]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/xfs/xfs_inode.c
xfs: redefine xfs_ictimestamp_t
[mirror_ubuntu-hirsute-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
3e57ecf6 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
f0e28280 6#include <linux/iversion.h>
40ebd81d 7
1da177e4 8#include "xfs.h"
a844f451 9#include "xfs_fs.h"
70a9883c 10#include "xfs_shared.h"
239880ef
DC
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
1da177e4 14#include "xfs_sb.h"
1da177e4 15#include "xfs_mount.h"
3ab78df2 16#include "xfs_defer.h"
a4fbe6ab 17#include "xfs_inode.h"
c24b5dfa 18#include "xfs_dir2.h"
c24b5dfa 19#include "xfs_attr.h"
239880ef
DC
20#include "xfs_trans_space.h"
21#include "xfs_trans.h"
1da177e4 22#include "xfs_buf_item.h"
a844f451 23#include "xfs_inode_item.h"
a844f451
NS
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
68988114 26#include "xfs_bmap_util.h"
e9e899a2 27#include "xfs_errortag.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_quota.h"
2a82b8be 30#include "xfs_filestream.h"
0b1b213f 31#include "xfs_trace.h"
33479e05 32#include "xfs_icache.h"
c24b5dfa 33#include "xfs_symlink.h"
239880ef
DC
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
a4fbe6ab 36#include "xfs_bmap_btree.h"
aa8968f2 37#include "xfs_reflink.h"
1da177e4 38
1da177e4 39kmem_zone_t *xfs_inode_zone;
1da177e4
LT
40
41/*
8f04c47a 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
43 * freed from a file in a single transaction.
44 */
45#define XFS_ITRUNC_MAX_EXTENTS 2
46
54d7b5c1
DC
47STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
48STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 49
2a0ec1d9
DC
50/*
51 * helper function to extract extent size hint from inode
52 */
53xfs_extlen_t
54xfs_get_extsz_hint(
55 struct xfs_inode *ip)
56{
bdb2ed2d
CH
57 /*
58 * No point in aligning allocations if we need to COW to actually
59 * write to them.
60 */
61 if (xfs_is_always_cow_inode(ip))
62 return 0;
2a0ec1d9
DC
63 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
64 return ip->i_d.di_extsize;
65 if (XFS_IS_REALTIME_INODE(ip))
66 return ip->i_mount->m_sb.sb_rextsize;
67 return 0;
68}
69
f7ca3522
DW
70/*
71 * Helper function to extract CoW extent size hint from inode.
72 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
73 * return the greater of the two. If the value is zero (automatic),
74 * use the default size.
f7ca3522
DW
75 */
76xfs_extlen_t
77xfs_get_cowextsz_hint(
78 struct xfs_inode *ip)
79{
80 xfs_extlen_t a, b;
81
82 a = 0;
83 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
84 a = ip->i_d.di_cowextsize;
85 b = xfs_get_extsz_hint(ip);
86
e153aa79
DW
87 a = max(a, b);
88 if (a == 0)
89 return XFS_DEFAULT_COWEXTSZ_HINT;
90 return a;
f7ca3522
DW
91}
92
fa96acad 93/*
efa70be1
CH
94 * These two are wrapper routines around the xfs_ilock() routine used to
95 * centralize some grungy code. They are used in places that wish to lock the
96 * inode solely for reading the extents. The reason these places can't just
97 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
98 * bringing in of the extents from disk for a file in b-tree format. If the
99 * inode is in b-tree format, then we need to lock the inode exclusively until
100 * the extents are read in. Locking it exclusively all the time would limit
101 * our parallelism unnecessarily, though. What we do instead is check to see
102 * if the extents have been read in yet, and only lock the inode exclusively
103 * if they have not.
fa96acad 104 *
efa70be1 105 * The functions return a value which should be given to the corresponding
01f4f327 106 * xfs_iunlock() call.
fa96acad
DC
107 */
108uint
309ecac8
CH
109xfs_ilock_data_map_shared(
110 struct xfs_inode *ip)
fa96acad 111{
309ecac8 112 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 113
f7e67b20 114 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE &&
309ecac8 115 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 116 lock_mode = XFS_ILOCK_EXCL;
fa96acad 117 xfs_ilock(ip, lock_mode);
fa96acad
DC
118 return lock_mode;
119}
120
efa70be1
CH
121uint
122xfs_ilock_attr_map_shared(
123 struct xfs_inode *ip)
fa96acad 124{
efa70be1
CH
125 uint lock_mode = XFS_ILOCK_SHARED;
126
f7e67b20
CH
127 if (ip->i_afp &&
128 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE &&
efa70be1
CH
129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
fa96acad
DC
133}
134
135/*
65523218
CH
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
fa96acad 139 *
653c60b6
DC
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 142 *
653c60b6
DC
143 * Basic locking order:
144 *
65523218 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6 146 *
c1e8d7c6 147 * mmap_lock locking order:
653c60b6 148 *
c1e8d7c6
ML
149 * i_rwsem -> page lock -> mmap_lock
150 * mmap_lock -> i_mmap_lock -> page_lock
653c60b6 151 *
c1e8d7c6 152 * The difference in mmap_lock locking order mean that we cannot hold the
653c60b6 153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
c1e8d7c6 154 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
653c60b6 155 * in get_user_pages() to map the user pages into the kernel address space for
65523218 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
c1e8d7c6 157 * page faults already hold the mmap_lock.
653c60b6
DC
158 *
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
163 * functions).
fa96acad
DC
164 */
165void
166xfs_ilock(
167 xfs_inode_t *ip,
168 uint lock_flags)
169{
170 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171
172 /*
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 */
177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 184
65523218
CH
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 down_write_nested(&VFS_I(ip)->i_rwsem,
187 XFS_IOLOCK_DEP(lock_flags));
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 down_read_nested(&VFS_I(ip)->i_rwsem,
190 XFS_IOLOCK_DEP(lock_flags));
191 }
fa96acad 192
653c60b6
DC
193 if (lock_flags & XFS_MMAPLOCK_EXCL)
194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197
fa96acad
DC
198 if (lock_flags & XFS_ILOCK_EXCL)
199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 else if (lock_flags & XFS_ILOCK_SHARED)
201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202}
203
204/*
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
210 *
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
214 * of valid values.
215 */
216int
217xfs_ilock_nowait(
218 xfs_inode_t *ip,
219 uint lock_flags)
220{
221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222
223 /*
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 */
228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
235
236 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
238 goto out;
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
241 goto out;
242 }
653c60b6
DC
243
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!mrtryupdate(&ip->i_mmaplock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!mrtryaccess(&ip->i_mmaplock))
249 goto out_undo_iolock;
250 }
251
fa96acad
DC
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
653c60b6 254 goto out_undo_mmaplock;
fa96acad
DC
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
653c60b6 257 goto out_undo_mmaplock;
fa96acad
DC
258 }
259 return 1;
260
653c60b6
DC
261out_undo_mmaplock:
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 mrunlock_excl(&ip->i_mmaplock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 mrunlock_shared(&ip->i_mmaplock);
266out_undo_iolock:
fa96acad 267 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 268 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 269 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 270 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 271out:
fa96acad
DC
272 return 0;
273}
274
275/*
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
280 *
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
285 *
286 */
287void
288xfs_iunlock(
289 xfs_inode_t *ip,
290 uint lock_flags)
291{
292 /*
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 */
297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
304 ASSERT(lock_flags != 0);
305
306 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 307 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 308 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 309 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 310
653c60b6
DC
311 if (lock_flags & XFS_MMAPLOCK_EXCL)
312 mrunlock_excl(&ip->i_mmaplock);
313 else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 mrunlock_shared(&ip->i_mmaplock);
315
fa96acad
DC
316 if (lock_flags & XFS_ILOCK_EXCL)
317 mrunlock_excl(&ip->i_lock);
318 else if (lock_flags & XFS_ILOCK_SHARED)
319 mrunlock_shared(&ip->i_lock);
320
321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322}
323
324/*
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
327 */
328void
329xfs_ilock_demote(
330 xfs_inode_t *ip,
331 uint lock_flags)
332{
653c60b6
DC
333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 ASSERT((lock_flags &
335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
336
337 if (lock_flags & XFS_ILOCK_EXCL)
338 mrdemote(&ip->i_lock);
653c60b6
DC
339 if (lock_flags & XFS_MMAPLOCK_EXCL)
340 mrdemote(&ip->i_mmaplock);
fa96acad 341 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 342 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
343
344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345}
346
742ae1e3 347#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
348int
349xfs_isilocked(
350 xfs_inode_t *ip,
351 uint lock_flags)
352{
353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 if (!(lock_flags & XFS_ILOCK_SHARED))
355 return !!ip->i_lock.mr_writer;
356 return rwsem_is_locked(&ip->i_lock.mr_lock);
357 }
358
653c60b6
DC
359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 return !!ip->i_mmaplock.mr_writer;
362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 }
364
fa96acad
DC
365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
367 return !debug_locks ||
368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
370 }
371
372 ASSERT(0);
373 return 0;
374}
375#endif
376
b6a9947e
DC
377/*
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
382 */
383#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
384static bool
385xfs_lockdep_subclass_ok(
386 int subclass)
387{
388 return subclass < MAX_LOCKDEP_SUBCLASSES;
389}
390#else
391#define xfs_lockdep_subclass_ok(subclass) (true)
392#endif
393
c24b5dfa 394/*
653c60b6 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
c24b5dfa
DC
399 */
400static inline int
401xfs_lock_inumorder(int lock_mode, int subclass)
402{
0952c818
DC
403 int class = 0;
404
405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 XFS_ILOCK_RTSUM)));
3403ccc0 407 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 408
653c60b6 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 411 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
412 }
413
414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
417 }
418
0952c818
DC
419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 class += subclass << XFS_ILOCK_SHIFT;
422 }
c24b5dfa 423
0952c818 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
425}
426
427/*
95afcf5c
DC
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
c24b5dfa 430 *
95afcf5c
DC
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
0952c818
DC
436 *
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
c24b5dfa 441 */
0d5a75e9 442static void
c24b5dfa 443xfs_lock_inodes(
efe2330f
CH
444 struct xfs_inode **ips,
445 int inodes,
446 uint lock_mode)
c24b5dfa 447{
efe2330f
CH
448 int attempts = 0, i, j, try_lock;
449 struct xfs_log_item *lp;
c24b5dfa 450
0952c818
DC
451 /*
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
b63da6c8 454 * inodes depend on the type of locking and the limits placed by
0952c818
DC
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
456 * the asserts.
457 */
95afcf5c 458 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 XFS_ILOCK_EXCL));
461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 XFS_ILOCK_SHARED)));
0952c818
DC
463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467
468 if (lock_mode & XFS_IOLOCK_EXCL) {
469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
472
473 try_lock = 0;
474 i = 0;
c24b5dfa
DC
475again:
476 for (; i < inodes; i++) {
477 ASSERT(ips[i]);
478
95afcf5c 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
480 continue;
481
482 /*
95afcf5c
DC
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 485 */
c24b5dfa
DC
486 if (!try_lock) {
487 for (j = (i - 1); j >= 0 && !try_lock; j--) {
b3b14aac 488 lp = &ips[j]->i_itemp->ili_item;
22525c17 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
c24b5dfa 490 try_lock++;
c24b5dfa
DC
491 }
492 }
493
494 /*
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
498 * and try again.
499 */
95afcf5c
DC
500 if (!try_lock) {
501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 continue;
503 }
504
505 /* try_lock means we have an inode locked that is in the AIL. */
506 ASSERT(i != 0);
507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 continue;
c24b5dfa 509
95afcf5c
DC
510 /*
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
513 */
514 attempts++;
515 for (j = i - 1; j >= 0; j--) {
c24b5dfa 516 /*
95afcf5c
DC
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
519 * same.
c24b5dfa 520 */
95afcf5c
DC
521 if (j != (i - 1) && ips[j] == ips[j + 1])
522 continue;
c24b5dfa 523
95afcf5c
DC
524 xfs_iunlock(ips[j], lock_mode);
525 }
c24b5dfa 526
95afcf5c
DC
527 if ((attempts % 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
c24b5dfa 529 }
95afcf5c
DC
530 i = 0;
531 try_lock = 0;
532 goto again;
c24b5dfa 533 }
c24b5dfa
DC
534}
535
536/*
653c60b6 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
7c2d238a
DW
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
542 * SHARED.
c24b5dfa
DC
543 */
544void
545xfs_lock_two_inodes(
7c2d238a
DW
546 struct xfs_inode *ip0,
547 uint ip0_mode,
548 struct xfs_inode *ip1,
549 uint ip1_mode)
c24b5dfa 550{
7c2d238a
DW
551 struct xfs_inode *temp;
552 uint mode_temp;
c24b5dfa 553 int attempts = 0;
efe2330f 554 struct xfs_log_item *lp;
c24b5dfa 555
7c2d238a
DW
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
653c60b6 568
c24b5dfa
DC
569 ASSERT(ip0->i_ino != ip1->i_ino);
570
571 if (ip0->i_ino > ip1->i_ino) {
572 temp = ip0;
573 ip0 = ip1;
574 ip1 = temp;
7c2d238a
DW
575 mode_temp = ip0_mode;
576 ip0_mode = ip1_mode;
577 ip1_mode = mode_temp;
c24b5dfa
DC
578 }
579
580 again:
7c2d238a 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
c24b5dfa
DC
582
583 /*
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
586 * and try again.
587 */
b3b14aac 588 lp = &ip0->i_itemp->ili_item;
22525c17 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
7c2d238a
DW
590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 xfs_iunlock(ip0, ip0_mode);
c24b5dfa
DC
592 if ((++attempts % 5) == 0)
593 delay(1); /* Don't just spin the CPU */
594 goto again;
595 }
596 } else {
7c2d238a 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
c24b5dfa
DC
598 }
599}
600
1da177e4
LT
601STATIC uint
602_xfs_dic2xflags(
c8ce540d 603 uint16_t di_flags,
58f88ca2
DC
604 uint64_t di_flags2,
605 bool has_attr)
1da177e4
LT
606{
607 uint flags = 0;
608
609 if (di_flags & XFS_DIFLAG_ANY) {
610 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 611 flags |= FS_XFLAG_REALTIME;
1da177e4 612 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 613 flags |= FS_XFLAG_PREALLOC;
1da177e4 614 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 615 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 616 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 617 flags |= FS_XFLAG_APPEND;
1da177e4 618 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 619 flags |= FS_XFLAG_SYNC;
1da177e4 620 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 621 flags |= FS_XFLAG_NOATIME;
1da177e4 622 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 623 flags |= FS_XFLAG_NODUMP;
1da177e4 624 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 625 flags |= FS_XFLAG_RTINHERIT;
1da177e4 626 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 627 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 628 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 629 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 630 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 631 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 632 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 633 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 634 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 635 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 636 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 637 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
638 }
639
58f88ca2
DC
640 if (di_flags2 & XFS_DIFLAG2_ANY) {
641 if (di_flags2 & XFS_DIFLAG2_DAX)
642 flags |= FS_XFLAG_DAX;
f7ca3522
DW
643 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
644 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
645 }
646
647 if (has_attr)
648 flags |= FS_XFLAG_HASATTR;
649
1da177e4
LT
650 return flags;
651}
652
653uint
654xfs_ip2xflags(
58f88ca2 655 struct xfs_inode *ip)
1da177e4 656{
58f88ca2 657 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 658
58f88ca2 659 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
660}
661
c24b5dfa
DC
662/*
663 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
664 * is allowed, otherwise it has to be an exact match. If a CI match is found,
665 * ci_name->name will point to a the actual name (caller must free) or
666 * will be set to NULL if an exact match is found.
667 */
668int
669xfs_lookup(
670 xfs_inode_t *dp,
671 struct xfs_name *name,
672 xfs_inode_t **ipp,
673 struct xfs_name *ci_name)
674{
675 xfs_ino_t inum;
676 int error;
c24b5dfa
DC
677
678 trace_xfs_lookup(dp, name);
679
680 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 681 return -EIO;
c24b5dfa 682
c24b5dfa 683 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 684 if (error)
dbad7c99 685 goto out_unlock;
c24b5dfa
DC
686
687 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
688 if (error)
689 goto out_free_name;
690
691 return 0;
692
693out_free_name:
694 if (ci_name)
695 kmem_free(ci_name->name);
dbad7c99 696out_unlock:
c24b5dfa
DC
697 *ipp = NULL;
698 return error;
699}
700
1da177e4
LT
701/*
702 * Allocate an inode on disk and return a copy of its in-core version.
703 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
704 * appropriately within the inode. The uid and gid for the inode are
705 * set according to the contents of the given cred structure.
706 *
707 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
708 * has a free inode available, call xfs_iget() to obtain the in-core
709 * version of the allocated inode. Finally, fill in the inode and
710 * log its initial contents. In this case, ialloc_context would be
711 * set to NULL.
1da177e4 712 *
cd856db6
CM
713 * If xfs_dialloc() does not have an available inode, it will replenish
714 * its supply by doing an allocation. Since we can only do one
715 * allocation within a transaction without deadlocks, we must commit
716 * the current transaction before returning the inode itself.
717 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
718 * The caller should then commit the current transaction, start a new
719 * transaction, and call xfs_ialloc() again to actually get the inode.
720 *
721 * To ensure that some other process does not grab the inode that
722 * was allocated during the first call to xfs_ialloc(), this routine
723 * also returns the [locked] bp pointing to the head of the freelist
724 * as ialloc_context. The caller should hold this buffer across
725 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
726 *
727 * If we are allocating quota inodes, we do not have a parent inode
728 * to attach to or associate with (i.e. pip == NULL) because they
729 * are not linked into the directory structure - they are attached
730 * directly to the superblock - and so have no parent.
1da177e4 731 */
0d5a75e9 732static int
1da177e4
LT
733xfs_ialloc(
734 xfs_trans_t *tp,
735 xfs_inode_t *pip,
576b1d67 736 umode_t mode,
31b084ae 737 xfs_nlink_t nlink,
66f36464 738 dev_t rdev,
6743099c 739 prid_t prid,
1da177e4 740 xfs_buf_t **ialloc_context,
1da177e4
LT
741 xfs_inode_t **ipp)
742{
93848a99 743 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
744 xfs_ino_t ino;
745 xfs_inode_t *ip;
1da177e4
LT
746 uint flags;
747 int error;
95582b00 748 struct timespec64 tv;
3987848c 749 struct inode *inode;
1da177e4
LT
750
751 /*
752 * Call the space management code to pick
753 * the on-disk inode to be allocated.
754 */
f59cf5c2 755 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
08358906 756 ialloc_context, &ino);
bf904248 757 if (error)
1da177e4 758 return error;
08358906 759 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
760 *ipp = NULL;
761 return 0;
762 }
763 ASSERT(*ialloc_context == NULL);
764
8b26984d
DC
765 /*
766 * Protect against obviously corrupt allocation btree records. Later
767 * xfs_iget checks will catch re-allocation of other active in-memory
768 * and on-disk inodes. If we don't catch reallocating the parent inode
769 * here we will deadlock in xfs_iget() so we have to do these checks
770 * first.
771 */
772 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
773 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
774 return -EFSCORRUPTED;
775 }
776
1da177e4
LT
777 /*
778 * Get the in-core inode with the lock held exclusively.
779 * This is because we're setting fields here we need
780 * to prevent others from looking at until we're done.
781 */
93848a99 782 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 783 XFS_ILOCK_EXCL, &ip);
bf904248 784 if (error)
1da177e4 785 return error;
1da177e4 786 ASSERT(ip != NULL);
3987848c 787 inode = VFS_I(ip);
c19b3b05 788 inode->i_mode = mode;
54d7b5c1 789 set_nlink(inode, nlink);
3d8f2821 790 inode->i_uid = current_fsuid();
66f36464 791 inode->i_rdev = rdev;
de7a866f 792 ip->i_d.di_projid = prid;
1da177e4 793
bd186aa9 794 if (pip && XFS_INHERIT_GID(pip)) {
3d8f2821 795 inode->i_gid = VFS_I(pip)->i_gid;
c19b3b05
DC
796 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
797 inode->i_mode |= S_ISGID;
3d8f2821
CH
798 } else {
799 inode->i_gid = current_fsgid();
1da177e4
LT
800 }
801
802 /*
803 * If the group ID of the new file does not match the effective group
804 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
805 * (and only if the irix_sgid_inherit compatibility variable is set).
806 */
54295159
CH
807 if (irix_sgid_inherit &&
808 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
c19b3b05 809 inode->i_mode &= ~S_ISGID;
1da177e4
LT
810
811 ip->i_d.di_size = 0;
daf83964 812 ip->i_df.if_nextents = 0;
1da177e4 813 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 814
c2050a45 815 tv = current_time(inode);
3987848c
DC
816 inode->i_mtime = tv;
817 inode->i_atime = tv;
818 inode->i_ctime = tv;
dff35fd4 819
1da177e4
LT
820 ip->i_d.di_extsize = 0;
821 ip->i_d.di_dmevmask = 0;
822 ip->i_d.di_dmstate = 0;
823 ip->i_d.di_flags = 0;
93848a99 824
6471e9c5 825 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
f0e28280 826 inode_set_iversion(inode, 1);
93848a99 827 ip->i_d.di_flags2 = 0;
f7ca3522 828 ip->i_d.di_cowextsize = 0;
8d2d878d 829 ip->i_d.di_crtime = tv;
93848a99
CH
830 }
831
1da177e4
LT
832 flags = XFS_ILOG_CORE;
833 switch (mode & S_IFMT) {
834 case S_IFIFO:
835 case S_IFCHR:
836 case S_IFBLK:
837 case S_IFSOCK:
f7e67b20 838 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
839 ip->i_df.if_flags = 0;
840 flags |= XFS_ILOG_DEV;
841 break;
842 case S_IFREG:
843 case S_IFDIR:
b11f94d5 844 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2 845 uint di_flags = 0;
365ca83d 846
abbede1b 847 if (S_ISDIR(mode)) {
365ca83d
NS
848 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
849 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
850 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
851 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
852 ip->i_d.di_extsize = pip->i_d.di_extsize;
853 }
9336e3a7
DC
854 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
855 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 856 } else if (S_ISREG(mode)) {
613d7043 857 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 858 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
859 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
860 di_flags |= XFS_DIFLAG_EXTSIZE;
861 ip->i_d.di_extsize = pip->i_d.di_extsize;
862 }
1da177e4
LT
863 }
864 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
865 xfs_inherit_noatime)
365ca83d 866 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
867 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
868 xfs_inherit_nodump)
365ca83d 869 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
870 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
871 xfs_inherit_sync)
365ca83d 872 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
873 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
874 xfs_inherit_nosymlinks)
365ca83d 875 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
876 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
877 xfs_inherit_nodefrag)
878 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
879 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
880 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2 881
365ca83d 882 ip->i_d.di_flags |= di_flags;
1da177e4 883 }
b3d1d375 884 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
f7ca3522 885 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
b3d1d375 886 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
887 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
888 }
56bdf855 889 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
b3d1d375 890 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
f7ca3522 891 }
1da177e4
LT
892 /* FALLTHROUGH */
893 case S_IFLNK:
f7e67b20 894 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
1da177e4 895 ip->i_df.if_flags = XFS_IFEXTENTS;
fcacbc3f 896 ip->i_df.if_bytes = 0;
6bdcf26a 897 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
898 break;
899 default:
900 ASSERT(0);
901 }
1da177e4
LT
902
903 /*
904 * Log the new values stuffed into the inode.
905 */
ddc3415a 906 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
907 xfs_trans_log_inode(tp, ip, flags);
908
58c90473 909 /* now that we have an i_mode we can setup the inode structure */
41be8bed 910 xfs_setup_inode(ip);
1da177e4
LT
911
912 *ipp = ip;
913 return 0;
914}
915
e546cb79
DC
916/*
917 * Allocates a new inode from disk and return a pointer to the
918 * incore copy. This routine will internally commit the current
919 * transaction and allocate a new one if the Space Manager needed
920 * to do an allocation to replenish the inode free-list.
921 *
922 * This routine is designed to be called from xfs_create and
923 * xfs_create_dir.
924 *
925 */
926int
927xfs_dir_ialloc(
928 xfs_trans_t **tpp, /* input: current transaction;
929 output: may be a new transaction. */
930 xfs_inode_t *dp, /* directory within whose allocate
931 the inode. */
932 umode_t mode,
933 xfs_nlink_t nlink,
66f36464 934 dev_t rdev,
e546cb79 935 prid_t prid, /* project id */
c959025e 936 xfs_inode_t **ipp) /* pointer to inode; it will be
e546cb79 937 locked. */
e546cb79
DC
938{
939 xfs_trans_t *tp;
e546cb79
DC
940 xfs_inode_t *ip;
941 xfs_buf_t *ialloc_context = NULL;
942 int code;
e546cb79
DC
943 void *dqinfo;
944 uint tflags;
945
946 tp = *tpp;
947 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
948
949 /*
950 * xfs_ialloc will return a pointer to an incore inode if
951 * the Space Manager has an available inode on the free
952 * list. Otherwise, it will do an allocation and replenish
953 * the freelist. Since we can only do one allocation per
954 * transaction without deadlocks, we will need to commit the
955 * current transaction and start a new one. We will then
956 * need to call xfs_ialloc again to get the inode.
957 *
958 * If xfs_ialloc did an allocation to replenish the freelist,
959 * it returns the bp containing the head of the freelist as
960 * ialloc_context. We will hold a lock on it across the
961 * transaction commit so that no other process can steal
962 * the inode(s) that we've just allocated.
963 */
f59cf5c2
CH
964 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
965 &ip);
e546cb79
DC
966
967 /*
968 * Return an error if we were unable to allocate a new inode.
969 * This should only happen if we run out of space on disk or
970 * encounter a disk error.
971 */
972 if (code) {
973 *ipp = NULL;
974 return code;
975 }
976 if (!ialloc_context && !ip) {
977 *ipp = NULL;
2451337d 978 return -ENOSPC;
e546cb79
DC
979 }
980
981 /*
982 * If the AGI buffer is non-NULL, then we were unable to get an
983 * inode in one operation. We need to commit the current
984 * transaction and call xfs_ialloc() again. It is guaranteed
985 * to succeed the second time.
986 */
987 if (ialloc_context) {
988 /*
989 * Normally, xfs_trans_commit releases all the locks.
990 * We call bhold to hang on to the ialloc_context across
991 * the commit. Holding this buffer prevents any other
992 * processes from doing any allocations in this
993 * allocation group.
994 */
995 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
996
997 /*
998 * We want the quota changes to be associated with the next
999 * transaction, NOT this one. So, detach the dqinfo from this
1000 * and attach it to the next transaction.
1001 */
1002 dqinfo = NULL;
1003 tflags = 0;
1004 if (tp->t_dqinfo) {
1005 dqinfo = (void *)tp->t_dqinfo;
1006 tp->t_dqinfo = NULL;
1007 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1008 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1009 }
1010
411350df 1011 code = xfs_trans_roll(&tp);
3d3c8b52 1012
e546cb79
DC
1013 /*
1014 * Re-attach the quota info that we detached from prev trx.
1015 */
1016 if (dqinfo) {
1017 tp->t_dqinfo = dqinfo;
1018 tp->t_flags |= tflags;
1019 }
1020
1021 if (code) {
1022 xfs_buf_relse(ialloc_context);
2e6db6c4 1023 *tpp = tp;
e546cb79
DC
1024 *ipp = NULL;
1025 return code;
1026 }
1027 xfs_trans_bjoin(tp, ialloc_context);
1028
1029 /*
1030 * Call ialloc again. Since we've locked out all
1031 * other allocations in this allocation group,
1032 * this call should always succeed.
1033 */
1034 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
f59cf5c2 1035 &ialloc_context, &ip);
e546cb79
DC
1036
1037 /*
1038 * If we get an error at this point, return to the caller
1039 * so that the current transaction can be aborted.
1040 */
1041 if (code) {
1042 *tpp = tp;
1043 *ipp = NULL;
1044 return code;
1045 }
1046 ASSERT(!ialloc_context && ip);
1047
e546cb79
DC
1048 }
1049
1050 *ipp = ip;
1051 *tpp = tp;
1052
1053 return 0;
1054}
1055
1056/*
54d7b5c1
DC
1057 * Decrement the link count on an inode & log the change. If this causes the
1058 * link count to go to zero, move the inode to AGI unlinked list so that it can
1059 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1060 */
0d5a75e9 1061static int /* error */
e546cb79
DC
1062xfs_droplink(
1063 xfs_trans_t *tp,
1064 xfs_inode_t *ip)
1065{
e546cb79
DC
1066 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1067
e546cb79
DC
1068 drop_nlink(VFS_I(ip));
1069 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1070
54d7b5c1
DC
1071 if (VFS_I(ip)->i_nlink)
1072 return 0;
1073
1074 return xfs_iunlink(tp, ip);
e546cb79
DC
1075}
1076
e546cb79
DC
1077/*
1078 * Increment the link count on an inode & log the change.
1079 */
91083269 1080static void
e546cb79
DC
1081xfs_bumplink(
1082 xfs_trans_t *tp,
1083 xfs_inode_t *ip)
1084{
1085 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1086
e546cb79 1087 inc_nlink(VFS_I(ip));
e546cb79 1088 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
e546cb79
DC
1089}
1090
c24b5dfa
DC
1091int
1092xfs_create(
1093 xfs_inode_t *dp,
1094 struct xfs_name *name,
1095 umode_t mode,
66f36464 1096 dev_t rdev,
c24b5dfa
DC
1097 xfs_inode_t **ipp)
1098{
1099 int is_dir = S_ISDIR(mode);
1100 struct xfs_mount *mp = dp->i_mount;
1101 struct xfs_inode *ip = NULL;
1102 struct xfs_trans *tp = NULL;
1103 int error;
c24b5dfa 1104 bool unlock_dp_on_error = false;
c24b5dfa
DC
1105 prid_t prid;
1106 struct xfs_dquot *udqp = NULL;
1107 struct xfs_dquot *gdqp = NULL;
1108 struct xfs_dquot *pdqp = NULL;
062647a8 1109 struct xfs_trans_res *tres;
c24b5dfa 1110 uint resblks;
c24b5dfa
DC
1111
1112 trace_xfs_create(dp, name);
1113
1114 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1115 return -EIO;
c24b5dfa 1116
163467d3 1117 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1118
1119 /*
1120 * Make sure that we have allocated dquot(s) on disk.
1121 */
54295159 1122 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
c24b5dfa
DC
1123 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1124 &udqp, &gdqp, &pdqp);
1125 if (error)
1126 return error;
1127
1128 if (is_dir) {
c24b5dfa 1129 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1130 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1131 } else {
1132 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1133 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1134 }
1135
c24b5dfa
DC
1136 /*
1137 * Initially assume that the file does not exist and
1138 * reserve the resources for that case. If that is not
1139 * the case we'll drop the one we have and get a more
1140 * appropriate transaction later.
1141 */
253f4911 1142 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1143 if (error == -ENOSPC) {
c24b5dfa
DC
1144 /* flush outstanding delalloc blocks and retry */
1145 xfs_flush_inodes(mp);
253f4911 1146 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1147 }
4906e215 1148 if (error)
253f4911 1149 goto out_release_inode;
c24b5dfa 1150
65523218 1151 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1152 unlock_dp_on_error = true;
1153
c24b5dfa
DC
1154 /*
1155 * Reserve disk quota and the inode.
1156 */
1157 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1158 pdqp, resblks, 1, 0);
1159 if (error)
1160 goto out_trans_cancel;
1161
c24b5dfa
DC
1162 /*
1163 * A newly created regular or special file just has one directory
1164 * entry pointing to them, but a directory also the "." entry
1165 * pointing to itself.
1166 */
c959025e 1167 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
d6077aa3 1168 if (error)
4906e215 1169 goto out_trans_cancel;
c24b5dfa
DC
1170
1171 /*
1172 * Now we join the directory inode to the transaction. We do not do it
1173 * earlier because xfs_dir_ialloc might commit the previous transaction
1174 * (and release all the locks). An error from here on will result in
1175 * the transaction cancel unlocking dp so don't do it explicitly in the
1176 * error path.
1177 */
65523218 1178 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1179 unlock_dp_on_error = false;
1180
381eee69 1181 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
63337b63 1182 resblks - XFS_IALLOC_SPACE_RES(mp));
c24b5dfa 1183 if (error) {
2451337d 1184 ASSERT(error != -ENOSPC);
4906e215 1185 goto out_trans_cancel;
c24b5dfa
DC
1186 }
1187 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1188 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1189
1190 if (is_dir) {
1191 error = xfs_dir_init(tp, ip, dp);
1192 if (error)
c8eac49e 1193 goto out_trans_cancel;
c24b5dfa 1194
91083269 1195 xfs_bumplink(tp, dp);
c24b5dfa
DC
1196 }
1197
1198 /*
1199 * If this is a synchronous mount, make sure that the
1200 * create transaction goes to disk before returning to
1201 * the user.
1202 */
1203 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1204 xfs_trans_set_sync(tp);
1205
1206 /*
1207 * Attach the dquot(s) to the inodes and modify them incore.
1208 * These ids of the inode couldn't have changed since the new
1209 * inode has been locked ever since it was created.
1210 */
1211 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1212
70393313 1213 error = xfs_trans_commit(tp);
c24b5dfa
DC
1214 if (error)
1215 goto out_release_inode;
1216
1217 xfs_qm_dqrele(udqp);
1218 xfs_qm_dqrele(gdqp);
1219 xfs_qm_dqrele(pdqp);
1220
1221 *ipp = ip;
1222 return 0;
1223
c24b5dfa 1224 out_trans_cancel:
4906e215 1225 xfs_trans_cancel(tp);
c24b5dfa
DC
1226 out_release_inode:
1227 /*
58c90473
DC
1228 * Wait until after the current transaction is aborted to finish the
1229 * setup of the inode and release the inode. This prevents recursive
1230 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1231 */
58c90473
DC
1232 if (ip) {
1233 xfs_finish_inode_setup(ip);
44a8736b 1234 xfs_irele(ip);
58c90473 1235 }
c24b5dfa
DC
1236
1237 xfs_qm_dqrele(udqp);
1238 xfs_qm_dqrele(gdqp);
1239 xfs_qm_dqrele(pdqp);
1240
1241 if (unlock_dp_on_error)
65523218 1242 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1243 return error;
1244}
1245
99b6436b
ZYW
1246int
1247xfs_create_tmpfile(
1248 struct xfs_inode *dp,
330033d6
BF
1249 umode_t mode,
1250 struct xfs_inode **ipp)
99b6436b
ZYW
1251{
1252 struct xfs_mount *mp = dp->i_mount;
1253 struct xfs_inode *ip = NULL;
1254 struct xfs_trans *tp = NULL;
1255 int error;
99b6436b
ZYW
1256 prid_t prid;
1257 struct xfs_dquot *udqp = NULL;
1258 struct xfs_dquot *gdqp = NULL;
1259 struct xfs_dquot *pdqp = NULL;
1260 struct xfs_trans_res *tres;
1261 uint resblks;
1262
1263 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1264 return -EIO;
99b6436b
ZYW
1265
1266 prid = xfs_get_initial_prid(dp);
1267
1268 /*
1269 * Make sure that we have allocated dquot(s) on disk.
1270 */
54295159 1271 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
99b6436b
ZYW
1272 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1273 &udqp, &gdqp, &pdqp);
1274 if (error)
1275 return error;
1276
1277 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1278 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1279
1280 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
4906e215 1281 if (error)
253f4911 1282 goto out_release_inode;
99b6436b
ZYW
1283
1284 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1285 pdqp, resblks, 1, 0);
1286 if (error)
1287 goto out_trans_cancel;
1288
c4a6bf7f 1289 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
d6077aa3 1290 if (error)
4906e215 1291 goto out_trans_cancel;
99b6436b
ZYW
1292
1293 if (mp->m_flags & XFS_MOUNT_WSYNC)
1294 xfs_trans_set_sync(tp);
1295
1296 /*
1297 * Attach the dquot(s) to the inodes and modify them incore.
1298 * These ids of the inode couldn't have changed since the new
1299 * inode has been locked ever since it was created.
1300 */
1301 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1302
99b6436b
ZYW
1303 error = xfs_iunlink(tp, ip);
1304 if (error)
4906e215 1305 goto out_trans_cancel;
99b6436b 1306
70393313 1307 error = xfs_trans_commit(tp);
99b6436b
ZYW
1308 if (error)
1309 goto out_release_inode;
1310
1311 xfs_qm_dqrele(udqp);
1312 xfs_qm_dqrele(gdqp);
1313 xfs_qm_dqrele(pdqp);
1314
330033d6 1315 *ipp = ip;
99b6436b
ZYW
1316 return 0;
1317
99b6436b 1318 out_trans_cancel:
4906e215 1319 xfs_trans_cancel(tp);
99b6436b
ZYW
1320 out_release_inode:
1321 /*
58c90473
DC
1322 * Wait until after the current transaction is aborted to finish the
1323 * setup of the inode and release the inode. This prevents recursive
1324 * transactions and deadlocks from xfs_inactive.
99b6436b 1325 */
58c90473
DC
1326 if (ip) {
1327 xfs_finish_inode_setup(ip);
44a8736b 1328 xfs_irele(ip);
58c90473 1329 }
99b6436b
ZYW
1330
1331 xfs_qm_dqrele(udqp);
1332 xfs_qm_dqrele(gdqp);
1333 xfs_qm_dqrele(pdqp);
1334
1335 return error;
1336}
1337
c24b5dfa
DC
1338int
1339xfs_link(
1340 xfs_inode_t *tdp,
1341 xfs_inode_t *sip,
1342 struct xfs_name *target_name)
1343{
1344 xfs_mount_t *mp = tdp->i_mount;
1345 xfs_trans_t *tp;
1346 int error;
c24b5dfa
DC
1347 int resblks;
1348
1349 trace_xfs_link(tdp, target_name);
1350
c19b3b05 1351 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1352
1353 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1354 return -EIO;
c24b5dfa 1355
c14cfcca 1356 error = xfs_qm_dqattach(sip);
c24b5dfa
DC
1357 if (error)
1358 goto std_return;
1359
c14cfcca 1360 error = xfs_qm_dqattach(tdp);
c24b5dfa
DC
1361 if (error)
1362 goto std_return;
1363
c24b5dfa 1364 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1365 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1366 if (error == -ENOSPC) {
c24b5dfa 1367 resblks = 0;
253f4911 1368 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1369 }
4906e215 1370 if (error)
253f4911 1371 goto std_return;
c24b5dfa 1372
7c2d238a 1373 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1374
1375 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1376 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1377
1378 /*
1379 * If we are using project inheritance, we only allow hard link
1380 * creation in our tree when the project IDs are the same; else
1381 * the tree quota mechanism could be circumvented.
1382 */
1383 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
de7a866f 1384 tdp->i_d.di_projid != sip->i_d.di_projid)) {
2451337d 1385 error = -EXDEV;
c24b5dfa
DC
1386 goto error_return;
1387 }
1388
94f3cad5
ES
1389 if (!resblks) {
1390 error = xfs_dir_canenter(tp, tdp, target_name);
1391 if (error)
1392 goto error_return;
1393 }
c24b5dfa 1394
54d7b5c1
DC
1395 /*
1396 * Handle initial link state of O_TMPFILE inode
1397 */
1398 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1399 error = xfs_iunlink_remove(tp, sip);
1400 if (error)
4906e215 1401 goto error_return;
ab297431
ZYW
1402 }
1403
c24b5dfa 1404 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
381eee69 1405 resblks);
c24b5dfa 1406 if (error)
4906e215 1407 goto error_return;
c24b5dfa
DC
1408 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1409 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1410
91083269 1411 xfs_bumplink(tp, sip);
c24b5dfa
DC
1412
1413 /*
1414 * If this is a synchronous mount, make sure that the
1415 * link transaction goes to disk before returning to
1416 * the user.
1417 */
f6106efa 1418 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1419 xfs_trans_set_sync(tp);
c24b5dfa 1420
70393313 1421 return xfs_trans_commit(tp);
c24b5dfa 1422
c24b5dfa 1423 error_return:
4906e215 1424 xfs_trans_cancel(tp);
c24b5dfa
DC
1425 std_return:
1426 return error;
1427}
1428
363e59ba
DW
1429/* Clear the reflink flag and the cowblocks tag if possible. */
1430static void
1431xfs_itruncate_clear_reflink_flags(
1432 struct xfs_inode *ip)
1433{
1434 struct xfs_ifork *dfork;
1435 struct xfs_ifork *cfork;
1436
1437 if (!xfs_is_reflink_inode(ip))
1438 return;
1439 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1440 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1441 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1442 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1443 if (cfork->if_bytes == 0)
1444 xfs_inode_clear_cowblocks_tag(ip);
1445}
1446
1da177e4 1447/*
8f04c47a
CH
1448 * Free up the underlying blocks past new_size. The new size must be smaller
1449 * than the current size. This routine can be used both for the attribute and
1450 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1451 *
f6485057
DC
1452 * The transaction passed to this routine must have made a permanent log
1453 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1454 * given transaction and start new ones, so make sure everything involved in
1455 * the transaction is tidy before calling here. Some transaction will be
1456 * returned to the caller to be committed. The incoming transaction must
1457 * already include the inode, and both inode locks must be held exclusively.
1458 * The inode must also be "held" within the transaction. On return the inode
1459 * will be "held" within the returned transaction. This routine does NOT
1460 * require any disk space to be reserved for it within the transaction.
1da177e4 1461 *
f6485057
DC
1462 * If we get an error, we must return with the inode locked and linked into the
1463 * current transaction. This keeps things simple for the higher level code,
1464 * because it always knows that the inode is locked and held in the transaction
1465 * that returns to it whether errors occur or not. We don't mark the inode
1466 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1467 */
1468int
4e529339 1469xfs_itruncate_extents_flags(
8f04c47a
CH
1470 struct xfs_trans **tpp,
1471 struct xfs_inode *ip,
1472 int whichfork,
13b86fc3 1473 xfs_fsize_t new_size,
4e529339 1474 int flags)
1da177e4 1475{
8f04c47a
CH
1476 struct xfs_mount *mp = ip->i_mount;
1477 struct xfs_trans *tp = *tpp;
8f04c47a 1478 xfs_fileoff_t first_unmap_block;
8f04c47a 1479 xfs_filblks_t unmap_len;
8f04c47a 1480 int error = 0;
1da177e4 1481
0b56185b
CH
1482 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1483 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1484 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1485 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1486 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1487 ASSERT(ip->i_itemp != NULL);
898621d5 1488 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1489 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1490
673e8e59
CH
1491 trace_xfs_itruncate_extents_start(ip, new_size);
1492
4e529339 1493 flags |= xfs_bmapi_aflag(whichfork);
13b86fc3 1494
1da177e4
LT
1495 /*
1496 * Since it is possible for space to become allocated beyond
1497 * the end of the file (in a crash where the space is allocated
1498 * but the inode size is not yet updated), simply remove any
1499 * blocks which show up between the new EOF and the maximum
4bbb04ab
DW
1500 * possible file size.
1501 *
1502 * We have to free all the blocks to the bmbt maximum offset, even if
1503 * the page cache can't scale that far.
1da177e4 1504 */
8f04c47a 1505 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
4bbb04ab
DW
1506 if (first_unmap_block >= XFS_MAX_FILEOFF) {
1507 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
8f04c47a 1508 return 0;
4bbb04ab 1509 }
8f04c47a 1510
4bbb04ab
DW
1511 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1512 while (unmap_len > 0) {
02dff7bf 1513 ASSERT(tp->t_firstblock == NULLFSBLOCK);
4bbb04ab
DW
1514 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1515 flags, XFS_ITRUNC_MAX_EXTENTS);
8f04c47a 1516 if (error)
d5a2e289 1517 goto out;
1da177e4
LT
1518
1519 /*
1520 * Duplicate the transaction that has the permanent
1521 * reservation and commit the old transaction.
1522 */
9e28a242 1523 error = xfs_defer_finish(&tp);
8f04c47a 1524 if (error)
9b1f4e98 1525 goto out;
1da177e4 1526
411350df 1527 error = xfs_trans_roll_inode(&tp, ip);
f6485057 1528 if (error)
8f04c47a 1529 goto out;
1da177e4 1530 }
8f04c47a 1531
4919d42a
DW
1532 if (whichfork == XFS_DATA_FORK) {
1533 /* Remove all pending CoW reservations. */
1534 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
4bbb04ab 1535 first_unmap_block, XFS_MAX_FILEOFF, true);
4919d42a
DW
1536 if (error)
1537 goto out;
aa8968f2 1538
4919d42a
DW
1539 xfs_itruncate_clear_reflink_flags(ip);
1540 }
aa8968f2 1541
673e8e59
CH
1542 /*
1543 * Always re-log the inode so that our permanent transaction can keep
1544 * on rolling it forward in the log.
1545 */
1546 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1547
1548 trace_xfs_itruncate_extents_end(ip, new_size);
1549
8f04c47a
CH
1550out:
1551 *tpp = tp;
1552 return error;
8f04c47a
CH
1553}
1554
c24b5dfa
DC
1555int
1556xfs_release(
1557 xfs_inode_t *ip)
1558{
1559 xfs_mount_t *mp = ip->i_mount;
1560 int error;
1561
c19b3b05 1562 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1563 return 0;
1564
1565 /* If this is a read-only mount, don't do this (would generate I/O) */
1566 if (mp->m_flags & XFS_MOUNT_RDONLY)
1567 return 0;
1568
1569 if (!XFS_FORCED_SHUTDOWN(mp)) {
1570 int truncated;
1571
c24b5dfa
DC
1572 /*
1573 * If we previously truncated this file and removed old data
1574 * in the process, we want to initiate "early" writeout on
1575 * the last close. This is an attempt to combat the notorious
1576 * NULL files problem which is particularly noticeable from a
1577 * truncate down, buffered (re-)write (delalloc), followed by
1578 * a crash. What we are effectively doing here is
1579 * significantly reducing the time window where we'd otherwise
1580 * be exposed to that problem.
1581 */
1582 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1583 if (truncated) {
1584 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1585 if (ip->i_delayed_blks > 0) {
2451337d 1586 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1587 if (error)
1588 return error;
1589 }
1590 }
1591 }
1592
54d7b5c1 1593 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1594 return 0;
1595
1596 if (xfs_can_free_eofblocks(ip, false)) {
1597
a36b9261
BF
1598 /*
1599 * Check if the inode is being opened, written and closed
1600 * frequently and we have delayed allocation blocks outstanding
1601 * (e.g. streaming writes from the NFS server), truncating the
1602 * blocks past EOF will cause fragmentation to occur.
1603 *
1604 * In this case don't do the truncation, but we have to be
1605 * careful how we detect this case. Blocks beyond EOF show up as
1606 * i_delayed_blks even when the inode is clean, so we need to
1607 * truncate them away first before checking for a dirty release.
1608 * Hence on the first dirty close we will still remove the
1609 * speculative allocation, but after that we will leave it in
1610 * place.
1611 */
1612 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1613 return 0;
c24b5dfa
DC
1614 /*
1615 * If we can't get the iolock just skip truncating the blocks
c1e8d7c6 1616 * past EOF because we could deadlock with the mmap_lock
a36b9261 1617 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1618 * last reference to the inode is dropped, so we'll never leak
1619 * blocks permanently.
c24b5dfa 1620 */
a36b9261
BF
1621 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1622 error = xfs_free_eofblocks(ip);
1623 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1624 if (error)
1625 return error;
1626 }
c24b5dfa
DC
1627
1628 /* delalloc blocks after truncation means it really is dirty */
1629 if (ip->i_delayed_blks)
1630 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1631 }
1632 return 0;
1633}
1634
f7be2d7f
BF
1635/*
1636 * xfs_inactive_truncate
1637 *
1638 * Called to perform a truncate when an inode becomes unlinked.
1639 */
1640STATIC int
1641xfs_inactive_truncate(
1642 struct xfs_inode *ip)
1643{
1644 struct xfs_mount *mp = ip->i_mount;
1645 struct xfs_trans *tp;
1646 int error;
1647
253f4911 1648 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1649 if (error) {
1650 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1651 return error;
1652 }
f7be2d7f
BF
1653 xfs_ilock(ip, XFS_ILOCK_EXCL);
1654 xfs_trans_ijoin(tp, ip, 0);
1655
1656 /*
1657 * Log the inode size first to prevent stale data exposure in the event
1658 * of a system crash before the truncate completes. See the related
69bca807 1659 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1660 */
1661 ip->i_d.di_size = 0;
1662 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1663
1664 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1665 if (error)
1666 goto error_trans_cancel;
1667
daf83964 1668 ASSERT(ip->i_df.if_nextents == 0);
f7be2d7f 1669
70393313 1670 error = xfs_trans_commit(tp);
f7be2d7f
BF
1671 if (error)
1672 goto error_unlock;
1673
1674 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1675 return 0;
1676
1677error_trans_cancel:
4906e215 1678 xfs_trans_cancel(tp);
f7be2d7f
BF
1679error_unlock:
1680 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1681 return error;
1682}
1683
88877d2b
BF
1684/*
1685 * xfs_inactive_ifree()
1686 *
1687 * Perform the inode free when an inode is unlinked.
1688 */
1689STATIC int
1690xfs_inactive_ifree(
1691 struct xfs_inode *ip)
1692{
88877d2b
BF
1693 struct xfs_mount *mp = ip->i_mount;
1694 struct xfs_trans *tp;
1695 int error;
1696
9d43b180 1697 /*
76d771b4
CH
1698 * We try to use a per-AG reservation for any block needed by the finobt
1699 * tree, but as the finobt feature predates the per-AG reservation
1700 * support a degraded file system might not have enough space for the
1701 * reservation at mount time. In that case try to dip into the reserved
1702 * pool and pray.
9d43b180
BF
1703 *
1704 * Send a warning if the reservation does happen to fail, as the inode
1705 * now remains allocated and sits on the unlinked list until the fs is
1706 * repaired.
1707 */
e1f6ca11 1708 if (unlikely(mp->m_finobt_nores)) {
76d771b4
CH
1709 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1710 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1711 &tp);
1712 } else {
1713 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1714 }
88877d2b 1715 if (error) {
2451337d 1716 if (error == -ENOSPC) {
9d43b180
BF
1717 xfs_warn_ratelimited(mp,
1718 "Failed to remove inode(s) from unlinked list. "
1719 "Please free space, unmount and run xfs_repair.");
1720 } else {
1721 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1722 }
88877d2b
BF
1723 return error;
1724 }
1725
96355d5a
DC
1726 /*
1727 * We do not hold the inode locked across the entire rolling transaction
1728 * here. We only need to hold it for the first transaction that
1729 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1730 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1731 * here breaks the relationship between cluster buffer invalidation and
1732 * stale inode invalidation on cluster buffer item journal commit
1733 * completion, and can result in leaving dirty stale inodes hanging
1734 * around in memory.
1735 *
1736 * We have no need for serialising this inode operation against other
1737 * operations - we freed the inode and hence reallocation is required
1738 * and that will serialise on reallocating the space the deferops need
1739 * to free. Hence we can unlock the inode on the first commit of
1740 * the transaction rather than roll it right through the deferops. This
1741 * avoids relogging the XFS_ISTALE inode.
1742 *
1743 * We check that xfs_ifree() hasn't grown an internal transaction roll
1744 * by asserting that the inode is still locked when it returns.
1745 */
88877d2b 1746 xfs_ilock(ip, XFS_ILOCK_EXCL);
96355d5a 1747 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
88877d2b 1748
0e0417f3 1749 error = xfs_ifree(tp, ip);
96355d5a 1750 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
88877d2b
BF
1751 if (error) {
1752 /*
1753 * If we fail to free the inode, shut down. The cancel
1754 * might do that, we need to make sure. Otherwise the
1755 * inode might be lost for a long time or forever.
1756 */
1757 if (!XFS_FORCED_SHUTDOWN(mp)) {
1758 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1759 __func__, error);
1760 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1761 }
4906e215 1762 xfs_trans_cancel(tp);
88877d2b
BF
1763 return error;
1764 }
1765
1766 /*
1767 * Credit the quota account(s). The inode is gone.
1768 */
1769 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1770
1771 /*
d4a97a04
BF
1772 * Just ignore errors at this point. There is nothing we can do except
1773 * to try to keep going. Make sure it's not a silent error.
88877d2b 1774 */
70393313 1775 error = xfs_trans_commit(tp);
88877d2b
BF
1776 if (error)
1777 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1778 __func__, error);
1779
88877d2b
BF
1780 return 0;
1781}
1782
c24b5dfa
DC
1783/*
1784 * xfs_inactive
1785 *
1786 * This is called when the vnode reference count for the vnode
1787 * goes to zero. If the file has been unlinked, then it must
1788 * now be truncated. Also, we clear all of the read-ahead state
1789 * kept for the inode here since the file is now closed.
1790 */
74564fb4 1791void
c24b5dfa
DC
1792xfs_inactive(
1793 xfs_inode_t *ip)
1794{
3d3c8b52 1795 struct xfs_mount *mp;
3d3c8b52
JL
1796 int error;
1797 int truncate = 0;
c24b5dfa
DC
1798
1799 /*
1800 * If the inode is already free, then there can be nothing
1801 * to clean up here.
1802 */
c19b3b05 1803 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa 1804 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1805 return;
c24b5dfa
DC
1806 }
1807
1808 mp = ip->i_mount;
17c12bcd 1809 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1810
c24b5dfa
DC
1811 /* If this is a read-only mount, don't do this (would generate I/O) */
1812 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1813 return;
c24b5dfa 1814
6231848c 1815 /* Try to clean out the cow blocks if there are any. */
51d62690 1816 if (xfs_inode_has_cow_data(ip))
6231848c
DW
1817 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1818
54d7b5c1 1819 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1820 /*
1821 * force is true because we are evicting an inode from the
1822 * cache. Post-eof blocks must be freed, lest we end up with
1823 * broken free space accounting.
3b4683c2
BF
1824 *
1825 * Note: don't bother with iolock here since lockdep complains
1826 * about acquiring it in reclaim context. We have the only
1827 * reference to the inode at this point anyways.
c24b5dfa 1828 */
3b4683c2 1829 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1830 xfs_free_eofblocks(ip);
74564fb4
BF
1831
1832 return;
c24b5dfa
DC
1833 }
1834
c19b3b05 1835 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa 1836 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
daf83964 1837 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
c24b5dfa
DC
1838 truncate = 1;
1839
c14cfcca 1840 error = xfs_qm_dqattach(ip);
c24b5dfa 1841 if (error)
74564fb4 1842 return;
c24b5dfa 1843
c19b3b05 1844 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1845 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1846 else if (truncate)
1847 error = xfs_inactive_truncate(ip);
1848 if (error)
74564fb4 1849 return;
c24b5dfa
DC
1850
1851 /*
1852 * If there are attributes associated with the file then blow them away
1853 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1854 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1855 */
6dfe5a04 1856 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1857 error = xfs_attr_inactive(ip);
1858 if (error)
74564fb4 1859 return;
c24b5dfa
DC
1860 }
1861
6dfe5a04 1862 ASSERT(!ip->i_afp);
6dfe5a04 1863 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1864
1865 /*
1866 * Free the inode.
1867 */
88877d2b
BF
1868 error = xfs_inactive_ifree(ip);
1869 if (error)
74564fb4 1870 return;
c24b5dfa
DC
1871
1872 /*
1873 * Release the dquots held by inode, if any.
1874 */
1875 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1876}
1877
9b247179
DW
1878/*
1879 * In-Core Unlinked List Lookups
1880 * =============================
1881 *
1882 * Every inode is supposed to be reachable from some other piece of metadata
1883 * with the exception of the root directory. Inodes with a connection to a
1884 * file descriptor but not linked from anywhere in the on-disk directory tree
1885 * are collectively known as unlinked inodes, though the filesystem itself
1886 * maintains links to these inodes so that on-disk metadata are consistent.
1887 *
1888 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1889 * header contains a number of buckets that point to an inode, and each inode
1890 * record has a pointer to the next inode in the hash chain. This
1891 * singly-linked list causes scaling problems in the iunlink remove function
1892 * because we must walk that list to find the inode that points to the inode
1893 * being removed from the unlinked hash bucket list.
1894 *
1895 * What if we modelled the unlinked list as a collection of records capturing
1896 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1897 * have a fast way to look up unlinked list predecessors, which avoids the
1898 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1899 * rhashtable.
1900 *
1901 * Because this is a backref cache, we ignore operational failures since the
1902 * iunlink code can fall back to the slow bucket walk. The only errors that
1903 * should bubble out are for obviously incorrect situations.
1904 *
1905 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1906 * access or have otherwise provided for concurrency control.
1907 */
1908
1909/* Capture a "X.next_unlinked = Y" relationship. */
1910struct xfs_iunlink {
1911 struct rhash_head iu_rhash_head;
1912 xfs_agino_t iu_agino; /* X */
1913 xfs_agino_t iu_next_unlinked; /* Y */
1914};
1915
1916/* Unlinked list predecessor lookup hashtable construction */
1917static int
1918xfs_iunlink_obj_cmpfn(
1919 struct rhashtable_compare_arg *arg,
1920 const void *obj)
1921{
1922 const xfs_agino_t *key = arg->key;
1923 const struct xfs_iunlink *iu = obj;
1924
1925 if (iu->iu_next_unlinked != *key)
1926 return 1;
1927 return 0;
1928}
1929
1930static const struct rhashtable_params xfs_iunlink_hash_params = {
1931 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1932 .key_len = sizeof(xfs_agino_t),
1933 .key_offset = offsetof(struct xfs_iunlink,
1934 iu_next_unlinked),
1935 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1936 .automatic_shrinking = true,
1937 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1938};
1939
1940/*
1941 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1942 * relation is found.
1943 */
1944static xfs_agino_t
1945xfs_iunlink_lookup_backref(
1946 struct xfs_perag *pag,
1947 xfs_agino_t agino)
1948{
1949 struct xfs_iunlink *iu;
1950
1951 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1952 xfs_iunlink_hash_params);
1953 return iu ? iu->iu_agino : NULLAGINO;
1954}
1955
1956/*
1957 * Take ownership of an iunlink cache entry and insert it into the hash table.
1958 * If successful, the entry will be owned by the cache; if not, it is freed.
1959 * Either way, the caller does not own @iu after this call.
1960 */
1961static int
1962xfs_iunlink_insert_backref(
1963 struct xfs_perag *pag,
1964 struct xfs_iunlink *iu)
1965{
1966 int error;
1967
1968 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1969 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1970 /*
1971 * Fail loudly if there already was an entry because that's a sign of
1972 * corruption of in-memory data. Also fail loudly if we see an error
1973 * code we didn't anticipate from the rhashtable code. Currently we
1974 * only anticipate ENOMEM.
1975 */
1976 if (error) {
1977 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1978 kmem_free(iu);
1979 }
1980 /*
1981 * Absorb any runtime errors that aren't a result of corruption because
1982 * this is a cache and we can always fall back to bucket list scanning.
1983 */
1984 if (error != 0 && error != -EEXIST)
1985 error = 0;
1986 return error;
1987}
1988
1989/* Remember that @prev_agino.next_unlinked = @this_agino. */
1990static int
1991xfs_iunlink_add_backref(
1992 struct xfs_perag *pag,
1993 xfs_agino_t prev_agino,
1994 xfs_agino_t this_agino)
1995{
1996 struct xfs_iunlink *iu;
1997
1998 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1999 return 0;
2000
707e0dda 2001 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
9b247179
DW
2002 iu->iu_agino = prev_agino;
2003 iu->iu_next_unlinked = this_agino;
2004
2005 return xfs_iunlink_insert_backref(pag, iu);
2006}
2007
2008/*
2009 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2010 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2011 * wasn't any such entry then we don't bother.
2012 */
2013static int
2014xfs_iunlink_change_backref(
2015 struct xfs_perag *pag,
2016 xfs_agino_t agino,
2017 xfs_agino_t next_unlinked)
2018{
2019 struct xfs_iunlink *iu;
2020 int error;
2021
2022 /* Look up the old entry; if there wasn't one then exit. */
2023 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2024 xfs_iunlink_hash_params);
2025 if (!iu)
2026 return 0;
2027
2028 /*
2029 * Remove the entry. This shouldn't ever return an error, but if we
2030 * couldn't remove the old entry we don't want to add it again to the
2031 * hash table, and if the entry disappeared on us then someone's
2032 * violated the locking rules and we need to fail loudly. Either way
2033 * we cannot remove the inode because internal state is or would have
2034 * been corrupt.
2035 */
2036 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2037 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2038 if (error)
2039 return error;
2040
2041 /* If there is no new next entry just free our item and return. */
2042 if (next_unlinked == NULLAGINO) {
2043 kmem_free(iu);
2044 return 0;
2045 }
2046
2047 /* Update the entry and re-add it to the hash table. */
2048 iu->iu_next_unlinked = next_unlinked;
2049 return xfs_iunlink_insert_backref(pag, iu);
2050}
2051
2052/* Set up the in-core predecessor structures. */
2053int
2054xfs_iunlink_init(
2055 struct xfs_perag *pag)
2056{
2057 return rhashtable_init(&pag->pagi_unlinked_hash,
2058 &xfs_iunlink_hash_params);
2059}
2060
2061/* Free the in-core predecessor structures. */
2062static void
2063xfs_iunlink_free_item(
2064 void *ptr,
2065 void *arg)
2066{
2067 struct xfs_iunlink *iu = ptr;
2068 bool *freed_anything = arg;
2069
2070 *freed_anything = true;
2071 kmem_free(iu);
2072}
2073
2074void
2075xfs_iunlink_destroy(
2076 struct xfs_perag *pag)
2077{
2078 bool freed_anything = false;
2079
2080 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2081 xfs_iunlink_free_item, &freed_anything);
2082
2083 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2084}
2085
9a4a5118
DW
2086/*
2087 * Point the AGI unlinked bucket at an inode and log the results. The caller
2088 * is responsible for validating the old value.
2089 */
2090STATIC int
2091xfs_iunlink_update_bucket(
2092 struct xfs_trans *tp,
2093 xfs_agnumber_t agno,
2094 struct xfs_buf *agibp,
2095 unsigned int bucket_index,
2096 xfs_agino_t new_agino)
2097{
370c782b 2098 struct xfs_agi *agi = agibp->b_addr;
9a4a5118
DW
2099 xfs_agino_t old_value;
2100 int offset;
2101
2102 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2103
2104 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2105 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2106 old_value, new_agino);
2107
2108 /*
2109 * We should never find the head of the list already set to the value
2110 * passed in because either we're adding or removing ourselves from the
2111 * head of the list.
2112 */
a5155b87 2113 if (old_value == new_agino) {
8d57c216 2114 xfs_buf_mark_corrupt(agibp);
9a4a5118 2115 return -EFSCORRUPTED;
a5155b87 2116 }
9a4a5118
DW
2117
2118 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2119 offset = offsetof(struct xfs_agi, agi_unlinked) +
2120 (sizeof(xfs_agino_t) * bucket_index);
2121 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2122 return 0;
2123}
2124
f2fc16a3
DW
2125/* Set an on-disk inode's next_unlinked pointer. */
2126STATIC void
2127xfs_iunlink_update_dinode(
2128 struct xfs_trans *tp,
2129 xfs_agnumber_t agno,
2130 xfs_agino_t agino,
2131 struct xfs_buf *ibp,
2132 struct xfs_dinode *dip,
2133 struct xfs_imap *imap,
2134 xfs_agino_t next_agino)
2135{
2136 struct xfs_mount *mp = tp->t_mountp;
2137 int offset;
2138
2139 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2140
2141 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2142 be32_to_cpu(dip->di_next_unlinked), next_agino);
2143
2144 dip->di_next_unlinked = cpu_to_be32(next_agino);
2145 offset = imap->im_boffset +
2146 offsetof(struct xfs_dinode, di_next_unlinked);
2147
2148 /* need to recalc the inode CRC if appropriate */
2149 xfs_dinode_calc_crc(mp, dip);
2150 xfs_trans_inode_buf(tp, ibp);
2151 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
f2fc16a3
DW
2152}
2153
2154/* Set an in-core inode's unlinked pointer and return the old value. */
2155STATIC int
2156xfs_iunlink_update_inode(
2157 struct xfs_trans *tp,
2158 struct xfs_inode *ip,
2159 xfs_agnumber_t agno,
2160 xfs_agino_t next_agino,
2161 xfs_agino_t *old_next_agino)
2162{
2163 struct xfs_mount *mp = tp->t_mountp;
2164 struct xfs_dinode *dip;
2165 struct xfs_buf *ibp;
2166 xfs_agino_t old_value;
2167 int error;
2168
2169 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2170
c1995079 2171 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
f2fc16a3
DW
2172 if (error)
2173 return error;
2174
2175 /* Make sure the old pointer isn't garbage. */
2176 old_value = be32_to_cpu(dip->di_next_unlinked);
2177 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
a5155b87
DW
2178 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2179 sizeof(*dip), __this_address);
f2fc16a3
DW
2180 error = -EFSCORRUPTED;
2181 goto out;
2182 }
2183
2184 /*
2185 * Since we're updating a linked list, we should never find that the
2186 * current pointer is the same as the new value, unless we're
2187 * terminating the list.
2188 */
2189 *old_next_agino = old_value;
2190 if (old_value == next_agino) {
a5155b87
DW
2191 if (next_agino != NULLAGINO) {
2192 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2193 dip, sizeof(*dip), __this_address);
f2fc16a3 2194 error = -EFSCORRUPTED;
a5155b87 2195 }
f2fc16a3
DW
2196 goto out;
2197 }
2198
2199 /* Ok, update the new pointer. */
2200 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2201 ibp, dip, &ip->i_imap, next_agino);
2202 return 0;
2203out:
2204 xfs_trans_brelse(tp, ibp);
2205 return error;
2206}
2207
1da177e4 2208/*
c4a6bf7f
DW
2209 * This is called when the inode's link count has gone to 0 or we are creating
2210 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
54d7b5c1
DC
2211 *
2212 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2213 * list when the inode is freed.
1da177e4 2214 */
54d7b5c1 2215STATIC int
1da177e4 2216xfs_iunlink(
5837f625
DW
2217 struct xfs_trans *tp,
2218 struct xfs_inode *ip)
1da177e4 2219{
5837f625
DW
2220 struct xfs_mount *mp = tp->t_mountp;
2221 struct xfs_agi *agi;
5837f625 2222 struct xfs_buf *agibp;
86bfd375 2223 xfs_agino_t next_agino;
5837f625
DW
2224 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2225 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2226 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2227 int error;
1da177e4 2228
c4a6bf7f 2229 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 2230 ASSERT(VFS_I(ip)->i_mode != 0);
4664c66c 2231 trace_xfs_iunlink(ip);
1da177e4 2232
5837f625
DW
2233 /* Get the agi buffer first. It ensures lock ordering on the list. */
2234 error = xfs_read_agi(mp, tp, agno, &agibp);
859d7182 2235 if (error)
1da177e4 2236 return error;
370c782b 2237 agi = agibp->b_addr;
5e1be0fb 2238
1da177e4 2239 /*
86bfd375
DW
2240 * Get the index into the agi hash table for the list this inode will
2241 * go on. Make sure the pointer isn't garbage and that this inode
2242 * isn't already on the list.
1da177e4 2243 */
86bfd375
DW
2244 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2245 if (next_agino == agino ||
a5155b87 2246 !xfs_verify_agino_or_null(mp, agno, next_agino)) {
8d57c216 2247 xfs_buf_mark_corrupt(agibp);
86bfd375 2248 return -EFSCORRUPTED;
a5155b87 2249 }
1da177e4 2250
86bfd375 2251 if (next_agino != NULLAGINO) {
9b247179 2252 xfs_agino_t old_agino;
f2fc16a3 2253
1da177e4 2254 /*
f2fc16a3
DW
2255 * There is already another inode in the bucket, so point this
2256 * inode to the current head of the list.
1da177e4 2257 */
f2fc16a3
DW
2258 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2259 &old_agino);
c319b58b
VA
2260 if (error)
2261 return error;
f2fc16a3 2262 ASSERT(old_agino == NULLAGINO);
9b247179
DW
2263
2264 /*
2265 * agino has been unlinked, add a backref from the next inode
2266 * back to agino.
2267 */
92a00544 2268 error = xfs_iunlink_add_backref(agibp->b_pag, agino, next_agino);
9b247179
DW
2269 if (error)
2270 return error;
1da177e4
LT
2271 }
2272
9a4a5118
DW
2273 /* Point the head of the list to point to this inode. */
2274 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
1da177e4
LT
2275}
2276
23ffa52c
DW
2277/* Return the imap, dinode pointer, and buffer for an inode. */
2278STATIC int
2279xfs_iunlink_map_ino(
2280 struct xfs_trans *tp,
2281 xfs_agnumber_t agno,
2282 xfs_agino_t agino,
2283 struct xfs_imap *imap,
2284 struct xfs_dinode **dipp,
2285 struct xfs_buf **bpp)
2286{
2287 struct xfs_mount *mp = tp->t_mountp;
2288 int error;
2289
2290 imap->im_blkno = 0;
2291 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2292 if (error) {
2293 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2294 __func__, error);
2295 return error;
2296 }
2297
c1995079 2298 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
23ffa52c
DW
2299 if (error) {
2300 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2301 __func__, error);
2302 return error;
2303 }
2304
2305 return 0;
2306}
2307
2308/*
2309 * Walk the unlinked chain from @head_agino until we find the inode that
2310 * points to @target_agino. Return the inode number, map, dinode pointer,
2311 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2312 *
2313 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2314 * @agino, @imap, @dipp, and @bpp are all output parameters.
2315 *
2316 * Do not call this function if @target_agino is the head of the list.
2317 */
2318STATIC int
2319xfs_iunlink_map_prev(
2320 struct xfs_trans *tp,
2321 xfs_agnumber_t agno,
2322 xfs_agino_t head_agino,
2323 xfs_agino_t target_agino,
2324 xfs_agino_t *agino,
2325 struct xfs_imap *imap,
2326 struct xfs_dinode **dipp,
9b247179
DW
2327 struct xfs_buf **bpp,
2328 struct xfs_perag *pag)
23ffa52c
DW
2329{
2330 struct xfs_mount *mp = tp->t_mountp;
2331 xfs_agino_t next_agino;
2332 int error;
2333
2334 ASSERT(head_agino != target_agino);
2335 *bpp = NULL;
2336
9b247179
DW
2337 /* See if our backref cache can find it faster. */
2338 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2339 if (*agino != NULLAGINO) {
2340 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2341 if (error)
2342 return error;
2343
2344 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2345 return 0;
2346
2347 /*
2348 * If we get here the cache contents were corrupt, so drop the
2349 * buffer and fall back to walking the bucket list.
2350 */
2351 xfs_trans_brelse(tp, *bpp);
2352 *bpp = NULL;
2353 WARN_ON_ONCE(1);
2354 }
2355
2356 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2357
2358 /* Otherwise, walk the entire bucket until we find it. */
23ffa52c
DW
2359 next_agino = head_agino;
2360 while (next_agino != target_agino) {
2361 xfs_agino_t unlinked_agino;
2362
2363 if (*bpp)
2364 xfs_trans_brelse(tp, *bpp);
2365
2366 *agino = next_agino;
2367 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2368 bpp);
2369 if (error)
2370 return error;
2371
2372 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2373 /*
2374 * Make sure this pointer is valid and isn't an obvious
2375 * infinite loop.
2376 */
2377 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2378 next_agino == unlinked_agino) {
2379 XFS_CORRUPTION_ERROR(__func__,
2380 XFS_ERRLEVEL_LOW, mp,
2381 *dipp, sizeof(**dipp));
2382 error = -EFSCORRUPTED;
2383 return error;
2384 }
2385 next_agino = unlinked_agino;
2386 }
2387
2388 return 0;
2389}
2390
1da177e4
LT
2391/*
2392 * Pull the on-disk inode from the AGI unlinked list.
2393 */
2394STATIC int
2395xfs_iunlink_remove(
5837f625
DW
2396 struct xfs_trans *tp,
2397 struct xfs_inode *ip)
1da177e4 2398{
5837f625
DW
2399 struct xfs_mount *mp = tp->t_mountp;
2400 struct xfs_agi *agi;
5837f625 2401 struct xfs_buf *agibp;
5837f625
DW
2402 struct xfs_buf *last_ibp;
2403 struct xfs_dinode *last_dip = NULL;
5837f625
DW
2404 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2405 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2406 xfs_agino_t next_agino;
b1d2a068 2407 xfs_agino_t head_agino;
5837f625 2408 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2409 int error;
1da177e4 2410
4664c66c
DW
2411 trace_xfs_iunlink_remove(ip);
2412
5837f625 2413 /* Get the agi buffer first. It ensures lock ordering on the list. */
5e1be0fb
CH
2414 error = xfs_read_agi(mp, tp, agno, &agibp);
2415 if (error)
1da177e4 2416 return error;
370c782b 2417 agi = agibp->b_addr;
5e1be0fb 2418
1da177e4 2419 /*
86bfd375
DW
2420 * Get the index into the agi hash table for the list this inode will
2421 * go on. Make sure the head pointer isn't garbage.
1da177e4 2422 */
b1d2a068
DW
2423 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2424 if (!xfs_verify_agino(mp, agno, head_agino)) {
d2e73665
DW
2425 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2426 agi, sizeof(*agi));
2427 return -EFSCORRUPTED;
2428 }
1da177e4 2429
b1d2a068
DW
2430 /*
2431 * Set our inode's next_unlinked pointer to NULL and then return
2432 * the old pointer value so that we can update whatever was previous
2433 * to us in the list to point to whatever was next in the list.
2434 */
2435 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2436 if (error)
2437 return error;
9a4a5118 2438
9b247179
DW
2439 /*
2440 * If there was a backref pointing from the next inode back to this
2441 * one, remove it because we've removed this inode from the list.
2442 *
2443 * Later, if this inode was in the middle of the list we'll update
2444 * this inode's backref to point from the next inode.
2445 */
2446 if (next_agino != NULLAGINO) {
92a00544 2447 error = xfs_iunlink_change_backref(agibp->b_pag, next_agino,
9b247179
DW
2448 NULLAGINO);
2449 if (error)
92a00544 2450 return error;
9b247179
DW
2451 }
2452
92a00544 2453 if (head_agino != agino) {
f2fc16a3
DW
2454 struct xfs_imap imap;
2455 xfs_agino_t prev_agino;
2456
23ffa52c 2457 /* We need to search the list for the inode being freed. */
b1d2a068 2458 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
9b247179 2459 &prev_agino, &imap, &last_dip, &last_ibp,
92a00544 2460 agibp->b_pag);
23ffa52c 2461 if (error)
92a00544 2462 return error;
475ee413 2463
f2fc16a3
DW
2464 /* Point the previous inode on the list to the next inode. */
2465 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2466 last_dip, &imap, next_agino);
9b247179
DW
2467
2468 /*
2469 * Now we deal with the backref for this inode. If this inode
2470 * pointed at a real inode, change the backref that pointed to
2471 * us to point to our old next. If this inode was the end of
2472 * the list, delete the backref that pointed to us. Note that
2473 * change_backref takes care of deleting the backref if
2474 * next_agino is NULLAGINO.
2475 */
92a00544
GX
2476 return xfs_iunlink_change_backref(agibp->b_pag, agino,
2477 next_agino);
1da177e4 2478 }
9b247179 2479
92a00544
GX
2480 /* Point the head of the list to the next unlinked inode. */
2481 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2482 next_agino);
1da177e4
LT
2483}
2484
5806165a 2485/*
71e3e356
DC
2486 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2487 * mark it stale. We should only find clean inodes in this lookup that aren't
2488 * already stale.
5806165a 2489 */
71e3e356
DC
2490static void
2491xfs_ifree_mark_inode_stale(
2492 struct xfs_buf *bp,
5806165a 2493 struct xfs_inode *free_ip,
d9fdd0ad 2494 xfs_ino_t inum)
5806165a 2495{
71e3e356
DC
2496 struct xfs_mount *mp = bp->b_mount;
2497 struct xfs_perag *pag = bp->b_pag;
2498 struct xfs_inode_log_item *iip;
5806165a
DC
2499 struct xfs_inode *ip;
2500
2501retry:
2502 rcu_read_lock();
2503 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2504
2505 /* Inode not in memory, nothing to do */
71e3e356
DC
2506 if (!ip) {
2507 rcu_read_unlock();
2508 return;
2509 }
5806165a
DC
2510
2511 /*
2512 * because this is an RCU protected lookup, we could find a recently
2513 * freed or even reallocated inode during the lookup. We need to check
2514 * under the i_flags_lock for a valid inode here. Skip it if it is not
2515 * valid, the wrong inode or stale.
2516 */
2517 spin_lock(&ip->i_flags_lock);
718ecc50
DC
2518 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2519 goto out_iflags_unlock;
5806165a
DC
2520
2521 /*
2522 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2523 * other inodes that we did not find in the list attached to the buffer
2524 * and are not already marked stale. If we can't lock it, back off and
2525 * retry.
2526 */
2527 if (ip != free_ip) {
2528 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
71e3e356 2529 spin_unlock(&ip->i_flags_lock);
5806165a
DC
2530 rcu_read_unlock();
2531 delay(1);
2532 goto retry;
2533 }
5806165a 2534 }
71e3e356 2535 ip->i_flags |= XFS_ISTALE;
5806165a 2536
71e3e356 2537 /*
718ecc50 2538 * If the inode is flushing, it is already attached to the buffer. All
71e3e356
DC
2539 * we needed to do here is mark the inode stale so buffer IO completion
2540 * will remove it from the AIL.
2541 */
2542 iip = ip->i_itemp;
718ecc50 2543 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
71e3e356
DC
2544 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2545 ASSERT(iip->ili_last_fields);
2546 goto out_iunlock;
2547 }
5806165a
DC
2548
2549 /*
48d55e2a
DC
2550 * Inodes not attached to the buffer can be released immediately.
2551 * Everything else has to go through xfs_iflush_abort() on journal
2552 * commit as the flock synchronises removal of the inode from the
2553 * cluster buffer against inode reclaim.
5806165a 2554 */
718ecc50 2555 if (!iip || list_empty(&iip->ili_item.li_bio_list))
71e3e356 2556 goto out_iunlock;
718ecc50
DC
2557
2558 __xfs_iflags_set(ip, XFS_IFLUSHING);
2559 spin_unlock(&ip->i_flags_lock);
2560 rcu_read_unlock();
5806165a 2561
71e3e356 2562 /* we have a dirty inode in memory that has not yet been flushed. */
71e3e356
DC
2563 spin_lock(&iip->ili_lock);
2564 iip->ili_last_fields = iip->ili_fields;
2565 iip->ili_fields = 0;
2566 iip->ili_fsync_fields = 0;
2567 spin_unlock(&iip->ili_lock);
71e3e356
DC
2568 ASSERT(iip->ili_last_fields);
2569
718ecc50
DC
2570 if (ip != free_ip)
2571 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2572 return;
2573
71e3e356
DC
2574out_iunlock:
2575 if (ip != free_ip)
2576 xfs_iunlock(ip, XFS_ILOCK_EXCL);
718ecc50
DC
2577out_iflags_unlock:
2578 spin_unlock(&ip->i_flags_lock);
2579 rcu_read_unlock();
5806165a
DC
2580}
2581
5b3eed75 2582/*
0b8182db 2583 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2584 * inodes that are in memory - they all must be marked stale and attached to
2585 * the cluster buffer.
2586 */
2a30f36d 2587STATIC int
1da177e4 2588xfs_ifree_cluster(
71e3e356
DC
2589 struct xfs_inode *free_ip,
2590 struct xfs_trans *tp,
09b56604 2591 struct xfs_icluster *xic)
1da177e4 2592{
71e3e356
DC
2593 struct xfs_mount *mp = free_ip->i_mount;
2594 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2595 struct xfs_buf *bp;
2596 xfs_daddr_t blkno;
2597 xfs_ino_t inum = xic->first_ino;
1da177e4 2598 int nbufs;
5b257b4a 2599 int i, j;
3cdaa189 2600 int ioffset;
ce92464c 2601 int error;
1da177e4 2602
ef325959 2603 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1da177e4 2604
ef325959 2605 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
09b56604
BF
2606 /*
2607 * The allocation bitmap tells us which inodes of the chunk were
2608 * physically allocated. Skip the cluster if an inode falls into
2609 * a sparse region.
2610 */
3cdaa189
BF
2611 ioffset = inum - xic->first_ino;
2612 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
ef325959 2613 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
09b56604
BF
2614 continue;
2615 }
2616
1da177e4
LT
2617 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2618 XFS_INO_TO_AGBNO(mp, inum));
2619
5b257b4a
DC
2620 /*
2621 * We obtain and lock the backing buffer first in the process
718ecc50
DC
2622 * here to ensure dirty inodes attached to the buffer remain in
2623 * the flushing state while we mark them stale.
2624 *
5b257b4a
DC
2625 * If we scan the in-memory inodes first, then buffer IO can
2626 * complete before we get a lock on it, and hence we may fail
2627 * to mark all the active inodes on the buffer stale.
2628 */
ce92464c
DW
2629 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2630 mp->m_bsize * igeo->blocks_per_cluster,
2631 XBF_UNMAPPED, &bp);
71e3e356 2632 if (error)
ce92464c 2633 return error;
b0f539de
DC
2634
2635 /*
2636 * This buffer may not have been correctly initialised as we
2637 * didn't read it from disk. That's not important because we are
2638 * only using to mark the buffer as stale in the log, and to
2639 * attach stale cached inodes on it. That means it will never be
2640 * dispatched for IO. If it is, we want to know about it, and we
2641 * want it to fail. We can acheive this by adding a write
2642 * verifier to the buffer.
2643 */
8c4ce794 2644 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2645
5b257b4a 2646 /*
71e3e356
DC
2647 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2648 * too. This requires lookups, and will skip inodes that we've
2649 * already marked XFS_ISTALE.
1da177e4 2650 */
71e3e356
DC
2651 for (i = 0; i < igeo->inodes_per_cluster; i++)
2652 xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
1da177e4 2653
5b3eed75 2654 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2655 xfs_trans_binval(tp, bp);
2656 }
2a30f36d 2657 return 0;
1da177e4
LT
2658}
2659
2660/*
2661 * This is called to return an inode to the inode free list.
2662 * The inode should already be truncated to 0 length and have
2663 * no pages associated with it. This routine also assumes that
2664 * the inode is already a part of the transaction.
2665 *
2666 * The on-disk copy of the inode will have been added to the list
2667 * of unlinked inodes in the AGI. We need to remove the inode from
2668 * that list atomically with respect to freeing it here.
2669 */
2670int
2671xfs_ifree(
0e0417f3
BF
2672 struct xfs_trans *tp,
2673 struct xfs_inode *ip)
1da177e4
LT
2674{
2675 int error;
09b56604 2676 struct xfs_icluster xic = { 0 };
1319ebef 2677 struct xfs_inode_log_item *iip = ip->i_itemp;
1da177e4 2678
579aa9ca 2679 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2680 ASSERT(VFS_I(ip)->i_nlink == 0);
daf83964 2681 ASSERT(ip->i_df.if_nextents == 0);
c19b3b05 2682 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2683 ASSERT(ip->i_d.di_nblocks == 0);
2684
2685 /*
2686 * Pull the on-disk inode from the AGI unlinked list.
2687 */
2688 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2689 if (error)
1da177e4 2690 return error;
1da177e4 2691
0e0417f3 2692 error = xfs_difree(tp, ip->i_ino, &xic);
1baaed8f 2693 if (error)
1da177e4 2694 return error;
1baaed8f 2695
b2c20045
CH
2696 /*
2697 * Free any local-format data sitting around before we reset the
2698 * data fork to extents format. Note that the attr fork data has
2699 * already been freed by xfs_attr_inactive.
2700 */
f7e67b20 2701 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
b2c20045
CH
2702 kmem_free(ip->i_df.if_u1.if_data);
2703 ip->i_df.if_u1.if_data = NULL;
2704 ip->i_df.if_bytes = 0;
2705 }
98c4f78d 2706
c19b3b05 2707 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4 2708 ip->i_d.di_flags = 0;
beaae8cd 2709 ip->i_d.di_flags2 = 0;
1da177e4
LT
2710 ip->i_d.di_dmevmask = 0;
2711 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
f7e67b20 2712 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
dc1baa71
ES
2713
2714 /* Don't attempt to replay owner changes for a deleted inode */
1319ebef
DC
2715 spin_lock(&iip->ili_lock);
2716 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2717 spin_unlock(&iip->ili_lock);
dc1baa71 2718
1da177e4
LT
2719 /*
2720 * Bump the generation count so no one will be confused
2721 * by reincarnations of this inode.
2722 */
9e9a2674 2723 VFS_I(ip)->i_generation++;
1da177e4
LT
2724 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2725
09b56604
BF
2726 if (xic.deleted)
2727 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2728
2a30f36d 2729 return error;
1da177e4
LT
2730}
2731
1da177e4 2732/*
60ec6783
CH
2733 * This is called to unpin an inode. The caller must have the inode locked
2734 * in at least shared mode so that the buffer cannot be subsequently pinned
2735 * once someone is waiting for it to be unpinned.
1da177e4 2736 */
60ec6783 2737static void
f392e631 2738xfs_iunpin(
60ec6783 2739 struct xfs_inode *ip)
1da177e4 2740{
579aa9ca 2741 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2742
4aaf15d1
DC
2743 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2744
a3f74ffb 2745 /* Give the log a push to start the unpinning I/O */
656de4ff 2746 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
a14a348b 2747
a3f74ffb 2748}
1da177e4 2749
f392e631
CH
2750static void
2751__xfs_iunpin_wait(
2752 struct xfs_inode *ip)
2753{
2754 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2755 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2756
2757 xfs_iunpin(ip);
2758
2759 do {
21417136 2760 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2761 if (xfs_ipincount(ip))
2762 io_schedule();
2763 } while (xfs_ipincount(ip));
21417136 2764 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2765}
2766
777df5af 2767void
a3f74ffb 2768xfs_iunpin_wait(
60ec6783 2769 struct xfs_inode *ip)
a3f74ffb 2770{
f392e631
CH
2771 if (xfs_ipincount(ip))
2772 __xfs_iunpin_wait(ip);
1da177e4
LT
2773}
2774
27320369
DC
2775/*
2776 * Removing an inode from the namespace involves removing the directory entry
2777 * and dropping the link count on the inode. Removing the directory entry can
2778 * result in locking an AGF (directory blocks were freed) and removing a link
2779 * count can result in placing the inode on an unlinked list which results in
2780 * locking an AGI.
2781 *
2782 * The big problem here is that we have an ordering constraint on AGF and AGI
2783 * locking - inode allocation locks the AGI, then can allocate a new extent for
2784 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2785 * removes the inode from the unlinked list, requiring that we lock the AGI
2786 * first, and then freeing the inode can result in an inode chunk being freed
2787 * and hence freeing disk space requiring that we lock an AGF.
2788 *
2789 * Hence the ordering that is imposed by other parts of the code is AGI before
2790 * AGF. This means we cannot remove the directory entry before we drop the inode
2791 * reference count and put it on the unlinked list as this results in a lock
2792 * order of AGF then AGI, and this can deadlock against inode allocation and
2793 * freeing. Therefore we must drop the link counts before we remove the
2794 * directory entry.
2795 *
2796 * This is still safe from a transactional point of view - it is not until we
310a75a3 2797 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2798 * transactions in this operation. Hence as long as we remove the directory
2799 * entry and drop the link count in the first transaction of the remove
2800 * operation, there are no transactional constraints on the ordering here.
2801 */
c24b5dfa
DC
2802int
2803xfs_remove(
2804 xfs_inode_t *dp,
2805 struct xfs_name *name,
2806 xfs_inode_t *ip)
2807{
2808 xfs_mount_t *mp = dp->i_mount;
2809 xfs_trans_t *tp = NULL;
c19b3b05 2810 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2811 int error = 0;
c24b5dfa 2812 uint resblks;
c24b5dfa
DC
2813
2814 trace_xfs_remove(dp, name);
2815
2816 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2817 return -EIO;
c24b5dfa 2818
c14cfcca 2819 error = xfs_qm_dqattach(dp);
c24b5dfa
DC
2820 if (error)
2821 goto std_return;
2822
c14cfcca 2823 error = xfs_qm_dqattach(ip);
c24b5dfa
DC
2824 if (error)
2825 goto std_return;
2826
c24b5dfa
DC
2827 /*
2828 * We try to get the real space reservation first,
2829 * allowing for directory btree deletion(s) implying
2830 * possible bmap insert(s). If we can't get the space
2831 * reservation then we use 0 instead, and avoid the bmap
2832 * btree insert(s) in the directory code by, if the bmap
2833 * insert tries to happen, instead trimming the LAST
2834 * block from the directory.
2835 */
2836 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2837 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2838 if (error == -ENOSPC) {
c24b5dfa 2839 resblks = 0;
253f4911
CH
2840 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2841 &tp);
c24b5dfa
DC
2842 }
2843 if (error) {
2451337d 2844 ASSERT(error != -ENOSPC);
253f4911 2845 goto std_return;
c24b5dfa
DC
2846 }
2847
7c2d238a 2848 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
c24b5dfa 2849
65523218 2850 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2851 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2852
2853 /*
2854 * If we're removing a directory perform some additional validation.
2855 */
2856 if (is_dir) {
54d7b5c1
DC
2857 ASSERT(VFS_I(ip)->i_nlink >= 2);
2858 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2859 error = -ENOTEMPTY;
c24b5dfa
DC
2860 goto out_trans_cancel;
2861 }
2862 if (!xfs_dir_isempty(ip)) {
2451337d 2863 error = -ENOTEMPTY;
c24b5dfa
DC
2864 goto out_trans_cancel;
2865 }
c24b5dfa 2866
27320369 2867 /* Drop the link from ip's "..". */
c24b5dfa
DC
2868 error = xfs_droplink(tp, dp);
2869 if (error)
27320369 2870 goto out_trans_cancel;
c24b5dfa 2871
27320369 2872 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2873 error = xfs_droplink(tp, ip);
2874 if (error)
27320369 2875 goto out_trans_cancel;
c24b5dfa
DC
2876 } else {
2877 /*
2878 * When removing a non-directory we need to log the parent
2879 * inode here. For a directory this is done implicitly
2880 * by the xfs_droplink call for the ".." entry.
2881 */
2882 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2883 }
27320369 2884 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2885
27320369 2886 /* Drop the link from dp to ip. */
c24b5dfa
DC
2887 error = xfs_droplink(tp, ip);
2888 if (error)
27320369 2889 goto out_trans_cancel;
c24b5dfa 2890
381eee69 2891 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
27320369 2892 if (error) {
2451337d 2893 ASSERT(error != -ENOENT);
c8eac49e 2894 goto out_trans_cancel;
27320369
DC
2895 }
2896
c24b5dfa
DC
2897 /*
2898 * If this is a synchronous mount, make sure that the
2899 * remove transaction goes to disk before returning to
2900 * the user.
2901 */
2902 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2903 xfs_trans_set_sync(tp);
2904
70393313 2905 error = xfs_trans_commit(tp);
c24b5dfa
DC
2906 if (error)
2907 goto std_return;
2908
2cd2ef6a 2909 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2910 xfs_filestream_deassociate(ip);
2911
2912 return 0;
2913
c24b5dfa 2914 out_trans_cancel:
4906e215 2915 xfs_trans_cancel(tp);
c24b5dfa
DC
2916 std_return:
2917 return error;
2918}
2919
f6bba201
DC
2920/*
2921 * Enter all inodes for a rename transaction into a sorted array.
2922 */
95afcf5c 2923#define __XFS_SORT_INODES 5
f6bba201
DC
2924STATIC void
2925xfs_sort_for_rename(
95afcf5c
DC
2926 struct xfs_inode *dp1, /* in: old (source) directory inode */
2927 struct xfs_inode *dp2, /* in: new (target) directory inode */
2928 struct xfs_inode *ip1, /* in: inode of old entry */
2929 struct xfs_inode *ip2, /* in: inode of new entry */
2930 struct xfs_inode *wip, /* in: whiteout inode */
2931 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2932 int *num_inodes) /* in/out: inodes in array */
f6bba201 2933{
f6bba201
DC
2934 int i, j;
2935
95afcf5c
DC
2936 ASSERT(*num_inodes == __XFS_SORT_INODES);
2937 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2938
f6bba201
DC
2939 /*
2940 * i_tab contains a list of pointers to inodes. We initialize
2941 * the table here & we'll sort it. We will then use it to
2942 * order the acquisition of the inode locks.
2943 *
2944 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2945 */
95afcf5c
DC
2946 i = 0;
2947 i_tab[i++] = dp1;
2948 i_tab[i++] = dp2;
2949 i_tab[i++] = ip1;
2950 if (ip2)
2951 i_tab[i++] = ip2;
2952 if (wip)
2953 i_tab[i++] = wip;
2954 *num_inodes = i;
f6bba201
DC
2955
2956 /*
2957 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2958 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2959 */
2960 for (i = 0; i < *num_inodes; i++) {
2961 for (j = 1; j < *num_inodes; j++) {
2962 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2963 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2964 i_tab[j] = i_tab[j-1];
2965 i_tab[j-1] = temp;
2966 }
2967 }
2968 }
2969}
2970
310606b0
DC
2971static int
2972xfs_finish_rename(
c9cfdb38 2973 struct xfs_trans *tp)
310606b0 2974{
310606b0
DC
2975 /*
2976 * If this is a synchronous mount, make sure that the rename transaction
2977 * goes to disk before returning to the user.
2978 */
2979 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2980 xfs_trans_set_sync(tp);
2981
70393313 2982 return xfs_trans_commit(tp);
310606b0
DC
2983}
2984
d31a1825
CM
2985/*
2986 * xfs_cross_rename()
2987 *
2988 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2989 */
2990STATIC int
2991xfs_cross_rename(
2992 struct xfs_trans *tp,
2993 struct xfs_inode *dp1,
2994 struct xfs_name *name1,
2995 struct xfs_inode *ip1,
2996 struct xfs_inode *dp2,
2997 struct xfs_name *name2,
2998 struct xfs_inode *ip2,
d31a1825
CM
2999 int spaceres)
3000{
3001 int error = 0;
3002 int ip1_flags = 0;
3003 int ip2_flags = 0;
3004 int dp2_flags = 0;
3005
3006 /* Swap inode number for dirent in first parent */
381eee69 3007 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
d31a1825 3008 if (error)
eeacd321 3009 goto out_trans_abort;
d31a1825
CM
3010
3011 /* Swap inode number for dirent in second parent */
381eee69 3012 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
d31a1825 3013 if (error)
eeacd321 3014 goto out_trans_abort;
d31a1825
CM
3015
3016 /*
3017 * If we're renaming one or more directories across different parents,
3018 * update the respective ".." entries (and link counts) to match the new
3019 * parents.
3020 */
3021 if (dp1 != dp2) {
3022 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3023
c19b3b05 3024 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825 3025 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
381eee69 3026 dp1->i_ino, spaceres);
d31a1825 3027 if (error)
eeacd321 3028 goto out_trans_abort;
d31a1825
CM
3029
3030 /* transfer ip2 ".." reference to dp1 */
c19b3b05 3031 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
3032 error = xfs_droplink(tp, dp2);
3033 if (error)
eeacd321 3034 goto out_trans_abort;
91083269 3035 xfs_bumplink(tp, dp1);
d31a1825
CM
3036 }
3037
3038 /*
3039 * Although ip1 isn't changed here, userspace needs
3040 * to be warned about the change, so that applications
3041 * relying on it (like backup ones), will properly
3042 * notify the change
3043 */
3044 ip1_flags |= XFS_ICHGTIME_CHG;
3045 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3046 }
3047
c19b3b05 3048 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825 3049 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
381eee69 3050 dp2->i_ino, spaceres);
d31a1825 3051 if (error)
eeacd321 3052 goto out_trans_abort;
d31a1825
CM
3053
3054 /* transfer ip1 ".." reference to dp2 */
c19b3b05 3055 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
3056 error = xfs_droplink(tp, dp1);
3057 if (error)
eeacd321 3058 goto out_trans_abort;
91083269 3059 xfs_bumplink(tp, dp2);
d31a1825
CM
3060 }
3061
3062 /*
3063 * Although ip2 isn't changed here, userspace needs
3064 * to be warned about the change, so that applications
3065 * relying on it (like backup ones), will properly
3066 * notify the change
3067 */
3068 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3069 ip2_flags |= XFS_ICHGTIME_CHG;
3070 }
3071 }
3072
3073 if (ip1_flags) {
3074 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3075 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3076 }
3077 if (ip2_flags) {
3078 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3079 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3080 }
3081 if (dp2_flags) {
3082 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3083 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3084 }
3085 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3086 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
c9cfdb38 3087 return xfs_finish_rename(tp);
eeacd321
DC
3088
3089out_trans_abort:
4906e215 3090 xfs_trans_cancel(tp);
d31a1825
CM
3091 return error;
3092}
3093
7dcf5c3e
DC
3094/*
3095 * xfs_rename_alloc_whiteout()
3096 *
b63da6c8 3097 * Return a referenced, unlinked, unlocked inode that can be used as a
7dcf5c3e
DC
3098 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3099 * crash between allocating the inode and linking it into the rename transaction
3100 * recovery will free the inode and we won't leak it.
3101 */
3102static int
3103xfs_rename_alloc_whiteout(
3104 struct xfs_inode *dp,
3105 struct xfs_inode **wip)
3106{
3107 struct xfs_inode *tmpfile;
3108 int error;
3109
a1f69417 3110 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
7dcf5c3e
DC
3111 if (error)
3112 return error;
3113
22419ac9
BF
3114 /*
3115 * Prepare the tmpfile inode as if it were created through the VFS.
c4a6bf7f
DW
3116 * Complete the inode setup and flag it as linkable. nlink is already
3117 * zero, so we can skip the drop_nlink.
22419ac9 3118 */
2b3d1d41 3119 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
3120 xfs_finish_inode_setup(tmpfile);
3121 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3122
3123 *wip = tmpfile;
3124 return 0;
3125}
3126
f6bba201
DC
3127/*
3128 * xfs_rename
3129 */
3130int
3131xfs_rename(
7dcf5c3e
DC
3132 struct xfs_inode *src_dp,
3133 struct xfs_name *src_name,
3134 struct xfs_inode *src_ip,
3135 struct xfs_inode *target_dp,
3136 struct xfs_name *target_name,
3137 struct xfs_inode *target_ip,
3138 unsigned int flags)
f6bba201 3139{
7dcf5c3e
DC
3140 struct xfs_mount *mp = src_dp->i_mount;
3141 struct xfs_trans *tp;
7dcf5c3e
DC
3142 struct xfs_inode *wip = NULL; /* whiteout inode */
3143 struct xfs_inode *inodes[__XFS_SORT_INODES];
93597ae8 3144 struct xfs_buf *agibp;
7dcf5c3e 3145 int num_inodes = __XFS_SORT_INODES;
2b93681f 3146 bool new_parent = (src_dp != target_dp);
c19b3b05 3147 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
3148 int spaceres;
3149 int error;
f6bba201
DC
3150
3151 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3152
eeacd321
DC
3153 if ((flags & RENAME_EXCHANGE) && !target_ip)
3154 return -EINVAL;
3155
7dcf5c3e
DC
3156 /*
3157 * If we are doing a whiteout operation, allocate the whiteout inode
3158 * we will be placing at the target and ensure the type is set
3159 * appropriately.
3160 */
3161 if (flags & RENAME_WHITEOUT) {
3162 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3163 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3164 if (error)
3165 return error;
3166
3167 /* setup target dirent info as whiteout */
3168 src_name->type = XFS_DIR3_FT_CHRDEV;
3169 }
f6bba201 3170
7dcf5c3e 3171 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
3172 inodes, &num_inodes);
3173
f6bba201 3174 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 3175 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 3176 if (error == -ENOSPC) {
f6bba201 3177 spaceres = 0;
253f4911
CH
3178 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3179 &tp);
f6bba201 3180 }
445883e8 3181 if (error)
253f4911 3182 goto out_release_wip;
f6bba201
DC
3183
3184 /*
3185 * Attach the dquots to the inodes
3186 */
3187 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
3188 if (error)
3189 goto out_trans_cancel;
f6bba201
DC
3190
3191 /*
3192 * Lock all the participating inodes. Depending upon whether
3193 * the target_name exists in the target directory, and
3194 * whether the target directory is the same as the source
3195 * directory, we can lock from 2 to 4 inodes.
3196 */
3197 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3198
3199 /*
3200 * Join all the inodes to the transaction. From this point on,
3201 * we can rely on either trans_commit or trans_cancel to unlock
3202 * them.
3203 */
65523218 3204 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 3205 if (new_parent)
65523218 3206 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
3207 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3208 if (target_ip)
3209 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
3210 if (wip)
3211 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
3212
3213 /*
3214 * If we are using project inheritance, we only allow renames
3215 * into our tree when the project IDs are the same; else the
3216 * tree quota mechanism would be circumvented.
3217 */
3218 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
de7a866f 3219 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
2451337d 3220 error = -EXDEV;
445883e8 3221 goto out_trans_cancel;
f6bba201
DC
3222 }
3223
eeacd321
DC
3224 /* RENAME_EXCHANGE is unique from here on. */
3225 if (flags & RENAME_EXCHANGE)
3226 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3227 target_dp, target_name, target_ip,
f16dea54 3228 spaceres);
d31a1825 3229
f6bba201 3230 /*
bc56ad8c 3231 * Check for expected errors before we dirty the transaction
3232 * so we can return an error without a transaction abort.
f6bba201
DC
3233 */
3234 if (target_ip == NULL) {
3235 /*
3236 * If there's no space reservation, check the entry will
3237 * fit before actually inserting it.
3238 */
94f3cad5
ES
3239 if (!spaceres) {
3240 error = xfs_dir_canenter(tp, target_dp, target_name);
3241 if (error)
445883e8 3242 goto out_trans_cancel;
94f3cad5 3243 }
bc56ad8c 3244 } else {
3245 /*
3246 * If target exists and it's a directory, check that whether
3247 * it can be destroyed.
3248 */
3249 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3250 (!xfs_dir_isempty(target_ip) ||
3251 (VFS_I(target_ip)->i_nlink > 2))) {
3252 error = -EEXIST;
3253 goto out_trans_cancel;
3254 }
3255 }
3256
3257 /*
3258 * Directory entry creation below may acquire the AGF. Remove
3259 * the whiteout from the unlinked list first to preserve correct
3260 * AGI/AGF locking order. This dirties the transaction so failures
3261 * after this point will abort and log recovery will clean up the
3262 * mess.
3263 *
3264 * For whiteouts, we need to bump the link count on the whiteout
3265 * inode. After this point, we have a real link, clear the tmpfile
3266 * state flag from the inode so it doesn't accidentally get misused
3267 * in future.
3268 */
3269 if (wip) {
3270 ASSERT(VFS_I(wip)->i_nlink == 0);
3271 error = xfs_iunlink_remove(tp, wip);
3272 if (error)
3273 goto out_trans_cancel;
3274
3275 xfs_bumplink(tp, wip);
bc56ad8c 3276 VFS_I(wip)->i_state &= ~I_LINKABLE;
3277 }
3278
3279 /*
3280 * Set up the target.
3281 */
3282 if (target_ip == NULL) {
f6bba201
DC
3283 /*
3284 * If target does not exist and the rename crosses
3285 * directories, adjust the target directory link count
3286 * to account for the ".." reference from the new entry.
3287 */
3288 error = xfs_dir_createname(tp, target_dp, target_name,
381eee69 3289 src_ip->i_ino, spaceres);
f6bba201 3290 if (error)
c8eac49e 3291 goto out_trans_cancel;
f6bba201
DC
3292
3293 xfs_trans_ichgtime(tp, target_dp,
3294 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3295
3296 if (new_parent && src_is_directory) {
91083269 3297 xfs_bumplink(tp, target_dp);
f6bba201
DC
3298 }
3299 } else { /* target_ip != NULL */
f6bba201
DC
3300 /*
3301 * Link the source inode under the target name.
3302 * If the source inode is a directory and we are moving
3303 * it across directories, its ".." entry will be
3304 * inconsistent until we replace that down below.
3305 *
3306 * In case there is already an entry with the same
3307 * name at the destination directory, remove it first.
3308 */
93597ae8 3309
3310 /*
3311 * Check whether the replace operation will need to allocate
3312 * blocks. This happens when the shortform directory lacks
3313 * space and we have to convert it to a block format directory.
3314 * When more blocks are necessary, we must lock the AGI first
3315 * to preserve locking order (AGI -> AGF).
3316 */
3317 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
3318 error = xfs_read_agi(mp, tp,
3319 XFS_INO_TO_AGNO(mp, target_ip->i_ino),
3320 &agibp);
3321 if (error)
3322 goto out_trans_cancel;
3323 }
3324
f6bba201 3325 error = xfs_dir_replace(tp, target_dp, target_name,
381eee69 3326 src_ip->i_ino, spaceres);
f6bba201 3327 if (error)
c8eac49e 3328 goto out_trans_cancel;
f6bba201
DC
3329
3330 xfs_trans_ichgtime(tp, target_dp,
3331 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3332
3333 /*
3334 * Decrement the link count on the target since the target
3335 * dir no longer points to it.
3336 */
3337 error = xfs_droplink(tp, target_ip);
3338 if (error)
c8eac49e 3339 goto out_trans_cancel;
f6bba201
DC
3340
3341 if (src_is_directory) {
3342 /*
3343 * Drop the link from the old "." entry.
3344 */
3345 error = xfs_droplink(tp, target_ip);
3346 if (error)
c8eac49e 3347 goto out_trans_cancel;
f6bba201
DC
3348 }
3349 } /* target_ip != NULL */
3350
3351 /*
3352 * Remove the source.
3353 */
3354 if (new_parent && src_is_directory) {
3355 /*
3356 * Rewrite the ".." entry to point to the new
3357 * directory.
3358 */
3359 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
381eee69 3360 target_dp->i_ino, spaceres);
2451337d 3361 ASSERT(error != -EEXIST);
f6bba201 3362 if (error)
c8eac49e 3363 goto out_trans_cancel;
f6bba201
DC
3364 }
3365
3366 /*
3367 * We always want to hit the ctime on the source inode.
3368 *
3369 * This isn't strictly required by the standards since the source
3370 * inode isn't really being changed, but old unix file systems did
3371 * it and some incremental backup programs won't work without it.
3372 */
3373 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3374 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3375
3376 /*
3377 * Adjust the link count on src_dp. This is necessary when
3378 * renaming a directory, either within one parent when
3379 * the target existed, or across two parent directories.
3380 */
3381 if (src_is_directory && (new_parent || target_ip != NULL)) {
3382
3383 /*
3384 * Decrement link count on src_directory since the
3385 * entry that's moved no longer points to it.
3386 */
3387 error = xfs_droplink(tp, src_dp);
3388 if (error)
c8eac49e 3389 goto out_trans_cancel;
f6bba201
DC
3390 }
3391
7dcf5c3e
DC
3392 /*
3393 * For whiteouts, we only need to update the source dirent with the
3394 * inode number of the whiteout inode rather than removing it
3395 * altogether.
3396 */
3397 if (wip) {
3398 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
381eee69 3399 spaceres);
7dcf5c3e
DC
3400 } else
3401 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
381eee69 3402 spaceres);
f6bba201 3403 if (error)
c8eac49e 3404 goto out_trans_cancel;
f6bba201 3405
f6bba201
DC
3406 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3407 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3408 if (new_parent)
3409 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3410
c9cfdb38 3411 error = xfs_finish_rename(tp);
7dcf5c3e 3412 if (wip)
44a8736b 3413 xfs_irele(wip);
7dcf5c3e 3414 return error;
f6bba201 3415
445883e8 3416out_trans_cancel:
4906e215 3417 xfs_trans_cancel(tp);
253f4911 3418out_release_wip:
7dcf5c3e 3419 if (wip)
44a8736b 3420 xfs_irele(wip);
f6bba201
DC
3421 return error;
3422}
3423
e6187b34
DC
3424static int
3425xfs_iflush(
93848a99
CH
3426 struct xfs_inode *ip,
3427 struct xfs_buf *bp)
1da177e4 3428{
93848a99
CH
3429 struct xfs_inode_log_item *iip = ip->i_itemp;
3430 struct xfs_dinode *dip;
3431 struct xfs_mount *mp = ip->i_mount;
f2019299 3432 int error;
1da177e4 3433
579aa9ca 3434 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
718ecc50 3435 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
f7e67b20 3436 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
daf83964 3437 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
90c60e16 3438 ASSERT(iip->ili_item.li_buf == bp);
1da177e4 3439
88ee2df7 3440 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3441
f2019299
BF
3442 /*
3443 * We don't flush the inode if any of the following checks fail, but we
3444 * do still update the log item and attach to the backing buffer as if
3445 * the flush happened. This is a formality to facilitate predictable
3446 * error handling as the caller will shutdown and fail the buffer.
3447 */
3448 error = -EFSCORRUPTED;
69ef921b 3449 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3450 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939 3451 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3452 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
6a19d939 3453 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
f2019299 3454 goto flush_out;
1da177e4 3455 }
c19b3b05 3456 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4 3457 if (XFS_TEST_ERROR(
f7e67b20
CH
3458 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3459 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
9e24cfd0 3460 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939 3461 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3462 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
6a19d939 3463 __func__, ip->i_ino, ip);
f2019299 3464 goto flush_out;
1da177e4 3465 }
c19b3b05 3466 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4 3467 if (XFS_TEST_ERROR(
f7e67b20
CH
3468 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3469 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3470 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
9e24cfd0 3471 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939 3472 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3473 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
6a19d939 3474 __func__, ip->i_ino, ip);
f2019299 3475 goto flush_out;
1da177e4
LT
3476 }
3477 }
daf83964 3478 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
9e24cfd0 3479 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3480 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3481 "%s: detected corrupt incore inode %Lu, "
c9690043 3482 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
6a19d939 3483 __func__, ip->i_ino,
daf83964 3484 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
6a19d939 3485 ip->i_d.di_nblocks, ip);
f2019299 3486 goto flush_out;
1da177e4
LT
3487 }
3488 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3489 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939 3490 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3491 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
6a19d939 3492 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
f2019299 3493 goto flush_out;
1da177e4 3494 }
e60896d8 3495
1da177e4 3496 /*
263997a6 3497 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3498 * di_flushiter count for correct sequencing. We bump the flush
3499 * iteration count so we can detect flushes which postdate a log record
3500 * during recovery. This is redundant as we now log every change and
3501 * hence this can't happen but we need to still do it to ensure
3502 * backwards compatibility with old kernels that predate logging all
3503 * inode changes.
1da177e4 3504 */
6471e9c5 3505 if (!xfs_sb_version_has_v3inode(&mp->m_sb))
e60896d8 3506 ip->i_d.di_flushiter++;
1da177e4 3507
0f45a1b2
CH
3508 /*
3509 * If there are inline format data / attr forks attached to this inode,
3510 * make sure they are not corrupt.
3511 */
f7e67b20 3512 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
0f45a1b2
CH
3513 xfs_ifork_verify_local_data(ip))
3514 goto flush_out;
f7e67b20 3515 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
0f45a1b2 3516 xfs_ifork_verify_local_attr(ip))
f2019299 3517 goto flush_out;
005c5db8 3518
1da177e4 3519 /*
3987848c
DC
3520 * Copy the dirty parts of the inode into the on-disk inode. We always
3521 * copy out the core of the inode, because if the inode is dirty at all
3522 * the core must be.
1da177e4 3523 */
93f958f9 3524 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3525
3526 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3527 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3528 ip->i_d.di_flushiter = 0;
3529
005c5db8
DW
3530 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3531 if (XFS_IFORK_Q(ip))
3532 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3533
3534 /*
f5d8d5c4
CH
3535 * We've recorded everything logged in the inode, so we'd like to clear
3536 * the ili_fields bits so we don't log and flush things unnecessarily.
3537 * However, we can't stop logging all this information until the data
3538 * we've copied into the disk buffer is written to disk. If we did we
3539 * might overwrite the copy of the inode in the log with all the data
3540 * after re-logging only part of it, and in the face of a crash we
3541 * wouldn't have all the data we need to recover.
1da177e4 3542 *
f5d8d5c4
CH
3543 * What we do is move the bits to the ili_last_fields field. When
3544 * logging the inode, these bits are moved back to the ili_fields field.
664ffb8a
CH
3545 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3546 * we know that the information those bits represent is permanently on
f5d8d5c4
CH
3547 * disk. As long as the flush completes before the inode is logged
3548 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3549 */
f2019299
BF
3550 error = 0;
3551flush_out:
1319ebef 3552 spin_lock(&iip->ili_lock);
93848a99
CH
3553 iip->ili_last_fields = iip->ili_fields;
3554 iip->ili_fields = 0;
fc0561ce 3555 iip->ili_fsync_fields = 0;
1319ebef 3556 spin_unlock(&iip->ili_lock);
1da177e4 3557
1319ebef
DC
3558 /*
3559 * Store the current LSN of the inode so that we can tell whether the
664ffb8a 3560 * item has moved in the AIL from xfs_buf_inode_iodone().
1319ebef 3561 */
93848a99
CH
3562 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3563 &iip->ili_item.li_lsn);
1da177e4 3564
93848a99
CH
3565 /* generate the checksum. */
3566 xfs_dinode_calc_crc(mp, dip);
f2019299 3567 return error;
1da177e4 3568}
44a8736b 3569
e6187b34
DC
3570/*
3571 * Non-blocking flush of dirty inode metadata into the backing buffer.
3572 *
3573 * The caller must have a reference to the inode and hold the cluster buffer
3574 * locked. The function will walk across all the inodes on the cluster buffer it
3575 * can find and lock without blocking, and flush them to the cluster buffer.
3576 *
5717ea4d
DC
3577 * On successful flushing of at least one inode, the caller must write out the
3578 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3579 * the caller needs to release the buffer. On failure, the filesystem will be
3580 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3581 * will be returned.
e6187b34
DC
3582 */
3583int
3584xfs_iflush_cluster(
e6187b34
DC
3585 struct xfs_buf *bp)
3586{
5717ea4d
DC
3587 struct xfs_mount *mp = bp->b_mount;
3588 struct xfs_log_item *lip, *n;
3589 struct xfs_inode *ip;
3590 struct xfs_inode_log_item *iip;
e6187b34 3591 int clcount = 0;
5717ea4d 3592 int error = 0;
e6187b34 3593
5717ea4d
DC
3594 /*
3595 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3596 * can remove itself from the list.
3597 */
3598 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3599 iip = (struct xfs_inode_log_item *)lip;
3600 ip = iip->ili_inode;
e6187b34
DC
3601
3602 /*
5717ea4d 3603 * Quick and dirty check to avoid locks if possible.
e6187b34 3604 */
718ecc50 3605 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
5717ea4d
DC
3606 continue;
3607 if (xfs_ipincount(ip))
e6187b34 3608 continue;
e6187b34
DC
3609
3610 /*
5717ea4d
DC
3611 * The inode is still attached to the buffer, which means it is
3612 * dirty but reclaim might try to grab it. Check carefully for
3613 * that, and grab the ilock while still holding the i_flags_lock
3614 * to guarantee reclaim will not be able to reclaim this inode
3615 * once we drop the i_flags_lock.
e6187b34 3616 */
5717ea4d
DC
3617 spin_lock(&ip->i_flags_lock);
3618 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
718ecc50 3619 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
5717ea4d
DC
3620 spin_unlock(&ip->i_flags_lock);
3621 continue;
e6187b34 3622 }
e6187b34
DC
3623
3624 /*
5717ea4d
DC
3625 * ILOCK will pin the inode against reclaim and prevent
3626 * concurrent transactions modifying the inode while we are
718ecc50
DC
3627 * flushing the inode. If we get the lock, set the flushing
3628 * state before we drop the i_flags_lock.
e6187b34 3629 */
5717ea4d
DC
3630 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3631 spin_unlock(&ip->i_flags_lock);
e6187b34 3632 continue;
5717ea4d 3633 }
718ecc50 3634 __xfs_iflags_set(ip, XFS_IFLUSHING);
5717ea4d 3635 spin_unlock(&ip->i_flags_lock);
e6187b34 3636
e6187b34 3637 /*
5717ea4d
DC
3638 * Abort flushing this inode if we are shut down because the
3639 * inode may not currently be in the AIL. This can occur when
3640 * log I/O failure unpins the inode without inserting into the
3641 * AIL, leaving a dirty/unpinned inode attached to the buffer
3642 * that otherwise looks like it should be flushed.
e6187b34 3643 */
5717ea4d
DC
3644 if (XFS_FORCED_SHUTDOWN(mp)) {
3645 xfs_iunpin_wait(ip);
5717ea4d
DC
3646 xfs_iflush_abort(ip);
3647 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3648 error = -EIO;
e6187b34
DC
3649 continue;
3650 }
3651
5717ea4d
DC
3652 /* don't block waiting on a log force to unpin dirty inodes */
3653 if (xfs_ipincount(ip)) {
718ecc50 3654 xfs_iflags_clear(ip, XFS_IFLUSHING);
5717ea4d
DC
3655 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3656 continue;
e6187b34 3657 }
e6187b34 3658
5717ea4d
DC
3659 if (!xfs_inode_clean(ip))
3660 error = xfs_iflush(ip, bp);
3661 else
718ecc50 3662 xfs_iflags_clear(ip, XFS_IFLUSHING);
5717ea4d
DC
3663 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3664 if (error)
3665 break;
3666 clcount++;
e6187b34
DC
3667 }
3668
e6187b34
DC
3669 if (error) {
3670 bp->b_flags |= XBF_ASYNC;
3671 xfs_buf_ioend_fail(bp);
3672 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
5717ea4d 3673 return error;
e6187b34 3674 }
5717ea4d
DC
3675
3676 if (!clcount)
3677 return -EAGAIN;
3678
3679 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3680 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3681 return 0;
3682
e6187b34
DC
3683}
3684
44a8736b
DW
3685/* Release an inode. */
3686void
3687xfs_irele(
3688 struct xfs_inode *ip)
3689{
3690 trace_xfs_irele(ip, _RET_IP_);
3691 iput(VFS_I(ip));
3692}
54fbdd10
CH
3693
3694/*
3695 * Ensure all commited transactions touching the inode are written to the log.
3696 */
3697int
3698xfs_log_force_inode(
3699 struct xfs_inode *ip)
3700{
3701 xfs_lsn_t lsn = 0;
3702
3703 xfs_ilock(ip, XFS_ILOCK_SHARED);
3704 if (xfs_ipincount(ip))
3705 lsn = ip->i_itemp->ili_last_lsn;
3706 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3707
3708 if (!lsn)
3709 return 0;
3710 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3711}
e2aaee9c
DW
3712
3713/*
3714 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3715 * abide vfs locking order (lowest pointer value goes first) and breaking the
3716 * layout leases before proceeding. The loop is needed because we cannot call
3717 * the blocking break_layout() with the iolocks held, and therefore have to
3718 * back out both locks.
3719 */
3720static int
3721xfs_iolock_two_inodes_and_break_layout(
3722 struct inode *src,
3723 struct inode *dest)
3724{
3725 int error;
3726
3727 if (src > dest)
3728 swap(src, dest);
3729
3730retry:
3731 /* Wait to break both inodes' layouts before we start locking. */
3732 error = break_layout(src, true);
3733 if (error)
3734 return error;
3735 if (src != dest) {
3736 error = break_layout(dest, true);
3737 if (error)
3738 return error;
3739 }
3740
3741 /* Lock one inode and make sure nobody got in and leased it. */
3742 inode_lock(src);
3743 error = break_layout(src, false);
3744 if (error) {
3745 inode_unlock(src);
3746 if (error == -EWOULDBLOCK)
3747 goto retry;
3748 return error;
3749 }
3750
3751 if (src == dest)
3752 return 0;
3753
3754 /* Lock the other inode and make sure nobody got in and leased it. */
3755 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3756 error = break_layout(dest, false);
3757 if (error) {
3758 inode_unlock(src);
3759 inode_unlock(dest);
3760 if (error == -EWOULDBLOCK)
3761 goto retry;
3762 return error;
3763 }
3764
3765 return 0;
3766}
3767
3768/*
3769 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3770 * mmap activity.
3771 */
3772int
3773xfs_ilock2_io_mmap(
3774 struct xfs_inode *ip1,
3775 struct xfs_inode *ip2)
3776{
3777 int ret;
3778
3779 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3780 if (ret)
3781 return ret;
3782 if (ip1 == ip2)
3783 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3784 else
3785 xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3786 ip2, XFS_MMAPLOCK_EXCL);
3787 return 0;
3788}
3789
3790/* Unlock both inodes to allow IO and mmap activity. */
3791void
3792xfs_iunlock2_io_mmap(
3793 struct xfs_inode *ip1,
3794 struct xfs_inode *ip2)
3795{
3796 bool same_inode = (ip1 == ip2);
3797
3798 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3799 if (!same_inode)
3800 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3801 inode_unlock(VFS_I(ip2));
3802 if (!same_inode)
3803 inode_unlock(VFS_I(ip1));
3804}