]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/xfs/xfs_inode.c
xfs: attach inodes to the cluster buffer when dirtied
[mirror_ubuntu-hirsute-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
3e57ecf6 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
f0e28280 6#include <linux/iversion.h>
40ebd81d 7
1da177e4 8#include "xfs.h"
a844f451 9#include "xfs_fs.h"
70a9883c 10#include "xfs_shared.h"
239880ef
DC
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
1da177e4 14#include "xfs_sb.h"
1da177e4 15#include "xfs_mount.h"
3ab78df2 16#include "xfs_defer.h"
a4fbe6ab 17#include "xfs_inode.h"
c24b5dfa 18#include "xfs_dir2.h"
c24b5dfa 19#include "xfs_attr.h"
239880ef
DC
20#include "xfs_trans_space.h"
21#include "xfs_trans.h"
1da177e4 22#include "xfs_buf_item.h"
a844f451 23#include "xfs_inode_item.h"
a844f451
NS
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
68988114 26#include "xfs_bmap_util.h"
e9e899a2 27#include "xfs_errortag.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_quota.h"
2a82b8be 30#include "xfs_filestream.h"
0b1b213f 31#include "xfs_trace.h"
33479e05 32#include "xfs_icache.h"
c24b5dfa 33#include "xfs_symlink.h"
239880ef
DC
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
a4fbe6ab 36#include "xfs_bmap_btree.h"
aa8968f2 37#include "xfs_reflink.h"
1da177e4 38
1da177e4 39kmem_zone_t *xfs_inode_zone;
1da177e4
LT
40
41/*
8f04c47a 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
43 * freed from a file in a single transaction.
44 */
45#define XFS_ITRUNC_MAX_EXTENTS 2
46
54d7b5c1
DC
47STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
48STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 50
2a0ec1d9
DC
51/*
52 * helper function to extract extent size hint from inode
53 */
54xfs_extlen_t
55xfs_get_extsz_hint(
56 struct xfs_inode *ip)
57{
bdb2ed2d
CH
58 /*
59 * No point in aligning allocations if we need to COW to actually
60 * write to them.
61 */
62 if (xfs_is_always_cow_inode(ip))
63 return 0;
2a0ec1d9
DC
64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 return ip->i_d.di_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
68 return 0;
69}
70
f7ca3522
DW
71/*
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
f7ca3522
DW
76 */
77xfs_extlen_t
78xfs_get_cowextsz_hint(
79 struct xfs_inode *ip)
80{
81 xfs_extlen_t a, b;
82
83 a = 0;
84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_d.di_cowextsize;
86 b = xfs_get_extsz_hint(ip);
87
e153aa79
DW
88 a = max(a, b);
89 if (a == 0)
90 return XFS_DEFAULT_COWEXTSZ_HINT;
91 return a;
f7ca3522
DW
92}
93
fa96acad 94/*
efa70be1
CH
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
104 * if they have not.
fa96acad 105 *
efa70be1 106 * The functions return a value which should be given to the corresponding
01f4f327 107 * xfs_iunlock() call.
fa96acad
DC
108 */
109uint
309ecac8
CH
110xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
fa96acad 112{
309ecac8 113 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 114
f7e67b20 115 if (ip->i_df.if_format == XFS_DINODE_FMT_BTREE &&
309ecac8 116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 117 lock_mode = XFS_ILOCK_EXCL;
fa96acad 118 xfs_ilock(ip, lock_mode);
fa96acad
DC
119 return lock_mode;
120}
121
efa70be1
CH
122uint
123xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
fa96acad 125{
efa70be1
CH
126 uint lock_mode = XFS_ILOCK_SHARED;
127
f7e67b20
CH
128 if (ip->i_afp &&
129 ip->i_afp->if_format == XFS_DINODE_FMT_BTREE &&
efa70be1
CH
130 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
131 lock_mode = XFS_ILOCK_EXCL;
132 xfs_ilock(ip, lock_mode);
133 return lock_mode;
fa96acad
DC
134}
135
136/*
65523218
CH
137 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
138 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
139 * various combinations of the locks to be obtained.
fa96acad 140 *
653c60b6
DC
141 * The 3 locks should always be ordered so that the IO lock is obtained first,
142 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 143 *
653c60b6
DC
144 * Basic locking order:
145 *
65523218 146 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6 147 *
c1e8d7c6 148 * mmap_lock locking order:
653c60b6 149 *
c1e8d7c6
ML
150 * i_rwsem -> page lock -> mmap_lock
151 * mmap_lock -> i_mmap_lock -> page_lock
653c60b6 152 *
c1e8d7c6 153 * The difference in mmap_lock locking order mean that we cannot hold the
653c60b6 154 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
c1e8d7c6 155 * fault in pages during copy in/out (for buffered IO) or require the mmap_lock
653c60b6 156 * in get_user_pages() to map the user pages into the kernel address space for
65523218 157 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
c1e8d7c6 158 * page faults already hold the mmap_lock.
653c60b6
DC
159 *
160 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 161 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
162 * taken in places where we need to invalidate the page cache in a race
163 * free manner (e.g. truncate, hole punch and other extent manipulation
164 * functions).
fa96acad
DC
165 */
166void
167xfs_ilock(
168 xfs_inode_t *ip,
169 uint lock_flags)
170{
171 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
172
173 /*
174 * You can't set both SHARED and EXCL for the same lock,
175 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
176 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
177 */
178 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
179 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
180 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
181 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
182 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
183 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 184 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 185
65523218
CH
186 if (lock_flags & XFS_IOLOCK_EXCL) {
187 down_write_nested(&VFS_I(ip)->i_rwsem,
188 XFS_IOLOCK_DEP(lock_flags));
189 } else if (lock_flags & XFS_IOLOCK_SHARED) {
190 down_read_nested(&VFS_I(ip)->i_rwsem,
191 XFS_IOLOCK_DEP(lock_flags));
192 }
fa96acad 193
653c60b6
DC
194 if (lock_flags & XFS_MMAPLOCK_EXCL)
195 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
196 else if (lock_flags & XFS_MMAPLOCK_SHARED)
197 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
198
fa96acad
DC
199 if (lock_flags & XFS_ILOCK_EXCL)
200 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
201 else if (lock_flags & XFS_ILOCK_SHARED)
202 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
203}
204
205/*
206 * This is just like xfs_ilock(), except that the caller
207 * is guaranteed not to sleep. It returns 1 if it gets
208 * the requested locks and 0 otherwise. If the IO lock is
209 * obtained but the inode lock cannot be, then the IO lock
210 * is dropped before returning.
211 *
212 * ip -- the inode being locked
213 * lock_flags -- this parameter indicates the inode's locks to be
214 * to be locked. See the comment for xfs_ilock() for a list
215 * of valid values.
216 */
217int
218xfs_ilock_nowait(
219 xfs_inode_t *ip,
220 uint lock_flags)
221{
222 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
223
224 /*
225 * You can't set both SHARED and EXCL for the same lock,
226 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
227 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
228 */
229 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
230 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
231 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
232 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
233 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
234 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 235 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
236
237 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
239 goto out;
240 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
242 goto out;
243 }
653c60b6
DC
244
245 if (lock_flags & XFS_MMAPLOCK_EXCL) {
246 if (!mrtryupdate(&ip->i_mmaplock))
247 goto out_undo_iolock;
248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249 if (!mrtryaccess(&ip->i_mmaplock))
250 goto out_undo_iolock;
251 }
252
fa96acad
DC
253 if (lock_flags & XFS_ILOCK_EXCL) {
254 if (!mrtryupdate(&ip->i_lock))
653c60b6 255 goto out_undo_mmaplock;
fa96acad
DC
256 } else if (lock_flags & XFS_ILOCK_SHARED) {
257 if (!mrtryaccess(&ip->i_lock))
653c60b6 258 goto out_undo_mmaplock;
fa96acad
DC
259 }
260 return 1;
261
653c60b6
DC
262out_undo_mmaplock:
263 if (lock_flags & XFS_MMAPLOCK_EXCL)
264 mrunlock_excl(&ip->i_mmaplock);
265 else if (lock_flags & XFS_MMAPLOCK_SHARED)
266 mrunlock_shared(&ip->i_mmaplock);
267out_undo_iolock:
fa96acad 268 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 269 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 270 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 271 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 272out:
fa96acad
DC
273 return 0;
274}
275
276/*
277 * xfs_iunlock() is used to drop the inode locks acquired with
278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280 * that we know which locks to drop.
281 *
282 * ip -- the inode being unlocked
283 * lock_flags -- this parameter indicates the inode's locks to be
284 * to be unlocked. See the comment for xfs_ilock() for a list
285 * of valid values for this parameter.
286 *
287 */
288void
289xfs_iunlock(
290 xfs_inode_t *ip,
291 uint lock_flags)
292{
293 /*
294 * You can't set both SHARED and EXCL for the same lock,
295 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
296 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
297 */
298 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
299 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
300 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
301 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
302 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
303 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 304 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
305 ASSERT(lock_flags != 0);
306
307 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 308 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 309 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 310 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 311
653c60b6
DC
312 if (lock_flags & XFS_MMAPLOCK_EXCL)
313 mrunlock_excl(&ip->i_mmaplock);
314 else if (lock_flags & XFS_MMAPLOCK_SHARED)
315 mrunlock_shared(&ip->i_mmaplock);
316
fa96acad
DC
317 if (lock_flags & XFS_ILOCK_EXCL)
318 mrunlock_excl(&ip->i_lock);
319 else if (lock_flags & XFS_ILOCK_SHARED)
320 mrunlock_shared(&ip->i_lock);
321
322 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
323}
324
325/*
326 * give up write locks. the i/o lock cannot be held nested
327 * if it is being demoted.
328 */
329void
330xfs_ilock_demote(
331 xfs_inode_t *ip,
332 uint lock_flags)
333{
653c60b6
DC
334 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
335 ASSERT((lock_flags &
336 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
337
338 if (lock_flags & XFS_ILOCK_EXCL)
339 mrdemote(&ip->i_lock);
653c60b6
DC
340 if (lock_flags & XFS_MMAPLOCK_EXCL)
341 mrdemote(&ip->i_mmaplock);
fa96acad 342 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 343 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
344
345 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
346}
347
742ae1e3 348#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
349int
350xfs_isilocked(
351 xfs_inode_t *ip,
352 uint lock_flags)
353{
354 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
355 if (!(lock_flags & XFS_ILOCK_SHARED))
356 return !!ip->i_lock.mr_writer;
357 return rwsem_is_locked(&ip->i_lock.mr_lock);
358 }
359
653c60b6
DC
360 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
361 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
362 return !!ip->i_mmaplock.mr_writer;
363 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
364 }
365
fa96acad
DC
366 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
367 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
368 return !debug_locks ||
369 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
370 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
371 }
372
373 ASSERT(0);
374 return 0;
375}
376#endif
377
b6a9947e
DC
378/*
379 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
380 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
381 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
382 * errors and warnings.
383 */
384#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
385static bool
386xfs_lockdep_subclass_ok(
387 int subclass)
388{
389 return subclass < MAX_LOCKDEP_SUBCLASSES;
390}
391#else
392#define xfs_lockdep_subclass_ok(subclass) (true)
393#endif
394
c24b5dfa 395/*
653c60b6 396 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
397 * value. This can be called for any type of inode lock combination, including
398 * parent locking. Care must be taken to ensure we don't overrun the subclass
399 * storage fields in the class mask we build.
c24b5dfa
DC
400 */
401static inline int
402xfs_lock_inumorder(int lock_mode, int subclass)
403{
0952c818
DC
404 int class = 0;
405
406 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
407 XFS_ILOCK_RTSUM)));
3403ccc0 408 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 409
653c60b6 410 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 411 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 412 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
413 }
414
415 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
416 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
417 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
418 }
419
0952c818
DC
420 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
421 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
422 class += subclass << XFS_ILOCK_SHIFT;
423 }
c24b5dfa 424
0952c818 425 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
426}
427
428/*
95afcf5c
DC
429 * The following routine will lock n inodes in exclusive mode. We assume the
430 * caller calls us with the inodes in i_ino order.
c24b5dfa 431 *
95afcf5c
DC
432 * We need to detect deadlock where an inode that we lock is in the AIL and we
433 * start waiting for another inode that is locked by a thread in a long running
434 * transaction (such as truncate). This can result in deadlock since the long
435 * running trans might need to wait for the inode we just locked in order to
436 * push the tail and free space in the log.
0952c818
DC
437 *
438 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
439 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
440 * lock more than one at a time, lockdep will report false positives saying we
441 * have violated locking orders.
c24b5dfa 442 */
0d5a75e9 443static void
c24b5dfa 444xfs_lock_inodes(
efe2330f
CH
445 struct xfs_inode **ips,
446 int inodes,
447 uint lock_mode)
c24b5dfa 448{
efe2330f
CH
449 int attempts = 0, i, j, try_lock;
450 struct xfs_log_item *lp;
c24b5dfa 451
0952c818
DC
452 /*
453 * Currently supports between 2 and 5 inodes with exclusive locking. We
454 * support an arbitrary depth of locking here, but absolute limits on
455 * inodes depend on the the type of locking and the limits placed by
456 * lockdep annotations in xfs_lock_inumorder. These are all checked by
457 * the asserts.
458 */
95afcf5c 459 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
460 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
461 XFS_ILOCK_EXCL));
462 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
463 XFS_ILOCK_SHARED)));
0952c818
DC
464 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
465 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
466 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
467 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
468
469 if (lock_mode & XFS_IOLOCK_EXCL) {
470 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
471 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
472 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
473
474 try_lock = 0;
475 i = 0;
c24b5dfa
DC
476again:
477 for (; i < inodes; i++) {
478 ASSERT(ips[i]);
479
95afcf5c 480 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
481 continue;
482
483 /*
95afcf5c
DC
484 * If try_lock is not set yet, make sure all locked inodes are
485 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 486 */
c24b5dfa
DC
487 if (!try_lock) {
488 for (j = (i - 1); j >= 0 && !try_lock; j--) {
b3b14aac 489 lp = &ips[j]->i_itemp->ili_item;
22525c17 490 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
c24b5dfa 491 try_lock++;
c24b5dfa
DC
492 }
493 }
494
495 /*
496 * If any of the previous locks we have locked is in the AIL,
497 * we must TRY to get the second and subsequent locks. If
498 * we can't get any, we must release all we have
499 * and try again.
500 */
95afcf5c
DC
501 if (!try_lock) {
502 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
503 continue;
504 }
505
506 /* try_lock means we have an inode locked that is in the AIL. */
507 ASSERT(i != 0);
508 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
509 continue;
c24b5dfa 510
95afcf5c
DC
511 /*
512 * Unlock all previous guys and try again. xfs_iunlock will try
513 * to push the tail if the inode is in the AIL.
514 */
515 attempts++;
516 for (j = i - 1; j >= 0; j--) {
c24b5dfa 517 /*
95afcf5c
DC
518 * Check to see if we've already unlocked this one. Not
519 * the first one going back, and the inode ptr is the
520 * same.
c24b5dfa 521 */
95afcf5c
DC
522 if (j != (i - 1) && ips[j] == ips[j + 1])
523 continue;
c24b5dfa 524
95afcf5c
DC
525 xfs_iunlock(ips[j], lock_mode);
526 }
c24b5dfa 527
95afcf5c
DC
528 if ((attempts % 5) == 0) {
529 delay(1); /* Don't just spin the CPU */
c24b5dfa 530 }
95afcf5c
DC
531 i = 0;
532 try_lock = 0;
533 goto again;
c24b5dfa 534 }
c24b5dfa
DC
535}
536
537/*
653c60b6 538 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
7c2d238a
DW
539 * the mmaplock or the ilock, but not more than one type at a time. If we lock
540 * more than one at a time, lockdep will report false positives saying we have
541 * violated locking orders. The iolock must be double-locked separately since
542 * we use i_rwsem for that. We now support taking one lock EXCL and the other
543 * SHARED.
c24b5dfa
DC
544 */
545void
546xfs_lock_two_inodes(
7c2d238a
DW
547 struct xfs_inode *ip0,
548 uint ip0_mode,
549 struct xfs_inode *ip1,
550 uint ip1_mode)
c24b5dfa 551{
7c2d238a
DW
552 struct xfs_inode *temp;
553 uint mode_temp;
c24b5dfa 554 int attempts = 0;
efe2330f 555 struct xfs_log_item *lp;
c24b5dfa 556
7c2d238a
DW
557 ASSERT(hweight32(ip0_mode) == 1);
558 ASSERT(hweight32(ip1_mode) == 1);
559 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
561 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
562 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
563 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
564 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
565 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
566 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
567 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
568 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
653c60b6 569
c24b5dfa
DC
570 ASSERT(ip0->i_ino != ip1->i_ino);
571
572 if (ip0->i_ino > ip1->i_ino) {
573 temp = ip0;
574 ip0 = ip1;
575 ip1 = temp;
7c2d238a
DW
576 mode_temp = ip0_mode;
577 ip0_mode = ip1_mode;
578 ip1_mode = mode_temp;
c24b5dfa
DC
579 }
580
581 again:
7c2d238a 582 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
c24b5dfa
DC
583
584 /*
585 * If the first lock we have locked is in the AIL, we must TRY to get
586 * the second lock. If we can't get it, we must release the first one
587 * and try again.
588 */
b3b14aac 589 lp = &ip0->i_itemp->ili_item;
22525c17 590 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
7c2d238a
DW
591 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
592 xfs_iunlock(ip0, ip0_mode);
c24b5dfa
DC
593 if ((++attempts % 5) == 0)
594 delay(1); /* Don't just spin the CPU */
595 goto again;
596 }
597 } else {
7c2d238a 598 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
c24b5dfa
DC
599 }
600}
601
fa96acad
DC
602void
603__xfs_iflock(
604 struct xfs_inode *ip)
605{
606 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
607 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
608
609 do {
21417136 610 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
fa96acad
DC
611 if (xfs_isiflocked(ip))
612 io_schedule();
613 } while (!xfs_iflock_nowait(ip));
614
21417136 615 finish_wait(wq, &wait.wq_entry);
fa96acad
DC
616}
617
1da177e4
LT
618STATIC uint
619_xfs_dic2xflags(
c8ce540d 620 uint16_t di_flags,
58f88ca2
DC
621 uint64_t di_flags2,
622 bool has_attr)
1da177e4
LT
623{
624 uint flags = 0;
625
626 if (di_flags & XFS_DIFLAG_ANY) {
627 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 628 flags |= FS_XFLAG_REALTIME;
1da177e4 629 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 630 flags |= FS_XFLAG_PREALLOC;
1da177e4 631 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 632 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 633 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 634 flags |= FS_XFLAG_APPEND;
1da177e4 635 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 636 flags |= FS_XFLAG_SYNC;
1da177e4 637 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 638 flags |= FS_XFLAG_NOATIME;
1da177e4 639 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 640 flags |= FS_XFLAG_NODUMP;
1da177e4 641 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 642 flags |= FS_XFLAG_RTINHERIT;
1da177e4 643 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 644 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 645 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 646 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 647 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 648 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 649 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 650 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 651 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 652 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 653 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 654 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
655 }
656
58f88ca2
DC
657 if (di_flags2 & XFS_DIFLAG2_ANY) {
658 if (di_flags2 & XFS_DIFLAG2_DAX)
659 flags |= FS_XFLAG_DAX;
f7ca3522
DW
660 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
661 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
662 }
663
664 if (has_attr)
665 flags |= FS_XFLAG_HASATTR;
666
1da177e4
LT
667 return flags;
668}
669
670uint
671xfs_ip2xflags(
58f88ca2 672 struct xfs_inode *ip)
1da177e4 673{
58f88ca2 674 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 675
58f88ca2 676 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
677}
678
c24b5dfa
DC
679/*
680 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
681 * is allowed, otherwise it has to be an exact match. If a CI match is found,
682 * ci_name->name will point to a the actual name (caller must free) or
683 * will be set to NULL if an exact match is found.
684 */
685int
686xfs_lookup(
687 xfs_inode_t *dp,
688 struct xfs_name *name,
689 xfs_inode_t **ipp,
690 struct xfs_name *ci_name)
691{
692 xfs_ino_t inum;
693 int error;
c24b5dfa
DC
694
695 trace_xfs_lookup(dp, name);
696
697 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 698 return -EIO;
c24b5dfa 699
c24b5dfa 700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 701 if (error)
dbad7c99 702 goto out_unlock;
c24b5dfa
DC
703
704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 if (error)
706 goto out_free_name;
707
708 return 0;
709
710out_free_name:
711 if (ci_name)
712 kmem_free(ci_name->name);
dbad7c99 713out_unlock:
c24b5dfa
DC
714 *ipp = NULL;
715 return error;
716}
717
1da177e4
LT
718/*
719 * Allocate an inode on disk and return a copy of its in-core version.
720 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
721 * appropriately within the inode. The uid and gid for the inode are
722 * set according to the contents of the given cred structure.
723 *
724 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
725 * has a free inode available, call xfs_iget() to obtain the in-core
726 * version of the allocated inode. Finally, fill in the inode and
727 * log its initial contents. In this case, ialloc_context would be
728 * set to NULL.
1da177e4 729 *
cd856db6
CM
730 * If xfs_dialloc() does not have an available inode, it will replenish
731 * its supply by doing an allocation. Since we can only do one
732 * allocation within a transaction without deadlocks, we must commit
733 * the current transaction before returning the inode itself.
734 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
735 * The caller should then commit the current transaction, start a new
736 * transaction, and call xfs_ialloc() again to actually get the inode.
737 *
738 * To ensure that some other process does not grab the inode that
739 * was allocated during the first call to xfs_ialloc(), this routine
740 * also returns the [locked] bp pointing to the head of the freelist
741 * as ialloc_context. The caller should hold this buffer across
742 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
743 *
744 * If we are allocating quota inodes, we do not have a parent inode
745 * to attach to or associate with (i.e. pip == NULL) because they
746 * are not linked into the directory structure - they are attached
747 * directly to the superblock - and so have no parent.
1da177e4 748 */
0d5a75e9 749static int
1da177e4
LT
750xfs_ialloc(
751 xfs_trans_t *tp,
752 xfs_inode_t *pip,
576b1d67 753 umode_t mode,
31b084ae 754 xfs_nlink_t nlink,
66f36464 755 dev_t rdev,
6743099c 756 prid_t prid,
1da177e4 757 xfs_buf_t **ialloc_context,
1da177e4
LT
758 xfs_inode_t **ipp)
759{
93848a99 760 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
761 xfs_ino_t ino;
762 xfs_inode_t *ip;
1da177e4
LT
763 uint flags;
764 int error;
95582b00 765 struct timespec64 tv;
3987848c 766 struct inode *inode;
1da177e4
LT
767
768 /*
769 * Call the space management code to pick
770 * the on-disk inode to be allocated.
771 */
f59cf5c2 772 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
08358906 773 ialloc_context, &ino);
bf904248 774 if (error)
1da177e4 775 return error;
08358906 776 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
777 *ipp = NULL;
778 return 0;
779 }
780 ASSERT(*ialloc_context == NULL);
781
8b26984d
DC
782 /*
783 * Protect against obviously corrupt allocation btree records. Later
784 * xfs_iget checks will catch re-allocation of other active in-memory
785 * and on-disk inodes. If we don't catch reallocating the parent inode
786 * here we will deadlock in xfs_iget() so we have to do these checks
787 * first.
788 */
789 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
790 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
791 return -EFSCORRUPTED;
792 }
793
1da177e4
LT
794 /*
795 * Get the in-core inode with the lock held exclusively.
796 * This is because we're setting fields here we need
797 * to prevent others from looking at until we're done.
798 */
93848a99 799 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 800 XFS_ILOCK_EXCL, &ip);
bf904248 801 if (error)
1da177e4 802 return error;
1da177e4 803 ASSERT(ip != NULL);
3987848c 804 inode = VFS_I(ip);
c19b3b05 805 inode->i_mode = mode;
54d7b5c1 806 set_nlink(inode, nlink);
3d8f2821 807 inode->i_uid = current_fsuid();
66f36464 808 inode->i_rdev = rdev;
de7a866f 809 ip->i_d.di_projid = prid;
1da177e4 810
bd186aa9 811 if (pip && XFS_INHERIT_GID(pip)) {
3d8f2821 812 inode->i_gid = VFS_I(pip)->i_gid;
c19b3b05
DC
813 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
814 inode->i_mode |= S_ISGID;
3d8f2821
CH
815 } else {
816 inode->i_gid = current_fsgid();
1da177e4
LT
817 }
818
819 /*
820 * If the group ID of the new file does not match the effective group
821 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
822 * (and only if the irix_sgid_inherit compatibility variable is set).
823 */
54295159
CH
824 if (irix_sgid_inherit &&
825 (inode->i_mode & S_ISGID) && !in_group_p(inode->i_gid))
c19b3b05 826 inode->i_mode &= ~S_ISGID;
1da177e4
LT
827
828 ip->i_d.di_size = 0;
daf83964 829 ip->i_df.if_nextents = 0;
1da177e4 830 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 831
c2050a45 832 tv = current_time(inode);
3987848c
DC
833 inode->i_mtime = tv;
834 inode->i_atime = tv;
835 inode->i_ctime = tv;
dff35fd4 836
1da177e4
LT
837 ip->i_d.di_extsize = 0;
838 ip->i_d.di_dmevmask = 0;
839 ip->i_d.di_dmstate = 0;
840 ip->i_d.di_flags = 0;
93848a99 841
6471e9c5 842 if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
f0e28280 843 inode_set_iversion(inode, 1);
93848a99 844 ip->i_d.di_flags2 = 0;
f7ca3522 845 ip->i_d.di_cowextsize = 0;
8d2d878d 846 ip->i_d.di_crtime = tv;
93848a99
CH
847 }
848
1da177e4
LT
849 flags = XFS_ILOG_CORE;
850 switch (mode & S_IFMT) {
851 case S_IFIFO:
852 case S_IFCHR:
853 case S_IFBLK:
854 case S_IFSOCK:
f7e67b20 855 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
856 ip->i_df.if_flags = 0;
857 flags |= XFS_ILOG_DEV;
858 break;
859 case S_IFREG:
860 case S_IFDIR:
b11f94d5 861 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2 862 uint di_flags = 0;
365ca83d 863
abbede1b 864 if (S_ISDIR(mode)) {
365ca83d
NS
865 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
866 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
867 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
868 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
869 ip->i_d.di_extsize = pip->i_d.di_extsize;
870 }
9336e3a7
DC
871 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
872 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 873 } else if (S_ISREG(mode)) {
613d7043 874 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 875 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
876 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
877 di_flags |= XFS_DIFLAG_EXTSIZE;
878 ip->i_d.di_extsize = pip->i_d.di_extsize;
879 }
1da177e4
LT
880 }
881 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
882 xfs_inherit_noatime)
365ca83d 883 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
884 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
885 xfs_inherit_nodump)
365ca83d 886 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
887 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
888 xfs_inherit_sync)
365ca83d 889 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
890 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
891 xfs_inherit_nosymlinks)
365ca83d 892 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
893 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
894 xfs_inherit_nodefrag)
895 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
896 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
897 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2 898
365ca83d 899 ip->i_d.di_flags |= di_flags;
1da177e4 900 }
b3d1d375 901 if (pip && (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY)) {
f7ca3522 902 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
b3d1d375 903 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
904 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
905 }
56bdf855 906 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
b3d1d375 907 ip->i_d.di_flags2 |= XFS_DIFLAG2_DAX;
f7ca3522 908 }
1da177e4
LT
909 /* FALLTHROUGH */
910 case S_IFLNK:
f7e67b20 911 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
1da177e4 912 ip->i_df.if_flags = XFS_IFEXTENTS;
fcacbc3f 913 ip->i_df.if_bytes = 0;
6bdcf26a 914 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
915 break;
916 default:
917 ASSERT(0);
918 }
1da177e4
LT
919
920 /*
921 * Log the new values stuffed into the inode.
922 */
ddc3415a 923 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
924 xfs_trans_log_inode(tp, ip, flags);
925
58c90473 926 /* now that we have an i_mode we can setup the inode structure */
41be8bed 927 xfs_setup_inode(ip);
1da177e4
LT
928
929 *ipp = ip;
930 return 0;
931}
932
e546cb79
DC
933/*
934 * Allocates a new inode from disk and return a pointer to the
935 * incore copy. This routine will internally commit the current
936 * transaction and allocate a new one if the Space Manager needed
937 * to do an allocation to replenish the inode free-list.
938 *
939 * This routine is designed to be called from xfs_create and
940 * xfs_create_dir.
941 *
942 */
943int
944xfs_dir_ialloc(
945 xfs_trans_t **tpp, /* input: current transaction;
946 output: may be a new transaction. */
947 xfs_inode_t *dp, /* directory within whose allocate
948 the inode. */
949 umode_t mode,
950 xfs_nlink_t nlink,
66f36464 951 dev_t rdev,
e546cb79 952 prid_t prid, /* project id */
c959025e 953 xfs_inode_t **ipp) /* pointer to inode; it will be
e546cb79 954 locked. */
e546cb79
DC
955{
956 xfs_trans_t *tp;
e546cb79
DC
957 xfs_inode_t *ip;
958 xfs_buf_t *ialloc_context = NULL;
959 int code;
e546cb79
DC
960 void *dqinfo;
961 uint tflags;
962
963 tp = *tpp;
964 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
965
966 /*
967 * xfs_ialloc will return a pointer to an incore inode if
968 * the Space Manager has an available inode on the free
969 * list. Otherwise, it will do an allocation and replenish
970 * the freelist. Since we can only do one allocation per
971 * transaction without deadlocks, we will need to commit the
972 * current transaction and start a new one. We will then
973 * need to call xfs_ialloc again to get the inode.
974 *
975 * If xfs_ialloc did an allocation to replenish the freelist,
976 * it returns the bp containing the head of the freelist as
977 * ialloc_context. We will hold a lock on it across the
978 * transaction commit so that no other process can steal
979 * the inode(s) that we've just allocated.
980 */
f59cf5c2
CH
981 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
982 &ip);
e546cb79
DC
983
984 /*
985 * Return an error if we were unable to allocate a new inode.
986 * This should only happen if we run out of space on disk or
987 * encounter a disk error.
988 */
989 if (code) {
990 *ipp = NULL;
991 return code;
992 }
993 if (!ialloc_context && !ip) {
994 *ipp = NULL;
2451337d 995 return -ENOSPC;
e546cb79
DC
996 }
997
998 /*
999 * If the AGI buffer is non-NULL, then we were unable to get an
1000 * inode in one operation. We need to commit the current
1001 * transaction and call xfs_ialloc() again. It is guaranteed
1002 * to succeed the second time.
1003 */
1004 if (ialloc_context) {
1005 /*
1006 * Normally, xfs_trans_commit releases all the locks.
1007 * We call bhold to hang on to the ialloc_context across
1008 * the commit. Holding this buffer prevents any other
1009 * processes from doing any allocations in this
1010 * allocation group.
1011 */
1012 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1013
1014 /*
1015 * We want the quota changes to be associated with the next
1016 * transaction, NOT this one. So, detach the dqinfo from this
1017 * and attach it to the next transaction.
1018 */
1019 dqinfo = NULL;
1020 tflags = 0;
1021 if (tp->t_dqinfo) {
1022 dqinfo = (void *)tp->t_dqinfo;
1023 tp->t_dqinfo = NULL;
1024 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1025 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1026 }
1027
411350df 1028 code = xfs_trans_roll(&tp);
3d3c8b52 1029
e546cb79
DC
1030 /*
1031 * Re-attach the quota info that we detached from prev trx.
1032 */
1033 if (dqinfo) {
1034 tp->t_dqinfo = dqinfo;
1035 tp->t_flags |= tflags;
1036 }
1037
1038 if (code) {
1039 xfs_buf_relse(ialloc_context);
2e6db6c4 1040 *tpp = tp;
e546cb79
DC
1041 *ipp = NULL;
1042 return code;
1043 }
1044 xfs_trans_bjoin(tp, ialloc_context);
1045
1046 /*
1047 * Call ialloc again. Since we've locked out all
1048 * other allocations in this allocation group,
1049 * this call should always succeed.
1050 */
1051 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
f59cf5c2 1052 &ialloc_context, &ip);
e546cb79
DC
1053
1054 /*
1055 * If we get an error at this point, return to the caller
1056 * so that the current transaction can be aborted.
1057 */
1058 if (code) {
1059 *tpp = tp;
1060 *ipp = NULL;
1061 return code;
1062 }
1063 ASSERT(!ialloc_context && ip);
1064
e546cb79
DC
1065 }
1066
1067 *ipp = ip;
1068 *tpp = tp;
1069
1070 return 0;
1071}
1072
1073/*
54d7b5c1
DC
1074 * Decrement the link count on an inode & log the change. If this causes the
1075 * link count to go to zero, move the inode to AGI unlinked list so that it can
1076 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1077 */
0d5a75e9 1078static int /* error */
e546cb79
DC
1079xfs_droplink(
1080 xfs_trans_t *tp,
1081 xfs_inode_t *ip)
1082{
e546cb79
DC
1083 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1084
e546cb79
DC
1085 drop_nlink(VFS_I(ip));
1086 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1087
54d7b5c1
DC
1088 if (VFS_I(ip)->i_nlink)
1089 return 0;
1090
1091 return xfs_iunlink(tp, ip);
e546cb79
DC
1092}
1093
e546cb79
DC
1094/*
1095 * Increment the link count on an inode & log the change.
1096 */
91083269 1097static void
e546cb79
DC
1098xfs_bumplink(
1099 xfs_trans_t *tp,
1100 xfs_inode_t *ip)
1101{
1102 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1103
e546cb79 1104 inc_nlink(VFS_I(ip));
e546cb79 1105 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
e546cb79
DC
1106}
1107
c24b5dfa
DC
1108int
1109xfs_create(
1110 xfs_inode_t *dp,
1111 struct xfs_name *name,
1112 umode_t mode,
66f36464 1113 dev_t rdev,
c24b5dfa
DC
1114 xfs_inode_t **ipp)
1115{
1116 int is_dir = S_ISDIR(mode);
1117 struct xfs_mount *mp = dp->i_mount;
1118 struct xfs_inode *ip = NULL;
1119 struct xfs_trans *tp = NULL;
1120 int error;
c24b5dfa 1121 bool unlock_dp_on_error = false;
c24b5dfa
DC
1122 prid_t prid;
1123 struct xfs_dquot *udqp = NULL;
1124 struct xfs_dquot *gdqp = NULL;
1125 struct xfs_dquot *pdqp = NULL;
062647a8 1126 struct xfs_trans_res *tres;
c24b5dfa 1127 uint resblks;
c24b5dfa
DC
1128
1129 trace_xfs_create(dp, name);
1130
1131 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1132 return -EIO;
c24b5dfa 1133
163467d3 1134 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1135
1136 /*
1137 * Make sure that we have allocated dquot(s) on disk.
1138 */
54295159 1139 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
c24b5dfa
DC
1140 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1141 &udqp, &gdqp, &pdqp);
1142 if (error)
1143 return error;
1144
1145 if (is_dir) {
c24b5dfa 1146 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1147 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1148 } else {
1149 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1150 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1151 }
1152
c24b5dfa
DC
1153 /*
1154 * Initially assume that the file does not exist and
1155 * reserve the resources for that case. If that is not
1156 * the case we'll drop the one we have and get a more
1157 * appropriate transaction later.
1158 */
253f4911 1159 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1160 if (error == -ENOSPC) {
c24b5dfa
DC
1161 /* flush outstanding delalloc blocks and retry */
1162 xfs_flush_inodes(mp);
253f4911 1163 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1164 }
4906e215 1165 if (error)
253f4911 1166 goto out_release_inode;
c24b5dfa 1167
65523218 1168 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1169 unlock_dp_on_error = true;
1170
c24b5dfa
DC
1171 /*
1172 * Reserve disk quota and the inode.
1173 */
1174 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1175 pdqp, resblks, 1, 0);
1176 if (error)
1177 goto out_trans_cancel;
1178
c24b5dfa
DC
1179 /*
1180 * A newly created regular or special file just has one directory
1181 * entry pointing to them, but a directory also the "." entry
1182 * pointing to itself.
1183 */
c959025e 1184 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
d6077aa3 1185 if (error)
4906e215 1186 goto out_trans_cancel;
c24b5dfa
DC
1187
1188 /*
1189 * Now we join the directory inode to the transaction. We do not do it
1190 * earlier because xfs_dir_ialloc might commit the previous transaction
1191 * (and release all the locks). An error from here on will result in
1192 * the transaction cancel unlocking dp so don't do it explicitly in the
1193 * error path.
1194 */
65523218 1195 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1196 unlock_dp_on_error = false;
1197
381eee69 1198 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
63337b63 1199 resblks - XFS_IALLOC_SPACE_RES(mp));
c24b5dfa 1200 if (error) {
2451337d 1201 ASSERT(error != -ENOSPC);
4906e215 1202 goto out_trans_cancel;
c24b5dfa
DC
1203 }
1204 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1205 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1206
1207 if (is_dir) {
1208 error = xfs_dir_init(tp, ip, dp);
1209 if (error)
c8eac49e 1210 goto out_trans_cancel;
c24b5dfa 1211
91083269 1212 xfs_bumplink(tp, dp);
c24b5dfa
DC
1213 }
1214
1215 /*
1216 * If this is a synchronous mount, make sure that the
1217 * create transaction goes to disk before returning to
1218 * the user.
1219 */
1220 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1221 xfs_trans_set_sync(tp);
1222
1223 /*
1224 * Attach the dquot(s) to the inodes and modify them incore.
1225 * These ids of the inode couldn't have changed since the new
1226 * inode has been locked ever since it was created.
1227 */
1228 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1229
70393313 1230 error = xfs_trans_commit(tp);
c24b5dfa
DC
1231 if (error)
1232 goto out_release_inode;
1233
1234 xfs_qm_dqrele(udqp);
1235 xfs_qm_dqrele(gdqp);
1236 xfs_qm_dqrele(pdqp);
1237
1238 *ipp = ip;
1239 return 0;
1240
c24b5dfa 1241 out_trans_cancel:
4906e215 1242 xfs_trans_cancel(tp);
c24b5dfa
DC
1243 out_release_inode:
1244 /*
58c90473
DC
1245 * Wait until after the current transaction is aborted to finish the
1246 * setup of the inode and release the inode. This prevents recursive
1247 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1248 */
58c90473
DC
1249 if (ip) {
1250 xfs_finish_inode_setup(ip);
44a8736b 1251 xfs_irele(ip);
58c90473 1252 }
c24b5dfa
DC
1253
1254 xfs_qm_dqrele(udqp);
1255 xfs_qm_dqrele(gdqp);
1256 xfs_qm_dqrele(pdqp);
1257
1258 if (unlock_dp_on_error)
65523218 1259 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1260 return error;
1261}
1262
99b6436b
ZYW
1263int
1264xfs_create_tmpfile(
1265 struct xfs_inode *dp,
330033d6
BF
1266 umode_t mode,
1267 struct xfs_inode **ipp)
99b6436b
ZYW
1268{
1269 struct xfs_mount *mp = dp->i_mount;
1270 struct xfs_inode *ip = NULL;
1271 struct xfs_trans *tp = NULL;
1272 int error;
99b6436b
ZYW
1273 prid_t prid;
1274 struct xfs_dquot *udqp = NULL;
1275 struct xfs_dquot *gdqp = NULL;
1276 struct xfs_dquot *pdqp = NULL;
1277 struct xfs_trans_res *tres;
1278 uint resblks;
1279
1280 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1281 return -EIO;
99b6436b
ZYW
1282
1283 prid = xfs_get_initial_prid(dp);
1284
1285 /*
1286 * Make sure that we have allocated dquot(s) on disk.
1287 */
54295159 1288 error = xfs_qm_vop_dqalloc(dp, current_fsuid(), current_fsgid(), prid,
99b6436b
ZYW
1289 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1290 &udqp, &gdqp, &pdqp);
1291 if (error)
1292 return error;
1293
1294 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1295 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1296
1297 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
4906e215 1298 if (error)
253f4911 1299 goto out_release_inode;
99b6436b
ZYW
1300
1301 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1302 pdqp, resblks, 1, 0);
1303 if (error)
1304 goto out_trans_cancel;
1305
c4a6bf7f 1306 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
d6077aa3 1307 if (error)
4906e215 1308 goto out_trans_cancel;
99b6436b
ZYW
1309
1310 if (mp->m_flags & XFS_MOUNT_WSYNC)
1311 xfs_trans_set_sync(tp);
1312
1313 /*
1314 * Attach the dquot(s) to the inodes and modify them incore.
1315 * These ids of the inode couldn't have changed since the new
1316 * inode has been locked ever since it was created.
1317 */
1318 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1319
99b6436b
ZYW
1320 error = xfs_iunlink(tp, ip);
1321 if (error)
4906e215 1322 goto out_trans_cancel;
99b6436b 1323
70393313 1324 error = xfs_trans_commit(tp);
99b6436b
ZYW
1325 if (error)
1326 goto out_release_inode;
1327
1328 xfs_qm_dqrele(udqp);
1329 xfs_qm_dqrele(gdqp);
1330 xfs_qm_dqrele(pdqp);
1331
330033d6 1332 *ipp = ip;
99b6436b
ZYW
1333 return 0;
1334
99b6436b 1335 out_trans_cancel:
4906e215 1336 xfs_trans_cancel(tp);
99b6436b
ZYW
1337 out_release_inode:
1338 /*
58c90473
DC
1339 * Wait until after the current transaction is aborted to finish the
1340 * setup of the inode and release the inode. This prevents recursive
1341 * transactions and deadlocks from xfs_inactive.
99b6436b 1342 */
58c90473
DC
1343 if (ip) {
1344 xfs_finish_inode_setup(ip);
44a8736b 1345 xfs_irele(ip);
58c90473 1346 }
99b6436b
ZYW
1347
1348 xfs_qm_dqrele(udqp);
1349 xfs_qm_dqrele(gdqp);
1350 xfs_qm_dqrele(pdqp);
1351
1352 return error;
1353}
1354
c24b5dfa
DC
1355int
1356xfs_link(
1357 xfs_inode_t *tdp,
1358 xfs_inode_t *sip,
1359 struct xfs_name *target_name)
1360{
1361 xfs_mount_t *mp = tdp->i_mount;
1362 xfs_trans_t *tp;
1363 int error;
c24b5dfa
DC
1364 int resblks;
1365
1366 trace_xfs_link(tdp, target_name);
1367
c19b3b05 1368 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1369
1370 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1371 return -EIO;
c24b5dfa 1372
c14cfcca 1373 error = xfs_qm_dqattach(sip);
c24b5dfa
DC
1374 if (error)
1375 goto std_return;
1376
c14cfcca 1377 error = xfs_qm_dqattach(tdp);
c24b5dfa
DC
1378 if (error)
1379 goto std_return;
1380
c24b5dfa 1381 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1382 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1383 if (error == -ENOSPC) {
c24b5dfa 1384 resblks = 0;
253f4911 1385 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1386 }
4906e215 1387 if (error)
253f4911 1388 goto std_return;
c24b5dfa 1389
7c2d238a 1390 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1391
1392 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1393 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1394
1395 /*
1396 * If we are using project inheritance, we only allow hard link
1397 * creation in our tree when the project IDs are the same; else
1398 * the tree quota mechanism could be circumvented.
1399 */
1400 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
de7a866f 1401 tdp->i_d.di_projid != sip->i_d.di_projid)) {
2451337d 1402 error = -EXDEV;
c24b5dfa
DC
1403 goto error_return;
1404 }
1405
94f3cad5
ES
1406 if (!resblks) {
1407 error = xfs_dir_canenter(tp, tdp, target_name);
1408 if (error)
1409 goto error_return;
1410 }
c24b5dfa 1411
54d7b5c1
DC
1412 /*
1413 * Handle initial link state of O_TMPFILE inode
1414 */
1415 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1416 error = xfs_iunlink_remove(tp, sip);
1417 if (error)
4906e215 1418 goto error_return;
ab297431
ZYW
1419 }
1420
c24b5dfa 1421 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
381eee69 1422 resblks);
c24b5dfa 1423 if (error)
4906e215 1424 goto error_return;
c24b5dfa
DC
1425 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1426 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1427
91083269 1428 xfs_bumplink(tp, sip);
c24b5dfa
DC
1429
1430 /*
1431 * If this is a synchronous mount, make sure that the
1432 * link transaction goes to disk before returning to
1433 * the user.
1434 */
f6106efa 1435 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1436 xfs_trans_set_sync(tp);
c24b5dfa 1437
70393313 1438 return xfs_trans_commit(tp);
c24b5dfa 1439
c24b5dfa 1440 error_return:
4906e215 1441 xfs_trans_cancel(tp);
c24b5dfa
DC
1442 std_return:
1443 return error;
1444}
1445
363e59ba
DW
1446/* Clear the reflink flag and the cowblocks tag if possible. */
1447static void
1448xfs_itruncate_clear_reflink_flags(
1449 struct xfs_inode *ip)
1450{
1451 struct xfs_ifork *dfork;
1452 struct xfs_ifork *cfork;
1453
1454 if (!xfs_is_reflink_inode(ip))
1455 return;
1456 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1457 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1458 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1459 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1460 if (cfork->if_bytes == 0)
1461 xfs_inode_clear_cowblocks_tag(ip);
1462}
1463
1da177e4 1464/*
8f04c47a
CH
1465 * Free up the underlying blocks past new_size. The new size must be smaller
1466 * than the current size. This routine can be used both for the attribute and
1467 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1468 *
f6485057
DC
1469 * The transaction passed to this routine must have made a permanent log
1470 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1471 * given transaction and start new ones, so make sure everything involved in
1472 * the transaction is tidy before calling here. Some transaction will be
1473 * returned to the caller to be committed. The incoming transaction must
1474 * already include the inode, and both inode locks must be held exclusively.
1475 * The inode must also be "held" within the transaction. On return the inode
1476 * will be "held" within the returned transaction. This routine does NOT
1477 * require any disk space to be reserved for it within the transaction.
1da177e4 1478 *
f6485057
DC
1479 * If we get an error, we must return with the inode locked and linked into the
1480 * current transaction. This keeps things simple for the higher level code,
1481 * because it always knows that the inode is locked and held in the transaction
1482 * that returns to it whether errors occur or not. We don't mark the inode
1483 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1484 */
1485int
4e529339 1486xfs_itruncate_extents_flags(
8f04c47a
CH
1487 struct xfs_trans **tpp,
1488 struct xfs_inode *ip,
1489 int whichfork,
13b86fc3 1490 xfs_fsize_t new_size,
4e529339 1491 int flags)
1da177e4 1492{
8f04c47a
CH
1493 struct xfs_mount *mp = ip->i_mount;
1494 struct xfs_trans *tp = *tpp;
8f04c47a 1495 xfs_fileoff_t first_unmap_block;
8f04c47a 1496 xfs_filblks_t unmap_len;
8f04c47a 1497 int error = 0;
1da177e4 1498
0b56185b
CH
1499 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1500 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1501 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1502 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1503 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1504 ASSERT(ip->i_itemp != NULL);
898621d5 1505 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1506 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1507
673e8e59
CH
1508 trace_xfs_itruncate_extents_start(ip, new_size);
1509
4e529339 1510 flags |= xfs_bmapi_aflag(whichfork);
13b86fc3 1511
1da177e4
LT
1512 /*
1513 * Since it is possible for space to become allocated beyond
1514 * the end of the file (in a crash where the space is allocated
1515 * but the inode size is not yet updated), simply remove any
1516 * blocks which show up between the new EOF and the maximum
4bbb04ab
DW
1517 * possible file size.
1518 *
1519 * We have to free all the blocks to the bmbt maximum offset, even if
1520 * the page cache can't scale that far.
1da177e4 1521 */
8f04c47a 1522 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
4bbb04ab
DW
1523 if (first_unmap_block >= XFS_MAX_FILEOFF) {
1524 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
8f04c47a 1525 return 0;
4bbb04ab 1526 }
8f04c47a 1527
4bbb04ab
DW
1528 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1529 while (unmap_len > 0) {
02dff7bf 1530 ASSERT(tp->t_firstblock == NULLFSBLOCK);
4bbb04ab
DW
1531 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1532 flags, XFS_ITRUNC_MAX_EXTENTS);
8f04c47a 1533 if (error)
d5a2e289 1534 goto out;
1da177e4
LT
1535
1536 /*
1537 * Duplicate the transaction that has the permanent
1538 * reservation and commit the old transaction.
1539 */
9e28a242 1540 error = xfs_defer_finish(&tp);
8f04c47a 1541 if (error)
9b1f4e98 1542 goto out;
1da177e4 1543
411350df 1544 error = xfs_trans_roll_inode(&tp, ip);
f6485057 1545 if (error)
8f04c47a 1546 goto out;
1da177e4 1547 }
8f04c47a 1548
4919d42a
DW
1549 if (whichfork == XFS_DATA_FORK) {
1550 /* Remove all pending CoW reservations. */
1551 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
4bbb04ab 1552 first_unmap_block, XFS_MAX_FILEOFF, true);
4919d42a
DW
1553 if (error)
1554 goto out;
aa8968f2 1555
4919d42a
DW
1556 xfs_itruncate_clear_reflink_flags(ip);
1557 }
aa8968f2 1558
673e8e59
CH
1559 /*
1560 * Always re-log the inode so that our permanent transaction can keep
1561 * on rolling it forward in the log.
1562 */
1563 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1564
1565 trace_xfs_itruncate_extents_end(ip, new_size);
1566
8f04c47a
CH
1567out:
1568 *tpp = tp;
1569 return error;
8f04c47a
CH
1570}
1571
c24b5dfa
DC
1572int
1573xfs_release(
1574 xfs_inode_t *ip)
1575{
1576 xfs_mount_t *mp = ip->i_mount;
1577 int error;
1578
c19b3b05 1579 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1580 return 0;
1581
1582 /* If this is a read-only mount, don't do this (would generate I/O) */
1583 if (mp->m_flags & XFS_MOUNT_RDONLY)
1584 return 0;
1585
1586 if (!XFS_FORCED_SHUTDOWN(mp)) {
1587 int truncated;
1588
c24b5dfa
DC
1589 /*
1590 * If we previously truncated this file and removed old data
1591 * in the process, we want to initiate "early" writeout on
1592 * the last close. This is an attempt to combat the notorious
1593 * NULL files problem which is particularly noticeable from a
1594 * truncate down, buffered (re-)write (delalloc), followed by
1595 * a crash. What we are effectively doing here is
1596 * significantly reducing the time window where we'd otherwise
1597 * be exposed to that problem.
1598 */
1599 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1600 if (truncated) {
1601 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1602 if (ip->i_delayed_blks > 0) {
2451337d 1603 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1604 if (error)
1605 return error;
1606 }
1607 }
1608 }
1609
54d7b5c1 1610 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1611 return 0;
1612
1613 if (xfs_can_free_eofblocks(ip, false)) {
1614
a36b9261
BF
1615 /*
1616 * Check if the inode is being opened, written and closed
1617 * frequently and we have delayed allocation blocks outstanding
1618 * (e.g. streaming writes from the NFS server), truncating the
1619 * blocks past EOF will cause fragmentation to occur.
1620 *
1621 * In this case don't do the truncation, but we have to be
1622 * careful how we detect this case. Blocks beyond EOF show up as
1623 * i_delayed_blks even when the inode is clean, so we need to
1624 * truncate them away first before checking for a dirty release.
1625 * Hence on the first dirty close we will still remove the
1626 * speculative allocation, but after that we will leave it in
1627 * place.
1628 */
1629 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1630 return 0;
c24b5dfa
DC
1631 /*
1632 * If we can't get the iolock just skip truncating the blocks
c1e8d7c6 1633 * past EOF because we could deadlock with the mmap_lock
a36b9261 1634 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1635 * last reference to the inode is dropped, so we'll never leak
1636 * blocks permanently.
c24b5dfa 1637 */
a36b9261
BF
1638 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1639 error = xfs_free_eofblocks(ip);
1640 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1641 if (error)
1642 return error;
1643 }
c24b5dfa
DC
1644
1645 /* delalloc blocks after truncation means it really is dirty */
1646 if (ip->i_delayed_blks)
1647 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1648 }
1649 return 0;
1650}
1651
f7be2d7f
BF
1652/*
1653 * xfs_inactive_truncate
1654 *
1655 * Called to perform a truncate when an inode becomes unlinked.
1656 */
1657STATIC int
1658xfs_inactive_truncate(
1659 struct xfs_inode *ip)
1660{
1661 struct xfs_mount *mp = ip->i_mount;
1662 struct xfs_trans *tp;
1663 int error;
1664
253f4911 1665 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1666 if (error) {
1667 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1668 return error;
1669 }
f7be2d7f
BF
1670 xfs_ilock(ip, XFS_ILOCK_EXCL);
1671 xfs_trans_ijoin(tp, ip, 0);
1672
1673 /*
1674 * Log the inode size first to prevent stale data exposure in the event
1675 * of a system crash before the truncate completes. See the related
69bca807 1676 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1677 */
1678 ip->i_d.di_size = 0;
1679 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1680
1681 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1682 if (error)
1683 goto error_trans_cancel;
1684
daf83964 1685 ASSERT(ip->i_df.if_nextents == 0);
f7be2d7f 1686
70393313 1687 error = xfs_trans_commit(tp);
f7be2d7f
BF
1688 if (error)
1689 goto error_unlock;
1690
1691 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1692 return 0;
1693
1694error_trans_cancel:
4906e215 1695 xfs_trans_cancel(tp);
f7be2d7f
BF
1696error_unlock:
1697 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1698 return error;
1699}
1700
88877d2b
BF
1701/*
1702 * xfs_inactive_ifree()
1703 *
1704 * Perform the inode free when an inode is unlinked.
1705 */
1706STATIC int
1707xfs_inactive_ifree(
1708 struct xfs_inode *ip)
1709{
88877d2b
BF
1710 struct xfs_mount *mp = ip->i_mount;
1711 struct xfs_trans *tp;
1712 int error;
1713
9d43b180 1714 /*
76d771b4
CH
1715 * We try to use a per-AG reservation for any block needed by the finobt
1716 * tree, but as the finobt feature predates the per-AG reservation
1717 * support a degraded file system might not have enough space for the
1718 * reservation at mount time. In that case try to dip into the reserved
1719 * pool and pray.
9d43b180
BF
1720 *
1721 * Send a warning if the reservation does happen to fail, as the inode
1722 * now remains allocated and sits on the unlinked list until the fs is
1723 * repaired.
1724 */
e1f6ca11 1725 if (unlikely(mp->m_finobt_nores)) {
76d771b4
CH
1726 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1727 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1728 &tp);
1729 } else {
1730 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1731 }
88877d2b 1732 if (error) {
2451337d 1733 if (error == -ENOSPC) {
9d43b180
BF
1734 xfs_warn_ratelimited(mp,
1735 "Failed to remove inode(s) from unlinked list. "
1736 "Please free space, unmount and run xfs_repair.");
1737 } else {
1738 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1739 }
88877d2b
BF
1740 return error;
1741 }
1742
96355d5a
DC
1743 /*
1744 * We do not hold the inode locked across the entire rolling transaction
1745 * here. We only need to hold it for the first transaction that
1746 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1747 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1748 * here breaks the relationship between cluster buffer invalidation and
1749 * stale inode invalidation on cluster buffer item journal commit
1750 * completion, and can result in leaving dirty stale inodes hanging
1751 * around in memory.
1752 *
1753 * We have no need for serialising this inode operation against other
1754 * operations - we freed the inode and hence reallocation is required
1755 * and that will serialise on reallocating the space the deferops need
1756 * to free. Hence we can unlock the inode on the first commit of
1757 * the transaction rather than roll it right through the deferops. This
1758 * avoids relogging the XFS_ISTALE inode.
1759 *
1760 * We check that xfs_ifree() hasn't grown an internal transaction roll
1761 * by asserting that the inode is still locked when it returns.
1762 */
88877d2b 1763 xfs_ilock(ip, XFS_ILOCK_EXCL);
96355d5a 1764 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
88877d2b 1765
0e0417f3 1766 error = xfs_ifree(tp, ip);
96355d5a 1767 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
88877d2b
BF
1768 if (error) {
1769 /*
1770 * If we fail to free the inode, shut down. The cancel
1771 * might do that, we need to make sure. Otherwise the
1772 * inode might be lost for a long time or forever.
1773 */
1774 if (!XFS_FORCED_SHUTDOWN(mp)) {
1775 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1776 __func__, error);
1777 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1778 }
4906e215 1779 xfs_trans_cancel(tp);
88877d2b
BF
1780 return error;
1781 }
1782
1783 /*
1784 * Credit the quota account(s). The inode is gone.
1785 */
1786 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1787
1788 /*
d4a97a04
BF
1789 * Just ignore errors at this point. There is nothing we can do except
1790 * to try to keep going. Make sure it's not a silent error.
88877d2b 1791 */
70393313 1792 error = xfs_trans_commit(tp);
88877d2b
BF
1793 if (error)
1794 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1795 __func__, error);
1796
88877d2b
BF
1797 return 0;
1798}
1799
c24b5dfa
DC
1800/*
1801 * xfs_inactive
1802 *
1803 * This is called when the vnode reference count for the vnode
1804 * goes to zero. If the file has been unlinked, then it must
1805 * now be truncated. Also, we clear all of the read-ahead state
1806 * kept for the inode here since the file is now closed.
1807 */
74564fb4 1808void
c24b5dfa
DC
1809xfs_inactive(
1810 xfs_inode_t *ip)
1811{
3d3c8b52 1812 struct xfs_mount *mp;
3d3c8b52
JL
1813 int error;
1814 int truncate = 0;
c24b5dfa
DC
1815
1816 /*
1817 * If the inode is already free, then there can be nothing
1818 * to clean up here.
1819 */
c19b3b05 1820 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa 1821 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1822 return;
c24b5dfa
DC
1823 }
1824
1825 mp = ip->i_mount;
17c12bcd 1826 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1827
c24b5dfa
DC
1828 /* If this is a read-only mount, don't do this (would generate I/O) */
1829 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1830 return;
c24b5dfa 1831
6231848c 1832 /* Try to clean out the cow blocks if there are any. */
51d62690 1833 if (xfs_inode_has_cow_data(ip))
6231848c
DW
1834 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1835
54d7b5c1 1836 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1837 /*
1838 * force is true because we are evicting an inode from the
1839 * cache. Post-eof blocks must be freed, lest we end up with
1840 * broken free space accounting.
3b4683c2
BF
1841 *
1842 * Note: don't bother with iolock here since lockdep complains
1843 * about acquiring it in reclaim context. We have the only
1844 * reference to the inode at this point anyways.
c24b5dfa 1845 */
3b4683c2 1846 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1847 xfs_free_eofblocks(ip);
74564fb4
BF
1848
1849 return;
c24b5dfa
DC
1850 }
1851
c19b3b05 1852 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa 1853 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
daf83964 1854 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
c24b5dfa
DC
1855 truncate = 1;
1856
c14cfcca 1857 error = xfs_qm_dqattach(ip);
c24b5dfa 1858 if (error)
74564fb4 1859 return;
c24b5dfa 1860
c19b3b05 1861 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1862 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1863 else if (truncate)
1864 error = xfs_inactive_truncate(ip);
1865 if (error)
74564fb4 1866 return;
c24b5dfa
DC
1867
1868 /*
1869 * If there are attributes associated with the file then blow them away
1870 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1871 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1872 */
6dfe5a04 1873 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1874 error = xfs_attr_inactive(ip);
1875 if (error)
74564fb4 1876 return;
c24b5dfa
DC
1877 }
1878
6dfe5a04 1879 ASSERT(!ip->i_afp);
6dfe5a04 1880 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1881
1882 /*
1883 * Free the inode.
1884 */
88877d2b
BF
1885 error = xfs_inactive_ifree(ip);
1886 if (error)
74564fb4 1887 return;
c24b5dfa
DC
1888
1889 /*
1890 * Release the dquots held by inode, if any.
1891 */
1892 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1893}
1894
9b247179
DW
1895/*
1896 * In-Core Unlinked List Lookups
1897 * =============================
1898 *
1899 * Every inode is supposed to be reachable from some other piece of metadata
1900 * with the exception of the root directory. Inodes with a connection to a
1901 * file descriptor but not linked from anywhere in the on-disk directory tree
1902 * are collectively known as unlinked inodes, though the filesystem itself
1903 * maintains links to these inodes so that on-disk metadata are consistent.
1904 *
1905 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1906 * header contains a number of buckets that point to an inode, and each inode
1907 * record has a pointer to the next inode in the hash chain. This
1908 * singly-linked list causes scaling problems in the iunlink remove function
1909 * because we must walk that list to find the inode that points to the inode
1910 * being removed from the unlinked hash bucket list.
1911 *
1912 * What if we modelled the unlinked list as a collection of records capturing
1913 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1914 * have a fast way to look up unlinked list predecessors, which avoids the
1915 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1916 * rhashtable.
1917 *
1918 * Because this is a backref cache, we ignore operational failures since the
1919 * iunlink code can fall back to the slow bucket walk. The only errors that
1920 * should bubble out are for obviously incorrect situations.
1921 *
1922 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1923 * access or have otherwise provided for concurrency control.
1924 */
1925
1926/* Capture a "X.next_unlinked = Y" relationship. */
1927struct xfs_iunlink {
1928 struct rhash_head iu_rhash_head;
1929 xfs_agino_t iu_agino; /* X */
1930 xfs_agino_t iu_next_unlinked; /* Y */
1931};
1932
1933/* Unlinked list predecessor lookup hashtable construction */
1934static int
1935xfs_iunlink_obj_cmpfn(
1936 struct rhashtable_compare_arg *arg,
1937 const void *obj)
1938{
1939 const xfs_agino_t *key = arg->key;
1940 const struct xfs_iunlink *iu = obj;
1941
1942 if (iu->iu_next_unlinked != *key)
1943 return 1;
1944 return 0;
1945}
1946
1947static const struct rhashtable_params xfs_iunlink_hash_params = {
1948 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1949 .key_len = sizeof(xfs_agino_t),
1950 .key_offset = offsetof(struct xfs_iunlink,
1951 iu_next_unlinked),
1952 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1953 .automatic_shrinking = true,
1954 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1955};
1956
1957/*
1958 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1959 * relation is found.
1960 */
1961static xfs_agino_t
1962xfs_iunlink_lookup_backref(
1963 struct xfs_perag *pag,
1964 xfs_agino_t agino)
1965{
1966 struct xfs_iunlink *iu;
1967
1968 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1969 xfs_iunlink_hash_params);
1970 return iu ? iu->iu_agino : NULLAGINO;
1971}
1972
1973/*
1974 * Take ownership of an iunlink cache entry and insert it into the hash table.
1975 * If successful, the entry will be owned by the cache; if not, it is freed.
1976 * Either way, the caller does not own @iu after this call.
1977 */
1978static int
1979xfs_iunlink_insert_backref(
1980 struct xfs_perag *pag,
1981 struct xfs_iunlink *iu)
1982{
1983 int error;
1984
1985 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1986 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1987 /*
1988 * Fail loudly if there already was an entry because that's a sign of
1989 * corruption of in-memory data. Also fail loudly if we see an error
1990 * code we didn't anticipate from the rhashtable code. Currently we
1991 * only anticipate ENOMEM.
1992 */
1993 if (error) {
1994 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1995 kmem_free(iu);
1996 }
1997 /*
1998 * Absorb any runtime errors that aren't a result of corruption because
1999 * this is a cache and we can always fall back to bucket list scanning.
2000 */
2001 if (error != 0 && error != -EEXIST)
2002 error = 0;
2003 return error;
2004}
2005
2006/* Remember that @prev_agino.next_unlinked = @this_agino. */
2007static int
2008xfs_iunlink_add_backref(
2009 struct xfs_perag *pag,
2010 xfs_agino_t prev_agino,
2011 xfs_agino_t this_agino)
2012{
2013 struct xfs_iunlink *iu;
2014
2015 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2016 return 0;
2017
707e0dda 2018 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
9b247179
DW
2019 iu->iu_agino = prev_agino;
2020 iu->iu_next_unlinked = this_agino;
2021
2022 return xfs_iunlink_insert_backref(pag, iu);
2023}
2024
2025/*
2026 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2027 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2028 * wasn't any such entry then we don't bother.
2029 */
2030static int
2031xfs_iunlink_change_backref(
2032 struct xfs_perag *pag,
2033 xfs_agino_t agino,
2034 xfs_agino_t next_unlinked)
2035{
2036 struct xfs_iunlink *iu;
2037 int error;
2038
2039 /* Look up the old entry; if there wasn't one then exit. */
2040 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2041 xfs_iunlink_hash_params);
2042 if (!iu)
2043 return 0;
2044
2045 /*
2046 * Remove the entry. This shouldn't ever return an error, but if we
2047 * couldn't remove the old entry we don't want to add it again to the
2048 * hash table, and if the entry disappeared on us then someone's
2049 * violated the locking rules and we need to fail loudly. Either way
2050 * we cannot remove the inode because internal state is or would have
2051 * been corrupt.
2052 */
2053 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2054 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2055 if (error)
2056 return error;
2057
2058 /* If there is no new next entry just free our item and return. */
2059 if (next_unlinked == NULLAGINO) {
2060 kmem_free(iu);
2061 return 0;
2062 }
2063
2064 /* Update the entry and re-add it to the hash table. */
2065 iu->iu_next_unlinked = next_unlinked;
2066 return xfs_iunlink_insert_backref(pag, iu);
2067}
2068
2069/* Set up the in-core predecessor structures. */
2070int
2071xfs_iunlink_init(
2072 struct xfs_perag *pag)
2073{
2074 return rhashtable_init(&pag->pagi_unlinked_hash,
2075 &xfs_iunlink_hash_params);
2076}
2077
2078/* Free the in-core predecessor structures. */
2079static void
2080xfs_iunlink_free_item(
2081 void *ptr,
2082 void *arg)
2083{
2084 struct xfs_iunlink *iu = ptr;
2085 bool *freed_anything = arg;
2086
2087 *freed_anything = true;
2088 kmem_free(iu);
2089}
2090
2091void
2092xfs_iunlink_destroy(
2093 struct xfs_perag *pag)
2094{
2095 bool freed_anything = false;
2096
2097 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2098 xfs_iunlink_free_item, &freed_anything);
2099
2100 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2101}
2102
9a4a5118
DW
2103/*
2104 * Point the AGI unlinked bucket at an inode and log the results. The caller
2105 * is responsible for validating the old value.
2106 */
2107STATIC int
2108xfs_iunlink_update_bucket(
2109 struct xfs_trans *tp,
2110 xfs_agnumber_t agno,
2111 struct xfs_buf *agibp,
2112 unsigned int bucket_index,
2113 xfs_agino_t new_agino)
2114{
370c782b 2115 struct xfs_agi *agi = agibp->b_addr;
9a4a5118
DW
2116 xfs_agino_t old_value;
2117 int offset;
2118
2119 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2120
2121 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2122 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2123 old_value, new_agino);
2124
2125 /*
2126 * We should never find the head of the list already set to the value
2127 * passed in because either we're adding or removing ourselves from the
2128 * head of the list.
2129 */
a5155b87 2130 if (old_value == new_agino) {
8d57c216 2131 xfs_buf_mark_corrupt(agibp);
9a4a5118 2132 return -EFSCORRUPTED;
a5155b87 2133 }
9a4a5118
DW
2134
2135 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2136 offset = offsetof(struct xfs_agi, agi_unlinked) +
2137 (sizeof(xfs_agino_t) * bucket_index);
2138 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2139 return 0;
2140}
2141
f2fc16a3
DW
2142/* Set an on-disk inode's next_unlinked pointer. */
2143STATIC void
2144xfs_iunlink_update_dinode(
2145 struct xfs_trans *tp,
2146 xfs_agnumber_t agno,
2147 xfs_agino_t agino,
2148 struct xfs_buf *ibp,
2149 struct xfs_dinode *dip,
2150 struct xfs_imap *imap,
2151 xfs_agino_t next_agino)
2152{
2153 struct xfs_mount *mp = tp->t_mountp;
2154 int offset;
2155
2156 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2157
2158 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2159 be32_to_cpu(dip->di_next_unlinked), next_agino);
2160
2161 dip->di_next_unlinked = cpu_to_be32(next_agino);
2162 offset = imap->im_boffset +
2163 offsetof(struct xfs_dinode, di_next_unlinked);
2164
2165 /* need to recalc the inode CRC if appropriate */
2166 xfs_dinode_calc_crc(mp, dip);
2167 xfs_trans_inode_buf(tp, ibp);
2168 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2169 xfs_inobp_check(mp, ibp);
2170}
2171
2172/* Set an in-core inode's unlinked pointer and return the old value. */
2173STATIC int
2174xfs_iunlink_update_inode(
2175 struct xfs_trans *tp,
2176 struct xfs_inode *ip,
2177 xfs_agnumber_t agno,
2178 xfs_agino_t next_agino,
2179 xfs_agino_t *old_next_agino)
2180{
2181 struct xfs_mount *mp = tp->t_mountp;
2182 struct xfs_dinode *dip;
2183 struct xfs_buf *ibp;
2184 xfs_agino_t old_value;
2185 int error;
2186
2187 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2188
c1995079 2189 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0);
f2fc16a3
DW
2190 if (error)
2191 return error;
2192
2193 /* Make sure the old pointer isn't garbage. */
2194 old_value = be32_to_cpu(dip->di_next_unlinked);
2195 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
a5155b87
DW
2196 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2197 sizeof(*dip), __this_address);
f2fc16a3
DW
2198 error = -EFSCORRUPTED;
2199 goto out;
2200 }
2201
2202 /*
2203 * Since we're updating a linked list, we should never find that the
2204 * current pointer is the same as the new value, unless we're
2205 * terminating the list.
2206 */
2207 *old_next_agino = old_value;
2208 if (old_value == next_agino) {
a5155b87
DW
2209 if (next_agino != NULLAGINO) {
2210 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2211 dip, sizeof(*dip), __this_address);
f2fc16a3 2212 error = -EFSCORRUPTED;
a5155b87 2213 }
f2fc16a3
DW
2214 goto out;
2215 }
2216
2217 /* Ok, update the new pointer. */
2218 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2219 ibp, dip, &ip->i_imap, next_agino);
2220 return 0;
2221out:
2222 xfs_trans_brelse(tp, ibp);
2223 return error;
2224}
2225
1da177e4 2226/*
c4a6bf7f
DW
2227 * This is called when the inode's link count has gone to 0 or we are creating
2228 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
54d7b5c1
DC
2229 *
2230 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2231 * list when the inode is freed.
1da177e4 2232 */
54d7b5c1 2233STATIC int
1da177e4 2234xfs_iunlink(
5837f625
DW
2235 struct xfs_trans *tp,
2236 struct xfs_inode *ip)
1da177e4 2237{
5837f625
DW
2238 struct xfs_mount *mp = tp->t_mountp;
2239 struct xfs_agi *agi;
5837f625 2240 struct xfs_buf *agibp;
86bfd375 2241 xfs_agino_t next_agino;
5837f625
DW
2242 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2243 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2244 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2245 int error;
1da177e4 2246
c4a6bf7f 2247 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 2248 ASSERT(VFS_I(ip)->i_mode != 0);
4664c66c 2249 trace_xfs_iunlink(ip);
1da177e4 2250
5837f625
DW
2251 /* Get the agi buffer first. It ensures lock ordering on the list. */
2252 error = xfs_read_agi(mp, tp, agno, &agibp);
859d7182 2253 if (error)
1da177e4 2254 return error;
370c782b 2255 agi = agibp->b_addr;
5e1be0fb 2256
1da177e4 2257 /*
86bfd375
DW
2258 * Get the index into the agi hash table for the list this inode will
2259 * go on. Make sure the pointer isn't garbage and that this inode
2260 * isn't already on the list.
1da177e4 2261 */
86bfd375
DW
2262 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2263 if (next_agino == agino ||
a5155b87 2264 !xfs_verify_agino_or_null(mp, agno, next_agino)) {
8d57c216 2265 xfs_buf_mark_corrupt(agibp);
86bfd375 2266 return -EFSCORRUPTED;
a5155b87 2267 }
1da177e4 2268
86bfd375 2269 if (next_agino != NULLAGINO) {
9b247179
DW
2270 struct xfs_perag *pag;
2271 xfs_agino_t old_agino;
f2fc16a3 2272
1da177e4 2273 /*
f2fc16a3
DW
2274 * There is already another inode in the bucket, so point this
2275 * inode to the current head of the list.
1da177e4 2276 */
f2fc16a3
DW
2277 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2278 &old_agino);
c319b58b
VA
2279 if (error)
2280 return error;
f2fc16a3 2281 ASSERT(old_agino == NULLAGINO);
9b247179
DW
2282
2283 /*
2284 * agino has been unlinked, add a backref from the next inode
2285 * back to agino.
2286 */
2287 pag = xfs_perag_get(mp, agno);
2288 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2289 xfs_perag_put(pag);
2290 if (error)
2291 return error;
1da177e4
LT
2292 }
2293
9a4a5118
DW
2294 /* Point the head of the list to point to this inode. */
2295 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
1da177e4
LT
2296}
2297
23ffa52c
DW
2298/* Return the imap, dinode pointer, and buffer for an inode. */
2299STATIC int
2300xfs_iunlink_map_ino(
2301 struct xfs_trans *tp,
2302 xfs_agnumber_t agno,
2303 xfs_agino_t agino,
2304 struct xfs_imap *imap,
2305 struct xfs_dinode **dipp,
2306 struct xfs_buf **bpp)
2307{
2308 struct xfs_mount *mp = tp->t_mountp;
2309 int error;
2310
2311 imap->im_blkno = 0;
2312 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2313 if (error) {
2314 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2315 __func__, error);
2316 return error;
2317 }
2318
c1995079 2319 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0);
23ffa52c
DW
2320 if (error) {
2321 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2322 __func__, error);
2323 return error;
2324 }
2325
2326 return 0;
2327}
2328
2329/*
2330 * Walk the unlinked chain from @head_agino until we find the inode that
2331 * points to @target_agino. Return the inode number, map, dinode pointer,
2332 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2333 *
2334 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2335 * @agino, @imap, @dipp, and @bpp are all output parameters.
2336 *
2337 * Do not call this function if @target_agino is the head of the list.
2338 */
2339STATIC int
2340xfs_iunlink_map_prev(
2341 struct xfs_trans *tp,
2342 xfs_agnumber_t agno,
2343 xfs_agino_t head_agino,
2344 xfs_agino_t target_agino,
2345 xfs_agino_t *agino,
2346 struct xfs_imap *imap,
2347 struct xfs_dinode **dipp,
9b247179
DW
2348 struct xfs_buf **bpp,
2349 struct xfs_perag *pag)
23ffa52c
DW
2350{
2351 struct xfs_mount *mp = tp->t_mountp;
2352 xfs_agino_t next_agino;
2353 int error;
2354
2355 ASSERT(head_agino != target_agino);
2356 *bpp = NULL;
2357
9b247179
DW
2358 /* See if our backref cache can find it faster. */
2359 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2360 if (*agino != NULLAGINO) {
2361 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2362 if (error)
2363 return error;
2364
2365 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2366 return 0;
2367
2368 /*
2369 * If we get here the cache contents were corrupt, so drop the
2370 * buffer and fall back to walking the bucket list.
2371 */
2372 xfs_trans_brelse(tp, *bpp);
2373 *bpp = NULL;
2374 WARN_ON_ONCE(1);
2375 }
2376
2377 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2378
2379 /* Otherwise, walk the entire bucket until we find it. */
23ffa52c
DW
2380 next_agino = head_agino;
2381 while (next_agino != target_agino) {
2382 xfs_agino_t unlinked_agino;
2383
2384 if (*bpp)
2385 xfs_trans_brelse(tp, *bpp);
2386
2387 *agino = next_agino;
2388 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2389 bpp);
2390 if (error)
2391 return error;
2392
2393 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2394 /*
2395 * Make sure this pointer is valid and isn't an obvious
2396 * infinite loop.
2397 */
2398 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2399 next_agino == unlinked_agino) {
2400 XFS_CORRUPTION_ERROR(__func__,
2401 XFS_ERRLEVEL_LOW, mp,
2402 *dipp, sizeof(**dipp));
2403 error = -EFSCORRUPTED;
2404 return error;
2405 }
2406 next_agino = unlinked_agino;
2407 }
2408
2409 return 0;
2410}
2411
1da177e4
LT
2412/*
2413 * Pull the on-disk inode from the AGI unlinked list.
2414 */
2415STATIC int
2416xfs_iunlink_remove(
5837f625
DW
2417 struct xfs_trans *tp,
2418 struct xfs_inode *ip)
1da177e4 2419{
5837f625
DW
2420 struct xfs_mount *mp = tp->t_mountp;
2421 struct xfs_agi *agi;
5837f625 2422 struct xfs_buf *agibp;
5837f625
DW
2423 struct xfs_buf *last_ibp;
2424 struct xfs_dinode *last_dip = NULL;
9b247179 2425 struct xfs_perag *pag = NULL;
5837f625
DW
2426 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2427 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2428 xfs_agino_t next_agino;
b1d2a068 2429 xfs_agino_t head_agino;
5837f625 2430 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2431 int error;
1da177e4 2432
4664c66c
DW
2433 trace_xfs_iunlink_remove(ip);
2434
5837f625 2435 /* Get the agi buffer first. It ensures lock ordering on the list. */
5e1be0fb
CH
2436 error = xfs_read_agi(mp, tp, agno, &agibp);
2437 if (error)
1da177e4 2438 return error;
370c782b 2439 agi = agibp->b_addr;
5e1be0fb 2440
1da177e4 2441 /*
86bfd375
DW
2442 * Get the index into the agi hash table for the list this inode will
2443 * go on. Make sure the head pointer isn't garbage.
1da177e4 2444 */
b1d2a068
DW
2445 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2446 if (!xfs_verify_agino(mp, agno, head_agino)) {
d2e73665
DW
2447 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2448 agi, sizeof(*agi));
2449 return -EFSCORRUPTED;
2450 }
1da177e4 2451
b1d2a068
DW
2452 /*
2453 * Set our inode's next_unlinked pointer to NULL and then return
2454 * the old pointer value so that we can update whatever was previous
2455 * to us in the list to point to whatever was next in the list.
2456 */
2457 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2458 if (error)
2459 return error;
9a4a5118 2460
9b247179
DW
2461 /*
2462 * If there was a backref pointing from the next inode back to this
2463 * one, remove it because we've removed this inode from the list.
2464 *
2465 * Later, if this inode was in the middle of the list we'll update
2466 * this inode's backref to point from the next inode.
2467 */
2468 if (next_agino != NULLAGINO) {
2469 pag = xfs_perag_get(mp, agno);
2470 error = xfs_iunlink_change_backref(pag, next_agino,
2471 NULLAGINO);
2472 if (error)
2473 goto out;
2474 }
2475
b1d2a068 2476 if (head_agino == agino) {
9a4a5118
DW
2477 /* Point the head of the list to the next unlinked inode. */
2478 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2479 next_agino);
2480 if (error)
9b247179 2481 goto out;
1da177e4 2482 } else {
f2fc16a3
DW
2483 struct xfs_imap imap;
2484 xfs_agino_t prev_agino;
2485
9b247179
DW
2486 if (!pag)
2487 pag = xfs_perag_get(mp, agno);
2488
23ffa52c 2489 /* We need to search the list for the inode being freed. */
b1d2a068 2490 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
9b247179
DW
2491 &prev_agino, &imap, &last_dip, &last_ibp,
2492 pag);
23ffa52c 2493 if (error)
9b247179 2494 goto out;
475ee413 2495
f2fc16a3
DW
2496 /* Point the previous inode on the list to the next inode. */
2497 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2498 last_dip, &imap, next_agino);
9b247179
DW
2499
2500 /*
2501 * Now we deal with the backref for this inode. If this inode
2502 * pointed at a real inode, change the backref that pointed to
2503 * us to point to our old next. If this inode was the end of
2504 * the list, delete the backref that pointed to us. Note that
2505 * change_backref takes care of deleting the backref if
2506 * next_agino is NULLAGINO.
2507 */
2508 error = xfs_iunlink_change_backref(pag, agino, next_agino);
2509 if (error)
2510 goto out;
1da177e4 2511 }
9b247179
DW
2512
2513out:
2514 if (pag)
2515 xfs_perag_put(pag);
2516 return error;
1da177e4
LT
2517}
2518
5806165a 2519/*
71e3e356
DC
2520 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2521 * mark it stale. We should only find clean inodes in this lookup that aren't
2522 * already stale.
5806165a 2523 */
71e3e356
DC
2524static void
2525xfs_ifree_mark_inode_stale(
2526 struct xfs_buf *bp,
5806165a 2527 struct xfs_inode *free_ip,
d9fdd0ad 2528 xfs_ino_t inum)
5806165a 2529{
71e3e356
DC
2530 struct xfs_mount *mp = bp->b_mount;
2531 struct xfs_perag *pag = bp->b_pag;
2532 struct xfs_inode_log_item *iip;
5806165a
DC
2533 struct xfs_inode *ip;
2534
2535retry:
2536 rcu_read_lock();
2537 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2538
2539 /* Inode not in memory, nothing to do */
71e3e356
DC
2540 if (!ip) {
2541 rcu_read_unlock();
2542 return;
2543 }
5806165a
DC
2544
2545 /*
2546 * because this is an RCU protected lookup, we could find a recently
2547 * freed or even reallocated inode during the lookup. We need to check
2548 * under the i_flags_lock for a valid inode here. Skip it if it is not
2549 * valid, the wrong inode or stale.
2550 */
2551 spin_lock(&ip->i_flags_lock);
2552 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) {
2553 spin_unlock(&ip->i_flags_lock);
71e3e356
DC
2554 rcu_read_unlock();
2555 return;
5806165a 2556 }
5806165a
DC
2557
2558 /*
2559 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2560 * other inodes that we did not find in the list attached to the buffer
2561 * and are not already marked stale. If we can't lock it, back off and
2562 * retry.
2563 */
2564 if (ip != free_ip) {
2565 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
71e3e356 2566 spin_unlock(&ip->i_flags_lock);
5806165a
DC
2567 rcu_read_unlock();
2568 delay(1);
2569 goto retry;
2570 }
5806165a 2571 }
71e3e356
DC
2572 ip->i_flags |= XFS_ISTALE;
2573 spin_unlock(&ip->i_flags_lock);
5806165a
DC
2574 rcu_read_unlock();
2575
71e3e356
DC
2576 /*
2577 * If we can't get the flush lock, the inode is already attached. All
2578 * we needed to do here is mark the inode stale so buffer IO completion
2579 * will remove it from the AIL.
2580 */
2581 iip = ip->i_itemp;
2582 if (!xfs_iflock_nowait(ip)) {
2583 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2584 ASSERT(iip->ili_last_fields);
2585 goto out_iunlock;
2586 }
5806165a
DC
2587
2588 /*
48d55e2a
DC
2589 * Inodes not attached to the buffer can be released immediately.
2590 * Everything else has to go through xfs_iflush_abort() on journal
2591 * commit as the flock synchronises removal of the inode from the
2592 * cluster buffer against inode reclaim.
5806165a 2593 */
48d55e2a 2594 if (!iip || list_empty(&iip->ili_item.li_bio_list)) {
5806165a 2595 xfs_ifunlock(ip);
71e3e356 2596 goto out_iunlock;
5806165a 2597 }
5806165a 2598
71e3e356 2599 /* we have a dirty inode in memory that has not yet been flushed. */
71e3e356
DC
2600 spin_lock(&iip->ili_lock);
2601 iip->ili_last_fields = iip->ili_fields;
2602 iip->ili_fields = 0;
2603 iip->ili_fsync_fields = 0;
2604 spin_unlock(&iip->ili_lock);
71e3e356
DC
2605 ASSERT(iip->ili_last_fields);
2606
2607out_iunlock:
2608 if (ip != free_ip)
2609 xfs_iunlock(ip, XFS_ILOCK_EXCL);
5806165a
DC
2610}
2611
5b3eed75 2612/*
0b8182db 2613 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2614 * inodes that are in memory - they all must be marked stale and attached to
2615 * the cluster buffer.
2616 */
2a30f36d 2617STATIC int
1da177e4 2618xfs_ifree_cluster(
71e3e356
DC
2619 struct xfs_inode *free_ip,
2620 struct xfs_trans *tp,
09b56604 2621 struct xfs_icluster *xic)
1da177e4 2622{
71e3e356
DC
2623 struct xfs_mount *mp = free_ip->i_mount;
2624 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2625 struct xfs_buf *bp;
2626 xfs_daddr_t blkno;
2627 xfs_ino_t inum = xic->first_ino;
1da177e4 2628 int nbufs;
5b257b4a 2629 int i, j;
3cdaa189 2630 int ioffset;
ce92464c 2631 int error;
1da177e4 2632
ef325959 2633 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1da177e4 2634
ef325959 2635 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
09b56604
BF
2636 /*
2637 * The allocation bitmap tells us which inodes of the chunk were
2638 * physically allocated. Skip the cluster if an inode falls into
2639 * a sparse region.
2640 */
3cdaa189
BF
2641 ioffset = inum - xic->first_ino;
2642 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
ef325959 2643 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
09b56604
BF
2644 continue;
2645 }
2646
1da177e4
LT
2647 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2648 XFS_INO_TO_AGBNO(mp, inum));
2649
5b257b4a
DC
2650 /*
2651 * We obtain and lock the backing buffer first in the process
2652 * here, as we have to ensure that any dirty inode that we
2653 * can't get the flush lock on is attached to the buffer.
2654 * If we scan the in-memory inodes first, then buffer IO can
2655 * complete before we get a lock on it, and hence we may fail
2656 * to mark all the active inodes on the buffer stale.
2657 */
ce92464c
DW
2658 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2659 mp->m_bsize * igeo->blocks_per_cluster,
2660 XBF_UNMAPPED, &bp);
71e3e356 2661 if (error)
ce92464c 2662 return error;
b0f539de
DC
2663
2664 /*
2665 * This buffer may not have been correctly initialised as we
2666 * didn't read it from disk. That's not important because we are
2667 * only using to mark the buffer as stale in the log, and to
2668 * attach stale cached inodes on it. That means it will never be
2669 * dispatched for IO. If it is, we want to know about it, and we
2670 * want it to fail. We can acheive this by adding a write
2671 * verifier to the buffer.
2672 */
8c4ce794 2673 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2674
5b257b4a 2675 /*
71e3e356
DC
2676 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2677 * too. This requires lookups, and will skip inodes that we've
2678 * already marked XFS_ISTALE.
1da177e4 2679 */
71e3e356
DC
2680 for (i = 0; i < igeo->inodes_per_cluster; i++)
2681 xfs_ifree_mark_inode_stale(bp, free_ip, inum + i);
1da177e4 2682
5b3eed75 2683 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2684 xfs_trans_binval(tp, bp);
2685 }
2a30f36d 2686 return 0;
1da177e4
LT
2687}
2688
2689/*
2690 * This is called to return an inode to the inode free list.
2691 * The inode should already be truncated to 0 length and have
2692 * no pages associated with it. This routine also assumes that
2693 * the inode is already a part of the transaction.
2694 *
2695 * The on-disk copy of the inode will have been added to the list
2696 * of unlinked inodes in the AGI. We need to remove the inode from
2697 * that list atomically with respect to freeing it here.
2698 */
2699int
2700xfs_ifree(
0e0417f3
BF
2701 struct xfs_trans *tp,
2702 struct xfs_inode *ip)
1da177e4
LT
2703{
2704 int error;
09b56604 2705 struct xfs_icluster xic = { 0 };
1319ebef 2706 struct xfs_inode_log_item *iip = ip->i_itemp;
1da177e4 2707
579aa9ca 2708 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2709 ASSERT(VFS_I(ip)->i_nlink == 0);
daf83964 2710 ASSERT(ip->i_df.if_nextents == 0);
c19b3b05 2711 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2712 ASSERT(ip->i_d.di_nblocks == 0);
2713
2714 /*
2715 * Pull the on-disk inode from the AGI unlinked list.
2716 */
2717 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2718 if (error)
1da177e4 2719 return error;
1da177e4 2720
0e0417f3 2721 error = xfs_difree(tp, ip->i_ino, &xic);
1baaed8f 2722 if (error)
1da177e4 2723 return error;
1baaed8f 2724
b2c20045
CH
2725 /*
2726 * Free any local-format data sitting around before we reset the
2727 * data fork to extents format. Note that the attr fork data has
2728 * already been freed by xfs_attr_inactive.
2729 */
f7e67b20 2730 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
b2c20045
CH
2731 kmem_free(ip->i_df.if_u1.if_data);
2732 ip->i_df.if_u1.if_data = NULL;
2733 ip->i_df.if_bytes = 0;
2734 }
98c4f78d 2735
c19b3b05 2736 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4 2737 ip->i_d.di_flags = 0;
beaae8cd 2738 ip->i_d.di_flags2 = 0;
1da177e4
LT
2739 ip->i_d.di_dmevmask = 0;
2740 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
f7e67b20 2741 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
dc1baa71
ES
2742
2743 /* Don't attempt to replay owner changes for a deleted inode */
1319ebef
DC
2744 spin_lock(&iip->ili_lock);
2745 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2746 spin_unlock(&iip->ili_lock);
dc1baa71 2747
1da177e4
LT
2748 /*
2749 * Bump the generation count so no one will be confused
2750 * by reincarnations of this inode.
2751 */
9e9a2674 2752 VFS_I(ip)->i_generation++;
1da177e4
LT
2753 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2754
09b56604
BF
2755 if (xic.deleted)
2756 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2757
2a30f36d 2758 return error;
1da177e4
LT
2759}
2760
1da177e4 2761/*
60ec6783
CH
2762 * This is called to unpin an inode. The caller must have the inode locked
2763 * in at least shared mode so that the buffer cannot be subsequently pinned
2764 * once someone is waiting for it to be unpinned.
1da177e4 2765 */
60ec6783 2766static void
f392e631 2767xfs_iunpin(
60ec6783 2768 struct xfs_inode *ip)
1da177e4 2769{
579aa9ca 2770 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2771
4aaf15d1
DC
2772 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2773
a3f74ffb 2774 /* Give the log a push to start the unpinning I/O */
656de4ff 2775 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
a14a348b 2776
a3f74ffb 2777}
1da177e4 2778
f392e631
CH
2779static void
2780__xfs_iunpin_wait(
2781 struct xfs_inode *ip)
2782{
2783 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2784 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2785
2786 xfs_iunpin(ip);
2787
2788 do {
21417136 2789 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2790 if (xfs_ipincount(ip))
2791 io_schedule();
2792 } while (xfs_ipincount(ip));
21417136 2793 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2794}
2795
777df5af 2796void
a3f74ffb 2797xfs_iunpin_wait(
60ec6783 2798 struct xfs_inode *ip)
a3f74ffb 2799{
f392e631
CH
2800 if (xfs_ipincount(ip))
2801 __xfs_iunpin_wait(ip);
1da177e4
LT
2802}
2803
27320369
DC
2804/*
2805 * Removing an inode from the namespace involves removing the directory entry
2806 * and dropping the link count on the inode. Removing the directory entry can
2807 * result in locking an AGF (directory blocks were freed) and removing a link
2808 * count can result in placing the inode on an unlinked list which results in
2809 * locking an AGI.
2810 *
2811 * The big problem here is that we have an ordering constraint on AGF and AGI
2812 * locking - inode allocation locks the AGI, then can allocate a new extent for
2813 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2814 * removes the inode from the unlinked list, requiring that we lock the AGI
2815 * first, and then freeing the inode can result in an inode chunk being freed
2816 * and hence freeing disk space requiring that we lock an AGF.
2817 *
2818 * Hence the ordering that is imposed by other parts of the code is AGI before
2819 * AGF. This means we cannot remove the directory entry before we drop the inode
2820 * reference count and put it on the unlinked list as this results in a lock
2821 * order of AGF then AGI, and this can deadlock against inode allocation and
2822 * freeing. Therefore we must drop the link counts before we remove the
2823 * directory entry.
2824 *
2825 * This is still safe from a transactional point of view - it is not until we
310a75a3 2826 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2827 * transactions in this operation. Hence as long as we remove the directory
2828 * entry and drop the link count in the first transaction of the remove
2829 * operation, there are no transactional constraints on the ordering here.
2830 */
c24b5dfa
DC
2831int
2832xfs_remove(
2833 xfs_inode_t *dp,
2834 struct xfs_name *name,
2835 xfs_inode_t *ip)
2836{
2837 xfs_mount_t *mp = dp->i_mount;
2838 xfs_trans_t *tp = NULL;
c19b3b05 2839 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2840 int error = 0;
c24b5dfa 2841 uint resblks;
c24b5dfa
DC
2842
2843 trace_xfs_remove(dp, name);
2844
2845 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2846 return -EIO;
c24b5dfa 2847
c14cfcca 2848 error = xfs_qm_dqattach(dp);
c24b5dfa
DC
2849 if (error)
2850 goto std_return;
2851
c14cfcca 2852 error = xfs_qm_dqattach(ip);
c24b5dfa
DC
2853 if (error)
2854 goto std_return;
2855
c24b5dfa
DC
2856 /*
2857 * We try to get the real space reservation first,
2858 * allowing for directory btree deletion(s) implying
2859 * possible bmap insert(s). If we can't get the space
2860 * reservation then we use 0 instead, and avoid the bmap
2861 * btree insert(s) in the directory code by, if the bmap
2862 * insert tries to happen, instead trimming the LAST
2863 * block from the directory.
2864 */
2865 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2866 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2867 if (error == -ENOSPC) {
c24b5dfa 2868 resblks = 0;
253f4911
CH
2869 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2870 &tp);
c24b5dfa
DC
2871 }
2872 if (error) {
2451337d 2873 ASSERT(error != -ENOSPC);
253f4911 2874 goto std_return;
c24b5dfa
DC
2875 }
2876
7c2d238a 2877 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
c24b5dfa 2878
65523218 2879 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2880 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2881
2882 /*
2883 * If we're removing a directory perform some additional validation.
2884 */
2885 if (is_dir) {
54d7b5c1
DC
2886 ASSERT(VFS_I(ip)->i_nlink >= 2);
2887 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2888 error = -ENOTEMPTY;
c24b5dfa
DC
2889 goto out_trans_cancel;
2890 }
2891 if (!xfs_dir_isempty(ip)) {
2451337d 2892 error = -ENOTEMPTY;
c24b5dfa
DC
2893 goto out_trans_cancel;
2894 }
c24b5dfa 2895
27320369 2896 /* Drop the link from ip's "..". */
c24b5dfa
DC
2897 error = xfs_droplink(tp, dp);
2898 if (error)
27320369 2899 goto out_trans_cancel;
c24b5dfa 2900
27320369 2901 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2902 error = xfs_droplink(tp, ip);
2903 if (error)
27320369 2904 goto out_trans_cancel;
c24b5dfa
DC
2905 } else {
2906 /*
2907 * When removing a non-directory we need to log the parent
2908 * inode here. For a directory this is done implicitly
2909 * by the xfs_droplink call for the ".." entry.
2910 */
2911 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2912 }
27320369 2913 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2914
27320369 2915 /* Drop the link from dp to ip. */
c24b5dfa
DC
2916 error = xfs_droplink(tp, ip);
2917 if (error)
27320369 2918 goto out_trans_cancel;
c24b5dfa 2919
381eee69 2920 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
27320369 2921 if (error) {
2451337d 2922 ASSERT(error != -ENOENT);
c8eac49e 2923 goto out_trans_cancel;
27320369
DC
2924 }
2925
c24b5dfa
DC
2926 /*
2927 * If this is a synchronous mount, make sure that the
2928 * remove transaction goes to disk before returning to
2929 * the user.
2930 */
2931 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2932 xfs_trans_set_sync(tp);
2933
70393313 2934 error = xfs_trans_commit(tp);
c24b5dfa
DC
2935 if (error)
2936 goto std_return;
2937
2cd2ef6a 2938 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2939 xfs_filestream_deassociate(ip);
2940
2941 return 0;
2942
c24b5dfa 2943 out_trans_cancel:
4906e215 2944 xfs_trans_cancel(tp);
c24b5dfa
DC
2945 std_return:
2946 return error;
2947}
2948
f6bba201
DC
2949/*
2950 * Enter all inodes for a rename transaction into a sorted array.
2951 */
95afcf5c 2952#define __XFS_SORT_INODES 5
f6bba201
DC
2953STATIC void
2954xfs_sort_for_rename(
95afcf5c
DC
2955 struct xfs_inode *dp1, /* in: old (source) directory inode */
2956 struct xfs_inode *dp2, /* in: new (target) directory inode */
2957 struct xfs_inode *ip1, /* in: inode of old entry */
2958 struct xfs_inode *ip2, /* in: inode of new entry */
2959 struct xfs_inode *wip, /* in: whiteout inode */
2960 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2961 int *num_inodes) /* in/out: inodes in array */
f6bba201 2962{
f6bba201
DC
2963 int i, j;
2964
95afcf5c
DC
2965 ASSERT(*num_inodes == __XFS_SORT_INODES);
2966 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2967
f6bba201
DC
2968 /*
2969 * i_tab contains a list of pointers to inodes. We initialize
2970 * the table here & we'll sort it. We will then use it to
2971 * order the acquisition of the inode locks.
2972 *
2973 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2974 */
95afcf5c
DC
2975 i = 0;
2976 i_tab[i++] = dp1;
2977 i_tab[i++] = dp2;
2978 i_tab[i++] = ip1;
2979 if (ip2)
2980 i_tab[i++] = ip2;
2981 if (wip)
2982 i_tab[i++] = wip;
2983 *num_inodes = i;
f6bba201
DC
2984
2985 /*
2986 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2987 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2988 */
2989 for (i = 0; i < *num_inodes; i++) {
2990 for (j = 1; j < *num_inodes; j++) {
2991 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2992 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2993 i_tab[j] = i_tab[j-1];
2994 i_tab[j-1] = temp;
2995 }
2996 }
2997 }
2998}
2999
310606b0
DC
3000static int
3001xfs_finish_rename(
c9cfdb38 3002 struct xfs_trans *tp)
310606b0 3003{
310606b0
DC
3004 /*
3005 * If this is a synchronous mount, make sure that the rename transaction
3006 * goes to disk before returning to the user.
3007 */
3008 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3009 xfs_trans_set_sync(tp);
3010
70393313 3011 return xfs_trans_commit(tp);
310606b0
DC
3012}
3013
d31a1825
CM
3014/*
3015 * xfs_cross_rename()
3016 *
3017 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3018 */
3019STATIC int
3020xfs_cross_rename(
3021 struct xfs_trans *tp,
3022 struct xfs_inode *dp1,
3023 struct xfs_name *name1,
3024 struct xfs_inode *ip1,
3025 struct xfs_inode *dp2,
3026 struct xfs_name *name2,
3027 struct xfs_inode *ip2,
d31a1825
CM
3028 int spaceres)
3029{
3030 int error = 0;
3031 int ip1_flags = 0;
3032 int ip2_flags = 0;
3033 int dp2_flags = 0;
3034
3035 /* Swap inode number for dirent in first parent */
381eee69 3036 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
d31a1825 3037 if (error)
eeacd321 3038 goto out_trans_abort;
d31a1825
CM
3039
3040 /* Swap inode number for dirent in second parent */
381eee69 3041 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
d31a1825 3042 if (error)
eeacd321 3043 goto out_trans_abort;
d31a1825
CM
3044
3045 /*
3046 * If we're renaming one or more directories across different parents,
3047 * update the respective ".." entries (and link counts) to match the new
3048 * parents.
3049 */
3050 if (dp1 != dp2) {
3051 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3052
c19b3b05 3053 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825 3054 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
381eee69 3055 dp1->i_ino, spaceres);
d31a1825 3056 if (error)
eeacd321 3057 goto out_trans_abort;
d31a1825
CM
3058
3059 /* transfer ip2 ".." reference to dp1 */
c19b3b05 3060 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
3061 error = xfs_droplink(tp, dp2);
3062 if (error)
eeacd321 3063 goto out_trans_abort;
91083269 3064 xfs_bumplink(tp, dp1);
d31a1825
CM
3065 }
3066
3067 /*
3068 * Although ip1 isn't changed here, userspace needs
3069 * to be warned about the change, so that applications
3070 * relying on it (like backup ones), will properly
3071 * notify the change
3072 */
3073 ip1_flags |= XFS_ICHGTIME_CHG;
3074 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3075 }
3076
c19b3b05 3077 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825 3078 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
381eee69 3079 dp2->i_ino, spaceres);
d31a1825 3080 if (error)
eeacd321 3081 goto out_trans_abort;
d31a1825
CM
3082
3083 /* transfer ip1 ".." reference to dp2 */
c19b3b05 3084 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
3085 error = xfs_droplink(tp, dp1);
3086 if (error)
eeacd321 3087 goto out_trans_abort;
91083269 3088 xfs_bumplink(tp, dp2);
d31a1825
CM
3089 }
3090
3091 /*
3092 * Although ip2 isn't changed here, userspace needs
3093 * to be warned about the change, so that applications
3094 * relying on it (like backup ones), will properly
3095 * notify the change
3096 */
3097 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3098 ip2_flags |= XFS_ICHGTIME_CHG;
3099 }
3100 }
3101
3102 if (ip1_flags) {
3103 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3104 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3105 }
3106 if (ip2_flags) {
3107 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3108 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3109 }
3110 if (dp2_flags) {
3111 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3112 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3113 }
3114 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3115 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
c9cfdb38 3116 return xfs_finish_rename(tp);
eeacd321
DC
3117
3118out_trans_abort:
4906e215 3119 xfs_trans_cancel(tp);
d31a1825
CM
3120 return error;
3121}
3122
7dcf5c3e
DC
3123/*
3124 * xfs_rename_alloc_whiteout()
3125 *
3126 * Return a referenced, unlinked, unlocked inode that that can be used as a
3127 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3128 * crash between allocating the inode and linking it into the rename transaction
3129 * recovery will free the inode and we won't leak it.
3130 */
3131static int
3132xfs_rename_alloc_whiteout(
3133 struct xfs_inode *dp,
3134 struct xfs_inode **wip)
3135{
3136 struct xfs_inode *tmpfile;
3137 int error;
3138
a1f69417 3139 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
7dcf5c3e
DC
3140 if (error)
3141 return error;
3142
22419ac9
BF
3143 /*
3144 * Prepare the tmpfile inode as if it were created through the VFS.
c4a6bf7f
DW
3145 * Complete the inode setup and flag it as linkable. nlink is already
3146 * zero, so we can skip the drop_nlink.
22419ac9 3147 */
2b3d1d41 3148 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
3149 xfs_finish_inode_setup(tmpfile);
3150 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3151
3152 *wip = tmpfile;
3153 return 0;
3154}
3155
f6bba201
DC
3156/*
3157 * xfs_rename
3158 */
3159int
3160xfs_rename(
7dcf5c3e
DC
3161 struct xfs_inode *src_dp,
3162 struct xfs_name *src_name,
3163 struct xfs_inode *src_ip,
3164 struct xfs_inode *target_dp,
3165 struct xfs_name *target_name,
3166 struct xfs_inode *target_ip,
3167 unsigned int flags)
f6bba201 3168{
7dcf5c3e
DC
3169 struct xfs_mount *mp = src_dp->i_mount;
3170 struct xfs_trans *tp;
7dcf5c3e
DC
3171 struct xfs_inode *wip = NULL; /* whiteout inode */
3172 struct xfs_inode *inodes[__XFS_SORT_INODES];
93597ae8 3173 struct xfs_buf *agibp;
7dcf5c3e 3174 int num_inodes = __XFS_SORT_INODES;
2b93681f 3175 bool new_parent = (src_dp != target_dp);
c19b3b05 3176 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
3177 int spaceres;
3178 int error;
f6bba201
DC
3179
3180 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3181
eeacd321
DC
3182 if ((flags & RENAME_EXCHANGE) && !target_ip)
3183 return -EINVAL;
3184
7dcf5c3e
DC
3185 /*
3186 * If we are doing a whiteout operation, allocate the whiteout inode
3187 * we will be placing at the target and ensure the type is set
3188 * appropriately.
3189 */
3190 if (flags & RENAME_WHITEOUT) {
3191 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3192 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3193 if (error)
3194 return error;
3195
3196 /* setup target dirent info as whiteout */
3197 src_name->type = XFS_DIR3_FT_CHRDEV;
3198 }
f6bba201 3199
7dcf5c3e 3200 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
3201 inodes, &num_inodes);
3202
f6bba201 3203 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 3204 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 3205 if (error == -ENOSPC) {
f6bba201 3206 spaceres = 0;
253f4911
CH
3207 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3208 &tp);
f6bba201 3209 }
445883e8 3210 if (error)
253f4911 3211 goto out_release_wip;
f6bba201
DC
3212
3213 /*
3214 * Attach the dquots to the inodes
3215 */
3216 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
3217 if (error)
3218 goto out_trans_cancel;
f6bba201
DC
3219
3220 /*
3221 * Lock all the participating inodes. Depending upon whether
3222 * the target_name exists in the target directory, and
3223 * whether the target directory is the same as the source
3224 * directory, we can lock from 2 to 4 inodes.
3225 */
3226 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3227
3228 /*
3229 * Join all the inodes to the transaction. From this point on,
3230 * we can rely on either trans_commit or trans_cancel to unlock
3231 * them.
3232 */
65523218 3233 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 3234 if (new_parent)
65523218 3235 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
3236 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3237 if (target_ip)
3238 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
3239 if (wip)
3240 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
3241
3242 /*
3243 * If we are using project inheritance, we only allow renames
3244 * into our tree when the project IDs are the same; else the
3245 * tree quota mechanism would be circumvented.
3246 */
3247 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
de7a866f 3248 target_dp->i_d.di_projid != src_ip->i_d.di_projid)) {
2451337d 3249 error = -EXDEV;
445883e8 3250 goto out_trans_cancel;
f6bba201
DC
3251 }
3252
eeacd321
DC
3253 /* RENAME_EXCHANGE is unique from here on. */
3254 if (flags & RENAME_EXCHANGE)
3255 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3256 target_dp, target_name, target_ip,
f16dea54 3257 spaceres);
d31a1825 3258
f6bba201 3259 /*
bc56ad8c 3260 * Check for expected errors before we dirty the transaction
3261 * so we can return an error without a transaction abort.
f6bba201
DC
3262 */
3263 if (target_ip == NULL) {
3264 /*
3265 * If there's no space reservation, check the entry will
3266 * fit before actually inserting it.
3267 */
94f3cad5
ES
3268 if (!spaceres) {
3269 error = xfs_dir_canenter(tp, target_dp, target_name);
3270 if (error)
445883e8 3271 goto out_trans_cancel;
94f3cad5 3272 }
bc56ad8c 3273 } else {
3274 /*
3275 * If target exists and it's a directory, check that whether
3276 * it can be destroyed.
3277 */
3278 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3279 (!xfs_dir_isempty(target_ip) ||
3280 (VFS_I(target_ip)->i_nlink > 2))) {
3281 error = -EEXIST;
3282 goto out_trans_cancel;
3283 }
3284 }
3285
3286 /*
3287 * Directory entry creation below may acquire the AGF. Remove
3288 * the whiteout from the unlinked list first to preserve correct
3289 * AGI/AGF locking order. This dirties the transaction so failures
3290 * after this point will abort and log recovery will clean up the
3291 * mess.
3292 *
3293 * For whiteouts, we need to bump the link count on the whiteout
3294 * inode. After this point, we have a real link, clear the tmpfile
3295 * state flag from the inode so it doesn't accidentally get misused
3296 * in future.
3297 */
3298 if (wip) {
3299 ASSERT(VFS_I(wip)->i_nlink == 0);
3300 error = xfs_iunlink_remove(tp, wip);
3301 if (error)
3302 goto out_trans_cancel;
3303
3304 xfs_bumplink(tp, wip);
bc56ad8c 3305 VFS_I(wip)->i_state &= ~I_LINKABLE;
3306 }
3307
3308 /*
3309 * Set up the target.
3310 */
3311 if (target_ip == NULL) {
f6bba201
DC
3312 /*
3313 * If target does not exist and the rename crosses
3314 * directories, adjust the target directory link count
3315 * to account for the ".." reference from the new entry.
3316 */
3317 error = xfs_dir_createname(tp, target_dp, target_name,
381eee69 3318 src_ip->i_ino, spaceres);
f6bba201 3319 if (error)
c8eac49e 3320 goto out_trans_cancel;
f6bba201
DC
3321
3322 xfs_trans_ichgtime(tp, target_dp,
3323 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3324
3325 if (new_parent && src_is_directory) {
91083269 3326 xfs_bumplink(tp, target_dp);
f6bba201
DC
3327 }
3328 } else { /* target_ip != NULL */
f6bba201
DC
3329 /*
3330 * Link the source inode under the target name.
3331 * If the source inode is a directory and we are moving
3332 * it across directories, its ".." entry will be
3333 * inconsistent until we replace that down below.
3334 *
3335 * In case there is already an entry with the same
3336 * name at the destination directory, remove it first.
3337 */
93597ae8 3338
3339 /*
3340 * Check whether the replace operation will need to allocate
3341 * blocks. This happens when the shortform directory lacks
3342 * space and we have to convert it to a block format directory.
3343 * When more blocks are necessary, we must lock the AGI first
3344 * to preserve locking order (AGI -> AGF).
3345 */
3346 if (xfs_dir2_sf_replace_needblock(target_dp, src_ip->i_ino)) {
3347 error = xfs_read_agi(mp, tp,
3348 XFS_INO_TO_AGNO(mp, target_ip->i_ino),
3349 &agibp);
3350 if (error)
3351 goto out_trans_cancel;
3352 }
3353
f6bba201 3354 error = xfs_dir_replace(tp, target_dp, target_name,
381eee69 3355 src_ip->i_ino, spaceres);
f6bba201 3356 if (error)
c8eac49e 3357 goto out_trans_cancel;
f6bba201
DC
3358
3359 xfs_trans_ichgtime(tp, target_dp,
3360 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3361
3362 /*
3363 * Decrement the link count on the target since the target
3364 * dir no longer points to it.
3365 */
3366 error = xfs_droplink(tp, target_ip);
3367 if (error)
c8eac49e 3368 goto out_trans_cancel;
f6bba201
DC
3369
3370 if (src_is_directory) {
3371 /*
3372 * Drop the link from the old "." entry.
3373 */
3374 error = xfs_droplink(tp, target_ip);
3375 if (error)
c8eac49e 3376 goto out_trans_cancel;
f6bba201
DC
3377 }
3378 } /* target_ip != NULL */
3379
3380 /*
3381 * Remove the source.
3382 */
3383 if (new_parent && src_is_directory) {
3384 /*
3385 * Rewrite the ".." entry to point to the new
3386 * directory.
3387 */
3388 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
381eee69 3389 target_dp->i_ino, spaceres);
2451337d 3390 ASSERT(error != -EEXIST);
f6bba201 3391 if (error)
c8eac49e 3392 goto out_trans_cancel;
f6bba201
DC
3393 }
3394
3395 /*
3396 * We always want to hit the ctime on the source inode.
3397 *
3398 * This isn't strictly required by the standards since the source
3399 * inode isn't really being changed, but old unix file systems did
3400 * it and some incremental backup programs won't work without it.
3401 */
3402 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3403 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3404
3405 /*
3406 * Adjust the link count on src_dp. This is necessary when
3407 * renaming a directory, either within one parent when
3408 * the target existed, or across two parent directories.
3409 */
3410 if (src_is_directory && (new_parent || target_ip != NULL)) {
3411
3412 /*
3413 * Decrement link count on src_directory since the
3414 * entry that's moved no longer points to it.
3415 */
3416 error = xfs_droplink(tp, src_dp);
3417 if (error)
c8eac49e 3418 goto out_trans_cancel;
f6bba201
DC
3419 }
3420
7dcf5c3e
DC
3421 /*
3422 * For whiteouts, we only need to update the source dirent with the
3423 * inode number of the whiteout inode rather than removing it
3424 * altogether.
3425 */
3426 if (wip) {
3427 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
381eee69 3428 spaceres);
7dcf5c3e
DC
3429 } else
3430 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
381eee69 3431 spaceres);
f6bba201 3432 if (error)
c8eac49e 3433 goto out_trans_cancel;
f6bba201 3434
f6bba201
DC
3435 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3436 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3437 if (new_parent)
3438 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3439
c9cfdb38 3440 error = xfs_finish_rename(tp);
7dcf5c3e 3441 if (wip)
44a8736b 3442 xfs_irele(wip);
7dcf5c3e 3443 return error;
f6bba201 3444
445883e8 3445out_trans_cancel:
4906e215 3446 xfs_trans_cancel(tp);
253f4911 3447out_release_wip:
7dcf5c3e 3448 if (wip)
44a8736b 3449 xfs_irele(wip);
f6bba201
DC
3450 return error;
3451}
3452
5c4d97d0
DC
3453STATIC int
3454xfs_iflush_cluster(
19429363
DC
3455 struct xfs_inode *ip,
3456 struct xfs_buf *bp)
1da177e4 3457{
19429363 3458 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3459 struct xfs_perag *pag;
3460 unsigned long first_index, mask;
19429363
DC
3461 int cilist_size;
3462 struct xfs_inode **cilist;
3463 struct xfs_inode *cip;
ef325959 3464 struct xfs_ino_geometry *igeo = M_IGEO(mp);
f2019299 3465 int error = 0;
5c4d97d0
DC
3466 int nr_found;
3467 int clcount = 0;
1da177e4 3468 int i;
1da177e4 3469
5c4d97d0 3470 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3471
4b4d98cc 3472 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
19429363
DC
3473 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3474 if (!cilist)
5c4d97d0 3475 goto out_put;
1da177e4 3476
4b4d98cc 3477 mask = ~(igeo->inodes_per_cluster - 1);
5c4d97d0
DC
3478 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3479 rcu_read_lock();
3480 /* really need a gang lookup range call here */
19429363 3481 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
4b4d98cc 3482 first_index, igeo->inodes_per_cluster);
5c4d97d0
DC
3483 if (nr_found == 0)
3484 goto out_free;
3485
3486 for (i = 0; i < nr_found; i++) {
19429363
DC
3487 cip = cilist[i];
3488 if (cip == ip)
bad55843 3489 continue;
1a3e8f3d
DC
3490
3491 /*
3492 * because this is an RCU protected lookup, we could find a
3493 * recently freed or even reallocated inode during the lookup.
3494 * We need to check under the i_flags_lock for a valid inode
3495 * here. Skip it if it is not valid or the wrong inode.
3496 */
19429363
DC
3497 spin_lock(&cip->i_flags_lock);
3498 if (!cip->i_ino ||
3499 __xfs_iflags_test(cip, XFS_ISTALE)) {
3500 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3501 continue;
3502 }
5a90e53e
DC
3503
3504 /*
3505 * Once we fall off the end of the cluster, no point checking
3506 * any more inodes in the list because they will also all be
3507 * outside the cluster.
3508 */
19429363
DC
3509 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3510 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3511 break;
3512 }
19429363 3513 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3514
bad55843
DC
3515 /*
3516 * Do an un-protected check to see if the inode is dirty and
3517 * is a candidate for flushing. These checks will be repeated
3518 * later after the appropriate locks are acquired.
3519 */
19429363 3520 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3521 continue;
bad55843
DC
3522
3523 /*
3524 * Try to get locks. If any are unavailable or it is pinned,
3525 * then this inode cannot be flushed and is skipped.
3526 */
3527
19429363 3528 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3529 continue;
19429363
DC
3530 if (!xfs_iflock_nowait(cip)) {
3531 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3532 continue;
3533 }
19429363
DC
3534 if (xfs_ipincount(cip)) {
3535 xfs_ifunlock(cip);
3536 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3537 continue;
3538 }
3539
8a17d7dd
DC
3540
3541 /*
3542 * Check the inode number again, just to be certain we are not
3543 * racing with freeing in xfs_reclaim_inode(). See the comments
3544 * in that function for more information as to why the initial
3545 * check is not sufficient.
3546 */
19429363
DC
3547 if (!cip->i_ino) {
3548 xfs_ifunlock(cip);
3549 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3550 continue;
3551 }
3552
3553 /*
3554 * arriving here means that this inode can be flushed. First
3555 * re-check that it's dirty before flushing.
3556 */
19429363 3557 if (!xfs_inode_clean(cip)) {
19429363 3558 error = xfs_iflush_int(cip, bp);
bad55843 3559 if (error) {
19429363 3560 xfs_iunlock(cip, XFS_ILOCK_SHARED);
f2019299 3561 goto out_free;
bad55843
DC
3562 }
3563 clcount++;
3564 } else {
19429363 3565 xfs_ifunlock(cip);
bad55843 3566 }
19429363 3567 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3568 }
3569
3570 if (clcount) {
ff6d6af2
BD
3571 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3572 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3573 }
3574
3575out_free:
1a3e8f3d 3576 rcu_read_unlock();
19429363 3577 kmem_free(cilist);
44b56e0a
DC
3578out_put:
3579 xfs_perag_put(pag);
f2019299 3580 return error;
bad55843
DC
3581}
3582
1da177e4 3583/*
4c46819a
CH
3584 * Flush dirty inode metadata into the backing buffer.
3585 *
3586 * The caller must have the inode lock and the inode flush lock held. The
3587 * inode lock will still be held upon return to the caller, and the inode
3588 * flush lock will be released after the inode has reached the disk.
3589 *
3590 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3591 */
3592int
3593xfs_iflush(
4c46819a
CH
3594 struct xfs_inode *ip,
3595 struct xfs_buf **bpp)
1da177e4 3596{
4c46819a 3597 struct xfs_mount *mp = ip->i_mount;
b1438f47 3598 struct xfs_buf *bp = NULL;
4c46819a 3599 struct xfs_dinode *dip;
1da177e4 3600 int error;
1da177e4 3601
ff6d6af2 3602 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3603
579aa9ca 3604 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3605 ASSERT(xfs_isiflocked(ip));
f7e67b20 3606 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
daf83964 3607 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3608
4c46819a 3609 *bpp = NULL;
1da177e4 3610
1da177e4
LT
3611 xfs_iunpin_wait(ip);
3612
4b6a4688
DC
3613 /*
3614 * For stale inodes we cannot rely on the backing buffer remaining
3615 * stale in cache for the remaining life of the stale inode and so
475ee413 3616 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3617 * inodes below. We have to check this after ensuring the inode is
3618 * unpinned so that it is safe to reclaim the stale inode after the
3619 * flush call.
3620 */
3621 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3622 xfs_ifunlock(ip);
3623 return 0;
3624 }
3625
a3f74ffb 3626 /*
b1438f47 3627 * Get the buffer containing the on-disk inode. We are doing a try-lock
f2019299
BF
3628 * operation here, so we may get an EAGAIN error. In that case, return
3629 * leaving the inode dirty.
b1438f47
DC
3630 *
3631 * If we get any other error, we effectively have a corruption situation
f2019299 3632 * and we cannot flush the inode. Abort the flush and shut down.
a3f74ffb 3633 */
c1995079 3634 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK);
b1438f47 3635 if (error == -EAGAIN) {
a3f74ffb
DC
3636 xfs_ifunlock(ip);
3637 return error;
3638 }
b1438f47 3639 if (error)
f2019299 3640 goto abort;
1da177e4 3641
a3f74ffb
DC
3642 /*
3643 * If the buffer is pinned then push on the log now so we won't
3644 * get stuck waiting in the write for too long.
3645 */
811e64c7 3646 if (xfs_buf_ispinned(bp))
a14a348b 3647 xfs_log_force(mp, 0);
a3f74ffb 3648
1da177e4 3649 /*
f2019299
BF
3650 * Flush the provided inode then attempt to gather others from the
3651 * cluster into the write.
e53946db 3652 *
f2019299
BF
3653 * Note: Once we attempt to flush an inode, we must run buffer
3654 * completion callbacks on any failure. If this fails, simulate an I/O
3655 * failure on the buffer and shut down.
1da177e4 3656 */
f2019299
BF
3657 error = xfs_iflush_int(ip, bp);
3658 if (!error)
3659 error = xfs_iflush_cluster(ip, bp);
3660 if (error) {
3661 bp->b_flags |= XBF_ASYNC;
3662 xfs_buf_ioend_fail(bp);
3663 goto shutdown;
3664 }
1da177e4 3665
4c46819a
CH
3666 *bpp = bp;
3667 return 0;
1da177e4 3668
f2019299 3669abort:
88fc1879 3670 xfs_iflush_abort(ip);
f2019299
BF
3671shutdown:
3672 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
32ce90a4 3673 return error;
1da177e4
LT
3674}
3675
1da177e4
LT
3676STATIC int
3677xfs_iflush_int(
93848a99
CH
3678 struct xfs_inode *ip,
3679 struct xfs_buf *bp)
1da177e4 3680{
93848a99
CH
3681 struct xfs_inode_log_item *iip = ip->i_itemp;
3682 struct xfs_dinode *dip;
3683 struct xfs_mount *mp = ip->i_mount;
f2019299 3684 int error;
1da177e4 3685
579aa9ca 3686 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3687 ASSERT(xfs_isiflocked(ip));
f7e67b20 3688 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
daf83964 3689 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3690 ASSERT(iip != NULL && iip->ili_fields != 0);
1da177e4 3691
88ee2df7 3692 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3693
f2019299
BF
3694 /*
3695 * We don't flush the inode if any of the following checks fail, but we
3696 * do still update the log item and attach to the backing buffer as if
3697 * the flush happened. This is a formality to facilitate predictable
3698 * error handling as the caller will shutdown and fail the buffer.
3699 */
3700 error = -EFSCORRUPTED;
69ef921b 3701 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3702 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939 3703 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3704 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
6a19d939 3705 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
f2019299 3706 goto flush_out;
1da177e4 3707 }
c19b3b05 3708 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4 3709 if (XFS_TEST_ERROR(
f7e67b20
CH
3710 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3711 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
9e24cfd0 3712 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939 3713 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3714 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
6a19d939 3715 __func__, ip->i_ino, ip);
f2019299 3716 goto flush_out;
1da177e4 3717 }
c19b3b05 3718 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4 3719 if (XFS_TEST_ERROR(
f7e67b20
CH
3720 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3721 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3722 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
9e24cfd0 3723 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939 3724 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3725 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
6a19d939 3726 __func__, ip->i_ino, ip);
f2019299 3727 goto flush_out;
1da177e4
LT
3728 }
3729 }
daf83964 3730 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
9e24cfd0 3731 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3732 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3733 "%s: detected corrupt incore inode %Lu, "
c9690043 3734 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
6a19d939 3735 __func__, ip->i_ino,
daf83964 3736 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
6a19d939 3737 ip->i_d.di_nblocks, ip);
f2019299 3738 goto flush_out;
1da177e4
LT
3739 }
3740 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3741 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939 3742 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3743 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
6a19d939 3744 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
f2019299 3745 goto flush_out;
1da177e4 3746 }
e60896d8 3747
1da177e4 3748 /*
263997a6 3749 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3750 * di_flushiter count for correct sequencing. We bump the flush
3751 * iteration count so we can detect flushes which postdate a log record
3752 * during recovery. This is redundant as we now log every change and
3753 * hence this can't happen but we need to still do it to ensure
3754 * backwards compatibility with old kernels that predate logging all
3755 * inode changes.
1da177e4 3756 */
6471e9c5 3757 if (!xfs_sb_version_has_v3inode(&mp->m_sb))
e60896d8 3758 ip->i_d.di_flushiter++;
1da177e4 3759
0f45a1b2
CH
3760 /*
3761 * If there are inline format data / attr forks attached to this inode,
3762 * make sure they are not corrupt.
3763 */
f7e67b20 3764 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
0f45a1b2
CH
3765 xfs_ifork_verify_local_data(ip))
3766 goto flush_out;
f7e67b20 3767 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
0f45a1b2 3768 xfs_ifork_verify_local_attr(ip))
f2019299 3769 goto flush_out;
005c5db8 3770
1da177e4 3771 /*
3987848c
DC
3772 * Copy the dirty parts of the inode into the on-disk inode. We always
3773 * copy out the core of the inode, because if the inode is dirty at all
3774 * the core must be.
1da177e4 3775 */
93f958f9 3776 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3777
3778 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3779 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3780 ip->i_d.di_flushiter = 0;
3781
005c5db8
DW
3782 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3783 if (XFS_IFORK_Q(ip))
3784 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3785 xfs_inobp_check(mp, bp);
3786
3787 /*
f5d8d5c4
CH
3788 * We've recorded everything logged in the inode, so we'd like to clear
3789 * the ili_fields bits so we don't log and flush things unnecessarily.
3790 * However, we can't stop logging all this information until the data
3791 * we've copied into the disk buffer is written to disk. If we did we
3792 * might overwrite the copy of the inode in the log with all the data
3793 * after re-logging only part of it, and in the face of a crash we
3794 * wouldn't have all the data we need to recover.
1da177e4 3795 *
f5d8d5c4
CH
3796 * What we do is move the bits to the ili_last_fields field. When
3797 * logging the inode, these bits are moved back to the ili_fields field.
3798 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3799 * know that the information those bits represent is permanently on
3800 * disk. As long as the flush completes before the inode is logged
3801 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3802 */
f2019299
BF
3803 error = 0;
3804flush_out:
1319ebef 3805 spin_lock(&iip->ili_lock);
93848a99
CH
3806 iip->ili_last_fields = iip->ili_fields;
3807 iip->ili_fields = 0;
fc0561ce 3808 iip->ili_fsync_fields = 0;
1319ebef 3809 spin_unlock(&iip->ili_lock);
1da177e4 3810
1319ebef
DC
3811 /*
3812 * Store the current LSN of the inode so that we can tell whether the
3813 * item has moved in the AIL from xfs_iflush_done().
3814 */
93848a99
CH
3815 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3816 &iip->ili_item.li_lsn);
1da177e4 3817
93848a99
CH
3818 /* generate the checksum. */
3819 xfs_dinode_calc_crc(mp, dip);
f2019299 3820 return error;
1da177e4 3821}
44a8736b
DW
3822
3823/* Release an inode. */
3824void
3825xfs_irele(
3826 struct xfs_inode *ip)
3827{
3828 trace_xfs_irele(ip, _RET_IP_);
3829 iput(VFS_I(ip));
3830}
54fbdd10
CH
3831
3832/*
3833 * Ensure all commited transactions touching the inode are written to the log.
3834 */
3835int
3836xfs_log_force_inode(
3837 struct xfs_inode *ip)
3838{
3839 xfs_lsn_t lsn = 0;
3840
3841 xfs_ilock(ip, XFS_ILOCK_SHARED);
3842 if (xfs_ipincount(ip))
3843 lsn = ip->i_itemp->ili_last_lsn;
3844 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3845
3846 if (!lsn)
3847 return 0;
3848 return xfs_log_force_lsn(ip->i_mount, lsn, XFS_LOG_SYNC, NULL);
3849}
e2aaee9c
DW
3850
3851/*
3852 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3853 * abide vfs locking order (lowest pointer value goes first) and breaking the
3854 * layout leases before proceeding. The loop is needed because we cannot call
3855 * the blocking break_layout() with the iolocks held, and therefore have to
3856 * back out both locks.
3857 */
3858static int
3859xfs_iolock_two_inodes_and_break_layout(
3860 struct inode *src,
3861 struct inode *dest)
3862{
3863 int error;
3864
3865 if (src > dest)
3866 swap(src, dest);
3867
3868retry:
3869 /* Wait to break both inodes' layouts before we start locking. */
3870 error = break_layout(src, true);
3871 if (error)
3872 return error;
3873 if (src != dest) {
3874 error = break_layout(dest, true);
3875 if (error)
3876 return error;
3877 }
3878
3879 /* Lock one inode and make sure nobody got in and leased it. */
3880 inode_lock(src);
3881 error = break_layout(src, false);
3882 if (error) {
3883 inode_unlock(src);
3884 if (error == -EWOULDBLOCK)
3885 goto retry;
3886 return error;
3887 }
3888
3889 if (src == dest)
3890 return 0;
3891
3892 /* Lock the other inode and make sure nobody got in and leased it. */
3893 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3894 error = break_layout(dest, false);
3895 if (error) {
3896 inode_unlock(src);
3897 inode_unlock(dest);
3898 if (error == -EWOULDBLOCK)
3899 goto retry;
3900 return error;
3901 }
3902
3903 return 0;
3904}
3905
3906/*
3907 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3908 * mmap activity.
3909 */
3910int
3911xfs_ilock2_io_mmap(
3912 struct xfs_inode *ip1,
3913 struct xfs_inode *ip2)
3914{
3915 int ret;
3916
3917 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3918 if (ret)
3919 return ret;
3920 if (ip1 == ip2)
3921 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3922 else
3923 xfs_lock_two_inodes(ip1, XFS_MMAPLOCK_EXCL,
3924 ip2, XFS_MMAPLOCK_EXCL);
3925 return 0;
3926}
3927
3928/* Unlock both inodes to allow IO and mmap activity. */
3929void
3930xfs_iunlock2_io_mmap(
3931 struct xfs_inode *ip1,
3932 struct xfs_inode *ip2)
3933{
3934 bool same_inode = (ip1 == ip2);
3935
3936 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3937 if (!same_inode)
3938 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3939 inode_unlock(VFS_I(ip2));
3940 if (!same_inode)
3941 inode_unlock(VFS_I(ip1));
3942}