2421 struct xfs_icluster xic = { 0 };
1da177e4 2422
579aa9ca 2423 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2424 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2425 ASSERT(ip->i_d.di_nextents == 0);
2426 ASSERT(ip->i_d.di_anextents == 0);
c19b3b05 2427 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2428 ASSERT(ip->i_d.di_nblocks == 0);
2429
2430 /*
2431 * Pull the on-disk inode from the AGI unlinked list.
2432 */
2433 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2434 if (error)
1da177e4 2435 return error;
1da177e4 2436
2c3234d1 2437 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
1baaed8f 2438 if (error)
1da177e4 2439 return error;
1baaed8f 2440
c19b3b05 2441 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4
LT
2442 ip->i_d.di_flags = 0;
2443 ip->i_d.di_dmevmask = 0;
2444 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2445 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2446 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2447 /*
2448 * Bump the generation count so no one will be confused
2449 * by reincarnations of this inode.
2450 */
9e9a2674 2451 VFS_I(ip)->i_generation++;
1da177e4
LT
2452 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2453
09b56604
BF
2454 if (xic.deleted)
2455 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2456
2a30f36d 2457 return error;
1da177e4
LT
2458}
2459
1da177e4 2460/*
60ec6783
CH
2461 * This is called to unpin an inode. The caller must have the inode locked
2462 * in at least shared mode so that the buffer cannot be subsequently pinned
2463 * once someone is waiting for it to be unpinned.
1da177e4 2464 */
60ec6783 2465static void
f392e631 2466xfs_iunpin(
60ec6783 2467 struct xfs_inode *ip)
1da177e4 2468{
579aa9ca 2469 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2470
4aaf15d1
DC
2471 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2472
a3f74ffb 2473 /* Give the log a push to start the unpinning I/O */
60ec6783 2474 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2475
a3f74ffb 2476}
1da177e4 2477
f392e631
CH
2478static void
2479__xfs_iunpin_wait(
2480 struct xfs_inode *ip)
2481{
2482 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2483 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2484
2485 xfs_iunpin(ip);
2486
2487 do {
2488 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2489 if (xfs_ipincount(ip))
2490 io_schedule();
2491 } while (xfs_ipincount(ip));
2492 finish_wait(wq, &wait.wait);
2493}
2494
777df5af 2495void
a3f74ffb 2496xfs_iunpin_wait(
60ec6783 2497 struct xfs_inode *ip)
a3f74ffb 2498{
f392e631
CH
2499 if (xfs_ipincount(ip))
2500 __xfs_iunpin_wait(ip);
1da177e4
LT
2501}
2502
27320369
DC
2503/*
2504 * Removing an inode from the namespace involves removing the directory entry
2505 * and dropping the link count on the inode. Removing the directory entry can
2506 * result in locking an AGF (directory blocks were freed) and removing a link
2507 * count can result in placing the inode on an unlinked list which results in
2508 * locking an AGI.
2509 *
2510 * The big problem here is that we have an ordering constraint on AGF and AGI
2511 * locking - inode allocation locks the AGI, then can allocate a new extent for
2512 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2513 * removes the inode from the unlinked list, requiring that we lock the AGI
2514 * first, and then freeing the inode can result in an inode chunk being freed
2515 * and hence freeing disk space requiring that we lock an AGF.
2516 *
2517 * Hence the ordering that is imposed by other parts of the code is AGI before
2518 * AGF. This means we cannot remove the directory entry before we drop the inode
2519 * reference count and put it on the unlinked list as this results in a lock
2520 * order of AGF then AGI, and this can deadlock against inode allocation and
2521 * freeing. Therefore we must drop the link counts before we remove the
2522 * directory entry.
2523 *
2524 * This is still safe from a transactional point of view - it is not until we
310a75a3 2525 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2526 * transactions in this operation. Hence as long as we remove the directory
2527 * entry and drop the link count in the first transaction of the remove
2528 * operation, there are no transactional constraints on the ordering here.
2529 */
c24b5dfa
DC
2530int
2531xfs_remove(
2532 xfs_inode_t *dp,
2533 struct xfs_name *name,
2534 xfs_inode_t *ip)
2535{
2536 xfs_mount_t *mp = dp->i_mount;
2537 xfs_trans_t *tp = NULL;
c19b3b05 2538 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2539 int error = 0;
2c3234d1 2540 struct xfs_defer_ops dfops;
c24b5dfa 2541 xfs_fsblock_t first_block;
c24b5dfa 2542 uint resblks;
c24b5dfa
DC
2543
2544 trace_xfs_remove(dp, name);
2545
2546 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2547 return -EIO;
c24b5dfa
DC
2548
2549 error = xfs_qm_dqattach(dp, 0);
2550 if (error)
2551 goto std_return;
2552
2553 error = xfs_qm_dqattach(ip, 0);
2554 if (error)
2555 goto std_return;
2556
c24b5dfa
DC
2557 /*
2558 * We try to get the real space reservation first,
2559 * allowing for directory btree deletion(s) implying
2560 * possible bmap insert(s). If we can't get the space
2561 * reservation then we use 0 instead, and avoid the bmap
2562 * btree insert(s) in the directory code by, if the bmap
2563 * insert tries to happen, instead trimming the LAST
2564 * block from the directory.
2565 */
2566 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2567 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2568 if (error == -ENOSPC) {
c24b5dfa 2569 resblks = 0;
253f4911
CH
2570 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2571 &tp);
c24b5dfa
DC
2572 }
2573 if (error) {
2451337d 2574 ASSERT(error != -ENOSPC);
253f4911 2575 goto std_return;
c24b5dfa
DC
2576 }
2577
2578 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2579
65523218 2580 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2581 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2582
2583 /*
2584 * If we're removing a directory perform some additional validation.
2585 */
2586 if (is_dir) {
54d7b5c1
DC
2587 ASSERT(VFS_I(ip)->i_nlink >= 2);
2588 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2589 error = -ENOTEMPTY;
c24b5dfa
DC
2590 goto out_trans_cancel;
2591 }
2592 if (!xfs_dir_isempty(ip)) {
2451337d 2593 error = -ENOTEMPTY;
c24b5dfa
DC
2594 goto out_trans_cancel;
2595 }
c24b5dfa 2596
27320369 2597 /* Drop the link from ip's "..". */
c24b5dfa
DC
2598 error = xfs_droplink(tp, dp);
2599 if (error)
27320369 2600 goto out_trans_cancel;
c24b5dfa 2601
27320369 2602 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2603 error = xfs_droplink(tp, ip);
2604 if (error)
27320369 2605 goto out_trans_cancel;
c24b5dfa
DC
2606 } else {
2607 /*
2608 * When removing a non-directory we need to log the parent
2609 * inode here. For a directory this is done implicitly
2610 * by the xfs_droplink call for the ".." entry.
2611 */
2612 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2613 }
27320369 2614 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2615
27320369 2616 /* Drop the link from dp to ip. */
c24b5dfa
DC
2617 error = xfs_droplink(tp, ip);
2618 if (error)
27320369 2619 goto out_trans_cancel;
c24b5dfa 2620
2c3234d1 2621 xfs_defer_init(&dfops, &first_block);
27320369 2622 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2c3234d1 2623 &first_block, &dfops, resblks);
27320369 2624 if (error) {
2451337d 2625 ASSERT(error != -ENOENT);
27320369
DC
2626 goto out_bmap_cancel;
2627 }
2628
c24b5dfa
DC
2629 /*
2630 * If this is a synchronous mount, make sure that the
2631 * remove transaction goes to disk before returning to
2632 * the user.
2633 */
2634 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2635 xfs_trans_set_sync(tp);
2636
2c3234d1 2637 error = xfs_defer_finish(&tp, &dfops, NULL);
c24b5dfa
DC
2638 if (error)
2639 goto out_bmap_cancel;
2640
70393313 2641 error = xfs_trans_commit(tp);
c24b5dfa
DC
2642 if (error)
2643 goto std_return;
2644
2cd2ef6a 2645 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2646 xfs_filestream_deassociate(ip);
2647
2648 return 0;
2649
2650 out_bmap_cancel:
2c3234d1 2651 xfs_defer_cancel(&dfops);
c24b5dfa 2652 out_trans_cancel:
4906e215 2653 xfs_trans_cancel(tp);
c24b5dfa
DC
2654 std_return:
2655 return error;
2656}
2657
f6bba201
DC
2658/*
2659 * Enter all inodes for a rename transaction into a sorted array.
2660 */
95afcf5c 2661#define __XFS_SORT_INODES 5
f6bba201
DC
2662STATIC void
2663xfs_sort_for_rename(
95afcf5c
DC
2664 struct xfs_inode *dp1, /* in: old (source) directory inode */
2665 struct xfs_inode *dp2, /* in: new (target) directory inode */
2666 struct xfs_inode *ip1, /* in: inode of old entry */
2667 struct xfs_inode *ip2, /* in: inode of new entry */
2668 struct xfs_inode *wip, /* in: whiteout inode */
2669 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2670 int *num_inodes) /* in/out: inodes in array */
f6bba201 2671{
f6bba201
DC
2672 int i, j;
2673
95afcf5c
DC
2674 ASSERT(*num_inodes == __XFS_SORT_INODES);
2675 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2676
f6bba201
DC
2677 /*
2678 * i_tab contains a list of pointers to inodes. We initialize
2679 * the table here & we'll sort it. We will then use it to
2680 * order the acquisition of the inode locks.
2681 *
2682 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2683 */
95afcf5c
DC
2684 i = 0;
2685 i_tab[i++] = dp1;
2686 i_tab[i++] = dp2;
2687 i_tab[i++] = ip1;
2688 if (ip2)
2689 i_tab[i++] = ip2;
2690 if (wip)
2691 i_tab[i++] = wip;
2692 *num_inodes = i;
f6bba201
DC
2693
2694 /*
2695 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2696 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2697 */
2698 for (i = 0; i < *num_inodes; i++) {
2699 for (j = 1; j < *num_inodes; j++) {
2700 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2701 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2702 i_tab[j] = i_tab[j-1];
2703 i_tab[j-1] = temp;
2704 }
2705 }
2706 }
2707}
2708
310606b0
DC
2709static int
2710xfs_finish_rename(
2711 struct xfs_trans *tp,
2c3234d1 2712 struct xfs_defer_ops *dfops)
310606b0 2713{
310606b0
DC
2714 int error;
2715
2716 /*
2717 * If this is a synchronous mount, make sure that the rename transaction
2718 * goes to disk before returning to the user.
2719 */
2720 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2721 xfs_trans_set_sync(tp);
2722
2c3234d1 2723 error = xfs_defer_finish(&tp, dfops, NULL);
310606b0 2724 if (error) {
2c3234d1 2725 xfs_defer_cancel(dfops);
4906e215 2726 xfs_trans_cancel(tp);
310606b0
DC
2727 return error;
2728 }
2729
70393313 2730 return xfs_trans_commit(tp);
310606b0
DC
2731}
2732
d31a1825
CM
2733/*
2734 * xfs_cross_rename()
2735 *
2736 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2737 */
2738STATIC int
2739xfs_cross_rename(
2740 struct xfs_trans *tp,
2741 struct xfs_inode *dp1,
2742 struct xfs_name *name1,
2743 struct xfs_inode *ip1,
2744 struct xfs_inode *dp2,
2745 struct xfs_name *name2,
2746 struct xfs_inode *ip2,
2c3234d1 2747 struct xfs_defer_ops *dfops,
d31a1825
CM
2748 xfs_fsblock_t *first_block,
2749 int spaceres)
2750{
2751 int error = 0;
2752 int ip1_flags = 0;
2753 int ip2_flags = 0;
2754 int dp2_flags = 0;
2755
2756 /* Swap inode number for dirent in first parent */
2757 error = xfs_dir_replace(tp, dp1, name1,
2758 ip2->i_ino,
2c3234d1 2759 first_block, dfops, spaceres);
d31a1825 2760 if (error)
eeacd321 2761 goto out_trans_abort;
d31a1825
CM
2762
2763 /* Swap inode number for dirent in second parent */
2764 error = xfs_dir_replace(tp, dp2, name2,
2765 ip1->i_ino,
2c3234d1 2766 first_block, dfops, spaceres);
d31a1825 2767 if (error)
eeacd321 2768 goto out_trans_abort;
d31a1825
CM
2769
2770 /*
2771 * If we're renaming one or more directories across different parents,
2772 * update the respective ".." entries (and link counts) to match the new
2773 * parents.
2774 */
2775 if (dp1 != dp2) {
2776 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2777
c19b3b05 2778 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2779 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2780 dp1->i_ino, first_block,
2c3234d1 2781 dfops, spaceres);
d31a1825 2782 if (error)
eeacd321 2783 goto out_trans_abort;
d31a1825
CM
2784
2785 /* transfer ip2 ".." reference to dp1 */
c19b3b05 2786 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2787 error = xfs_droplink(tp, dp2);
2788 if (error)
eeacd321 2789 goto out_trans_abort;
d31a1825
CM
2790 error = xfs_bumplink(tp, dp1);
2791 if (error)
eeacd321 2792 goto out_trans_abort;
d31a1825
CM
2793 }
2794
2795 /*
2796 * Although ip1 isn't changed here, userspace needs
2797 * to be warned about the change, so that applications
2798 * relying on it (like backup ones), will properly
2799 * notify the change
2800 */
2801 ip1_flags |= XFS_ICHGTIME_CHG;
2802 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2803 }
2804
c19b3b05 2805 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2806 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2807 dp2->i_ino, first_block,
2c3234d1 2808 dfops, spaceres);
d31a1825 2809 if (error)
eeacd321 2810 goto out_trans_abort;
d31a1825
CM
2811
2812 /* transfer ip1 ".." reference to dp2 */
c19b3b05 2813 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2814 error = xfs_droplink(tp, dp1);
2815 if (error)
eeacd321 2816 goto out_trans_abort;
d31a1825
CM
2817 error = xfs_bumplink(tp, dp2);
2818 if (error)
eeacd321 2819 goto out_trans_abort;
d31a1825
CM
2820 }
2821
2822 /*
2823 * Although ip2 isn't changed here, userspace needs
2824 * to be warned about the change, so that applications
2825 * relying on it (like backup ones), will properly
2826 * notify the change
2827 */
2828 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2829 ip2_flags |= XFS_ICHGTIME_CHG;
2830 }
2831 }
2832
2833 if (ip1_flags) {
2834 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2835 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2836 }
2837 if (ip2_flags) {
2838 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2839 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2840 }
2841 if (dp2_flags) {
2842 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2843 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2844 }
2845 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2846 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2c3234d1 2847 return xfs_finish_rename(tp, dfops);
eeacd321
DC
2848
2849out_trans_abort:
2c3234d1 2850 xfs_defer_cancel(dfops);
4906e215 2851 xfs_trans_cancel(tp);
d31a1825
CM
2852 return error;
2853}
2854
7dcf5c3e
DC
2855/*
2856 * xfs_rename_alloc_whiteout()
2857 *
2858 * Return a referenced, unlinked, unlocked inode that that can be used as a
2859 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2860 * crash between allocating the inode and linking it into the rename transaction
2861 * recovery will free the inode and we won't leak it.
2862 */
2863static int
2864xfs_rename_alloc_whiteout(
2865 struct xfs_inode *dp,
2866 struct xfs_inode **wip)
2867{
2868 struct xfs_inode *tmpfile;
2869 int error;
2870
2871 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2872 if (error)
2873 return error;
2874
22419ac9
BF
2875 /*
2876 * Prepare the tmpfile inode as if it were created through the VFS.
2877 * Otherwise, the link increment paths will complain about nlink 0->1.
2878 * Drop the link count as done by d_tmpfile(), complete the inode setup
2879 * and flag it as linkable.
2880 */
2881 drop_nlink(VFS_I(tmpfile));
2b3d1d41 2882 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
2883 xfs_finish_inode_setup(tmpfile);
2884 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2885
2886 *wip = tmpfile;
2887 return 0;
2888}
2889
f6bba201
DC
2890/*
2891 * xfs_rename
2892 */
2893int
2894xfs_rename(
7dcf5c3e
DC
2895 struct xfs_inode *src_dp,
2896 struct xfs_name *src_name,
2897 struct xfs_inode *src_ip,
2898 struct xfs_inode *target_dp,
2899 struct xfs_name *target_name,
2900 struct xfs_inode *target_ip,
2901 unsigned int flags)
f6bba201 2902{
7dcf5c3e
DC
2903 struct xfs_mount *mp = src_dp->i_mount;
2904 struct xfs_trans *tp;
2c3234d1 2905 struct xfs_defer_ops dfops;
7dcf5c3e
DC
2906 xfs_fsblock_t first_block;
2907 struct xfs_inode *wip = NULL; /* whiteout inode */
2908 struct xfs_inode *inodes[__XFS_SORT_INODES];
2909 int num_inodes = __XFS_SORT_INODES;
2b93681f 2910 bool new_parent = (src_dp != target_dp);
c19b3b05 2911 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
2912 int spaceres;
2913 int error;
f6bba201
DC
2914
2915 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2916
eeacd321
DC
2917 if ((flags & RENAME_EXCHANGE) && !target_ip)
2918 return -EINVAL;
2919
7dcf5c3e
DC
2920 /*
2921 * If we are doing a whiteout operation, allocate the whiteout inode
2922 * we will be placing at the target and ensure the type is set
2923 * appropriately.
2924 */
2925 if (flags & RENAME_WHITEOUT) {
2926 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2927 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2928 if (error)
2929 return error;
2930
2931 /* setup target dirent info as whiteout */
2932 src_name->type = XFS_DIR3_FT_CHRDEV;
2933 }
f6bba201 2934
7dcf5c3e 2935 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2936 inodes, &num_inodes);
2937
f6bba201 2938 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 2939 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 2940 if (error == -ENOSPC) {
f6bba201 2941 spaceres = 0;
253f4911
CH
2942 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2943 &tp);
f6bba201 2944 }
445883e8 2945 if (error)
253f4911 2946 goto out_release_wip;
f6bba201
DC
2947
2948 /*
2949 * Attach the dquots to the inodes
2950 */
2951 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2952 if (error)
2953 goto out_trans_cancel;
f6bba201
DC
2954
2955 /*
2956 * Lock all the participating inodes. Depending upon whether
2957 * the target_name exists in the target directory, and
2958 * whether the target directory is the same as the source
2959 * directory, we can lock from 2 to 4 inodes.
2960 */
2961 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2962
2963 /*
2964 * Join all the inodes to the transaction. From this point on,
2965 * we can rely on either trans_commit or trans_cancel to unlock
2966 * them.
2967 */
65523218 2968 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 2969 if (new_parent)
65523218 2970 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
2971 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2972 if (target_ip)
2973 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2974 if (wip)
2975 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2976
2977 /*
2978 * If we are using project inheritance, we only allow renames
2979 * into our tree when the project IDs are the same; else the
2980 * tree quota mechanism would be circumvented.
2981 */
2982 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2983 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2984 error = -EXDEV;
445883e8 2985 goto out_trans_cancel;
f6bba201
DC
2986 }
2987
2c3234d1 2988 xfs_defer_init(&dfops, &first_block);
445883e8 2989
eeacd321
DC
2990 /* RENAME_EXCHANGE is unique from here on. */
2991 if (flags & RENAME_EXCHANGE)
2992 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2993 target_dp, target_name, target_ip,
2c3234d1 2994 &dfops, &first_block, spaceres);
d31a1825 2995
f6bba201
DC
2996 /*
2997 * Set up the target.
2998 */
2999 if (target_ip == NULL) {
3000 /*
3001 * If there's no space reservation, check the entry will
3002 * fit before actually inserting it.
3003 */
94f3cad5
ES
3004 if (!spaceres) {
3005 error = xfs_dir_canenter(tp, target_dp, target_name);
3006 if (error)
445883e8 3007 goto out_trans_cancel;
94f3cad5 3008 }
f6bba201
DC
3009 /*
3010 * If target does not exist and the rename crosses
3011 * directories, adjust the target directory link count
3012 * to account for the ".." reference from the new entry.
3013 */
3014 error = xfs_dir_createname(tp, target_dp, target_name,
3015 src_ip->i_ino, &first_block,
2c3234d1 3016 &dfops, spaceres);
f6bba201 3017 if (error)
4906e215 3018 goto out_bmap_cancel;
f6bba201
DC
3019
3020 xfs_trans_ichgtime(tp, target_dp,
3021 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3022
3023 if (new_parent && src_is_directory) {
3024 error = xfs_bumplink(tp, target_dp);
3025 if (error)
4906e215 3026 goto out_bmap_cancel;
f6bba201
DC
3027 }
3028 } else { /* target_ip != NULL */
3029 /*
3030 * If target exists and it's a directory, check that both
3031 * target and source are directories and that target can be
3032 * destroyed, or that neither is a directory.
3033 */
c19b3b05 3034 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
f6bba201
DC
3035 /*
3036 * Make sure target dir is empty.
3037 */
3038 if (!(xfs_dir_isempty(target_ip)) ||
54d7b5c1 3039 (VFS_I(target_ip)->i_nlink > 2)) {
2451337d 3040 error = -EEXIST;
445883e8 3041 goto out_trans_cancel;
f6bba201
DC
3042 }
3043 }
3044
3045 /*
3046 * Link the source inode under the target name.
3047 * If the source inode is a directory and we are moving
3048 * it across directories, its ".." entry will be
3049 * inconsistent until we replace that down below.
3050 *
3051 * In case there is already an entry with the same
3052 * name at the destination directory, remove it first.
3053 */
3054 error = xfs_dir_replace(tp, target_dp, target_name,
3055 src_ip->i_ino,
2c3234d1 3056 &first_block, &dfops, spaceres);
f6bba201 3057 if (error)
4906e215 3058 goto out_bmap_cancel;
f6bba201
DC
3059
3060 xfs_trans_ichgtime(tp, target_dp,
3061 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3062
3063 /*
3064 * Decrement the link count on the target since the target
3065 * dir no longer points to it.
3066 */
3067 error = xfs_droplink(tp, target_ip);
3068 if (error)
4906e215 3069 goto out_bmap_cancel;
f6bba201
DC
3070
3071 if (src_is_directory) {
3072 /*
3073 * Drop the link from the old "." entry.
3074 */
3075 error = xfs_droplink(tp, target_ip);
3076 if (error)
4906e215 3077 goto out_bmap_cancel;
f6bba201
DC
3078 }
3079 } /* target_ip != NULL */
3080
3081 /*
3082 * Remove the source.
3083 */
3084 if (new_parent && src_is_directory) {
3085 /*
3086 * Rewrite the ".." entry to point to the new
3087 * directory.
3088 */
3089 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3090 target_dp->i_ino,
2c3234d1 3091 &first_block, &dfops, spaceres);
2451337d 3092 ASSERT(error != -EEXIST);
f6bba201 3093 if (error)
4906e215 3094 goto out_bmap_cancel;
f6bba201
DC
3095 }
3096
3097 /*
3098 * We always want to hit the ctime on the source inode.
3099 *
3100 * This isn't strictly required by the standards since the source
3101 * inode isn't really being changed, but old unix file systems did
3102 * it and some incremental backup programs won't work without it.
3103 */
3104 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3105 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3106
3107 /*
3108 * Adjust the link count on src_dp. This is necessary when
3109 * renaming a directory, either within one parent when
3110 * the target existed, or across two parent directories.
3111 */
3112 if (src_is_directory && (new_parent || target_ip != NULL)) {
3113
3114 /*
3115 * Decrement link count on src_directory since the
3116 * entry that's moved no longer points to it.
3117 */
3118 error = xfs_droplink(tp, src_dp);
3119 if (error)
4906e215 3120 goto out_bmap_cancel;
f6bba201
DC
3121 }
3122
7dcf5c3e
DC
3123 /*
3124 * For whiteouts, we only need to update the source dirent with the
3125 * inode number of the whiteout inode rather than removing it
3126 * altogether.
3127 */
3128 if (wip) {
3129 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
2c3234d1 3130 &first_block, &dfops, spaceres);
7dcf5c3e
DC
3131 } else
3132 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2c3234d1 3133 &first_block, &dfops, spaceres);
f6bba201 3134 if (error)
4906e215 3135 goto out_bmap_cancel;
f6bba201
DC
3136
3137 /*
7dcf5c3e
DC
3138 * For whiteouts, we need to bump the link count on the whiteout inode.
3139 * This means that failures all the way up to this point leave the inode
3140 * on the unlinked list and so cleanup is a simple matter of dropping
3141 * the remaining reference to it. If we fail here after bumping the link
3142 * count, we're shutting down the filesystem so we'll never see the
3143 * intermediate state on disk.
f6bba201 3144 */
7dcf5c3e 3145 if (wip) {
54d7b5c1 3146 ASSERT(VFS_I(wip)->i_nlink == 0);
7dcf5c3e
DC
3147 error = xfs_bumplink(tp, wip);
3148 if (error)
4906e215 3149 goto out_bmap_cancel;
7dcf5c3e
DC
3150 error = xfs_iunlink_remove(tp, wip);
3151 if (error)
4906e215 3152 goto out_bmap_cancel;
7dcf5c3e 3153 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3154
7dcf5c3e
DC
3155 /*
3156 * Now we have a real link, clear the "I'm a tmpfile" state
3157 * flag from the inode so it doesn't accidentally get misused in
3158 * future.
3159 */
3160 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3161 }
3162
f6bba201
DC
3163 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3164 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3165 if (new_parent)
3166 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3167
2c3234d1 3168 error = xfs_finish_rename(tp, &dfops);
7dcf5c3e
DC
3169 if (wip)
3170 IRELE(wip);
3171 return error;
f6bba201 3172
445883e8 3173out_bmap_cancel:
2c3234d1 3174 xfs_defer_cancel(&dfops);
445883e8 3175out_trans_cancel:
4906e215 3176 xfs_trans_cancel(tp);
253f4911 3177out_release_wip:
7dcf5c3e
DC
3178 if (wip)
3179 IRELE(wip);
f6bba201
DC
3180 return error;
3181}
3182
5c4d97d0
DC
3183STATIC int
3184xfs_iflush_cluster(
19429363
DC
3185 struct xfs_inode *ip,
3186 struct xfs_buf *bp)
1da177e4 3187{
19429363 3188 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3189 struct xfs_perag *pag;
3190 unsigned long first_index, mask;
3191 unsigned long inodes_per_cluster;
19429363
DC
3192 int cilist_size;
3193 struct xfs_inode **cilist;
3194 struct xfs_inode *cip;
5c4d97d0
DC
3195 int nr_found;
3196 int clcount = 0;
3197 int bufwasdelwri;
1da177e4 3198 int i;
1da177e4 3199
5c4d97d0 3200 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3201
0f49efd8 3202 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
19429363
DC
3203 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3204 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3205 if (!cilist)
5c4d97d0 3206 goto out_put;
1da177e4 3207
0f49efd8 3208 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3209 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3210 rcu_read_lock();
3211 /* really need a gang lookup range call here */
19429363 3212 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
5c4d97d0
DC
3213 first_index, inodes_per_cluster);
3214 if (nr_found == 0)
3215 goto out_free;
3216
3217 for (i = 0; i < nr_found; i++) {
19429363
DC
3218 cip = cilist[i];
3219 if (cip == ip)
bad55843 3220 continue;
1a3e8f3d
DC
3221
3222 /*
3223 * because this is an RCU protected lookup, we could find a
3224 * recently freed or even reallocated inode during the lookup.
3225 * We need to check under the i_flags_lock for a valid inode
3226 * here. Skip it if it is not valid or the wrong inode.
3227 */
19429363
DC
3228 spin_lock(&cip->i_flags_lock);
3229 if (!cip->i_ino ||
3230 __xfs_iflags_test(cip, XFS_ISTALE)) {
3231 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3232 continue;
3233 }
5a90e53e
DC
3234
3235 /*
3236 * Once we fall off the end of the cluster, no point checking
3237 * any more inodes in the list because they will also all be
3238 * outside the cluster.
3239 */
19429363
DC
3240 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3241 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3242 break;
3243 }
19429363 3244 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3245
bad55843
DC
3246 /*
3247 * Do an un-protected check to see if the inode is dirty and
3248 * is a candidate for flushing. These checks will be repeated
3249 * later after the appropriate locks are acquired.
3250 */
19429363 3251 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3252 continue;
bad55843
DC
3253
3254 /*
3255 * Try to get locks. If any are unavailable or it is pinned,
3256 * then this inode cannot be flushed and is skipped.
3257 */
3258
19429363 3259 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3260 continue;
19429363
DC
3261 if (!xfs_iflock_nowait(cip)) {
3262 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3263 continue;
3264 }
19429363
DC
3265 if (xfs_ipincount(cip)) {
3266 xfs_ifunlock(cip);
3267 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3268 continue;
3269 }
3270
8a17d7dd
DC
3271
3272 /*
3273 * Check the inode number again, just to be certain we are not
3274 * racing with freeing in xfs_reclaim_inode(). See the comments
3275 * in that function for more information as to why the initial
3276 * check is not sufficient.
3277 */
19429363
DC
3278 if (!cip->i_ino) {
3279 xfs_ifunlock(cip);
3280 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3281 continue;
3282 }
3283
3284 /*
3285 * arriving here means that this inode can be flushed. First
3286 * re-check that it's dirty before flushing.
3287 */
19429363 3288 if (!xfs_inode_clean(cip)) {
33540408 3289 int error;
19429363 3290 error = xfs_iflush_int(cip, bp);
bad55843 3291 if (error) {
19429363 3292 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3293 goto cluster_corrupt_out;
3294 }
3295 clcount++;
3296 } else {
19429363 3297 xfs_ifunlock(cip);
bad55843 3298 }
19429363 3299 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3300 }
3301
3302 if (clcount) {
ff6d6af2
BD
3303 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3304 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3305 }
3306
3307out_free:
1a3e8f3d 3308 rcu_read_unlock();
19429363 3309 kmem_free(cilist);
44b56e0a
DC
3310out_put:
3311 xfs_perag_put(pag);
bad55843
DC
3312 return 0;
3313
3314
3315cluster_corrupt_out:
3316 /*
3317 * Corruption detected in the clustering loop. Invalidate the
3318 * inode buffer and shut down the filesystem.
3319 */
1a3e8f3d 3320 rcu_read_unlock();
bad55843 3321 /*
43ff2122 3322 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3323 * brelse can handle it with no problems. If not, shut down the
3324 * filesystem before releasing the buffer.
3325 */
43ff2122 3326 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3327 if (bufwasdelwri)
3328 xfs_buf_relse(bp);
3329
3330 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3331
3332 if (!bufwasdelwri) {
3333 /*
3334 * Just like incore_relse: if we have b_iodone functions,
3335 * mark the buffer as an error and call them. Otherwise
3336 * mark it as stale and brelse.
3337 */
cb669ca5 3338 if (bp->b_iodone) {
b0388bf1 3339 bp->b_flags &= ~XBF_DONE;
c867cb61 3340 xfs_buf_stale(bp);
2451337d 3341 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3342 xfs_buf_ioend(bp);
bad55843 3343 } else {
c867cb61 3344 xfs_buf_stale(bp);
bad55843
DC
3345 xfs_buf_relse(bp);
3346 }
3347 }
3348
3349 /*
3350 * Unlocks the flush lock
3351 */
19429363
DC
3352 xfs_iflush_abort(cip, false);
3353 kmem_free(cilist);
44b56e0a 3354 xfs_perag_put(pag);
2451337d 3355 return -EFSCORRUPTED;
bad55843
DC
3356}
3357
1da177e4 3358/*
4c46819a
CH
3359 * Flush dirty inode metadata into the backing buffer.
3360 *
3361 * The caller must have the inode lock and the inode flush lock held. The
3362 * inode lock will still be held upon return to the caller, and the inode
3363 * flush lock will be released after the inode has reached the disk.
3364 *
3365 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3366 */
3367int
3368xfs_iflush(
4c46819a
CH
3369 struct xfs_inode *ip,
3370 struct xfs_buf **bpp)
1da177e4 3371{
4c46819a 3372 struct xfs_mount *mp = ip->i_mount;
b1438f47 3373 struct xfs_buf *bp = NULL;
4c46819a 3374 struct xfs_dinode *dip;
1da177e4 3375 int error;
1da177e4 3376
ff6d6af2 3377 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3378
579aa9ca 3379 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3380 ASSERT(xfs_isiflocked(ip));
1da177e4 3381 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3382 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3383
4c46819a 3384 *bpp = NULL;
1da177e4 3385
1da177e4
LT
3386 xfs_iunpin_wait(ip);
3387
4b6a4688
DC
3388 /*
3389 * For stale inodes we cannot rely on the backing buffer remaining
3390 * stale in cache for the remaining life of the stale inode and so
475ee413 3391 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3392 * inodes below. We have to check this after ensuring the inode is
3393 * unpinned so that it is safe to reclaim the stale inode after the
3394 * flush call.
3395 */
3396 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3397 xfs_ifunlock(ip);
3398 return 0;
3399 }
3400
1da177e4
LT
3401 /*
3402 * This may have been unpinned because the filesystem is shutting
3403 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3404 * to disk, because the log record didn't make it to disk.
3405 *
3406 * We also have to remove the log item from the AIL in this case,
3407 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3408 */
3409 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3410 error = -EIO;
32ce90a4 3411 goto abort_out;
1da177e4
LT
3412 }
3413
a3f74ffb 3414 /*
b1438f47
DC
3415 * Get the buffer containing the on-disk inode. We are doing a try-lock
3416 * operation here, so we may get an EAGAIN error. In that case, we
3417 * simply want to return with the inode still dirty.
3418 *
3419 * If we get any other error, we effectively have a corruption situation
3420 * and we cannot flush the inode, so we treat it the same as failing
3421 * xfs_iflush_int().
a3f74ffb 3422 */
475ee413
CH
3423 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3424 0);
b1438f47 3425 if (error == -EAGAIN) {
a3f74ffb
DC
3426 xfs_ifunlock(ip);
3427 return error;
3428 }
b1438f47
DC
3429 if (error)
3430 goto corrupt_out;
a3f74ffb 3431
1da177e4
LT
3432 /*
3433 * First flush out the inode that xfs_iflush was called with.
3434 */
3435 error = xfs_iflush_int(ip, bp);
bad55843 3436 if (error)
1da177e4 3437 goto corrupt_out;
1da177e4 3438
a3f74ffb
DC
3439 /*
3440 * If the buffer is pinned then push on the log now so we won't
3441 * get stuck waiting in the write for too long.
3442 */
811e64c7 3443 if (xfs_buf_ispinned(bp))
a14a348b 3444 xfs_log_force(mp, 0);
a3f74ffb 3445
1da177e4
LT
3446 /*
3447 * inode clustering:
3448 * see if other inodes can be gathered into this write
3449 */
bad55843
DC
3450 error = xfs_iflush_cluster(ip, bp);
3451 if (error)
3452 goto cluster_corrupt_out;
1da177e4 3453
4c46819a
CH
3454 *bpp = bp;
3455 return 0;
1da177e4
LT
3456
3457corrupt_out:
b1438f47
DC
3458 if (bp)
3459 xfs_buf_relse(bp);
7d04a335 3460 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3461cluster_corrupt_out:
2451337d 3462 error = -EFSCORRUPTED;
32ce90a4 3463abort_out:
1da177e4
LT
3464 /*
3465 * Unlocks the flush lock
3466 */
04913fdd 3467 xfs_iflush_abort(ip, false);
32ce90a4 3468 return error;
1da177e4
LT
3469}
3470
1da177e4
LT
3471STATIC int
3472xfs_iflush_int(
93848a99
CH
3473 struct xfs_inode *ip,
3474 struct xfs_buf *bp)
1da177e4 3475{
93848a99
CH
3476 struct xfs_inode_log_item *iip = ip->i_itemp;
3477 struct xfs_dinode *dip;
3478 struct xfs_mount *mp = ip->i_mount;
1da177e4 3479
579aa9ca 3480 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3481 ASSERT(xfs_isiflocked(ip));
1da177e4 3482 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3483 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3484 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3485 ASSERT(ip->i_d.di_version > 1);
1da177e4 3486
1da177e4 3487 /* set *dip = inode's place in the buffer */
88ee2df7 3488 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3489
69ef921b 3490 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3491 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3492 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3493 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3494 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3495 goto corrupt_out;
3496 }
c19b3b05 3497 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4
LT
3498 if (XFS_TEST_ERROR(
3499 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3500 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3501 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3502 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3503 "%s: Bad regular inode %Lu, ptr 0x%p",
3504 __func__, ip->i_ino, ip);
1da177e4
LT
3505 goto corrupt_out;
3506 }
c19b3b05 3507 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4
LT
3508 if (XFS_TEST_ERROR(
3509 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3510 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3511 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3512 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3513 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3514 "%s: Bad directory inode %Lu, ptr 0x%p",
3515 __func__, ip->i_ino, ip);
1da177e4
LT
3516 goto corrupt_out;
3517 }
3518 }
3519 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3520 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3521 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3522 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3523 "%s: detected corrupt incore inode %Lu, "
3524 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3525 __func__, ip->i_ino,
1da177e4 3526 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3527 ip->i_d.di_nblocks, ip);
1da177e4
LT
3528 goto corrupt_out;
3529 }
3530 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3531 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3532 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3533 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3534 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3535 goto corrupt_out;
3536 }
e60896d8 3537
1da177e4 3538 /*
263997a6 3539 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3540 * di_flushiter count for correct sequencing. We bump the flush
3541 * iteration count so we can detect flushes which postdate a log record
3542 * during recovery. This is redundant as we now log every change and
3543 * hence this can't happen but we need to still do it to ensure
3544 * backwards compatibility with old kernels that predate logging all
3545 * inode changes.
1da177e4 3546 */
e60896d8
DC
3547 if (ip->i_d.di_version < 3)
3548 ip->i_d.di_flushiter++;
1da177e4 3549
78420281
DW
3550 /* Check the inline directory data. */
3551 if (S_ISDIR(VFS_I(ip)->i_mode) &&
3552 ip->i_d.di_format == XFS_DINODE_FMT_LOCAL &&
3553 xfs_dir2_sf_verify(ip))
3554 goto corrupt_out;
3555
1da177e4 3556 /*
3987848c
DC
3557 * Copy the dirty parts of the inode into the on-disk inode. We always
3558 * copy out the core of the inode, because if the inode is dirty at all
3559 * the core must be.
1da177e4 3560 */
93f958f9 3561 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3562
3563 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3564 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3565 ip->i_d.di_flushiter = 0;
3566
78420281
DW
3567 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3568 if (XFS_IFORK_Q(ip))
3569 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3570 xfs_inobp_check(mp, bp);
3571
3572 /*
f5d8d5c4
CH
3573 * We've recorded everything logged in the inode, so we'd like to clear
3574 * the ili_fields bits so we don't log and flush things unnecessarily.
3575 * However, we can't stop logging all this information until the data
3576 * we've copied into the disk buffer is written to disk. If we did we
3577 * might overwrite the copy of the inode in the log with all the data
3578 * after re-logging only part of it, and in the face of a crash we
3579 * wouldn't have all the data we need to recover.
1da177e4 3580 *
f5d8d5c4
CH
3581 * What we do is move the bits to the ili_last_fields field. When
3582 * logging the inode, these bits are moved back to the ili_fields field.
3583 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3584 * know that the information those bits represent is permanently on
3585 * disk. As long as the flush completes before the inode is logged
3586 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3587 *
f5d8d5c4
CH
3588 * We can play with the ili_fields bits here, because the inode lock
3589 * must be held exclusively in order to set bits there and the flush
3590 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3591 * done routine can tell whether or not to look in the AIL. Also, store
3592 * the current LSN of the inode so that we can tell whether the item has
3593 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3594 * need the AIL lock, because it is a 64 bit value that cannot be read
3595 * atomically.
1da177e4 3596 */
93848a99
CH
3597 iip->ili_last_fields = iip->ili_fields;
3598 iip->ili_fields = 0;
fc0561ce 3599 iip->ili_fsync_fields = 0;
93848a99 3600 iip->ili_logged = 1;
1da177e4 3601
93848a99
CH
3602 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3603 &iip->ili_item.li_lsn);
1da177e4 3604
93848a99
CH
3605 /*
3606 * Attach the function xfs_iflush_done to the inode's
3607 * buffer. This will remove the inode from the AIL
3608 * and unlock the inode's flush lock when the inode is
3609 * completely written to disk.
3610 */
3611 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3612
93848a99
CH
3613 /* generate the checksum. */
3614 xfs_dinode_calc_crc(mp, dip);
1da177e4 3615
93848a99
CH
3616 ASSERT(bp->b_fspriv != NULL);
3617 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3618 return 0;
3619
3620corrupt_out:
2451337d 3621 return -EFSCORRUPTED;
1da177e4 3622}