]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_inode.c
xfs: unshare a range of blocks via fallocate
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
3ab78df2 28#include "xfs_defer.h"
a4fbe6ab 29#include "xfs_inode.h"
57062787 30#include "xfs_da_format.h"
c24b5dfa 31#include "xfs_da_btree.h"
c24b5dfa 32#include "xfs_dir2.h"
a844f451 33#include "xfs_attr_sf.h"
c24b5dfa 34#include "xfs_attr.h"
239880ef
DC
35#include "xfs_trans_space.h"
36#include "xfs_trans.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451 38#include "xfs_inode_item.h"
a844f451
NS
39#include "xfs_ialloc.h"
40#include "xfs_bmap.h"
68988114 41#include "xfs_bmap_util.h"
1da177e4 42#include "xfs_error.h"
1da177e4 43#include "xfs_quota.h"
2a82b8be 44#include "xfs_filestream.h"
93848a99 45#include "xfs_cksum.h"
0b1b213f 46#include "xfs_trace.h"
33479e05 47#include "xfs_icache.h"
c24b5dfa 48#include "xfs_symlink.h"
239880ef
DC
49#include "xfs_trans_priv.h"
50#include "xfs_log.h"
a4fbe6ab 51#include "xfs_bmap_btree.h"
aa8968f2 52#include "xfs_reflink.h"
1da177e4 53
1da177e4 54kmem_zone_t *xfs_inode_zone;
1da177e4
LT
55
56/*
8f04c47a 57 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
58 * freed from a file in a single transaction.
59 */
60#define XFS_ITRUNC_MAX_EXTENTS 2
61
54d7b5c1
DC
62STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
63STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
64STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 65
2a0ec1d9
DC
66/*
67 * helper function to extract extent size hint from inode
68 */
69xfs_extlen_t
70xfs_get_extsz_hint(
71 struct xfs_inode *ip)
72{
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
78}
79
fa96acad 80/*
efa70be1
CH
81 * These two are wrapper routines around the xfs_ilock() routine used to
82 * centralize some grungy code. They are used in places that wish to lock the
83 * inode solely for reading the extents. The reason these places can't just
84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
85 * bringing in of the extents from disk for a file in b-tree format. If the
86 * inode is in b-tree format, then we need to lock the inode exclusively until
87 * the extents are read in. Locking it exclusively all the time would limit
88 * our parallelism unnecessarily, though. What we do instead is check to see
89 * if the extents have been read in yet, and only lock the inode exclusively
90 * if they have not.
fa96acad 91 *
efa70be1 92 * The functions return a value which should be given to the corresponding
01f4f327 93 * xfs_iunlock() call.
fa96acad
DC
94 */
95uint
309ecac8
CH
96xfs_ilock_data_map_shared(
97 struct xfs_inode *ip)
fa96acad 98{
309ecac8 99 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 100
309ecac8
CH
101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 103 lock_mode = XFS_ILOCK_EXCL;
fa96acad 104 xfs_ilock(ip, lock_mode);
fa96acad
DC
105 return lock_mode;
106}
107
efa70be1
CH
108uint
109xfs_ilock_attr_map_shared(
110 struct xfs_inode *ip)
fa96acad 111{
efa70be1
CH
112 uint lock_mode = XFS_ILOCK_SHARED;
113
114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
116 lock_mode = XFS_ILOCK_EXCL;
117 xfs_ilock(ip, lock_mode);
118 return lock_mode;
fa96acad
DC
119}
120
121/*
653c60b6
DC
122 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
123 * the i_lock. This routine allows various combinations of the locks to be
124 * obtained.
fa96acad 125 *
653c60b6
DC
126 * The 3 locks should always be ordered so that the IO lock is obtained first,
127 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 128 *
653c60b6
DC
129 * Basic locking order:
130 *
131 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
132 *
133 * mmap_sem locking order:
134 *
135 * i_iolock -> page lock -> mmap_sem
136 * mmap_sem -> i_mmap_lock -> page_lock
137 *
138 * The difference in mmap_sem locking order mean that we cannot hold the
139 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
140 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
141 * in get_user_pages() to map the user pages into the kernel address space for
142 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
143 * page faults already hold the mmap_sem.
144 *
145 * Hence to serialise fully against both syscall and mmap based IO, we need to
146 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
147 * taken in places where we need to invalidate the page cache in a race
148 * free manner (e.g. truncate, hole punch and other extent manipulation
149 * functions).
fa96acad
DC
150 */
151void
152xfs_ilock(
153 xfs_inode_t *ip,
154 uint lock_flags)
155{
156 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
157
158 /*
159 * You can't set both SHARED and EXCL for the same lock,
160 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
161 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
162 */
163 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
164 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
165 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
166 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
167 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
168 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 169 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
170
171 if (lock_flags & XFS_IOLOCK_EXCL)
172 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173 else if (lock_flags & XFS_IOLOCK_SHARED)
174 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
175
653c60b6
DC
176 if (lock_flags & XFS_MMAPLOCK_EXCL)
177 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178 else if (lock_flags & XFS_MMAPLOCK_SHARED)
179 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
180
fa96acad
DC
181 if (lock_flags & XFS_ILOCK_EXCL)
182 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183 else if (lock_flags & XFS_ILOCK_SHARED)
184 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
185}
186
187/*
188 * This is just like xfs_ilock(), except that the caller
189 * is guaranteed not to sleep. It returns 1 if it gets
190 * the requested locks and 0 otherwise. If the IO lock is
191 * obtained but the inode lock cannot be, then the IO lock
192 * is dropped before returning.
193 *
194 * ip -- the inode being locked
195 * lock_flags -- this parameter indicates the inode's locks to be
196 * to be locked. See the comment for xfs_ilock() for a list
197 * of valid values.
198 */
199int
200xfs_ilock_nowait(
201 xfs_inode_t *ip,
202 uint lock_flags)
203{
204 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
205
206 /*
207 * You can't set both SHARED and EXCL for the same lock,
208 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
209 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
210 */
211 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
212 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
213 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
214 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
215 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
216 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 217 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
218
219 if (lock_flags & XFS_IOLOCK_EXCL) {
220 if (!mrtryupdate(&ip->i_iolock))
221 goto out;
222 } else if (lock_flags & XFS_IOLOCK_SHARED) {
223 if (!mrtryaccess(&ip->i_iolock))
224 goto out;
225 }
653c60b6
DC
226
227 if (lock_flags & XFS_MMAPLOCK_EXCL) {
228 if (!mrtryupdate(&ip->i_mmaplock))
229 goto out_undo_iolock;
230 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
231 if (!mrtryaccess(&ip->i_mmaplock))
232 goto out_undo_iolock;
233 }
234
fa96acad
DC
235 if (lock_flags & XFS_ILOCK_EXCL) {
236 if (!mrtryupdate(&ip->i_lock))
653c60b6 237 goto out_undo_mmaplock;
fa96acad
DC
238 } else if (lock_flags & XFS_ILOCK_SHARED) {
239 if (!mrtryaccess(&ip->i_lock))
653c60b6 240 goto out_undo_mmaplock;
fa96acad
DC
241 }
242 return 1;
243
653c60b6
DC
244out_undo_mmaplock:
245 if (lock_flags & XFS_MMAPLOCK_EXCL)
246 mrunlock_excl(&ip->i_mmaplock);
247 else if (lock_flags & XFS_MMAPLOCK_SHARED)
248 mrunlock_shared(&ip->i_mmaplock);
249out_undo_iolock:
fa96acad
DC
250 if (lock_flags & XFS_IOLOCK_EXCL)
251 mrunlock_excl(&ip->i_iolock);
252 else if (lock_flags & XFS_IOLOCK_SHARED)
253 mrunlock_shared(&ip->i_iolock);
653c60b6 254out:
fa96acad
DC
255 return 0;
256}
257
258/*
259 * xfs_iunlock() is used to drop the inode locks acquired with
260 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
261 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
262 * that we know which locks to drop.
263 *
264 * ip -- the inode being unlocked
265 * lock_flags -- this parameter indicates the inode's locks to be
266 * to be unlocked. See the comment for xfs_ilock() for a list
267 * of valid values for this parameter.
268 *
269 */
270void
271xfs_iunlock(
272 xfs_inode_t *ip,
273 uint lock_flags)
274{
275 /*
276 * You can't set both SHARED and EXCL for the same lock,
277 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
278 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
279 */
280 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
281 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
282 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
283 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
284 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
285 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 286 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
287 ASSERT(lock_flags != 0);
288
289 if (lock_flags & XFS_IOLOCK_EXCL)
290 mrunlock_excl(&ip->i_iolock);
291 else if (lock_flags & XFS_IOLOCK_SHARED)
292 mrunlock_shared(&ip->i_iolock);
293
653c60b6
DC
294 if (lock_flags & XFS_MMAPLOCK_EXCL)
295 mrunlock_excl(&ip->i_mmaplock);
296 else if (lock_flags & XFS_MMAPLOCK_SHARED)
297 mrunlock_shared(&ip->i_mmaplock);
298
fa96acad
DC
299 if (lock_flags & XFS_ILOCK_EXCL)
300 mrunlock_excl(&ip->i_lock);
301 else if (lock_flags & XFS_ILOCK_SHARED)
302 mrunlock_shared(&ip->i_lock);
303
304 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
305}
306
307/*
308 * give up write locks. the i/o lock cannot be held nested
309 * if it is being demoted.
310 */
311void
312xfs_ilock_demote(
313 xfs_inode_t *ip,
314 uint lock_flags)
315{
653c60b6
DC
316 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
317 ASSERT((lock_flags &
318 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
319
320 if (lock_flags & XFS_ILOCK_EXCL)
321 mrdemote(&ip->i_lock);
653c60b6
DC
322 if (lock_flags & XFS_MMAPLOCK_EXCL)
323 mrdemote(&ip->i_mmaplock);
fa96acad
DC
324 if (lock_flags & XFS_IOLOCK_EXCL)
325 mrdemote(&ip->i_iolock);
326
327 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
328}
329
742ae1e3 330#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
331int
332xfs_isilocked(
333 xfs_inode_t *ip,
334 uint lock_flags)
335{
336 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
337 if (!(lock_flags & XFS_ILOCK_SHARED))
338 return !!ip->i_lock.mr_writer;
339 return rwsem_is_locked(&ip->i_lock.mr_lock);
340 }
341
653c60b6
DC
342 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
343 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
344 return !!ip->i_mmaplock.mr_writer;
345 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
346 }
347
fa96acad
DC
348 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
349 if (!(lock_flags & XFS_IOLOCK_SHARED))
350 return !!ip->i_iolock.mr_writer;
351 return rwsem_is_locked(&ip->i_iolock.mr_lock);
352 }
353
354 ASSERT(0);
355 return 0;
356}
357#endif
358
c24b5dfa
DC
359#ifdef DEBUG
360int xfs_locked_n;
361int xfs_small_retries;
362int xfs_middle_retries;
363int xfs_lots_retries;
364int xfs_lock_delays;
365#endif
366
b6a9947e
DC
367/*
368 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
369 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
370 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
371 * errors and warnings.
372 */
373#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
374static bool
375xfs_lockdep_subclass_ok(
376 int subclass)
377{
378 return subclass < MAX_LOCKDEP_SUBCLASSES;
379}
380#else
381#define xfs_lockdep_subclass_ok(subclass) (true)
382#endif
383
c24b5dfa 384/*
653c60b6 385 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
386 * value. This can be called for any type of inode lock combination, including
387 * parent locking. Care must be taken to ensure we don't overrun the subclass
388 * storage fields in the class mask we build.
c24b5dfa
DC
389 */
390static inline int
391xfs_lock_inumorder(int lock_mode, int subclass)
392{
0952c818
DC
393 int class = 0;
394
395 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
396 XFS_ILOCK_RTSUM)));
3403ccc0 397 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 398
653c60b6 399 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 400 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
3403ccc0
DC
401 ASSERT(xfs_lockdep_subclass_ok(subclass +
402 XFS_IOLOCK_PARENT_VAL));
0952c818
DC
403 class += subclass << XFS_IOLOCK_SHIFT;
404 if (lock_mode & XFS_IOLOCK_PARENT)
405 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
653c60b6
DC
406 }
407
408 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
409 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
410 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
411 }
412
0952c818
DC
413 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
414 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
415 class += subclass << XFS_ILOCK_SHIFT;
416 }
c24b5dfa 417
0952c818 418 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
419}
420
421/*
95afcf5c
DC
422 * The following routine will lock n inodes in exclusive mode. We assume the
423 * caller calls us with the inodes in i_ino order.
c24b5dfa 424 *
95afcf5c
DC
425 * We need to detect deadlock where an inode that we lock is in the AIL and we
426 * start waiting for another inode that is locked by a thread in a long running
427 * transaction (such as truncate). This can result in deadlock since the long
428 * running trans might need to wait for the inode we just locked in order to
429 * push the tail and free space in the log.
0952c818
DC
430 *
431 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
432 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
433 * lock more than one at a time, lockdep will report false positives saying we
434 * have violated locking orders.
c24b5dfa 435 */
0d5a75e9 436static void
c24b5dfa
DC
437xfs_lock_inodes(
438 xfs_inode_t **ips,
439 int inodes,
440 uint lock_mode)
441{
442 int attempts = 0, i, j, try_lock;
443 xfs_log_item_t *lp;
444
0952c818
DC
445 /*
446 * Currently supports between 2 and 5 inodes with exclusive locking. We
447 * support an arbitrary depth of locking here, but absolute limits on
448 * inodes depend on the the type of locking and the limits placed by
449 * lockdep annotations in xfs_lock_inumorder. These are all checked by
450 * the asserts.
451 */
95afcf5c 452 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
453 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
454 XFS_ILOCK_EXCL));
455 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
456 XFS_ILOCK_SHARED)));
457 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
458 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
459 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
460 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
461 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
462 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
463
464 if (lock_mode & XFS_IOLOCK_EXCL) {
465 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
466 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
467 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
468
469 try_lock = 0;
470 i = 0;
c24b5dfa
DC
471again:
472 for (; i < inodes; i++) {
473 ASSERT(ips[i]);
474
95afcf5c 475 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
476 continue;
477
478 /*
95afcf5c
DC
479 * If try_lock is not set yet, make sure all locked inodes are
480 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 481 */
c24b5dfa
DC
482 if (!try_lock) {
483 for (j = (i - 1); j >= 0 && !try_lock; j--) {
484 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 485 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 486 try_lock++;
c24b5dfa
DC
487 }
488 }
489
490 /*
491 * If any of the previous locks we have locked is in the AIL,
492 * we must TRY to get the second and subsequent locks. If
493 * we can't get any, we must release all we have
494 * and try again.
495 */
95afcf5c
DC
496 if (!try_lock) {
497 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
498 continue;
499 }
500
501 /* try_lock means we have an inode locked that is in the AIL. */
502 ASSERT(i != 0);
503 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
504 continue;
c24b5dfa 505
95afcf5c
DC
506 /*
507 * Unlock all previous guys and try again. xfs_iunlock will try
508 * to push the tail if the inode is in the AIL.
509 */
510 attempts++;
511 for (j = i - 1; j >= 0; j--) {
c24b5dfa 512 /*
95afcf5c
DC
513 * Check to see if we've already unlocked this one. Not
514 * the first one going back, and the inode ptr is the
515 * same.
c24b5dfa 516 */
95afcf5c
DC
517 if (j != (i - 1) && ips[j] == ips[j + 1])
518 continue;
c24b5dfa 519
95afcf5c
DC
520 xfs_iunlock(ips[j], lock_mode);
521 }
c24b5dfa 522
95afcf5c
DC
523 if ((attempts % 5) == 0) {
524 delay(1); /* Don't just spin the CPU */
c24b5dfa 525#ifdef DEBUG
95afcf5c 526 xfs_lock_delays++;
c24b5dfa 527#endif
c24b5dfa 528 }
95afcf5c
DC
529 i = 0;
530 try_lock = 0;
531 goto again;
c24b5dfa
DC
532 }
533
534#ifdef DEBUG
535 if (attempts) {
536 if (attempts < 5) xfs_small_retries++;
537 else if (attempts < 100) xfs_middle_retries++;
538 else xfs_lots_retries++;
539 } else {
540 xfs_locked_n++;
541 }
542#endif
543}
544
545/*
653c60b6
DC
546 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
547 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
548 * lock more than one at a time, lockdep will report false positives saying we
549 * have violated locking orders.
c24b5dfa
DC
550 */
551void
552xfs_lock_two_inodes(
553 xfs_inode_t *ip0,
554 xfs_inode_t *ip1,
555 uint lock_mode)
556{
557 xfs_inode_t *temp;
558 int attempts = 0;
559 xfs_log_item_t *lp;
560
653c60b6
DC
561 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
562 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
565 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566
c24b5dfa
DC
567 ASSERT(ip0->i_ino != ip1->i_ino);
568
569 if (ip0->i_ino > ip1->i_ino) {
570 temp = ip0;
571 ip0 = ip1;
572 ip1 = temp;
573 }
574
575 again:
576 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
577
578 /*
579 * If the first lock we have locked is in the AIL, we must TRY to get
580 * the second lock. If we can't get it, we must release the first one
581 * and try again.
582 */
583 lp = (xfs_log_item_t *)ip0->i_itemp;
584 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
585 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
586 xfs_iunlock(ip0, lock_mode);
587 if ((++attempts % 5) == 0)
588 delay(1); /* Don't just spin the CPU */
589 goto again;
590 }
591 } else {
592 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
593 }
594}
595
596
fa96acad
DC
597void
598__xfs_iflock(
599 struct xfs_inode *ip)
600{
601 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
602 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
603
604 do {
605 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
606 if (xfs_isiflocked(ip))
607 io_schedule();
608 } while (!xfs_iflock_nowait(ip));
609
610 finish_wait(wq, &wait.wait);
611}
612
1da177e4
LT
613STATIC uint
614_xfs_dic2xflags(
58f88ca2
DC
615 __uint16_t di_flags,
616 uint64_t di_flags2,
617 bool has_attr)
1da177e4
LT
618{
619 uint flags = 0;
620
621 if (di_flags & XFS_DIFLAG_ANY) {
622 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 623 flags |= FS_XFLAG_REALTIME;
1da177e4 624 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 625 flags |= FS_XFLAG_PREALLOC;
1da177e4 626 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 627 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 628 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 629 flags |= FS_XFLAG_APPEND;
1da177e4 630 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 631 flags |= FS_XFLAG_SYNC;
1da177e4 632 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 633 flags |= FS_XFLAG_NOATIME;
1da177e4 634 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 635 flags |= FS_XFLAG_NODUMP;
1da177e4 636 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 637 flags |= FS_XFLAG_RTINHERIT;
1da177e4 638 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 639 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 640 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 641 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 642 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 643 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 644 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 645 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 646 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 647 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 648 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 649 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
650 }
651
58f88ca2
DC
652 if (di_flags2 & XFS_DIFLAG2_ANY) {
653 if (di_flags2 & XFS_DIFLAG2_DAX)
654 flags |= FS_XFLAG_DAX;
655 }
656
657 if (has_attr)
658 flags |= FS_XFLAG_HASATTR;
659
1da177e4
LT
660 return flags;
661}
662
663uint
664xfs_ip2xflags(
58f88ca2 665 struct xfs_inode *ip)
1da177e4 666{
58f88ca2 667 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 668
58f88ca2 669 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
670}
671
c24b5dfa
DC
672/*
673 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
674 * is allowed, otherwise it has to be an exact match. If a CI match is found,
675 * ci_name->name will point to a the actual name (caller must free) or
676 * will be set to NULL if an exact match is found.
677 */
678int
679xfs_lookup(
680 xfs_inode_t *dp,
681 struct xfs_name *name,
682 xfs_inode_t **ipp,
683 struct xfs_name *ci_name)
684{
685 xfs_ino_t inum;
686 int error;
c24b5dfa
DC
687
688 trace_xfs_lookup(dp, name);
689
690 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 691 return -EIO;
c24b5dfa 692
dbad7c99 693 xfs_ilock(dp, XFS_IOLOCK_SHARED);
c24b5dfa 694 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 695 if (error)
dbad7c99 696 goto out_unlock;
c24b5dfa
DC
697
698 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
699 if (error)
700 goto out_free_name;
701
dbad7c99 702 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
c24b5dfa
DC
703 return 0;
704
705out_free_name:
706 if (ci_name)
707 kmem_free(ci_name->name);
dbad7c99
DC
708out_unlock:
709 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
c24b5dfa
DC
710 *ipp = NULL;
711 return error;
712}
713
1da177e4
LT
714/*
715 * Allocate an inode on disk and return a copy of its in-core version.
716 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
717 * appropriately within the inode. The uid and gid for the inode are
718 * set according to the contents of the given cred structure.
719 *
720 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
721 * has a free inode available, call xfs_iget() to obtain the in-core
722 * version of the allocated inode. Finally, fill in the inode and
723 * log its initial contents. In this case, ialloc_context would be
724 * set to NULL.
1da177e4 725 *
cd856db6
CM
726 * If xfs_dialloc() does not have an available inode, it will replenish
727 * its supply by doing an allocation. Since we can only do one
728 * allocation within a transaction without deadlocks, we must commit
729 * the current transaction before returning the inode itself.
730 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
731 * The caller should then commit the current transaction, start a new
732 * transaction, and call xfs_ialloc() again to actually get the inode.
733 *
734 * To ensure that some other process does not grab the inode that
735 * was allocated during the first call to xfs_ialloc(), this routine
736 * also returns the [locked] bp pointing to the head of the freelist
737 * as ialloc_context. The caller should hold this buffer across
738 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
739 *
740 * If we are allocating quota inodes, we do not have a parent inode
741 * to attach to or associate with (i.e. pip == NULL) because they
742 * are not linked into the directory structure - they are attached
743 * directly to the superblock - and so have no parent.
1da177e4 744 */
0d5a75e9 745static int
1da177e4
LT
746xfs_ialloc(
747 xfs_trans_t *tp,
748 xfs_inode_t *pip,
576b1d67 749 umode_t mode,
31b084ae 750 xfs_nlink_t nlink,
1da177e4 751 xfs_dev_t rdev,
6743099c 752 prid_t prid,
1da177e4
LT
753 int okalloc,
754 xfs_buf_t **ialloc_context,
1da177e4
LT
755 xfs_inode_t **ipp)
756{
93848a99 757 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
758 xfs_ino_t ino;
759 xfs_inode_t *ip;
1da177e4
LT
760 uint flags;
761 int error;
e076b0f3 762 struct timespec tv;
3987848c 763 struct inode *inode;
1da177e4
LT
764
765 /*
766 * Call the space management code to pick
767 * the on-disk inode to be allocated.
768 */
b11f94d5 769 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 770 ialloc_context, &ino);
bf904248 771 if (error)
1da177e4 772 return error;
08358906 773 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
774 *ipp = NULL;
775 return 0;
776 }
777 ASSERT(*ialloc_context == NULL);
778
779 /*
780 * Get the in-core inode with the lock held exclusively.
781 * This is because we're setting fields here we need
782 * to prevent others from looking at until we're done.
783 */
93848a99 784 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 785 XFS_ILOCK_EXCL, &ip);
bf904248 786 if (error)
1da177e4 787 return error;
1da177e4 788 ASSERT(ip != NULL);
3987848c 789 inode = VFS_I(ip);
1da177e4 790
263997a6
DC
791 /*
792 * We always convert v1 inodes to v2 now - we only support filesystems
793 * with >= v2 inode capability, so there is no reason for ever leaving
794 * an inode in v1 format.
795 */
796 if (ip->i_d.di_version == 1)
797 ip->i_d.di_version = 2;
798
c19b3b05 799 inode->i_mode = mode;
54d7b5c1 800 set_nlink(inode, nlink);
7aab1b28
DE
801 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
802 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 803 xfs_set_projid(ip, prid);
1da177e4 804
bd186aa9 805 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 806 ip->i_d.di_gid = pip->i_d.di_gid;
c19b3b05
DC
807 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
808 inode->i_mode |= S_ISGID;
1da177e4
LT
809 }
810
811 /*
812 * If the group ID of the new file does not match the effective group
813 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
814 * (and only if the irix_sgid_inherit compatibility variable is set).
815 */
816 if ((irix_sgid_inherit) &&
c19b3b05
DC
817 (inode->i_mode & S_ISGID) &&
818 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
819 inode->i_mode &= ~S_ISGID;
1da177e4
LT
820
821 ip->i_d.di_size = 0;
822 ip->i_d.di_nextents = 0;
823 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 824
e076b0f3 825 tv = current_fs_time(mp->m_super);
3987848c
DC
826 inode->i_mtime = tv;
827 inode->i_atime = tv;
828 inode->i_ctime = tv;
dff35fd4 829
1da177e4
LT
830 ip->i_d.di_extsize = 0;
831 ip->i_d.di_dmevmask = 0;
832 ip->i_d.di_dmstate = 0;
833 ip->i_d.di_flags = 0;
93848a99
CH
834
835 if (ip->i_d.di_version == 3) {
83e06f21 836 inode->i_version = 1;
93848a99 837 ip->i_d.di_flags2 = 0;
3987848c
DC
838 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
839 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
93848a99
CH
840 }
841
842
1da177e4
LT
843 flags = XFS_ILOG_CORE;
844 switch (mode & S_IFMT) {
845 case S_IFIFO:
846 case S_IFCHR:
847 case S_IFBLK:
848 case S_IFSOCK:
849 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
850 ip->i_df.if_u2.if_rdev = rdev;
851 ip->i_df.if_flags = 0;
852 flags |= XFS_ILOG_DEV;
853 break;
854 case S_IFREG:
855 case S_IFDIR:
b11f94d5 856 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2
DC
857 uint64_t di_flags2 = 0;
858 uint di_flags = 0;
365ca83d 859
abbede1b 860 if (S_ISDIR(mode)) {
365ca83d
NS
861 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
862 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
863 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
864 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
865 ip->i_d.di_extsize = pip->i_d.di_extsize;
866 }
9336e3a7
DC
867 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
868 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 869 } else if (S_ISREG(mode)) {
613d7043 870 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 871 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
872 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
873 di_flags |= XFS_DIFLAG_EXTSIZE;
874 ip->i_d.di_extsize = pip->i_d.di_extsize;
875 }
1da177e4
LT
876 }
877 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
878 xfs_inherit_noatime)
365ca83d 879 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
880 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
881 xfs_inherit_nodump)
365ca83d 882 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
883 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
884 xfs_inherit_sync)
365ca83d 885 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
886 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
887 xfs_inherit_nosymlinks)
365ca83d 888 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
889 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
890 xfs_inherit_nodefrag)
891 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
892 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
893 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2
DC
894 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
895 di_flags2 |= XFS_DIFLAG2_DAX;
896
365ca83d 897 ip->i_d.di_flags |= di_flags;
58f88ca2 898 ip->i_d.di_flags2 |= di_flags2;
1da177e4
LT
899 }
900 /* FALLTHROUGH */
901 case S_IFLNK:
902 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
903 ip->i_df.if_flags = XFS_IFEXTENTS;
904 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
905 ip->i_df.if_u1.if_extents = NULL;
906 break;
907 default:
908 ASSERT(0);
909 }
910 /*
911 * Attribute fork settings for new inode.
912 */
913 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
914 ip->i_d.di_anextents = 0;
915
916 /*
917 * Log the new values stuffed into the inode.
918 */
ddc3415a 919 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
920 xfs_trans_log_inode(tp, ip, flags);
921
58c90473 922 /* now that we have an i_mode we can setup the inode structure */
41be8bed 923 xfs_setup_inode(ip);
1da177e4
LT
924
925 *ipp = ip;
926 return 0;
927}
928
e546cb79
DC
929/*
930 * Allocates a new inode from disk and return a pointer to the
931 * incore copy. This routine will internally commit the current
932 * transaction and allocate a new one if the Space Manager needed
933 * to do an allocation to replenish the inode free-list.
934 *
935 * This routine is designed to be called from xfs_create and
936 * xfs_create_dir.
937 *
938 */
939int
940xfs_dir_ialloc(
941 xfs_trans_t **tpp, /* input: current transaction;
942 output: may be a new transaction. */
943 xfs_inode_t *dp, /* directory within whose allocate
944 the inode. */
945 umode_t mode,
946 xfs_nlink_t nlink,
947 xfs_dev_t rdev,
948 prid_t prid, /* project id */
949 int okalloc, /* ok to allocate new space */
950 xfs_inode_t **ipp, /* pointer to inode; it will be
951 locked. */
952 int *committed)
953
954{
955 xfs_trans_t *tp;
e546cb79
DC
956 xfs_inode_t *ip;
957 xfs_buf_t *ialloc_context = NULL;
958 int code;
e546cb79
DC
959 void *dqinfo;
960 uint tflags;
961
962 tp = *tpp;
963 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
964
965 /*
966 * xfs_ialloc will return a pointer to an incore inode if
967 * the Space Manager has an available inode on the free
968 * list. Otherwise, it will do an allocation and replenish
969 * the freelist. Since we can only do one allocation per
970 * transaction without deadlocks, we will need to commit the
971 * current transaction and start a new one. We will then
972 * need to call xfs_ialloc again to get the inode.
973 *
974 * If xfs_ialloc did an allocation to replenish the freelist,
975 * it returns the bp containing the head of the freelist as
976 * ialloc_context. We will hold a lock on it across the
977 * transaction commit so that no other process can steal
978 * the inode(s) that we've just allocated.
979 */
980 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
981 &ialloc_context, &ip);
982
983 /*
984 * Return an error if we were unable to allocate a new inode.
985 * This should only happen if we run out of space on disk or
986 * encounter a disk error.
987 */
988 if (code) {
989 *ipp = NULL;
990 return code;
991 }
992 if (!ialloc_context && !ip) {
993 *ipp = NULL;
2451337d 994 return -ENOSPC;
e546cb79
DC
995 }
996
997 /*
998 * If the AGI buffer is non-NULL, then we were unable to get an
999 * inode in one operation. We need to commit the current
1000 * transaction and call xfs_ialloc() again. It is guaranteed
1001 * to succeed the second time.
1002 */
1003 if (ialloc_context) {
1004 /*
1005 * Normally, xfs_trans_commit releases all the locks.
1006 * We call bhold to hang on to the ialloc_context across
1007 * the commit. Holding this buffer prevents any other
1008 * processes from doing any allocations in this
1009 * allocation group.
1010 */
1011 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1012
1013 /*
1014 * We want the quota changes to be associated with the next
1015 * transaction, NOT this one. So, detach the dqinfo from this
1016 * and attach it to the next transaction.
1017 */
1018 dqinfo = NULL;
1019 tflags = 0;
1020 if (tp->t_dqinfo) {
1021 dqinfo = (void *)tp->t_dqinfo;
1022 tp->t_dqinfo = NULL;
1023 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1024 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1025 }
1026
6e3e6d55 1027 code = xfs_trans_roll(&tp, NULL);
2e6db6c4 1028 if (committed != NULL)
e546cb79 1029 *committed = 1;
3d3c8b52 1030
e546cb79
DC
1031 /*
1032 * Re-attach the quota info that we detached from prev trx.
1033 */
1034 if (dqinfo) {
1035 tp->t_dqinfo = dqinfo;
1036 tp->t_flags |= tflags;
1037 }
1038
1039 if (code) {
1040 xfs_buf_relse(ialloc_context);
2e6db6c4 1041 *tpp = tp;
e546cb79
DC
1042 *ipp = NULL;
1043 return code;
1044 }
1045 xfs_trans_bjoin(tp, ialloc_context);
1046
1047 /*
1048 * Call ialloc again. Since we've locked out all
1049 * other allocations in this allocation group,
1050 * this call should always succeed.
1051 */
1052 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1053 okalloc, &ialloc_context, &ip);
1054
1055 /*
1056 * If we get an error at this point, return to the caller
1057 * so that the current transaction can be aborted.
1058 */
1059 if (code) {
1060 *tpp = tp;
1061 *ipp = NULL;
1062 return code;
1063 }
1064 ASSERT(!ialloc_context && ip);
1065
1066 } else {
1067 if (committed != NULL)
1068 *committed = 0;
1069 }
1070
1071 *ipp = ip;
1072 *tpp = tp;
1073
1074 return 0;
1075}
1076
1077/*
54d7b5c1
DC
1078 * Decrement the link count on an inode & log the change. If this causes the
1079 * link count to go to zero, move the inode to AGI unlinked list so that it can
1080 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1081 */
0d5a75e9 1082static int /* error */
e546cb79
DC
1083xfs_droplink(
1084 xfs_trans_t *tp,
1085 xfs_inode_t *ip)
1086{
e546cb79
DC
1087 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1088
e546cb79
DC
1089 drop_nlink(VFS_I(ip));
1090 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1091
54d7b5c1
DC
1092 if (VFS_I(ip)->i_nlink)
1093 return 0;
1094
1095 return xfs_iunlink(tp, ip);
e546cb79
DC
1096}
1097
e546cb79
DC
1098/*
1099 * Increment the link count on an inode & log the change.
1100 */
0d5a75e9 1101static int
e546cb79
DC
1102xfs_bumplink(
1103 xfs_trans_t *tp,
1104 xfs_inode_t *ip)
1105{
1106 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1107
263997a6 1108 ASSERT(ip->i_d.di_version > 1);
e546cb79 1109 inc_nlink(VFS_I(ip));
e546cb79
DC
1110 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1111 return 0;
1112}
1113
c24b5dfa
DC
1114int
1115xfs_create(
1116 xfs_inode_t *dp,
1117 struct xfs_name *name,
1118 umode_t mode,
1119 xfs_dev_t rdev,
1120 xfs_inode_t **ipp)
1121{
1122 int is_dir = S_ISDIR(mode);
1123 struct xfs_mount *mp = dp->i_mount;
1124 struct xfs_inode *ip = NULL;
1125 struct xfs_trans *tp = NULL;
1126 int error;
2c3234d1 1127 struct xfs_defer_ops dfops;
c24b5dfa
DC
1128 xfs_fsblock_t first_block;
1129 bool unlock_dp_on_error = false;
c24b5dfa
DC
1130 prid_t prid;
1131 struct xfs_dquot *udqp = NULL;
1132 struct xfs_dquot *gdqp = NULL;
1133 struct xfs_dquot *pdqp = NULL;
062647a8 1134 struct xfs_trans_res *tres;
c24b5dfa 1135 uint resblks;
c24b5dfa
DC
1136
1137 trace_xfs_create(dp, name);
1138
1139 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1140 return -EIO;
c24b5dfa 1141
163467d3 1142 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1143
1144 /*
1145 * Make sure that we have allocated dquot(s) on disk.
1146 */
7aab1b28
DE
1147 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1148 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1149 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1150 &udqp, &gdqp, &pdqp);
1151 if (error)
1152 return error;
1153
1154 if (is_dir) {
1155 rdev = 0;
1156 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1157 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1158 } else {
1159 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1160 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1161 }
1162
c24b5dfa
DC
1163 /*
1164 * Initially assume that the file does not exist and
1165 * reserve the resources for that case. If that is not
1166 * the case we'll drop the one we have and get a more
1167 * appropriate transaction later.
1168 */
253f4911 1169 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1170 if (error == -ENOSPC) {
c24b5dfa
DC
1171 /* flush outstanding delalloc blocks and retry */
1172 xfs_flush_inodes(mp);
253f4911 1173 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1174 }
2451337d 1175 if (error == -ENOSPC) {
c24b5dfa
DC
1176 /* No space at all so try a "no-allocation" reservation */
1177 resblks = 0;
253f4911 1178 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
c24b5dfa 1179 }
4906e215 1180 if (error)
253f4911 1181 goto out_release_inode;
c24b5dfa 1182
dbad7c99
DC
1183 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1184 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
c24b5dfa
DC
1185 unlock_dp_on_error = true;
1186
2c3234d1 1187 xfs_defer_init(&dfops, &first_block);
c24b5dfa
DC
1188
1189 /*
1190 * Reserve disk quota and the inode.
1191 */
1192 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1193 pdqp, resblks, 1, 0);
1194 if (error)
1195 goto out_trans_cancel;
1196
94f3cad5
ES
1197 if (!resblks) {
1198 error = xfs_dir_canenter(tp, dp, name);
1199 if (error)
1200 goto out_trans_cancel;
1201 }
c24b5dfa
DC
1202
1203 /*
1204 * A newly created regular or special file just has one directory
1205 * entry pointing to them, but a directory also the "." entry
1206 * pointing to itself.
1207 */
1208 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
f6106efa 1209 prid, resblks > 0, &ip, NULL);
d6077aa3 1210 if (error)
4906e215 1211 goto out_trans_cancel;
c24b5dfa
DC
1212
1213 /*
1214 * Now we join the directory inode to the transaction. We do not do it
1215 * earlier because xfs_dir_ialloc might commit the previous transaction
1216 * (and release all the locks). An error from here on will result in
1217 * the transaction cancel unlocking dp so don't do it explicitly in the
1218 * error path.
1219 */
dbad7c99 1220 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1221 unlock_dp_on_error = false;
1222
1223 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
2c3234d1 1224 &first_block, &dfops, resblks ?
c24b5dfa
DC
1225 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1226 if (error) {
2451337d 1227 ASSERT(error != -ENOSPC);
4906e215 1228 goto out_trans_cancel;
c24b5dfa
DC
1229 }
1230 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1231 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1232
1233 if (is_dir) {
1234 error = xfs_dir_init(tp, ip, dp);
1235 if (error)
1236 goto out_bmap_cancel;
1237
1238 error = xfs_bumplink(tp, dp);
1239 if (error)
1240 goto out_bmap_cancel;
1241 }
1242
1243 /*
1244 * If this is a synchronous mount, make sure that the
1245 * create transaction goes to disk before returning to
1246 * the user.
1247 */
1248 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1249 xfs_trans_set_sync(tp);
1250
1251 /*
1252 * Attach the dquot(s) to the inodes and modify them incore.
1253 * These ids of the inode couldn't have changed since the new
1254 * inode has been locked ever since it was created.
1255 */
1256 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1257
2c3234d1 1258 error = xfs_defer_finish(&tp, &dfops, NULL);
c24b5dfa
DC
1259 if (error)
1260 goto out_bmap_cancel;
1261
70393313 1262 error = xfs_trans_commit(tp);
c24b5dfa
DC
1263 if (error)
1264 goto out_release_inode;
1265
1266 xfs_qm_dqrele(udqp);
1267 xfs_qm_dqrele(gdqp);
1268 xfs_qm_dqrele(pdqp);
1269
1270 *ipp = ip;
1271 return 0;
1272
1273 out_bmap_cancel:
2c3234d1 1274 xfs_defer_cancel(&dfops);
c24b5dfa 1275 out_trans_cancel:
4906e215 1276 xfs_trans_cancel(tp);
c24b5dfa
DC
1277 out_release_inode:
1278 /*
58c90473
DC
1279 * Wait until after the current transaction is aborted to finish the
1280 * setup of the inode and release the inode. This prevents recursive
1281 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1282 */
58c90473
DC
1283 if (ip) {
1284 xfs_finish_inode_setup(ip);
c24b5dfa 1285 IRELE(ip);
58c90473 1286 }
c24b5dfa
DC
1287
1288 xfs_qm_dqrele(udqp);
1289 xfs_qm_dqrele(gdqp);
1290 xfs_qm_dqrele(pdqp);
1291
1292 if (unlock_dp_on_error)
dbad7c99 1293 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1294 return error;
1295}
1296
99b6436b
ZYW
1297int
1298xfs_create_tmpfile(
1299 struct xfs_inode *dp,
1300 struct dentry *dentry,
330033d6
BF
1301 umode_t mode,
1302 struct xfs_inode **ipp)
99b6436b
ZYW
1303{
1304 struct xfs_mount *mp = dp->i_mount;
1305 struct xfs_inode *ip = NULL;
1306 struct xfs_trans *tp = NULL;
1307 int error;
99b6436b
ZYW
1308 prid_t prid;
1309 struct xfs_dquot *udqp = NULL;
1310 struct xfs_dquot *gdqp = NULL;
1311 struct xfs_dquot *pdqp = NULL;
1312 struct xfs_trans_res *tres;
1313 uint resblks;
1314
1315 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1316 return -EIO;
99b6436b
ZYW
1317
1318 prid = xfs_get_initial_prid(dp);
1319
1320 /*
1321 * Make sure that we have allocated dquot(s) on disk.
1322 */
1323 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1324 xfs_kgid_to_gid(current_fsgid()), prid,
1325 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1326 &udqp, &gdqp, &pdqp);
1327 if (error)
1328 return error;
1329
1330 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1331 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1332
1333 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1334 if (error == -ENOSPC) {
99b6436b
ZYW
1335 /* No space at all so try a "no-allocation" reservation */
1336 resblks = 0;
253f4911 1337 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
99b6436b 1338 }
4906e215 1339 if (error)
253f4911 1340 goto out_release_inode;
99b6436b
ZYW
1341
1342 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1343 pdqp, resblks, 1, 0);
1344 if (error)
1345 goto out_trans_cancel;
1346
1347 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1348 prid, resblks > 0, &ip, NULL);
d6077aa3 1349 if (error)
4906e215 1350 goto out_trans_cancel;
99b6436b
ZYW
1351
1352 if (mp->m_flags & XFS_MOUNT_WSYNC)
1353 xfs_trans_set_sync(tp);
1354
1355 /*
1356 * Attach the dquot(s) to the inodes and modify them incore.
1357 * These ids of the inode couldn't have changed since the new
1358 * inode has been locked ever since it was created.
1359 */
1360 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1361
99b6436b
ZYW
1362 error = xfs_iunlink(tp, ip);
1363 if (error)
4906e215 1364 goto out_trans_cancel;
99b6436b 1365
70393313 1366 error = xfs_trans_commit(tp);
99b6436b
ZYW
1367 if (error)
1368 goto out_release_inode;
1369
1370 xfs_qm_dqrele(udqp);
1371 xfs_qm_dqrele(gdqp);
1372 xfs_qm_dqrele(pdqp);
1373
330033d6 1374 *ipp = ip;
99b6436b
ZYW
1375 return 0;
1376
99b6436b 1377 out_trans_cancel:
4906e215 1378 xfs_trans_cancel(tp);
99b6436b
ZYW
1379 out_release_inode:
1380 /*
58c90473
DC
1381 * Wait until after the current transaction is aborted to finish the
1382 * setup of the inode and release the inode. This prevents recursive
1383 * transactions and deadlocks from xfs_inactive.
99b6436b 1384 */
58c90473
DC
1385 if (ip) {
1386 xfs_finish_inode_setup(ip);
99b6436b 1387 IRELE(ip);
58c90473 1388 }
99b6436b
ZYW
1389
1390 xfs_qm_dqrele(udqp);
1391 xfs_qm_dqrele(gdqp);
1392 xfs_qm_dqrele(pdqp);
1393
1394 return error;
1395}
1396
c24b5dfa
DC
1397int
1398xfs_link(
1399 xfs_inode_t *tdp,
1400 xfs_inode_t *sip,
1401 struct xfs_name *target_name)
1402{
1403 xfs_mount_t *mp = tdp->i_mount;
1404 xfs_trans_t *tp;
1405 int error;
2c3234d1 1406 struct xfs_defer_ops dfops;
c24b5dfa 1407 xfs_fsblock_t first_block;
c24b5dfa
DC
1408 int resblks;
1409
1410 trace_xfs_link(tdp, target_name);
1411
c19b3b05 1412 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1413
1414 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1415 return -EIO;
c24b5dfa
DC
1416
1417 error = xfs_qm_dqattach(sip, 0);
1418 if (error)
1419 goto std_return;
1420
1421 error = xfs_qm_dqattach(tdp, 0);
1422 if (error)
1423 goto std_return;
1424
c24b5dfa 1425 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1426 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1427 if (error == -ENOSPC) {
c24b5dfa 1428 resblks = 0;
253f4911 1429 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1430 }
4906e215 1431 if (error)
253f4911 1432 goto std_return;
c24b5dfa 1433
dbad7c99 1434 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
c24b5dfa
DC
1435 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1436
1437 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
dbad7c99 1438 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1439
1440 /*
1441 * If we are using project inheritance, we only allow hard link
1442 * creation in our tree when the project IDs are the same; else
1443 * the tree quota mechanism could be circumvented.
1444 */
1445 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1446 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1447 error = -EXDEV;
c24b5dfa
DC
1448 goto error_return;
1449 }
1450
94f3cad5
ES
1451 if (!resblks) {
1452 error = xfs_dir_canenter(tp, tdp, target_name);
1453 if (error)
1454 goto error_return;
1455 }
c24b5dfa 1456
2c3234d1 1457 xfs_defer_init(&dfops, &first_block);
c24b5dfa 1458
54d7b5c1
DC
1459 /*
1460 * Handle initial link state of O_TMPFILE inode
1461 */
1462 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1463 error = xfs_iunlink_remove(tp, sip);
1464 if (error)
4906e215 1465 goto error_return;
ab297431
ZYW
1466 }
1467
c24b5dfa 1468 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
2c3234d1 1469 &first_block, &dfops, resblks);
c24b5dfa 1470 if (error)
4906e215 1471 goto error_return;
c24b5dfa
DC
1472 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1473 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1474
1475 error = xfs_bumplink(tp, sip);
1476 if (error)
4906e215 1477 goto error_return;
c24b5dfa
DC
1478
1479 /*
1480 * If this is a synchronous mount, make sure that the
1481 * link transaction goes to disk before returning to
1482 * the user.
1483 */
f6106efa 1484 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1485 xfs_trans_set_sync(tp);
c24b5dfa 1486
2c3234d1 1487 error = xfs_defer_finish(&tp, &dfops, NULL);
c24b5dfa 1488 if (error) {
2c3234d1 1489 xfs_defer_cancel(&dfops);
4906e215 1490 goto error_return;
c24b5dfa
DC
1491 }
1492
70393313 1493 return xfs_trans_commit(tp);
c24b5dfa 1494
c24b5dfa 1495 error_return:
4906e215 1496 xfs_trans_cancel(tp);
c24b5dfa
DC
1497 std_return:
1498 return error;
1499}
1500
1da177e4 1501/*
8f04c47a
CH
1502 * Free up the underlying blocks past new_size. The new size must be smaller
1503 * than the current size. This routine can be used both for the attribute and
1504 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1505 *
f6485057
DC
1506 * The transaction passed to this routine must have made a permanent log
1507 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1508 * given transaction and start new ones, so make sure everything involved in
1509 * the transaction is tidy before calling here. Some transaction will be
1510 * returned to the caller to be committed. The incoming transaction must
1511 * already include the inode, and both inode locks must be held exclusively.
1512 * The inode must also be "held" within the transaction. On return the inode
1513 * will be "held" within the returned transaction. This routine does NOT
1514 * require any disk space to be reserved for it within the transaction.
1da177e4 1515 *
f6485057
DC
1516 * If we get an error, we must return with the inode locked and linked into the
1517 * current transaction. This keeps things simple for the higher level code,
1518 * because it always knows that the inode is locked and held in the transaction
1519 * that returns to it whether errors occur or not. We don't mark the inode
1520 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1521 */
1522int
8f04c47a
CH
1523xfs_itruncate_extents(
1524 struct xfs_trans **tpp,
1525 struct xfs_inode *ip,
1526 int whichfork,
1527 xfs_fsize_t new_size)
1da177e4 1528{
8f04c47a
CH
1529 struct xfs_mount *mp = ip->i_mount;
1530 struct xfs_trans *tp = *tpp;
2c3234d1 1531 struct xfs_defer_ops dfops;
8f04c47a
CH
1532 xfs_fsblock_t first_block;
1533 xfs_fileoff_t first_unmap_block;
1534 xfs_fileoff_t last_block;
1535 xfs_filblks_t unmap_len;
8f04c47a
CH
1536 int error = 0;
1537 int done = 0;
1da177e4 1538
0b56185b
CH
1539 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1540 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1541 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1542 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1543 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1544 ASSERT(ip->i_itemp != NULL);
898621d5 1545 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1546 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1547
673e8e59
CH
1548 trace_xfs_itruncate_extents_start(ip, new_size);
1549
1da177e4
LT
1550 /*
1551 * Since it is possible for space to become allocated beyond
1552 * the end of the file (in a crash where the space is allocated
1553 * but the inode size is not yet updated), simply remove any
1554 * blocks which show up between the new EOF and the maximum
1555 * possible file size. If the first block to be removed is
1556 * beyond the maximum file size (ie it is the same as last_block),
1557 * then there is nothing to do.
1558 */
8f04c47a 1559 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1560 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1561 if (first_unmap_block == last_block)
1562 return 0;
1563
1564 ASSERT(first_unmap_block < last_block);
1565 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1566 while (!done) {
2c3234d1 1567 xfs_defer_init(&dfops, &first_block);
8f04c47a 1568 error = xfs_bunmapi(tp, ip,
3e57ecf6 1569 first_unmap_block, unmap_len,
8f04c47a 1570 xfs_bmapi_aflag(whichfork),
1da177e4 1571 XFS_ITRUNC_MAX_EXTENTS,
2c3234d1 1572 &first_block, &dfops,
b4e9181e 1573 &done);
8f04c47a
CH
1574 if (error)
1575 goto out_bmap_cancel;
1da177e4
LT
1576
1577 /*
1578 * Duplicate the transaction that has the permanent
1579 * reservation and commit the old transaction.
1580 */
2c3234d1 1581 error = xfs_defer_finish(&tp, &dfops, ip);
8f04c47a
CH
1582 if (error)
1583 goto out_bmap_cancel;
1da177e4 1584
2e6db6c4 1585 error = xfs_trans_roll(&tp, ip);
f6485057 1586 if (error)
8f04c47a 1587 goto out;
1da177e4 1588 }
8f04c47a 1589
aa8968f2
DW
1590 /* Remove all pending CoW reservations. */
1591 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
1592 last_block);
1593 if (error)
1594 goto out;
1595
1596 /*
1597 * Clear the reflink flag if we truncated everything.
1598 */
1599 if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip))
1600 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1601
673e8e59
CH
1602 /*
1603 * Always re-log the inode so that our permanent transaction can keep
1604 * on rolling it forward in the log.
1605 */
1606 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1607
1608 trace_xfs_itruncate_extents_end(ip, new_size);
1609
8f04c47a
CH
1610out:
1611 *tpp = tp;
1612 return error;
1613out_bmap_cancel:
1da177e4 1614 /*
8f04c47a
CH
1615 * If the bunmapi call encounters an error, return to the caller where
1616 * the transaction can be properly aborted. We just need to make sure
1617 * we're not holding any resources that we were not when we came in.
1da177e4 1618 */
2c3234d1 1619 xfs_defer_cancel(&dfops);
8f04c47a
CH
1620 goto out;
1621}
1622
c24b5dfa
DC
1623int
1624xfs_release(
1625 xfs_inode_t *ip)
1626{
1627 xfs_mount_t *mp = ip->i_mount;
1628 int error;
1629
c19b3b05 1630 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1631 return 0;
1632
1633 /* If this is a read-only mount, don't do this (would generate I/O) */
1634 if (mp->m_flags & XFS_MOUNT_RDONLY)
1635 return 0;
1636
1637 if (!XFS_FORCED_SHUTDOWN(mp)) {
1638 int truncated;
1639
c24b5dfa
DC
1640 /*
1641 * If we previously truncated this file and removed old data
1642 * in the process, we want to initiate "early" writeout on
1643 * the last close. This is an attempt to combat the notorious
1644 * NULL files problem which is particularly noticeable from a
1645 * truncate down, buffered (re-)write (delalloc), followed by
1646 * a crash. What we are effectively doing here is
1647 * significantly reducing the time window where we'd otherwise
1648 * be exposed to that problem.
1649 */
1650 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1651 if (truncated) {
1652 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1653 if (ip->i_delayed_blks > 0) {
2451337d 1654 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1655 if (error)
1656 return error;
1657 }
1658 }
1659 }
1660
54d7b5c1 1661 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1662 return 0;
1663
1664 if (xfs_can_free_eofblocks(ip, false)) {
1665
1666 /*
1667 * If we can't get the iolock just skip truncating the blocks
1668 * past EOF because we could deadlock with the mmap_sem
1669 * otherwise. We'll get another chance to drop them once the
1670 * last reference to the inode is dropped, so we'll never leak
1671 * blocks permanently.
1672 *
1673 * Further, check if the inode is being opened, written and
1674 * closed frequently and we have delayed allocation blocks
1675 * outstanding (e.g. streaming writes from the NFS server),
1676 * truncating the blocks past EOF will cause fragmentation to
1677 * occur.
1678 *
1679 * In this case don't do the truncation, either, but we have to
1680 * be careful how we detect this case. Blocks beyond EOF show
1681 * up as i_delayed_blks even when the inode is clean, so we
1682 * need to truncate them away first before checking for a dirty
1683 * release. Hence on the first dirty close we will still remove
1684 * the speculative allocation, but after that we will leave it
1685 * in place.
1686 */
1687 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1688 return 0;
1689
1690 error = xfs_free_eofblocks(mp, ip, true);
2451337d 1691 if (error && error != -EAGAIN)
c24b5dfa
DC
1692 return error;
1693
1694 /* delalloc blocks after truncation means it really is dirty */
1695 if (ip->i_delayed_blks)
1696 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1697 }
1698 return 0;
1699}
1700
f7be2d7f
BF
1701/*
1702 * xfs_inactive_truncate
1703 *
1704 * Called to perform a truncate when an inode becomes unlinked.
1705 */
1706STATIC int
1707xfs_inactive_truncate(
1708 struct xfs_inode *ip)
1709{
1710 struct xfs_mount *mp = ip->i_mount;
1711 struct xfs_trans *tp;
1712 int error;
1713
253f4911 1714 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1715 if (error) {
1716 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1717 return error;
1718 }
1719
1720 xfs_ilock(ip, XFS_ILOCK_EXCL);
1721 xfs_trans_ijoin(tp, ip, 0);
1722
1723 /*
1724 * Log the inode size first to prevent stale data exposure in the event
1725 * of a system crash before the truncate completes. See the related
1726 * comment in xfs_setattr_size() for details.
1727 */
1728 ip->i_d.di_size = 0;
1729 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1730
1731 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1732 if (error)
1733 goto error_trans_cancel;
1734
1735 ASSERT(ip->i_d.di_nextents == 0);
1736
70393313 1737 error = xfs_trans_commit(tp);
f7be2d7f
BF
1738 if (error)
1739 goto error_unlock;
1740
1741 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1742 return 0;
1743
1744error_trans_cancel:
4906e215 1745 xfs_trans_cancel(tp);
f7be2d7f
BF
1746error_unlock:
1747 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1748 return error;
1749}
1750
88877d2b
BF
1751/*
1752 * xfs_inactive_ifree()
1753 *
1754 * Perform the inode free when an inode is unlinked.
1755 */
1756STATIC int
1757xfs_inactive_ifree(
1758 struct xfs_inode *ip)
1759{
2c3234d1 1760 struct xfs_defer_ops dfops;
88877d2b 1761 xfs_fsblock_t first_block;
88877d2b
BF
1762 struct xfs_mount *mp = ip->i_mount;
1763 struct xfs_trans *tp;
1764 int error;
1765
9d43b180
BF
1766 /*
1767 * The ifree transaction might need to allocate blocks for record
1768 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1769 * allow ifree to dip into the reserved block pool if necessary.
1770 *
1771 * Freeing large sets of inodes generally means freeing inode chunks,
1772 * directory and file data blocks, so this should be relatively safe.
1773 * Only under severe circumstances should it be possible to free enough
1774 * inodes to exhaust the reserve block pool via finobt expansion while
1775 * at the same time not creating free space in the filesystem.
1776 *
1777 * Send a warning if the reservation does happen to fail, as the inode
1778 * now remains allocated and sits on the unlinked list until the fs is
1779 * repaired.
1780 */
253f4911
CH
1781 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1782 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
88877d2b 1783 if (error) {
2451337d 1784 if (error == -ENOSPC) {
9d43b180
BF
1785 xfs_warn_ratelimited(mp,
1786 "Failed to remove inode(s) from unlinked list. "
1787 "Please free space, unmount and run xfs_repair.");
1788 } else {
1789 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1790 }
88877d2b
BF
1791 return error;
1792 }
1793
1794 xfs_ilock(ip, XFS_ILOCK_EXCL);
1795 xfs_trans_ijoin(tp, ip, 0);
1796
2c3234d1
DW
1797 xfs_defer_init(&dfops, &first_block);
1798 error = xfs_ifree(tp, ip, &dfops);
88877d2b
BF
1799 if (error) {
1800 /*
1801 * If we fail to free the inode, shut down. The cancel
1802 * might do that, we need to make sure. Otherwise the
1803 * inode might be lost for a long time or forever.
1804 */
1805 if (!XFS_FORCED_SHUTDOWN(mp)) {
1806 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1807 __func__, error);
1808 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1809 }
4906e215 1810 xfs_trans_cancel(tp);
88877d2b
BF
1811 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1812 return error;
1813 }
1814
1815 /*
1816 * Credit the quota account(s). The inode is gone.
1817 */
1818 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1819
1820 /*
d4a97a04
BF
1821 * Just ignore errors at this point. There is nothing we can do except
1822 * to try to keep going. Make sure it's not a silent error.
88877d2b 1823 */
2c3234d1 1824 error = xfs_defer_finish(&tp, &dfops, NULL);
d4a97a04 1825 if (error) {
310a75a3 1826 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
88877d2b 1827 __func__, error);
2c3234d1 1828 xfs_defer_cancel(&dfops);
d4a97a04 1829 }
70393313 1830 error = xfs_trans_commit(tp);
88877d2b
BF
1831 if (error)
1832 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1833 __func__, error);
1834
1835 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1836 return 0;
1837}
1838
c24b5dfa
DC
1839/*
1840 * xfs_inactive
1841 *
1842 * This is called when the vnode reference count for the vnode
1843 * goes to zero. If the file has been unlinked, then it must
1844 * now be truncated. Also, we clear all of the read-ahead state
1845 * kept for the inode here since the file is now closed.
1846 */
74564fb4 1847void
c24b5dfa
DC
1848xfs_inactive(
1849 xfs_inode_t *ip)
1850{
3d3c8b52 1851 struct xfs_mount *mp;
3d3c8b52
JL
1852 int error;
1853 int truncate = 0;
c24b5dfa
DC
1854
1855 /*
1856 * If the inode is already free, then there can be nothing
1857 * to clean up here.
1858 */
c19b3b05 1859 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa
DC
1860 ASSERT(ip->i_df.if_real_bytes == 0);
1861 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1862 return;
c24b5dfa
DC
1863 }
1864
1865 mp = ip->i_mount;
17c12bcd 1866 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1867
c24b5dfa
DC
1868 /* If this is a read-only mount, don't do this (would generate I/O) */
1869 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1870 return;
c24b5dfa 1871
54d7b5c1 1872 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1873 /*
1874 * force is true because we are evicting an inode from the
1875 * cache. Post-eof blocks must be freed, lest we end up with
1876 * broken free space accounting.
1877 */
74564fb4
BF
1878 if (xfs_can_free_eofblocks(ip, true))
1879 xfs_free_eofblocks(mp, ip, false);
1880
1881 return;
c24b5dfa
DC
1882 }
1883
c19b3b05 1884 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa
DC
1885 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1886 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1887 truncate = 1;
1888
1889 error = xfs_qm_dqattach(ip, 0);
1890 if (error)
74564fb4 1891 return;
c24b5dfa 1892
c19b3b05 1893 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1894 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1895 else if (truncate)
1896 error = xfs_inactive_truncate(ip);
1897 if (error)
74564fb4 1898 return;
c24b5dfa
DC
1899
1900 /*
1901 * If there are attributes associated with the file then blow them away
1902 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1903 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1904 */
6dfe5a04 1905 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1906 error = xfs_attr_inactive(ip);
1907 if (error)
74564fb4 1908 return;
c24b5dfa
DC
1909 }
1910
6dfe5a04 1911 ASSERT(!ip->i_afp);
c24b5dfa 1912 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1913 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1914
1915 /*
1916 * Free the inode.
1917 */
88877d2b
BF
1918 error = xfs_inactive_ifree(ip);
1919 if (error)
74564fb4 1920 return;
c24b5dfa
DC
1921
1922 /*
1923 * Release the dquots held by inode, if any.
1924 */
1925 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1926}
1927
1da177e4 1928/*
54d7b5c1
DC
1929 * This is called when the inode's link count goes to 0 or we are creating a
1930 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1931 * set to true as the link count is dropped to zero by the VFS after we've
1932 * created the file successfully, so we have to add it to the unlinked list
1933 * while the link count is non-zero.
1934 *
1935 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1936 * list when the inode is freed.
1da177e4 1937 */
54d7b5c1 1938STATIC int
1da177e4 1939xfs_iunlink(
54d7b5c1
DC
1940 struct xfs_trans *tp,
1941 struct xfs_inode *ip)
1da177e4 1942{
54d7b5c1 1943 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1944 xfs_agi_t *agi;
1945 xfs_dinode_t *dip;
1946 xfs_buf_t *agibp;
1947 xfs_buf_t *ibp;
1da177e4
LT
1948 xfs_agino_t agino;
1949 short bucket_index;
1950 int offset;
1951 int error;
1da177e4 1952
c19b3b05 1953 ASSERT(VFS_I(ip)->i_mode != 0);
1da177e4 1954
1da177e4
LT
1955 /*
1956 * Get the agi buffer first. It ensures lock ordering
1957 * on the list.
1958 */
5e1be0fb 1959 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1960 if (error)
1da177e4 1961 return error;
1da177e4 1962 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1963
1da177e4
LT
1964 /*
1965 * Get the index into the agi hash table for the
1966 * list this inode will go on.
1967 */
1968 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1969 ASSERT(agino != 0);
1970 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1971 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1972 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1973
69ef921b 1974 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1975 /*
1976 * There is already another inode in the bucket we need
1977 * to add ourselves to. Add us at the front of the list.
1978 * Here we put the head pointer into our next pointer,
1979 * and then we fall through to point the head at us.
1980 */
475ee413
CH
1981 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1982 0, 0);
c319b58b
VA
1983 if (error)
1984 return error;
1985
69ef921b 1986 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1987 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1988 offset = ip->i_imap.im_boffset +
1da177e4 1989 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
1990
1991 /* need to recalc the inode CRC if appropriate */
1992 xfs_dinode_calc_crc(mp, dip);
1993
1da177e4
LT
1994 xfs_trans_inode_buf(tp, ibp);
1995 xfs_trans_log_buf(tp, ibp, offset,
1996 (offset + sizeof(xfs_agino_t) - 1));
1997 xfs_inobp_check(mp, ibp);
1998 }
1999
2000 /*
2001 * Point the bucket head pointer at the inode being inserted.
2002 */
2003 ASSERT(agino != 0);
16259e7d 2004 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2005 offset = offsetof(xfs_agi_t, agi_unlinked) +
2006 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2007 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2008 xfs_trans_log_buf(tp, agibp, offset,
2009 (offset + sizeof(xfs_agino_t) - 1));
2010 return 0;
2011}
2012
2013/*
2014 * Pull the on-disk inode from the AGI unlinked list.
2015 */
2016STATIC int
2017xfs_iunlink_remove(
2018 xfs_trans_t *tp,
2019 xfs_inode_t *ip)
2020{
2021 xfs_ino_t next_ino;
2022 xfs_mount_t *mp;
2023 xfs_agi_t *agi;
2024 xfs_dinode_t *dip;
2025 xfs_buf_t *agibp;
2026 xfs_buf_t *ibp;
2027 xfs_agnumber_t agno;
1da177e4
LT
2028 xfs_agino_t agino;
2029 xfs_agino_t next_agino;
2030 xfs_buf_t *last_ibp;
6fdf8ccc 2031 xfs_dinode_t *last_dip = NULL;
1da177e4 2032 short bucket_index;
6fdf8ccc 2033 int offset, last_offset = 0;
1da177e4 2034 int error;
1da177e4 2035
1da177e4 2036 mp = tp->t_mountp;
1da177e4 2037 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2038
2039 /*
2040 * Get the agi buffer first. It ensures lock ordering
2041 * on the list.
2042 */
5e1be0fb
CH
2043 error = xfs_read_agi(mp, tp, agno, &agibp);
2044 if (error)
1da177e4 2045 return error;
5e1be0fb 2046
1da177e4 2047 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2048
1da177e4
LT
2049 /*
2050 * Get the index into the agi hash table for the
2051 * list this inode will go on.
2052 */
2053 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2054 ASSERT(agino != 0);
2055 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2056 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2057 ASSERT(agi->agi_unlinked[bucket_index]);
2058
16259e7d 2059 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2060 /*
475ee413
CH
2061 * We're at the head of the list. Get the inode's on-disk
2062 * buffer to see if there is anyone after us on the list.
2063 * Only modify our next pointer if it is not already NULLAGINO.
2064 * This saves us the overhead of dealing with the buffer when
2065 * there is no need to change it.
1da177e4 2066 */
475ee413
CH
2067 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2068 0, 0);
1da177e4 2069 if (error) {
475ee413 2070 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2071 __func__, error);
1da177e4
LT
2072 return error;
2073 }
347d1c01 2074 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2075 ASSERT(next_agino != 0);
2076 if (next_agino != NULLAGINO) {
347d1c01 2077 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2078 offset = ip->i_imap.im_boffset +
1da177e4 2079 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2080
2081 /* need to recalc the inode CRC if appropriate */
2082 xfs_dinode_calc_crc(mp, dip);
2083
1da177e4
LT
2084 xfs_trans_inode_buf(tp, ibp);
2085 xfs_trans_log_buf(tp, ibp, offset,
2086 (offset + sizeof(xfs_agino_t) - 1));
2087 xfs_inobp_check(mp, ibp);
2088 } else {
2089 xfs_trans_brelse(tp, ibp);
2090 }
2091 /*
2092 * Point the bucket head pointer at the next inode.
2093 */
2094 ASSERT(next_agino != 0);
2095 ASSERT(next_agino != agino);
16259e7d 2096 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2097 offset = offsetof(xfs_agi_t, agi_unlinked) +
2098 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2099 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2100 xfs_trans_log_buf(tp, agibp, offset,
2101 (offset + sizeof(xfs_agino_t) - 1));
2102 } else {
2103 /*
2104 * We need to search the list for the inode being freed.
2105 */
16259e7d 2106 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2107 last_ibp = NULL;
2108 while (next_agino != agino) {
129dbc9a
CH
2109 struct xfs_imap imap;
2110
2111 if (last_ibp)
1da177e4 2112 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2113
2114 imap.im_blkno = 0;
1da177e4 2115 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2116
2117 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2118 if (error) {
2119 xfs_warn(mp,
2120 "%s: xfs_imap returned error %d.",
2121 __func__, error);
2122 return error;
2123 }
2124
2125 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2126 &last_ibp, 0, 0);
1da177e4 2127 if (error) {
0b932ccc 2128 xfs_warn(mp,
129dbc9a 2129 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2130 __func__, error);
1da177e4
LT
2131 return error;
2132 }
129dbc9a
CH
2133
2134 last_offset = imap.im_boffset;
347d1c01 2135 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2136 ASSERT(next_agino != NULLAGINO);
2137 ASSERT(next_agino != 0);
2138 }
475ee413 2139
1da177e4 2140 /*
475ee413
CH
2141 * Now last_ibp points to the buffer previous to us on the
2142 * unlinked list. Pull us from the list.
1da177e4 2143 */
475ee413
CH
2144 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2145 0, 0);
1da177e4 2146 if (error) {
475ee413 2147 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2148 __func__, error);
1da177e4
LT
2149 return error;
2150 }
347d1c01 2151 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2152 ASSERT(next_agino != 0);
2153 ASSERT(next_agino != agino);
2154 if (next_agino != NULLAGINO) {
347d1c01 2155 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2156 offset = ip->i_imap.im_boffset +
1da177e4 2157 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2158
2159 /* need to recalc the inode CRC if appropriate */
2160 xfs_dinode_calc_crc(mp, dip);
2161
1da177e4
LT
2162 xfs_trans_inode_buf(tp, ibp);
2163 xfs_trans_log_buf(tp, ibp, offset,
2164 (offset + sizeof(xfs_agino_t) - 1));
2165 xfs_inobp_check(mp, ibp);
2166 } else {
2167 xfs_trans_brelse(tp, ibp);
2168 }
2169 /*
2170 * Point the previous inode on the list to the next inode.
2171 */
347d1c01 2172 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2173 ASSERT(next_agino != 0);
2174 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2175
2176 /* need to recalc the inode CRC if appropriate */
2177 xfs_dinode_calc_crc(mp, last_dip);
2178
1da177e4
LT
2179 xfs_trans_inode_buf(tp, last_ibp);
2180 xfs_trans_log_buf(tp, last_ibp, offset,
2181 (offset + sizeof(xfs_agino_t) - 1));
2182 xfs_inobp_check(mp, last_ibp);
2183 }
2184 return 0;
2185}
2186
5b3eed75 2187/*
0b8182db 2188 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2189 * inodes that are in memory - they all must be marked stale and attached to
2190 * the cluster buffer.
2191 */
2a30f36d 2192STATIC int
1da177e4 2193xfs_ifree_cluster(
09b56604
BF
2194 xfs_inode_t *free_ip,
2195 xfs_trans_t *tp,
2196 struct xfs_icluster *xic)
1da177e4
LT
2197{
2198 xfs_mount_t *mp = free_ip->i_mount;
2199 int blks_per_cluster;
982e939e 2200 int inodes_per_cluster;
1da177e4 2201 int nbufs;
5b257b4a 2202 int i, j;
3cdaa189 2203 int ioffset;
1da177e4
LT
2204 xfs_daddr_t blkno;
2205 xfs_buf_t *bp;
5b257b4a 2206 xfs_inode_t *ip;
1da177e4
LT
2207 xfs_inode_log_item_t *iip;
2208 xfs_log_item_t *lip;
5017e97d 2209 struct xfs_perag *pag;
09b56604 2210 xfs_ino_t inum;
1da177e4 2211
09b56604 2212 inum = xic->first_ino;
5017e97d 2213 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2214 blks_per_cluster = xfs_icluster_size_fsb(mp);
2215 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2216 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2217
982e939e 2218 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2219 /*
2220 * The allocation bitmap tells us which inodes of the chunk were
2221 * physically allocated. Skip the cluster if an inode falls into
2222 * a sparse region.
2223 */
3cdaa189
BF
2224 ioffset = inum - xic->first_ino;
2225 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2226 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2227 continue;
2228 }
2229
1da177e4
LT
2230 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2231 XFS_INO_TO_AGBNO(mp, inum));
2232
5b257b4a
DC
2233 /*
2234 * We obtain and lock the backing buffer first in the process
2235 * here, as we have to ensure that any dirty inode that we
2236 * can't get the flush lock on is attached to the buffer.
2237 * If we scan the in-memory inodes first, then buffer IO can
2238 * complete before we get a lock on it, and hence we may fail
2239 * to mark all the active inodes on the buffer stale.
2240 */
2241 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2242 mp->m_bsize * blks_per_cluster,
2243 XBF_UNMAPPED);
5b257b4a 2244
2a30f36d 2245 if (!bp)
2451337d 2246 return -ENOMEM;
b0f539de
DC
2247
2248 /*
2249 * This buffer may not have been correctly initialised as we
2250 * didn't read it from disk. That's not important because we are
2251 * only using to mark the buffer as stale in the log, and to
2252 * attach stale cached inodes on it. That means it will never be
2253 * dispatched for IO. If it is, we want to know about it, and we
2254 * want it to fail. We can acheive this by adding a write
2255 * verifier to the buffer.
2256 */
1813dd64 2257 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2258
5b257b4a
DC
2259 /*
2260 * Walk the inodes already attached to the buffer and mark them
2261 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2262 * in-memory inode walk can't lock them. By marking them all
2263 * stale first, we will not attempt to lock them in the loop
2264 * below as the XFS_ISTALE flag will be set.
5b257b4a 2265 */
adadbeef 2266 lip = bp->b_fspriv;
5b257b4a
DC
2267 while (lip) {
2268 if (lip->li_type == XFS_LI_INODE) {
2269 iip = (xfs_inode_log_item_t *)lip;
2270 ASSERT(iip->ili_logged == 1);
ca30b2a7 2271 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2272 xfs_trans_ail_copy_lsn(mp->m_ail,
2273 &iip->ili_flush_lsn,
2274 &iip->ili_item.li_lsn);
2275 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2276 }
2277 lip = lip->li_bio_list;
2278 }
1da177e4 2279
5b3eed75 2280
1da177e4 2281 /*
5b257b4a
DC
2282 * For each inode in memory attempt to add it to the inode
2283 * buffer and set it up for being staled on buffer IO
2284 * completion. This is safe as we've locked out tail pushing
2285 * and flushing by locking the buffer.
1da177e4 2286 *
5b257b4a
DC
2287 * We have already marked every inode that was part of a
2288 * transaction stale above, which means there is no point in
2289 * even trying to lock them.
1da177e4 2290 */
982e939e 2291 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2292retry:
1a3e8f3d 2293 rcu_read_lock();
da353b0d
DC
2294 ip = radix_tree_lookup(&pag->pag_ici_root,
2295 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2296
1a3e8f3d
DC
2297 /* Inode not in memory, nothing to do */
2298 if (!ip) {
2299 rcu_read_unlock();
1da177e4
LT
2300 continue;
2301 }
2302
1a3e8f3d
DC
2303 /*
2304 * because this is an RCU protected lookup, we could
2305 * find a recently freed or even reallocated inode
2306 * during the lookup. We need to check under the
2307 * i_flags_lock for a valid inode here. Skip it if it
2308 * is not valid, the wrong inode or stale.
2309 */
2310 spin_lock(&ip->i_flags_lock);
2311 if (ip->i_ino != inum + i ||
2312 __xfs_iflags_test(ip, XFS_ISTALE)) {
2313 spin_unlock(&ip->i_flags_lock);
2314 rcu_read_unlock();
2315 continue;
2316 }
2317 spin_unlock(&ip->i_flags_lock);
2318
5b3eed75
DC
2319 /*
2320 * Don't try to lock/unlock the current inode, but we
2321 * _cannot_ skip the other inodes that we did not find
2322 * in the list attached to the buffer and are not
2323 * already marked stale. If we can't lock it, back off
2324 * and retry.
2325 */
5b257b4a
DC
2326 if (ip != free_ip &&
2327 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2328 rcu_read_unlock();
5b3eed75
DC
2329 delay(1);
2330 goto retry;
1da177e4 2331 }
1a3e8f3d 2332 rcu_read_unlock();
1da177e4 2333
5b3eed75 2334 xfs_iflock(ip);
5b257b4a 2335 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2336
5b3eed75
DC
2337 /*
2338 * we don't need to attach clean inodes or those only
2339 * with unlogged changes (which we throw away, anyway).
2340 */
1da177e4 2341 iip = ip->i_itemp;
5b3eed75 2342 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2343 ASSERT(ip != free_ip);
1da177e4
LT
2344 xfs_ifunlock(ip);
2345 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2346 continue;
2347 }
2348
f5d8d5c4
CH
2349 iip->ili_last_fields = iip->ili_fields;
2350 iip->ili_fields = 0;
fc0561ce 2351 iip->ili_fsync_fields = 0;
1da177e4 2352 iip->ili_logged = 1;
7b2e2a31
DC
2353 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2354 &iip->ili_item.li_lsn);
1da177e4 2355
ca30b2a7
CH
2356 xfs_buf_attach_iodone(bp, xfs_istale_done,
2357 &iip->ili_item);
5b257b4a
DC
2358
2359 if (ip != free_ip)
1da177e4 2360 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2361 }
2362
5b3eed75 2363 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2364 xfs_trans_binval(tp, bp);
2365 }
2366
5017e97d 2367 xfs_perag_put(pag);
2a30f36d 2368 return 0;
1da177e4
LT
2369}
2370
2371/*
2372 * This is called to return an inode to the inode free list.
2373 * The inode should already be truncated to 0 length and have
2374 * no pages associated with it. This routine also assumes that
2375 * the inode is already a part of the transaction.
2376 *
2377 * The on-disk copy of the inode will have been added to the list
2378 * of unlinked inodes in the AGI. We need to remove the inode from
2379 * that list atomically with respect to freeing it here.
2380 */
2381int
2382xfs_ifree(
2383 xfs_trans_t *tp,
2384 xfs_inode_t *ip,
2c3234d1 2385 struct xfs_defer_ops *dfops)
1da177e4
LT
2386{
2387 int error;
09b56604 2388 struct xfs_icluster xic = { 0 };
1da177e4 2389
579aa9ca 2390 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2391 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2392 ASSERT(ip->i_d.di_nextents == 0);
2393 ASSERT(ip->i_d.di_anextents == 0);
c19b3b05 2394 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2395 ASSERT(ip->i_d.di_nblocks == 0);
2396
2397 /*
2398 * Pull the on-disk inode from the AGI unlinked list.
2399 */
2400 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2401 if (error)
1da177e4 2402 return error;
1da177e4 2403
2c3234d1 2404 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
1baaed8f 2405 if (error)
1da177e4 2406 return error;
1baaed8f 2407
c19b3b05 2408 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4
LT
2409 ip->i_d.di_flags = 0;
2410 ip->i_d.di_dmevmask = 0;
2411 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2412 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2413 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2414 /*
2415 * Bump the generation count so no one will be confused
2416 * by reincarnations of this inode.
2417 */
9e9a2674 2418 VFS_I(ip)->i_generation++;
1da177e4
LT
2419 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2420
09b56604
BF
2421 if (xic.deleted)
2422 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2423
2a30f36d 2424 return error;
1da177e4
LT
2425}
2426
1da177e4 2427/*
60ec6783
CH
2428 * This is called to unpin an inode. The caller must have the inode locked
2429 * in at least shared mode so that the buffer cannot be subsequently pinned
2430 * once someone is waiting for it to be unpinned.
1da177e4 2431 */
60ec6783 2432static void
f392e631 2433xfs_iunpin(
60ec6783 2434 struct xfs_inode *ip)
1da177e4 2435{
579aa9ca 2436 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2437
4aaf15d1
DC
2438 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2439
a3f74ffb 2440 /* Give the log a push to start the unpinning I/O */
60ec6783 2441 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2442
a3f74ffb 2443}
1da177e4 2444
f392e631
CH
2445static void
2446__xfs_iunpin_wait(
2447 struct xfs_inode *ip)
2448{
2449 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2450 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2451
2452 xfs_iunpin(ip);
2453
2454 do {
2455 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2456 if (xfs_ipincount(ip))
2457 io_schedule();
2458 } while (xfs_ipincount(ip));
2459 finish_wait(wq, &wait.wait);
2460}
2461
777df5af 2462void
a3f74ffb 2463xfs_iunpin_wait(
60ec6783 2464 struct xfs_inode *ip)
a3f74ffb 2465{
f392e631
CH
2466 if (xfs_ipincount(ip))
2467 __xfs_iunpin_wait(ip);
1da177e4
LT
2468}
2469
27320369
DC
2470/*
2471 * Removing an inode from the namespace involves removing the directory entry
2472 * and dropping the link count on the inode. Removing the directory entry can
2473 * result in locking an AGF (directory blocks were freed) and removing a link
2474 * count can result in placing the inode on an unlinked list which results in
2475 * locking an AGI.
2476 *
2477 * The big problem here is that we have an ordering constraint on AGF and AGI
2478 * locking - inode allocation locks the AGI, then can allocate a new extent for
2479 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2480 * removes the inode from the unlinked list, requiring that we lock the AGI
2481 * first, and then freeing the inode can result in an inode chunk being freed
2482 * and hence freeing disk space requiring that we lock an AGF.
2483 *
2484 * Hence the ordering that is imposed by other parts of the code is AGI before
2485 * AGF. This means we cannot remove the directory entry before we drop the inode
2486 * reference count and put it on the unlinked list as this results in a lock
2487 * order of AGF then AGI, and this can deadlock against inode allocation and
2488 * freeing. Therefore we must drop the link counts before we remove the
2489 * directory entry.
2490 *
2491 * This is still safe from a transactional point of view - it is not until we
310a75a3 2492 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2493 * transactions in this operation. Hence as long as we remove the directory
2494 * entry and drop the link count in the first transaction of the remove
2495 * operation, there are no transactional constraints on the ordering here.
2496 */
c24b5dfa
DC
2497int
2498xfs_remove(
2499 xfs_inode_t *dp,
2500 struct xfs_name *name,
2501 xfs_inode_t *ip)
2502{
2503 xfs_mount_t *mp = dp->i_mount;
2504 xfs_trans_t *tp = NULL;
c19b3b05 2505 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2506 int error = 0;
2c3234d1 2507 struct xfs_defer_ops dfops;
c24b5dfa 2508 xfs_fsblock_t first_block;
c24b5dfa 2509 uint resblks;
c24b5dfa
DC
2510
2511 trace_xfs_remove(dp, name);
2512
2513 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2514 return -EIO;
c24b5dfa
DC
2515
2516 error = xfs_qm_dqattach(dp, 0);
2517 if (error)
2518 goto std_return;
2519
2520 error = xfs_qm_dqattach(ip, 0);
2521 if (error)
2522 goto std_return;
2523
c24b5dfa
DC
2524 /*
2525 * We try to get the real space reservation first,
2526 * allowing for directory btree deletion(s) implying
2527 * possible bmap insert(s). If we can't get the space
2528 * reservation then we use 0 instead, and avoid the bmap
2529 * btree insert(s) in the directory code by, if the bmap
2530 * insert tries to happen, instead trimming the LAST
2531 * block from the directory.
2532 */
2533 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2534 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2535 if (error == -ENOSPC) {
c24b5dfa 2536 resblks = 0;
253f4911
CH
2537 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2538 &tp);
c24b5dfa
DC
2539 }
2540 if (error) {
2451337d 2541 ASSERT(error != -ENOSPC);
253f4911 2542 goto std_return;
c24b5dfa
DC
2543 }
2544
dbad7c99 2545 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
c24b5dfa
DC
2546 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2547
dbad7c99 2548 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
2549 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2550
2551 /*
2552 * If we're removing a directory perform some additional validation.
2553 */
2554 if (is_dir) {
54d7b5c1
DC
2555 ASSERT(VFS_I(ip)->i_nlink >= 2);
2556 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2557 error = -ENOTEMPTY;
c24b5dfa
DC
2558 goto out_trans_cancel;
2559 }
2560 if (!xfs_dir_isempty(ip)) {
2451337d 2561 error = -ENOTEMPTY;
c24b5dfa
DC
2562 goto out_trans_cancel;
2563 }
c24b5dfa 2564
27320369 2565 /* Drop the link from ip's "..". */
c24b5dfa
DC
2566 error = xfs_droplink(tp, dp);
2567 if (error)
27320369 2568 goto out_trans_cancel;
c24b5dfa 2569
27320369 2570 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2571 error = xfs_droplink(tp, ip);
2572 if (error)
27320369 2573 goto out_trans_cancel;
c24b5dfa
DC
2574 } else {
2575 /*
2576 * When removing a non-directory we need to log the parent
2577 * inode here. For a directory this is done implicitly
2578 * by the xfs_droplink call for the ".." entry.
2579 */
2580 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2581 }
27320369 2582 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2583
27320369 2584 /* Drop the link from dp to ip. */
c24b5dfa
DC
2585 error = xfs_droplink(tp, ip);
2586 if (error)
27320369 2587 goto out_trans_cancel;
c24b5dfa 2588
2c3234d1 2589 xfs_defer_init(&dfops, &first_block);
27320369 2590 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2c3234d1 2591 &first_block, &dfops, resblks);
27320369 2592 if (error) {
2451337d 2593 ASSERT(error != -ENOENT);
27320369
DC
2594 goto out_bmap_cancel;
2595 }
2596
c24b5dfa
DC
2597 /*
2598 * If this is a synchronous mount, make sure that the
2599 * remove transaction goes to disk before returning to
2600 * the user.
2601 */
2602 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2603 xfs_trans_set_sync(tp);
2604
2c3234d1 2605 error = xfs_defer_finish(&tp, &dfops, NULL);
c24b5dfa
DC
2606 if (error)
2607 goto out_bmap_cancel;
2608
70393313 2609 error = xfs_trans_commit(tp);
c24b5dfa
DC
2610 if (error)
2611 goto std_return;
2612
2cd2ef6a 2613 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2614 xfs_filestream_deassociate(ip);
2615
2616 return 0;
2617
2618 out_bmap_cancel:
2c3234d1 2619 xfs_defer_cancel(&dfops);
c24b5dfa 2620 out_trans_cancel:
4906e215 2621 xfs_trans_cancel(tp);
c24b5dfa
DC
2622 std_return:
2623 return error;
2624}
2625
f6bba201
DC
2626/*
2627 * Enter all inodes for a rename transaction into a sorted array.
2628 */
95afcf5c 2629#define __XFS_SORT_INODES 5
f6bba201
DC
2630STATIC void
2631xfs_sort_for_rename(
95afcf5c
DC
2632 struct xfs_inode *dp1, /* in: old (source) directory inode */
2633 struct xfs_inode *dp2, /* in: new (target) directory inode */
2634 struct xfs_inode *ip1, /* in: inode of old entry */
2635 struct xfs_inode *ip2, /* in: inode of new entry */
2636 struct xfs_inode *wip, /* in: whiteout inode */
2637 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2638 int *num_inodes) /* in/out: inodes in array */
f6bba201 2639{
f6bba201
DC
2640 int i, j;
2641
95afcf5c
DC
2642 ASSERT(*num_inodes == __XFS_SORT_INODES);
2643 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2644
f6bba201
DC
2645 /*
2646 * i_tab contains a list of pointers to inodes. We initialize
2647 * the table here & we'll sort it. We will then use it to
2648 * order the acquisition of the inode locks.
2649 *
2650 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2651 */
95afcf5c
DC
2652 i = 0;
2653 i_tab[i++] = dp1;
2654 i_tab[i++] = dp2;
2655 i_tab[i++] = ip1;
2656 if (ip2)
2657 i_tab[i++] = ip2;
2658 if (wip)
2659 i_tab[i++] = wip;
2660 *num_inodes = i;
f6bba201
DC
2661
2662 /*
2663 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2664 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2665 */
2666 for (i = 0; i < *num_inodes; i++) {
2667 for (j = 1; j < *num_inodes; j++) {
2668 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2669 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2670 i_tab[j] = i_tab[j-1];
2671 i_tab[j-1] = temp;
2672 }
2673 }
2674 }
2675}
2676
310606b0
DC
2677static int
2678xfs_finish_rename(
2679 struct xfs_trans *tp,
2c3234d1 2680 struct xfs_defer_ops *dfops)
310606b0 2681{
310606b0
DC
2682 int error;
2683
2684 /*
2685 * If this is a synchronous mount, make sure that the rename transaction
2686 * goes to disk before returning to the user.
2687 */
2688 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2689 xfs_trans_set_sync(tp);
2690
2c3234d1 2691 error = xfs_defer_finish(&tp, dfops, NULL);
310606b0 2692 if (error) {
2c3234d1 2693 xfs_defer_cancel(dfops);
4906e215 2694 xfs_trans_cancel(tp);
310606b0
DC
2695 return error;
2696 }
2697
70393313 2698 return xfs_trans_commit(tp);
310606b0
DC
2699}
2700
d31a1825
CM
2701/*
2702 * xfs_cross_rename()
2703 *
2704 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2705 */
2706STATIC int
2707xfs_cross_rename(
2708 struct xfs_trans *tp,
2709 struct xfs_inode *dp1,
2710 struct xfs_name *name1,
2711 struct xfs_inode *ip1,
2712 struct xfs_inode *dp2,
2713 struct xfs_name *name2,
2714 struct xfs_inode *ip2,
2c3234d1 2715 struct xfs_defer_ops *dfops,
d31a1825
CM
2716 xfs_fsblock_t *first_block,
2717 int spaceres)
2718{
2719 int error = 0;
2720 int ip1_flags = 0;
2721 int ip2_flags = 0;
2722 int dp2_flags = 0;
2723
2724 /* Swap inode number for dirent in first parent */
2725 error = xfs_dir_replace(tp, dp1, name1,
2726 ip2->i_ino,
2c3234d1 2727 first_block, dfops, spaceres);
d31a1825 2728 if (error)
eeacd321 2729 goto out_trans_abort;
d31a1825
CM
2730
2731 /* Swap inode number for dirent in second parent */
2732 error = xfs_dir_replace(tp, dp2, name2,
2733 ip1->i_ino,
2c3234d1 2734 first_block, dfops, spaceres);
d31a1825 2735 if (error)
eeacd321 2736 goto out_trans_abort;
d31a1825
CM
2737
2738 /*
2739 * If we're renaming one or more directories across different parents,
2740 * update the respective ".." entries (and link counts) to match the new
2741 * parents.
2742 */
2743 if (dp1 != dp2) {
2744 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2745
c19b3b05 2746 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2747 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2748 dp1->i_ino, first_block,
2c3234d1 2749 dfops, spaceres);
d31a1825 2750 if (error)
eeacd321 2751 goto out_trans_abort;
d31a1825
CM
2752
2753 /* transfer ip2 ".." reference to dp1 */
c19b3b05 2754 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2755 error = xfs_droplink(tp, dp2);
2756 if (error)
eeacd321 2757 goto out_trans_abort;
d31a1825
CM
2758 error = xfs_bumplink(tp, dp1);
2759 if (error)
eeacd321 2760 goto out_trans_abort;
d31a1825
CM
2761 }
2762
2763 /*
2764 * Although ip1 isn't changed here, userspace needs
2765 * to be warned about the change, so that applications
2766 * relying on it (like backup ones), will properly
2767 * notify the change
2768 */
2769 ip1_flags |= XFS_ICHGTIME_CHG;
2770 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2771 }
2772
c19b3b05 2773 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2774 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2775 dp2->i_ino, first_block,
2c3234d1 2776 dfops, spaceres);
d31a1825 2777 if (error)
eeacd321 2778 goto out_trans_abort;
d31a1825
CM
2779
2780 /* transfer ip1 ".." reference to dp2 */
c19b3b05 2781 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2782 error = xfs_droplink(tp, dp1);
2783 if (error)
eeacd321 2784 goto out_trans_abort;
d31a1825
CM
2785 error = xfs_bumplink(tp, dp2);
2786 if (error)
eeacd321 2787 goto out_trans_abort;
d31a1825
CM
2788 }
2789
2790 /*
2791 * Although ip2 isn't changed here, userspace needs
2792 * to be warned about the change, so that applications
2793 * relying on it (like backup ones), will properly
2794 * notify the change
2795 */
2796 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2797 ip2_flags |= XFS_ICHGTIME_CHG;
2798 }
2799 }
2800
2801 if (ip1_flags) {
2802 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2803 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2804 }
2805 if (ip2_flags) {
2806 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2807 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2808 }
2809 if (dp2_flags) {
2810 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2811 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2812 }
2813 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2814 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2c3234d1 2815 return xfs_finish_rename(tp, dfops);
eeacd321
DC
2816
2817out_trans_abort:
2c3234d1 2818 xfs_defer_cancel(dfops);
4906e215 2819 xfs_trans_cancel(tp);
d31a1825
CM
2820 return error;
2821}
2822
7dcf5c3e
DC
2823/*
2824 * xfs_rename_alloc_whiteout()
2825 *
2826 * Return a referenced, unlinked, unlocked inode that that can be used as a
2827 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2828 * crash between allocating the inode and linking it into the rename transaction
2829 * recovery will free the inode and we won't leak it.
2830 */
2831static int
2832xfs_rename_alloc_whiteout(
2833 struct xfs_inode *dp,
2834 struct xfs_inode **wip)
2835{
2836 struct xfs_inode *tmpfile;
2837 int error;
2838
2839 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2840 if (error)
2841 return error;
2842
22419ac9
BF
2843 /*
2844 * Prepare the tmpfile inode as if it were created through the VFS.
2845 * Otherwise, the link increment paths will complain about nlink 0->1.
2846 * Drop the link count as done by d_tmpfile(), complete the inode setup
2847 * and flag it as linkable.
2848 */
2849 drop_nlink(VFS_I(tmpfile));
2b3d1d41 2850 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
2851 xfs_finish_inode_setup(tmpfile);
2852 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2853
2854 *wip = tmpfile;
2855 return 0;
2856}
2857
f6bba201
DC
2858/*
2859 * xfs_rename
2860 */
2861int
2862xfs_rename(
7dcf5c3e
DC
2863 struct xfs_inode *src_dp,
2864 struct xfs_name *src_name,
2865 struct xfs_inode *src_ip,
2866 struct xfs_inode *target_dp,
2867 struct xfs_name *target_name,
2868 struct xfs_inode *target_ip,
2869 unsigned int flags)
f6bba201 2870{
7dcf5c3e
DC
2871 struct xfs_mount *mp = src_dp->i_mount;
2872 struct xfs_trans *tp;
2c3234d1 2873 struct xfs_defer_ops dfops;
7dcf5c3e
DC
2874 xfs_fsblock_t first_block;
2875 struct xfs_inode *wip = NULL; /* whiteout inode */
2876 struct xfs_inode *inodes[__XFS_SORT_INODES];
2877 int num_inodes = __XFS_SORT_INODES;
2b93681f 2878 bool new_parent = (src_dp != target_dp);
c19b3b05 2879 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
2880 int spaceres;
2881 int error;
f6bba201
DC
2882
2883 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2884
eeacd321
DC
2885 if ((flags & RENAME_EXCHANGE) && !target_ip)
2886 return -EINVAL;
2887
7dcf5c3e
DC
2888 /*
2889 * If we are doing a whiteout operation, allocate the whiteout inode
2890 * we will be placing at the target and ensure the type is set
2891 * appropriately.
2892 */
2893 if (flags & RENAME_WHITEOUT) {
2894 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2895 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2896 if (error)
2897 return error;
2898
2899 /* setup target dirent info as whiteout */
2900 src_name->type = XFS_DIR3_FT_CHRDEV;
2901 }
f6bba201 2902
7dcf5c3e 2903 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2904 inodes, &num_inodes);
2905
f6bba201 2906 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 2907 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 2908 if (error == -ENOSPC) {
f6bba201 2909 spaceres = 0;
253f4911
CH
2910 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2911 &tp);
f6bba201 2912 }
445883e8 2913 if (error)
253f4911 2914 goto out_release_wip;
f6bba201
DC
2915
2916 /*
2917 * Attach the dquots to the inodes
2918 */
2919 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2920 if (error)
2921 goto out_trans_cancel;
f6bba201
DC
2922
2923 /*
2924 * Lock all the participating inodes. Depending upon whether
2925 * the target_name exists in the target directory, and
2926 * whether the target directory is the same as the source
2927 * directory, we can lock from 2 to 4 inodes.
2928 */
dbad7c99
DC
2929 if (!new_parent)
2930 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2931 else
2932 xfs_lock_two_inodes(src_dp, target_dp,
2933 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2934
f6bba201
DC
2935 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2936
2937 /*
2938 * Join all the inodes to the transaction. From this point on,
2939 * we can rely on either trans_commit or trans_cancel to unlock
2940 * them.
2941 */
dbad7c99 2942 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
f6bba201 2943 if (new_parent)
dbad7c99 2944 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
f6bba201
DC
2945 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2946 if (target_ip)
2947 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2948 if (wip)
2949 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2950
2951 /*
2952 * If we are using project inheritance, we only allow renames
2953 * into our tree when the project IDs are the same; else the
2954 * tree quota mechanism would be circumvented.
2955 */
2956 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2957 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2958 error = -EXDEV;
445883e8 2959 goto out_trans_cancel;
f6bba201
DC
2960 }
2961
2c3234d1 2962 xfs_defer_init(&dfops, &first_block);
445883e8 2963
eeacd321
DC
2964 /* RENAME_EXCHANGE is unique from here on. */
2965 if (flags & RENAME_EXCHANGE)
2966 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2967 target_dp, target_name, target_ip,
2c3234d1 2968 &dfops, &first_block, spaceres);
d31a1825 2969
f6bba201
DC
2970 /*
2971 * Set up the target.
2972 */
2973 if (target_ip == NULL) {
2974 /*
2975 * If there's no space reservation, check the entry will
2976 * fit before actually inserting it.
2977 */
94f3cad5
ES
2978 if (!spaceres) {
2979 error = xfs_dir_canenter(tp, target_dp, target_name);
2980 if (error)
445883e8 2981 goto out_trans_cancel;
94f3cad5 2982 }
f6bba201
DC
2983 /*
2984 * If target does not exist and the rename crosses
2985 * directories, adjust the target directory link count
2986 * to account for the ".." reference from the new entry.
2987 */
2988 error = xfs_dir_createname(tp, target_dp, target_name,
2989 src_ip->i_ino, &first_block,
2c3234d1 2990 &dfops, spaceres);
f6bba201 2991 if (error)
4906e215 2992 goto out_bmap_cancel;
f6bba201
DC
2993
2994 xfs_trans_ichgtime(tp, target_dp,
2995 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2996
2997 if (new_parent && src_is_directory) {
2998 error = xfs_bumplink(tp, target_dp);
2999 if (error)
4906e215 3000 goto out_bmap_cancel;
f6bba201
DC
3001 }
3002 } else { /* target_ip != NULL */
3003 /*
3004 * If target exists and it's a directory, check that both
3005 * target and source are directories and that target can be
3006 * destroyed, or that neither is a directory.
3007 */
c19b3b05 3008 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
f6bba201
DC
3009 /*
3010 * Make sure target dir is empty.
3011 */
3012 if (!(xfs_dir_isempty(target_ip)) ||
54d7b5c1 3013 (VFS_I(target_ip)->i_nlink > 2)) {
2451337d 3014 error = -EEXIST;
445883e8 3015 goto out_trans_cancel;
f6bba201
DC
3016 }
3017 }
3018
3019 /*
3020 * Link the source inode under the target name.
3021 * If the source inode is a directory and we are moving
3022 * it across directories, its ".." entry will be
3023 * inconsistent until we replace that down below.
3024 *
3025 * In case there is already an entry with the same
3026 * name at the destination directory, remove it first.
3027 */
3028 error = xfs_dir_replace(tp, target_dp, target_name,
3029 src_ip->i_ino,
2c3234d1 3030 &first_block, &dfops, spaceres);
f6bba201 3031 if (error)
4906e215 3032 goto out_bmap_cancel;
f6bba201
DC
3033
3034 xfs_trans_ichgtime(tp, target_dp,
3035 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3036
3037 /*
3038 * Decrement the link count on the target since the target
3039 * dir no longer points to it.
3040 */
3041 error = xfs_droplink(tp, target_ip);
3042 if (error)
4906e215 3043 goto out_bmap_cancel;
f6bba201
DC
3044
3045 if (src_is_directory) {
3046 /*
3047 * Drop the link from the old "." entry.
3048 */
3049 error = xfs_droplink(tp, target_ip);
3050 if (error)
4906e215 3051 goto out_bmap_cancel;
f6bba201
DC
3052 }
3053 } /* target_ip != NULL */
3054
3055 /*
3056 * Remove the source.
3057 */
3058 if (new_parent && src_is_directory) {
3059 /*
3060 * Rewrite the ".." entry to point to the new
3061 * directory.
3062 */
3063 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3064 target_dp->i_ino,
2c3234d1 3065 &first_block, &dfops, spaceres);
2451337d 3066 ASSERT(error != -EEXIST);
f6bba201 3067 if (error)
4906e215 3068 goto out_bmap_cancel;
f6bba201
DC
3069 }
3070
3071 /*
3072 * We always want to hit the ctime on the source inode.
3073 *
3074 * This isn't strictly required by the standards since the source
3075 * inode isn't really being changed, but old unix file systems did
3076 * it and some incremental backup programs won't work without it.
3077 */
3078 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3079 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3080
3081 /*
3082 * Adjust the link count on src_dp. This is necessary when
3083 * renaming a directory, either within one parent when
3084 * the target existed, or across two parent directories.
3085 */
3086 if (src_is_directory && (new_parent || target_ip != NULL)) {
3087
3088 /*
3089 * Decrement link count on src_directory since the
3090 * entry that's moved no longer points to it.
3091 */
3092 error = xfs_droplink(tp, src_dp);
3093 if (error)
4906e215 3094 goto out_bmap_cancel;
f6bba201
DC
3095 }
3096
7dcf5c3e
DC
3097 /*
3098 * For whiteouts, we only need to update the source dirent with the
3099 * inode number of the whiteout inode rather than removing it
3100 * altogether.
3101 */
3102 if (wip) {
3103 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
2c3234d1 3104 &first_block, &dfops, spaceres);
7dcf5c3e
DC
3105 } else
3106 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2c3234d1 3107 &first_block, &dfops, spaceres);
f6bba201 3108 if (error)
4906e215 3109 goto out_bmap_cancel;
f6bba201
DC
3110
3111 /*
7dcf5c3e
DC
3112 * For whiteouts, we need to bump the link count on the whiteout inode.
3113 * This means that failures all the way up to this point leave the inode
3114 * on the unlinked list and so cleanup is a simple matter of dropping
3115 * the remaining reference to it. If we fail here after bumping the link
3116 * count, we're shutting down the filesystem so we'll never see the
3117 * intermediate state on disk.
f6bba201 3118 */
7dcf5c3e 3119 if (wip) {
54d7b5c1 3120 ASSERT(VFS_I(wip)->i_nlink == 0);
7dcf5c3e
DC
3121 error = xfs_bumplink(tp, wip);
3122 if (error)
4906e215 3123 goto out_bmap_cancel;
7dcf5c3e
DC
3124 error = xfs_iunlink_remove(tp, wip);
3125 if (error)
4906e215 3126 goto out_bmap_cancel;
7dcf5c3e 3127 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3128
7dcf5c3e
DC
3129 /*
3130 * Now we have a real link, clear the "I'm a tmpfile" state
3131 * flag from the inode so it doesn't accidentally get misused in
3132 * future.
3133 */
3134 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3135 }
3136
f6bba201
DC
3137 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3138 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3139 if (new_parent)
3140 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3141
2c3234d1 3142 error = xfs_finish_rename(tp, &dfops);
7dcf5c3e
DC
3143 if (wip)
3144 IRELE(wip);
3145 return error;
f6bba201 3146
445883e8 3147out_bmap_cancel:
2c3234d1 3148 xfs_defer_cancel(&dfops);
445883e8 3149out_trans_cancel:
4906e215 3150 xfs_trans_cancel(tp);
253f4911 3151out_release_wip:
7dcf5c3e
DC
3152 if (wip)
3153 IRELE(wip);
f6bba201
DC
3154 return error;
3155}
3156
5c4d97d0
DC
3157STATIC int
3158xfs_iflush_cluster(
19429363
DC
3159 struct xfs_inode *ip,
3160 struct xfs_buf *bp)
1da177e4 3161{
19429363 3162 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3163 struct xfs_perag *pag;
3164 unsigned long first_index, mask;
3165 unsigned long inodes_per_cluster;
19429363
DC
3166 int cilist_size;
3167 struct xfs_inode **cilist;
3168 struct xfs_inode *cip;
5c4d97d0
DC
3169 int nr_found;
3170 int clcount = 0;
3171 int bufwasdelwri;
1da177e4 3172 int i;
1da177e4 3173
5c4d97d0 3174 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3175
0f49efd8 3176 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
19429363
DC
3177 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3178 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3179 if (!cilist)
5c4d97d0 3180 goto out_put;
1da177e4 3181
0f49efd8 3182 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3183 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3184 rcu_read_lock();
3185 /* really need a gang lookup range call here */
19429363 3186 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
5c4d97d0
DC
3187 first_index, inodes_per_cluster);
3188 if (nr_found == 0)
3189 goto out_free;
3190
3191 for (i = 0; i < nr_found; i++) {
19429363
DC
3192 cip = cilist[i];
3193 if (cip == ip)
bad55843 3194 continue;
1a3e8f3d
DC
3195
3196 /*
3197 * because this is an RCU protected lookup, we could find a
3198 * recently freed or even reallocated inode during the lookup.
3199 * We need to check under the i_flags_lock for a valid inode
3200 * here. Skip it if it is not valid or the wrong inode.
3201 */
19429363
DC
3202 spin_lock(&cip->i_flags_lock);
3203 if (!cip->i_ino ||
3204 __xfs_iflags_test(cip, XFS_ISTALE)) {
3205 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3206 continue;
3207 }
5a90e53e
DC
3208
3209 /*
3210 * Once we fall off the end of the cluster, no point checking
3211 * any more inodes in the list because they will also all be
3212 * outside the cluster.
3213 */
19429363
DC
3214 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3215 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3216 break;
3217 }
19429363 3218 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3219
bad55843
DC
3220 /*
3221 * Do an un-protected check to see if the inode is dirty and
3222 * is a candidate for flushing. These checks will be repeated
3223 * later after the appropriate locks are acquired.
3224 */
19429363 3225 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3226 continue;
bad55843
DC
3227
3228 /*
3229 * Try to get locks. If any are unavailable or it is pinned,
3230 * then this inode cannot be flushed and is skipped.
3231 */
3232
19429363 3233 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3234 continue;
19429363
DC
3235 if (!xfs_iflock_nowait(cip)) {
3236 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3237 continue;
3238 }
19429363
DC
3239 if (xfs_ipincount(cip)) {
3240 xfs_ifunlock(cip);
3241 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3242 continue;
3243 }
3244
8a17d7dd
DC
3245
3246 /*
3247 * Check the inode number again, just to be certain we are not
3248 * racing with freeing in xfs_reclaim_inode(). See the comments
3249 * in that function for more information as to why the initial
3250 * check is not sufficient.
3251 */
19429363
DC
3252 if (!cip->i_ino) {
3253 xfs_ifunlock(cip);
3254 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3255 continue;
3256 }
3257
3258 /*
3259 * arriving here means that this inode can be flushed. First
3260 * re-check that it's dirty before flushing.
3261 */
19429363 3262 if (!xfs_inode_clean(cip)) {
33540408 3263 int error;
19429363 3264 error = xfs_iflush_int(cip, bp);
bad55843 3265 if (error) {
19429363 3266 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3267 goto cluster_corrupt_out;
3268 }
3269 clcount++;
3270 } else {
19429363 3271 xfs_ifunlock(cip);
bad55843 3272 }
19429363 3273 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3274 }
3275
3276 if (clcount) {
ff6d6af2
BD
3277 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3278 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3279 }
3280
3281out_free:
1a3e8f3d 3282 rcu_read_unlock();
19429363 3283 kmem_free(cilist);
44b56e0a
DC
3284out_put:
3285 xfs_perag_put(pag);
bad55843
DC
3286 return 0;
3287
3288
3289cluster_corrupt_out:
3290 /*
3291 * Corruption detected in the clustering loop. Invalidate the
3292 * inode buffer and shut down the filesystem.
3293 */
1a3e8f3d 3294 rcu_read_unlock();
bad55843 3295 /*
43ff2122 3296 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3297 * brelse can handle it with no problems. If not, shut down the
3298 * filesystem before releasing the buffer.
3299 */
43ff2122 3300 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3301 if (bufwasdelwri)
3302 xfs_buf_relse(bp);
3303
3304 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3305
3306 if (!bufwasdelwri) {
3307 /*
3308 * Just like incore_relse: if we have b_iodone functions,
3309 * mark the buffer as an error and call them. Otherwise
3310 * mark it as stale and brelse.
3311 */
cb669ca5 3312 if (bp->b_iodone) {
b0388bf1 3313 bp->b_flags &= ~XBF_DONE;
c867cb61 3314 xfs_buf_stale(bp);
2451337d 3315 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3316 xfs_buf_ioend(bp);
bad55843 3317 } else {
c867cb61 3318 xfs_buf_stale(bp);
bad55843
DC
3319 xfs_buf_relse(bp);
3320 }
3321 }
3322
3323 /*
3324 * Unlocks the flush lock
3325 */
19429363
DC
3326 xfs_iflush_abort(cip, false);
3327 kmem_free(cilist);
44b56e0a 3328 xfs_perag_put(pag);
2451337d 3329 return -EFSCORRUPTED;
bad55843
DC
3330}
3331
1da177e4 3332/*
4c46819a
CH
3333 * Flush dirty inode metadata into the backing buffer.
3334 *
3335 * The caller must have the inode lock and the inode flush lock held. The
3336 * inode lock will still be held upon return to the caller, and the inode
3337 * flush lock will be released after the inode has reached the disk.
3338 *
3339 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3340 */
3341int
3342xfs_iflush(
4c46819a
CH
3343 struct xfs_inode *ip,
3344 struct xfs_buf **bpp)
1da177e4 3345{
4c46819a 3346 struct xfs_mount *mp = ip->i_mount;
b1438f47 3347 struct xfs_buf *bp = NULL;
4c46819a 3348 struct xfs_dinode *dip;
1da177e4 3349 int error;
1da177e4 3350
ff6d6af2 3351 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3352
579aa9ca 3353 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3354 ASSERT(xfs_isiflocked(ip));
1da177e4 3355 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3356 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3357
4c46819a 3358 *bpp = NULL;
1da177e4 3359
1da177e4
LT
3360 xfs_iunpin_wait(ip);
3361
4b6a4688
DC
3362 /*
3363 * For stale inodes we cannot rely on the backing buffer remaining
3364 * stale in cache for the remaining life of the stale inode and so
475ee413 3365 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3366 * inodes below. We have to check this after ensuring the inode is
3367 * unpinned so that it is safe to reclaim the stale inode after the
3368 * flush call.
3369 */
3370 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3371 xfs_ifunlock(ip);
3372 return 0;
3373 }
3374
1da177e4
LT
3375 /*
3376 * This may have been unpinned because the filesystem is shutting
3377 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3378 * to disk, because the log record didn't make it to disk.
3379 *
3380 * We also have to remove the log item from the AIL in this case,
3381 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3382 */
3383 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3384 error = -EIO;
32ce90a4 3385 goto abort_out;
1da177e4
LT
3386 }
3387
a3f74ffb 3388 /*
b1438f47
DC
3389 * Get the buffer containing the on-disk inode. We are doing a try-lock
3390 * operation here, so we may get an EAGAIN error. In that case, we
3391 * simply want to return with the inode still dirty.
3392 *
3393 * If we get any other error, we effectively have a corruption situation
3394 * and we cannot flush the inode, so we treat it the same as failing
3395 * xfs_iflush_int().
a3f74ffb 3396 */
475ee413
CH
3397 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3398 0);
b1438f47 3399 if (error == -EAGAIN) {
a3f74ffb
DC
3400 xfs_ifunlock(ip);
3401 return error;
3402 }
b1438f47
DC
3403 if (error)
3404 goto corrupt_out;
a3f74ffb 3405
1da177e4
LT
3406 /*
3407 * First flush out the inode that xfs_iflush was called with.
3408 */
3409 error = xfs_iflush_int(ip, bp);
bad55843 3410 if (error)
1da177e4 3411 goto corrupt_out;
1da177e4 3412
a3f74ffb
DC
3413 /*
3414 * If the buffer is pinned then push on the log now so we won't
3415 * get stuck waiting in the write for too long.
3416 */
811e64c7 3417 if (xfs_buf_ispinned(bp))
a14a348b 3418 xfs_log_force(mp, 0);
a3f74ffb 3419
1da177e4
LT
3420 /*
3421 * inode clustering:
3422 * see if other inodes can be gathered into this write
3423 */
bad55843
DC
3424 error = xfs_iflush_cluster(ip, bp);
3425 if (error)
3426 goto cluster_corrupt_out;
1da177e4 3427
4c46819a
CH
3428 *bpp = bp;
3429 return 0;
1da177e4
LT
3430
3431corrupt_out:
b1438f47
DC
3432 if (bp)
3433 xfs_buf_relse(bp);
7d04a335 3434 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3435cluster_corrupt_out:
2451337d 3436 error = -EFSCORRUPTED;
32ce90a4 3437abort_out:
1da177e4
LT
3438 /*
3439 * Unlocks the flush lock
3440 */
04913fdd 3441 xfs_iflush_abort(ip, false);
32ce90a4 3442 return error;
1da177e4
LT
3443}
3444
1da177e4
LT
3445STATIC int
3446xfs_iflush_int(
93848a99
CH
3447 struct xfs_inode *ip,
3448 struct xfs_buf *bp)
1da177e4 3449{
93848a99
CH
3450 struct xfs_inode_log_item *iip = ip->i_itemp;
3451 struct xfs_dinode *dip;
3452 struct xfs_mount *mp = ip->i_mount;
1da177e4 3453
579aa9ca 3454 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3455 ASSERT(xfs_isiflocked(ip));
1da177e4 3456 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3457 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3458 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3459 ASSERT(ip->i_d.di_version > 1);
1da177e4 3460
1da177e4 3461 /* set *dip = inode's place in the buffer */
88ee2df7 3462 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3463
69ef921b 3464 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3465 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3466 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3467 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3468 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3469 goto corrupt_out;
3470 }
c19b3b05 3471 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4
LT
3472 if (XFS_TEST_ERROR(
3473 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3474 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3475 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3476 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3477 "%s: Bad regular inode %Lu, ptr 0x%p",
3478 __func__, ip->i_ino, ip);
1da177e4
LT
3479 goto corrupt_out;
3480 }
c19b3b05 3481 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4
LT
3482 if (XFS_TEST_ERROR(
3483 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3484 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3485 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3486 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3487 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3488 "%s: Bad directory inode %Lu, ptr 0x%p",
3489 __func__, ip->i_ino, ip);
1da177e4
LT
3490 goto corrupt_out;
3491 }
3492 }
3493 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3494 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3495 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3496 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3497 "%s: detected corrupt incore inode %Lu, "
3498 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3499 __func__, ip->i_ino,
1da177e4 3500 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3501 ip->i_d.di_nblocks, ip);
1da177e4
LT
3502 goto corrupt_out;
3503 }
3504 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3505 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3506 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3507 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3508 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3509 goto corrupt_out;
3510 }
e60896d8 3511
1da177e4 3512 /*
263997a6 3513 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3514 * di_flushiter count for correct sequencing. We bump the flush
3515 * iteration count so we can detect flushes which postdate a log record
3516 * during recovery. This is redundant as we now log every change and
3517 * hence this can't happen but we need to still do it to ensure
3518 * backwards compatibility with old kernels that predate logging all
3519 * inode changes.
1da177e4 3520 */
e60896d8
DC
3521 if (ip->i_d.di_version < 3)
3522 ip->i_d.di_flushiter++;
1da177e4
LT
3523
3524 /*
3987848c
DC
3525 * Copy the dirty parts of the inode into the on-disk inode. We always
3526 * copy out the core of the inode, because if the inode is dirty at all
3527 * the core must be.
1da177e4 3528 */
93f958f9 3529 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3530
3531 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3532 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3533 ip->i_d.di_flushiter = 0;
3534
fd9fdba6 3535 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
e4ac967b 3536 if (XFS_IFORK_Q(ip))
fd9fdba6 3537 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3538 xfs_inobp_check(mp, bp);
3539
3540 /*
f5d8d5c4
CH
3541 * We've recorded everything logged in the inode, so we'd like to clear
3542 * the ili_fields bits so we don't log and flush things unnecessarily.
3543 * However, we can't stop logging all this information until the data
3544 * we've copied into the disk buffer is written to disk. If we did we
3545 * might overwrite the copy of the inode in the log with all the data
3546 * after re-logging only part of it, and in the face of a crash we
3547 * wouldn't have all the data we need to recover.
1da177e4 3548 *
f5d8d5c4
CH
3549 * What we do is move the bits to the ili_last_fields field. When
3550 * logging the inode, these bits are moved back to the ili_fields field.
3551 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3552 * know that the information those bits represent is permanently on
3553 * disk. As long as the flush completes before the inode is logged
3554 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3555 *
f5d8d5c4
CH
3556 * We can play with the ili_fields bits here, because the inode lock
3557 * must be held exclusively in order to set bits there and the flush
3558 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3559 * done routine can tell whether or not to look in the AIL. Also, store
3560 * the current LSN of the inode so that we can tell whether the item has
3561 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3562 * need the AIL lock, because it is a 64 bit value that cannot be read
3563 * atomically.
1da177e4 3564 */
93848a99
CH
3565 iip->ili_last_fields = iip->ili_fields;
3566 iip->ili_fields = 0;
fc0561ce 3567 iip->ili_fsync_fields = 0;
93848a99 3568 iip->ili_logged = 1;
1da177e4 3569
93848a99
CH
3570 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3571 &iip->ili_item.li_lsn);
1da177e4 3572
93848a99
CH
3573 /*
3574 * Attach the function xfs_iflush_done to the inode's
3575 * buffer. This will remove the inode from the AIL
3576 * and unlock the inode's flush lock when the inode is
3577 * completely written to disk.
3578 */
3579 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3580
93848a99
CH
3581 /* generate the checksum. */
3582 xfs_dinode_calc_crc(mp, dip);
1da177e4 3583
93848a99
CH
3584 ASSERT(bp->b_fspriv != NULL);
3585 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3586 return 0;
3587
3588corrupt_out:
2451337d 3589 return -EFSCORRUPTED;
1da177e4 3590}