]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_inode.c
Merge tag 'for-linus-20170825' of git://git.infradead.org/linux-mtd
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
3ab78df2 28#include "xfs_defer.h"
a4fbe6ab 29#include "xfs_inode.h"
57062787 30#include "xfs_da_format.h"
c24b5dfa 31#include "xfs_da_btree.h"
c24b5dfa 32#include "xfs_dir2.h"
a844f451 33#include "xfs_attr_sf.h"
c24b5dfa 34#include "xfs_attr.h"
239880ef
DC
35#include "xfs_trans_space.h"
36#include "xfs_trans.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451 38#include "xfs_inode_item.h"
a844f451
NS
39#include "xfs_ialloc.h"
40#include "xfs_bmap.h"
68988114 41#include "xfs_bmap_util.h"
1da177e4 42#include "xfs_error.h"
1da177e4 43#include "xfs_quota.h"
2a82b8be 44#include "xfs_filestream.h"
93848a99 45#include "xfs_cksum.h"
0b1b213f 46#include "xfs_trace.h"
33479e05 47#include "xfs_icache.h"
c24b5dfa 48#include "xfs_symlink.h"
239880ef
DC
49#include "xfs_trans_priv.h"
50#include "xfs_log.h"
a4fbe6ab 51#include "xfs_bmap_btree.h"
aa8968f2 52#include "xfs_reflink.h"
005c5db8 53#include "xfs_dir2_priv.h"
1da177e4 54
1da177e4 55kmem_zone_t *xfs_inode_zone;
1da177e4
LT
56
57/*
8f04c47a 58 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
59 * freed from a file in a single transaction.
60 */
61#define XFS_ITRUNC_MAX_EXTENTS 2
62
54d7b5c1
DC
63STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
64STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
65STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 66
2a0ec1d9
DC
67/*
68 * helper function to extract extent size hint from inode
69 */
70xfs_extlen_t
71xfs_get_extsz_hint(
72 struct xfs_inode *ip)
73{
74 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
75 return ip->i_d.di_extsize;
76 if (XFS_IS_REALTIME_INODE(ip))
77 return ip->i_mount->m_sb.sb_rextsize;
78 return 0;
79}
80
f7ca3522
DW
81/*
82 * Helper function to extract CoW extent size hint from inode.
83 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
84 * return the greater of the two. If the value is zero (automatic),
85 * use the default size.
f7ca3522
DW
86 */
87xfs_extlen_t
88xfs_get_cowextsz_hint(
89 struct xfs_inode *ip)
90{
91 xfs_extlen_t a, b;
92
93 a = 0;
94 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
95 a = ip->i_d.di_cowextsize;
96 b = xfs_get_extsz_hint(ip);
97
e153aa79
DW
98 a = max(a, b);
99 if (a == 0)
100 return XFS_DEFAULT_COWEXTSZ_HINT;
101 return a;
f7ca3522
DW
102}
103
fa96acad 104/*
efa70be1
CH
105 * These two are wrapper routines around the xfs_ilock() routine used to
106 * centralize some grungy code. They are used in places that wish to lock the
107 * inode solely for reading the extents. The reason these places can't just
108 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
109 * bringing in of the extents from disk for a file in b-tree format. If the
110 * inode is in b-tree format, then we need to lock the inode exclusively until
111 * the extents are read in. Locking it exclusively all the time would limit
112 * our parallelism unnecessarily, though. What we do instead is check to see
113 * if the extents have been read in yet, and only lock the inode exclusively
114 * if they have not.
fa96acad 115 *
efa70be1 116 * The functions return a value which should be given to the corresponding
01f4f327 117 * xfs_iunlock() call.
fa96acad
DC
118 */
119uint
309ecac8
CH
120xfs_ilock_data_map_shared(
121 struct xfs_inode *ip)
fa96acad 122{
309ecac8 123 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 124
309ecac8
CH
125 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
126 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 127 lock_mode = XFS_ILOCK_EXCL;
fa96acad 128 xfs_ilock(ip, lock_mode);
fa96acad
DC
129 return lock_mode;
130}
131
efa70be1
CH
132uint
133xfs_ilock_attr_map_shared(
134 struct xfs_inode *ip)
fa96acad 135{
efa70be1
CH
136 uint lock_mode = XFS_ILOCK_SHARED;
137
138 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
139 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
140 lock_mode = XFS_ILOCK_EXCL;
141 xfs_ilock(ip, lock_mode);
142 return lock_mode;
fa96acad
DC
143}
144
145/*
65523218
CH
146 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
147 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
148 * various combinations of the locks to be obtained.
fa96acad 149 *
653c60b6
DC
150 * The 3 locks should always be ordered so that the IO lock is obtained first,
151 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 152 *
653c60b6
DC
153 * Basic locking order:
154 *
65523218 155 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6
DC
156 *
157 * mmap_sem locking order:
158 *
65523218 159 * i_rwsem -> page lock -> mmap_sem
653c60b6
DC
160 * mmap_sem -> i_mmap_lock -> page_lock
161 *
162 * The difference in mmap_sem locking order mean that we cannot hold the
163 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
164 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
165 * in get_user_pages() to map the user pages into the kernel address space for
65523218 166 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
653c60b6
DC
167 * page faults already hold the mmap_sem.
168 *
169 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 170 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
171 * taken in places where we need to invalidate the page cache in a race
172 * free manner (e.g. truncate, hole punch and other extent manipulation
173 * functions).
fa96acad
DC
174 */
175void
176xfs_ilock(
177 xfs_inode_t *ip,
178 uint lock_flags)
179{
180 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
181
182 /*
183 * You can't set both SHARED and EXCL for the same lock,
184 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
185 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
186 */
187 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
188 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
189 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
190 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
191 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
192 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 193 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 194
65523218
CH
195 if (lock_flags & XFS_IOLOCK_EXCL) {
196 down_write_nested(&VFS_I(ip)->i_rwsem,
197 XFS_IOLOCK_DEP(lock_flags));
198 } else if (lock_flags & XFS_IOLOCK_SHARED) {
199 down_read_nested(&VFS_I(ip)->i_rwsem,
200 XFS_IOLOCK_DEP(lock_flags));
201 }
fa96acad 202
653c60b6
DC
203 if (lock_flags & XFS_MMAPLOCK_EXCL)
204 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
205 else if (lock_flags & XFS_MMAPLOCK_SHARED)
206 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
207
fa96acad
DC
208 if (lock_flags & XFS_ILOCK_EXCL)
209 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
210 else if (lock_flags & XFS_ILOCK_SHARED)
211 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212}
213
214/*
215 * This is just like xfs_ilock(), except that the caller
216 * is guaranteed not to sleep. It returns 1 if it gets
217 * the requested locks and 0 otherwise. If the IO lock is
218 * obtained but the inode lock cannot be, then the IO lock
219 * is dropped before returning.
220 *
221 * ip -- the inode being locked
222 * lock_flags -- this parameter indicates the inode's locks to be
223 * to be locked. See the comment for xfs_ilock() for a list
224 * of valid values.
225 */
226int
227xfs_ilock_nowait(
228 xfs_inode_t *ip,
229 uint lock_flags)
230{
231 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
232
233 /*
234 * You can't set both SHARED and EXCL for the same lock,
235 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
236 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
237 */
238 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
239 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
240 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
241 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
242 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
243 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 244 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
245
246 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 247 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
248 goto out;
249 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 250 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
251 goto out;
252 }
653c60b6
DC
253
254 if (lock_flags & XFS_MMAPLOCK_EXCL) {
255 if (!mrtryupdate(&ip->i_mmaplock))
256 goto out_undo_iolock;
257 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
258 if (!mrtryaccess(&ip->i_mmaplock))
259 goto out_undo_iolock;
260 }
261
fa96acad
DC
262 if (lock_flags & XFS_ILOCK_EXCL) {
263 if (!mrtryupdate(&ip->i_lock))
653c60b6 264 goto out_undo_mmaplock;
fa96acad
DC
265 } else if (lock_flags & XFS_ILOCK_SHARED) {
266 if (!mrtryaccess(&ip->i_lock))
653c60b6 267 goto out_undo_mmaplock;
fa96acad
DC
268 }
269 return 1;
270
653c60b6
DC
271out_undo_mmaplock:
272 if (lock_flags & XFS_MMAPLOCK_EXCL)
273 mrunlock_excl(&ip->i_mmaplock);
274 else if (lock_flags & XFS_MMAPLOCK_SHARED)
275 mrunlock_shared(&ip->i_mmaplock);
276out_undo_iolock:
fa96acad 277 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 278 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 279 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 280 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 281out:
fa96acad
DC
282 return 0;
283}
284
285/*
286 * xfs_iunlock() is used to drop the inode locks acquired with
287 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
288 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
289 * that we know which locks to drop.
290 *
291 * ip -- the inode being unlocked
292 * lock_flags -- this parameter indicates the inode's locks to be
293 * to be unlocked. See the comment for xfs_ilock() for a list
294 * of valid values for this parameter.
295 *
296 */
297void
298xfs_iunlock(
299 xfs_inode_t *ip,
300 uint lock_flags)
301{
302 /*
303 * You can't set both SHARED and EXCL for the same lock,
304 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
305 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
306 */
307 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
308 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
309 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
310 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
311 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
312 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 313 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
314 ASSERT(lock_flags != 0);
315
316 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 317 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 318 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 319 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 320
653c60b6
DC
321 if (lock_flags & XFS_MMAPLOCK_EXCL)
322 mrunlock_excl(&ip->i_mmaplock);
323 else if (lock_flags & XFS_MMAPLOCK_SHARED)
324 mrunlock_shared(&ip->i_mmaplock);
325
fa96acad
DC
326 if (lock_flags & XFS_ILOCK_EXCL)
327 mrunlock_excl(&ip->i_lock);
328 else if (lock_flags & XFS_ILOCK_SHARED)
329 mrunlock_shared(&ip->i_lock);
330
331 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
332}
333
334/*
335 * give up write locks. the i/o lock cannot be held nested
336 * if it is being demoted.
337 */
338void
339xfs_ilock_demote(
340 xfs_inode_t *ip,
341 uint lock_flags)
342{
653c60b6
DC
343 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
344 ASSERT((lock_flags &
345 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
346
347 if (lock_flags & XFS_ILOCK_EXCL)
348 mrdemote(&ip->i_lock);
653c60b6
DC
349 if (lock_flags & XFS_MMAPLOCK_EXCL)
350 mrdemote(&ip->i_mmaplock);
fa96acad 351 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 352 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
353
354 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
355}
356
742ae1e3 357#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
358int
359xfs_isilocked(
360 xfs_inode_t *ip,
361 uint lock_flags)
362{
363 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
364 if (!(lock_flags & XFS_ILOCK_SHARED))
365 return !!ip->i_lock.mr_writer;
366 return rwsem_is_locked(&ip->i_lock.mr_lock);
367 }
368
653c60b6
DC
369 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
370 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
371 return !!ip->i_mmaplock.mr_writer;
372 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
373 }
374
fa96acad
DC
375 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
376 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
377 return !debug_locks ||
378 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
379 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
380 }
381
382 ASSERT(0);
383 return 0;
384}
385#endif
386
c24b5dfa
DC
387#ifdef DEBUG
388int xfs_locked_n;
389int xfs_small_retries;
390int xfs_middle_retries;
391int xfs_lots_retries;
392int xfs_lock_delays;
393#endif
394
b6a9947e
DC
395/*
396 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
397 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
398 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
399 * errors and warnings.
400 */
401#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
402static bool
403xfs_lockdep_subclass_ok(
404 int subclass)
405{
406 return subclass < MAX_LOCKDEP_SUBCLASSES;
407}
408#else
409#define xfs_lockdep_subclass_ok(subclass) (true)
410#endif
411
c24b5dfa 412/*
653c60b6 413 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
414 * value. This can be called for any type of inode lock combination, including
415 * parent locking. Care must be taken to ensure we don't overrun the subclass
416 * storage fields in the class mask we build.
c24b5dfa
DC
417 */
418static inline int
419xfs_lock_inumorder(int lock_mode, int subclass)
420{
0952c818
DC
421 int class = 0;
422
423 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
424 XFS_ILOCK_RTSUM)));
3403ccc0 425 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 426
653c60b6 427 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 428 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 429 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
430 }
431
432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
434 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
435 }
436
0952c818
DC
437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
439 class += subclass << XFS_ILOCK_SHIFT;
440 }
c24b5dfa 441
0952c818 442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
443}
444
445/*
95afcf5c
DC
446 * The following routine will lock n inodes in exclusive mode. We assume the
447 * caller calls us with the inodes in i_ino order.
c24b5dfa 448 *
95afcf5c
DC
449 * We need to detect deadlock where an inode that we lock is in the AIL and we
450 * start waiting for another inode that is locked by a thread in a long running
451 * transaction (such as truncate). This can result in deadlock since the long
452 * running trans might need to wait for the inode we just locked in order to
453 * push the tail and free space in the log.
0952c818
DC
454 *
455 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457 * lock more than one at a time, lockdep will report false positives saying we
458 * have violated locking orders.
c24b5dfa 459 */
0d5a75e9 460static void
c24b5dfa
DC
461xfs_lock_inodes(
462 xfs_inode_t **ips,
463 int inodes,
464 uint lock_mode)
465{
466 int attempts = 0, i, j, try_lock;
467 xfs_log_item_t *lp;
468
0952c818
DC
469 /*
470 * Currently supports between 2 and 5 inodes with exclusive locking. We
471 * support an arbitrary depth of locking here, but absolute limits on
472 * inodes depend on the the type of locking and the limits placed by
473 * lockdep annotations in xfs_lock_inumorder. These are all checked by
474 * the asserts.
475 */
95afcf5c 476 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
478 XFS_ILOCK_EXCL));
479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
480 XFS_ILOCK_SHARED)));
0952c818
DC
481 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
482 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
484 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
485
486 if (lock_mode & XFS_IOLOCK_EXCL) {
487 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
488 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
489 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
490
491 try_lock = 0;
492 i = 0;
c24b5dfa
DC
493again:
494 for (; i < inodes; i++) {
495 ASSERT(ips[i]);
496
95afcf5c 497 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
498 continue;
499
500 /*
95afcf5c
DC
501 * If try_lock is not set yet, make sure all locked inodes are
502 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 503 */
c24b5dfa
DC
504 if (!try_lock) {
505 for (j = (i - 1); j >= 0 && !try_lock; j--) {
506 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 507 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 508 try_lock++;
c24b5dfa
DC
509 }
510 }
511
512 /*
513 * If any of the previous locks we have locked is in the AIL,
514 * we must TRY to get the second and subsequent locks. If
515 * we can't get any, we must release all we have
516 * and try again.
517 */
95afcf5c
DC
518 if (!try_lock) {
519 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
520 continue;
521 }
522
523 /* try_lock means we have an inode locked that is in the AIL. */
524 ASSERT(i != 0);
525 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
526 continue;
c24b5dfa 527
95afcf5c
DC
528 /*
529 * Unlock all previous guys and try again. xfs_iunlock will try
530 * to push the tail if the inode is in the AIL.
531 */
532 attempts++;
533 for (j = i - 1; j >= 0; j--) {
c24b5dfa 534 /*
95afcf5c
DC
535 * Check to see if we've already unlocked this one. Not
536 * the first one going back, and the inode ptr is the
537 * same.
c24b5dfa 538 */
95afcf5c
DC
539 if (j != (i - 1) && ips[j] == ips[j + 1])
540 continue;
c24b5dfa 541
95afcf5c
DC
542 xfs_iunlock(ips[j], lock_mode);
543 }
c24b5dfa 544
95afcf5c
DC
545 if ((attempts % 5) == 0) {
546 delay(1); /* Don't just spin the CPU */
c24b5dfa 547#ifdef DEBUG
95afcf5c 548 xfs_lock_delays++;
c24b5dfa 549#endif
c24b5dfa 550 }
95afcf5c
DC
551 i = 0;
552 try_lock = 0;
553 goto again;
c24b5dfa
DC
554 }
555
556#ifdef DEBUG
557 if (attempts) {
558 if (attempts < 5) xfs_small_retries++;
559 else if (attempts < 100) xfs_middle_retries++;
560 else xfs_lots_retries++;
561 } else {
562 xfs_locked_n++;
563 }
564#endif
565}
566
567/*
653c60b6
DC
568 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
569 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
570 * lock more than one at a time, lockdep will report false positives saying we
571 * have violated locking orders.
c24b5dfa
DC
572 */
573void
574xfs_lock_two_inodes(
575 xfs_inode_t *ip0,
576 xfs_inode_t *ip1,
577 uint lock_mode)
578{
579 xfs_inode_t *temp;
580 int attempts = 0;
581 xfs_log_item_t *lp;
582
65523218
CH
583 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
584 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
653c60b6
DC
585 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
586
c24b5dfa
DC
587 ASSERT(ip0->i_ino != ip1->i_ino);
588
589 if (ip0->i_ino > ip1->i_ino) {
590 temp = ip0;
591 ip0 = ip1;
592 ip1 = temp;
593 }
594
595 again:
596 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
597
598 /*
599 * If the first lock we have locked is in the AIL, we must TRY to get
600 * the second lock. If we can't get it, we must release the first one
601 * and try again.
602 */
603 lp = (xfs_log_item_t *)ip0->i_itemp;
604 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
605 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
606 xfs_iunlock(ip0, lock_mode);
607 if ((++attempts % 5) == 0)
608 delay(1); /* Don't just spin the CPU */
609 goto again;
610 }
611 } else {
612 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
613 }
614}
615
616
fa96acad
DC
617void
618__xfs_iflock(
619 struct xfs_inode *ip)
620{
621 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
622 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
623
624 do {
21417136 625 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
fa96acad
DC
626 if (xfs_isiflocked(ip))
627 io_schedule();
628 } while (!xfs_iflock_nowait(ip));
629
21417136 630 finish_wait(wq, &wait.wq_entry);
fa96acad
DC
631}
632
1da177e4
LT
633STATIC uint
634_xfs_dic2xflags(
c8ce540d 635 uint16_t di_flags,
58f88ca2
DC
636 uint64_t di_flags2,
637 bool has_attr)
1da177e4
LT
638{
639 uint flags = 0;
640
641 if (di_flags & XFS_DIFLAG_ANY) {
642 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 643 flags |= FS_XFLAG_REALTIME;
1da177e4 644 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 645 flags |= FS_XFLAG_PREALLOC;
1da177e4 646 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 647 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 648 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 649 flags |= FS_XFLAG_APPEND;
1da177e4 650 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 651 flags |= FS_XFLAG_SYNC;
1da177e4 652 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 653 flags |= FS_XFLAG_NOATIME;
1da177e4 654 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 655 flags |= FS_XFLAG_NODUMP;
1da177e4 656 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 657 flags |= FS_XFLAG_RTINHERIT;
1da177e4 658 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 659 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 660 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 661 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 662 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 663 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 664 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 665 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 666 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 667 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 668 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 669 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
670 }
671
58f88ca2
DC
672 if (di_flags2 & XFS_DIFLAG2_ANY) {
673 if (di_flags2 & XFS_DIFLAG2_DAX)
674 flags |= FS_XFLAG_DAX;
f7ca3522
DW
675 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
676 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
677 }
678
679 if (has_attr)
680 flags |= FS_XFLAG_HASATTR;
681
1da177e4
LT
682 return flags;
683}
684
685uint
686xfs_ip2xflags(
58f88ca2 687 struct xfs_inode *ip)
1da177e4 688{
58f88ca2 689 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 690
58f88ca2 691 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
692}
693
c24b5dfa
DC
694/*
695 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
696 * is allowed, otherwise it has to be an exact match. If a CI match is found,
697 * ci_name->name will point to a the actual name (caller must free) or
698 * will be set to NULL if an exact match is found.
699 */
700int
701xfs_lookup(
702 xfs_inode_t *dp,
703 struct xfs_name *name,
704 xfs_inode_t **ipp,
705 struct xfs_name *ci_name)
706{
707 xfs_ino_t inum;
708 int error;
c24b5dfa
DC
709
710 trace_xfs_lookup(dp, name);
711
712 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 713 return -EIO;
c24b5dfa 714
c24b5dfa 715 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 716 if (error)
dbad7c99 717 goto out_unlock;
c24b5dfa
DC
718
719 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
720 if (error)
721 goto out_free_name;
722
723 return 0;
724
725out_free_name:
726 if (ci_name)
727 kmem_free(ci_name->name);
dbad7c99 728out_unlock:
c24b5dfa
DC
729 *ipp = NULL;
730 return error;
731}
732
1da177e4
LT
733/*
734 * Allocate an inode on disk and return a copy of its in-core version.
735 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
736 * appropriately within the inode. The uid and gid for the inode are
737 * set according to the contents of the given cred structure.
738 *
739 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
740 * has a free inode available, call xfs_iget() to obtain the in-core
741 * version of the allocated inode. Finally, fill in the inode and
742 * log its initial contents. In this case, ialloc_context would be
743 * set to NULL.
1da177e4 744 *
cd856db6
CM
745 * If xfs_dialloc() does not have an available inode, it will replenish
746 * its supply by doing an allocation. Since we can only do one
747 * allocation within a transaction without deadlocks, we must commit
748 * the current transaction before returning the inode itself.
749 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
750 * The caller should then commit the current transaction, start a new
751 * transaction, and call xfs_ialloc() again to actually get the inode.
752 *
753 * To ensure that some other process does not grab the inode that
754 * was allocated during the first call to xfs_ialloc(), this routine
755 * also returns the [locked] bp pointing to the head of the freelist
756 * as ialloc_context. The caller should hold this buffer across
757 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
758 *
759 * If we are allocating quota inodes, we do not have a parent inode
760 * to attach to or associate with (i.e. pip == NULL) because they
761 * are not linked into the directory structure - they are attached
762 * directly to the superblock - and so have no parent.
1da177e4 763 */
0d5a75e9 764static int
1da177e4
LT
765xfs_ialloc(
766 xfs_trans_t *tp,
767 xfs_inode_t *pip,
576b1d67 768 umode_t mode,
31b084ae 769 xfs_nlink_t nlink,
1da177e4 770 xfs_dev_t rdev,
6743099c 771 prid_t prid,
1da177e4
LT
772 int okalloc,
773 xfs_buf_t **ialloc_context,
1da177e4
LT
774 xfs_inode_t **ipp)
775{
93848a99 776 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
777 xfs_ino_t ino;
778 xfs_inode_t *ip;
1da177e4
LT
779 uint flags;
780 int error;
e076b0f3 781 struct timespec tv;
3987848c 782 struct inode *inode;
1da177e4
LT
783
784 /*
785 * Call the space management code to pick
786 * the on-disk inode to be allocated.
787 */
b11f94d5 788 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 789 ialloc_context, &ino);
bf904248 790 if (error)
1da177e4 791 return error;
08358906 792 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
793 *ipp = NULL;
794 return 0;
795 }
796 ASSERT(*ialloc_context == NULL);
797
798 /*
799 * Get the in-core inode with the lock held exclusively.
800 * This is because we're setting fields here we need
801 * to prevent others from looking at until we're done.
802 */
93848a99 803 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 804 XFS_ILOCK_EXCL, &ip);
bf904248 805 if (error)
1da177e4 806 return error;
1da177e4 807 ASSERT(ip != NULL);
3987848c 808 inode = VFS_I(ip);
1da177e4 809
263997a6
DC
810 /*
811 * We always convert v1 inodes to v2 now - we only support filesystems
812 * with >= v2 inode capability, so there is no reason for ever leaving
813 * an inode in v1 format.
814 */
815 if (ip->i_d.di_version == 1)
816 ip->i_d.di_version = 2;
817
c19b3b05 818 inode->i_mode = mode;
54d7b5c1 819 set_nlink(inode, nlink);
7aab1b28
DE
820 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
821 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 822 xfs_set_projid(ip, prid);
1da177e4 823
bd186aa9 824 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 825 ip->i_d.di_gid = pip->i_d.di_gid;
c19b3b05
DC
826 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
827 inode->i_mode |= S_ISGID;
1da177e4
LT
828 }
829
830 /*
831 * If the group ID of the new file does not match the effective group
832 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
833 * (and only if the irix_sgid_inherit compatibility variable is set).
834 */
835 if ((irix_sgid_inherit) &&
c19b3b05
DC
836 (inode->i_mode & S_ISGID) &&
837 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
838 inode->i_mode &= ~S_ISGID;
1da177e4
LT
839
840 ip->i_d.di_size = 0;
841 ip->i_d.di_nextents = 0;
842 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 843
c2050a45 844 tv = current_time(inode);
3987848c
DC
845 inode->i_mtime = tv;
846 inode->i_atime = tv;
847 inode->i_ctime = tv;
dff35fd4 848
1da177e4
LT
849 ip->i_d.di_extsize = 0;
850 ip->i_d.di_dmevmask = 0;
851 ip->i_d.di_dmstate = 0;
852 ip->i_d.di_flags = 0;
93848a99
CH
853
854 if (ip->i_d.di_version == 3) {
83e06f21 855 inode->i_version = 1;
93848a99 856 ip->i_d.di_flags2 = 0;
f7ca3522 857 ip->i_d.di_cowextsize = 0;
c8ce540d
DW
858 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
859 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
93848a99
CH
860 }
861
862
1da177e4
LT
863 flags = XFS_ILOG_CORE;
864 switch (mode & S_IFMT) {
865 case S_IFIFO:
866 case S_IFCHR:
867 case S_IFBLK:
868 case S_IFSOCK:
869 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
870 ip->i_df.if_u2.if_rdev = rdev;
871 ip->i_df.if_flags = 0;
872 flags |= XFS_ILOG_DEV;
873 break;
874 case S_IFREG:
875 case S_IFDIR:
b11f94d5 876 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2 877 uint di_flags = 0;
365ca83d 878
abbede1b 879 if (S_ISDIR(mode)) {
365ca83d
NS
880 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
881 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
882 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
883 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
884 ip->i_d.di_extsize = pip->i_d.di_extsize;
885 }
9336e3a7
DC
886 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
887 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 888 } else if (S_ISREG(mode)) {
613d7043 889 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 890 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
891 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
892 di_flags |= XFS_DIFLAG_EXTSIZE;
893 ip->i_d.di_extsize = pip->i_d.di_extsize;
894 }
1da177e4
LT
895 }
896 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
897 xfs_inherit_noatime)
365ca83d 898 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
899 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
900 xfs_inherit_nodump)
365ca83d 901 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
902 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
903 xfs_inherit_sync)
365ca83d 904 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
905 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
906 xfs_inherit_nosymlinks)
365ca83d 907 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
908 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
909 xfs_inherit_nodefrag)
910 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
911 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
912 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2 913
365ca83d 914 ip->i_d.di_flags |= di_flags;
1da177e4 915 }
f7ca3522
DW
916 if (pip &&
917 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
918 pip->i_d.di_version == 3 &&
919 ip->i_d.di_version == 3) {
56bdf855
LC
920 uint64_t di_flags2 = 0;
921
f7ca3522 922 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
56bdf855 923 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
924 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
925 }
56bdf855
LC
926 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
927 di_flags2 |= XFS_DIFLAG2_DAX;
928
929 ip->i_d.di_flags2 |= di_flags2;
f7ca3522 930 }
1da177e4
LT
931 /* FALLTHROUGH */
932 case S_IFLNK:
933 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
934 ip->i_df.if_flags = XFS_IFEXTENTS;
935 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
936 ip->i_df.if_u1.if_extents = NULL;
937 break;
938 default:
939 ASSERT(0);
940 }
941 /*
942 * Attribute fork settings for new inode.
943 */
944 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
945 ip->i_d.di_anextents = 0;
946
947 /*
948 * Log the new values stuffed into the inode.
949 */
ddc3415a 950 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
951 xfs_trans_log_inode(tp, ip, flags);
952
58c90473 953 /* now that we have an i_mode we can setup the inode structure */
41be8bed 954 xfs_setup_inode(ip);
1da177e4
LT
955
956 *ipp = ip;
957 return 0;
958}
959
e546cb79
DC
960/*
961 * Allocates a new inode from disk and return a pointer to the
962 * incore copy. This routine will internally commit the current
963 * transaction and allocate a new one if the Space Manager needed
964 * to do an allocation to replenish the inode free-list.
965 *
966 * This routine is designed to be called from xfs_create and
967 * xfs_create_dir.
968 *
969 */
970int
971xfs_dir_ialloc(
972 xfs_trans_t **tpp, /* input: current transaction;
973 output: may be a new transaction. */
974 xfs_inode_t *dp, /* directory within whose allocate
975 the inode. */
976 umode_t mode,
977 xfs_nlink_t nlink,
978 xfs_dev_t rdev,
979 prid_t prid, /* project id */
980 int okalloc, /* ok to allocate new space */
981 xfs_inode_t **ipp, /* pointer to inode; it will be
982 locked. */
983 int *committed)
984
985{
986 xfs_trans_t *tp;
e546cb79
DC
987 xfs_inode_t *ip;
988 xfs_buf_t *ialloc_context = NULL;
989 int code;
e546cb79
DC
990 void *dqinfo;
991 uint tflags;
992
993 tp = *tpp;
994 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
995
996 /*
997 * xfs_ialloc will return a pointer to an incore inode if
998 * the Space Manager has an available inode on the free
999 * list. Otherwise, it will do an allocation and replenish
1000 * the freelist. Since we can only do one allocation per
1001 * transaction without deadlocks, we will need to commit the
1002 * current transaction and start a new one. We will then
1003 * need to call xfs_ialloc again to get the inode.
1004 *
1005 * If xfs_ialloc did an allocation to replenish the freelist,
1006 * it returns the bp containing the head of the freelist as
1007 * ialloc_context. We will hold a lock on it across the
1008 * transaction commit so that no other process can steal
1009 * the inode(s) that we've just allocated.
1010 */
1011 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
1012 &ialloc_context, &ip);
1013
1014 /*
1015 * Return an error if we were unable to allocate a new inode.
1016 * This should only happen if we run out of space on disk or
1017 * encounter a disk error.
1018 */
1019 if (code) {
1020 *ipp = NULL;
1021 return code;
1022 }
1023 if (!ialloc_context && !ip) {
1024 *ipp = NULL;
2451337d 1025 return -ENOSPC;
e546cb79
DC
1026 }
1027
1028 /*
1029 * If the AGI buffer is non-NULL, then we were unable to get an
1030 * inode in one operation. We need to commit the current
1031 * transaction and call xfs_ialloc() again. It is guaranteed
1032 * to succeed the second time.
1033 */
1034 if (ialloc_context) {
1035 /*
1036 * Normally, xfs_trans_commit releases all the locks.
1037 * We call bhold to hang on to the ialloc_context across
1038 * the commit. Holding this buffer prevents any other
1039 * processes from doing any allocations in this
1040 * allocation group.
1041 */
1042 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1043
1044 /*
1045 * We want the quota changes to be associated with the next
1046 * transaction, NOT this one. So, detach the dqinfo from this
1047 * and attach it to the next transaction.
1048 */
1049 dqinfo = NULL;
1050 tflags = 0;
1051 if (tp->t_dqinfo) {
1052 dqinfo = (void *)tp->t_dqinfo;
1053 tp->t_dqinfo = NULL;
1054 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1055 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1056 }
1057
6e3e6d55 1058 code = xfs_trans_roll(&tp, NULL);
2e6db6c4 1059 if (committed != NULL)
e546cb79 1060 *committed = 1;
3d3c8b52 1061
e546cb79
DC
1062 /*
1063 * Re-attach the quota info that we detached from prev trx.
1064 */
1065 if (dqinfo) {
1066 tp->t_dqinfo = dqinfo;
1067 tp->t_flags |= tflags;
1068 }
1069
1070 if (code) {
1071 xfs_buf_relse(ialloc_context);
2e6db6c4 1072 *tpp = tp;
e546cb79
DC
1073 *ipp = NULL;
1074 return code;
1075 }
1076 xfs_trans_bjoin(tp, ialloc_context);
1077
1078 /*
1079 * Call ialloc again. Since we've locked out all
1080 * other allocations in this allocation group,
1081 * this call should always succeed.
1082 */
1083 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1084 okalloc, &ialloc_context, &ip);
1085
1086 /*
1087 * If we get an error at this point, return to the caller
1088 * so that the current transaction can be aborted.
1089 */
1090 if (code) {
1091 *tpp = tp;
1092 *ipp = NULL;
1093 return code;
1094 }
1095 ASSERT(!ialloc_context && ip);
1096
1097 } else {
1098 if (committed != NULL)
1099 *committed = 0;
1100 }
1101
1102 *ipp = ip;
1103 *tpp = tp;
1104
1105 return 0;
1106}
1107
1108/*
54d7b5c1
DC
1109 * Decrement the link count on an inode & log the change. If this causes the
1110 * link count to go to zero, move the inode to AGI unlinked list so that it can
1111 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1112 */
0d5a75e9 1113static int /* error */
e546cb79
DC
1114xfs_droplink(
1115 xfs_trans_t *tp,
1116 xfs_inode_t *ip)
1117{
e546cb79
DC
1118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1119
e546cb79
DC
1120 drop_nlink(VFS_I(ip));
1121 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1122
54d7b5c1
DC
1123 if (VFS_I(ip)->i_nlink)
1124 return 0;
1125
1126 return xfs_iunlink(tp, ip);
e546cb79
DC
1127}
1128
e546cb79
DC
1129/*
1130 * Increment the link count on an inode & log the change.
1131 */
0d5a75e9 1132static int
e546cb79
DC
1133xfs_bumplink(
1134 xfs_trans_t *tp,
1135 xfs_inode_t *ip)
1136{
1137 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1138
263997a6 1139 ASSERT(ip->i_d.di_version > 1);
e546cb79 1140 inc_nlink(VFS_I(ip));
e546cb79
DC
1141 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1142 return 0;
1143}
1144
c24b5dfa
DC
1145int
1146xfs_create(
1147 xfs_inode_t *dp,
1148 struct xfs_name *name,
1149 umode_t mode,
1150 xfs_dev_t rdev,
1151 xfs_inode_t **ipp)
1152{
1153 int is_dir = S_ISDIR(mode);
1154 struct xfs_mount *mp = dp->i_mount;
1155 struct xfs_inode *ip = NULL;
1156 struct xfs_trans *tp = NULL;
1157 int error;
2c3234d1 1158 struct xfs_defer_ops dfops;
c24b5dfa
DC
1159 xfs_fsblock_t first_block;
1160 bool unlock_dp_on_error = false;
c24b5dfa
DC
1161 prid_t prid;
1162 struct xfs_dquot *udqp = NULL;
1163 struct xfs_dquot *gdqp = NULL;
1164 struct xfs_dquot *pdqp = NULL;
062647a8 1165 struct xfs_trans_res *tres;
c24b5dfa 1166 uint resblks;
c24b5dfa
DC
1167
1168 trace_xfs_create(dp, name);
1169
1170 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1171 return -EIO;
c24b5dfa 1172
163467d3 1173 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1174
1175 /*
1176 * Make sure that we have allocated dquot(s) on disk.
1177 */
7aab1b28
DE
1178 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1179 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1180 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1181 &udqp, &gdqp, &pdqp);
1182 if (error)
1183 return error;
1184
1185 if (is_dir) {
1186 rdev = 0;
1187 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1188 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1189 } else {
1190 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1191 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1192 }
1193
c24b5dfa
DC
1194 /*
1195 * Initially assume that the file does not exist and
1196 * reserve the resources for that case. If that is not
1197 * the case we'll drop the one we have and get a more
1198 * appropriate transaction later.
1199 */
253f4911 1200 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1201 if (error == -ENOSPC) {
c24b5dfa
DC
1202 /* flush outstanding delalloc blocks and retry */
1203 xfs_flush_inodes(mp);
253f4911 1204 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1205 }
2451337d 1206 if (error == -ENOSPC) {
c24b5dfa
DC
1207 /* No space at all so try a "no-allocation" reservation */
1208 resblks = 0;
253f4911 1209 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
c24b5dfa 1210 }
4906e215 1211 if (error)
253f4911 1212 goto out_release_inode;
c24b5dfa 1213
65523218 1214 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1215 unlock_dp_on_error = true;
1216
2c3234d1 1217 xfs_defer_init(&dfops, &first_block);
c24b5dfa
DC
1218
1219 /*
1220 * Reserve disk quota and the inode.
1221 */
1222 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1223 pdqp, resblks, 1, 0);
1224 if (error)
1225 goto out_trans_cancel;
1226
94f3cad5
ES
1227 if (!resblks) {
1228 error = xfs_dir_canenter(tp, dp, name);
1229 if (error)
1230 goto out_trans_cancel;
1231 }
c24b5dfa
DC
1232
1233 /*
1234 * A newly created regular or special file just has one directory
1235 * entry pointing to them, but a directory also the "." entry
1236 * pointing to itself.
1237 */
1238 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
f6106efa 1239 prid, resblks > 0, &ip, NULL);
d6077aa3 1240 if (error)
4906e215 1241 goto out_trans_cancel;
c24b5dfa
DC
1242
1243 /*
1244 * Now we join the directory inode to the transaction. We do not do it
1245 * earlier because xfs_dir_ialloc might commit the previous transaction
1246 * (and release all the locks). An error from here on will result in
1247 * the transaction cancel unlocking dp so don't do it explicitly in the
1248 * error path.
1249 */
65523218 1250 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1251 unlock_dp_on_error = false;
1252
1253 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
2c3234d1 1254 &first_block, &dfops, resblks ?
c24b5dfa
DC
1255 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1256 if (error) {
2451337d 1257 ASSERT(error != -ENOSPC);
4906e215 1258 goto out_trans_cancel;
c24b5dfa
DC
1259 }
1260 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1261 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1262
1263 if (is_dir) {
1264 error = xfs_dir_init(tp, ip, dp);
1265 if (error)
1266 goto out_bmap_cancel;
1267
1268 error = xfs_bumplink(tp, dp);
1269 if (error)
1270 goto out_bmap_cancel;
1271 }
1272
1273 /*
1274 * If this is a synchronous mount, make sure that the
1275 * create transaction goes to disk before returning to
1276 * the user.
1277 */
1278 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1279 xfs_trans_set_sync(tp);
1280
1281 /*
1282 * Attach the dquot(s) to the inodes and modify them incore.
1283 * These ids of the inode couldn't have changed since the new
1284 * inode has been locked ever since it was created.
1285 */
1286 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1287
2c3234d1 1288 error = xfs_defer_finish(&tp, &dfops, NULL);
c24b5dfa
DC
1289 if (error)
1290 goto out_bmap_cancel;
1291
70393313 1292 error = xfs_trans_commit(tp);
c24b5dfa
DC
1293 if (error)
1294 goto out_release_inode;
1295
1296 xfs_qm_dqrele(udqp);
1297 xfs_qm_dqrele(gdqp);
1298 xfs_qm_dqrele(pdqp);
1299
1300 *ipp = ip;
1301 return 0;
1302
1303 out_bmap_cancel:
2c3234d1 1304 xfs_defer_cancel(&dfops);
c24b5dfa 1305 out_trans_cancel:
4906e215 1306 xfs_trans_cancel(tp);
c24b5dfa
DC
1307 out_release_inode:
1308 /*
58c90473
DC
1309 * Wait until after the current transaction is aborted to finish the
1310 * setup of the inode and release the inode. This prevents recursive
1311 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1312 */
58c90473
DC
1313 if (ip) {
1314 xfs_finish_inode_setup(ip);
c24b5dfa 1315 IRELE(ip);
58c90473 1316 }
c24b5dfa
DC
1317
1318 xfs_qm_dqrele(udqp);
1319 xfs_qm_dqrele(gdqp);
1320 xfs_qm_dqrele(pdqp);
1321
1322 if (unlock_dp_on_error)
65523218 1323 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1324 return error;
1325}
1326
99b6436b
ZYW
1327int
1328xfs_create_tmpfile(
1329 struct xfs_inode *dp,
1330 struct dentry *dentry,
330033d6
BF
1331 umode_t mode,
1332 struct xfs_inode **ipp)
99b6436b
ZYW
1333{
1334 struct xfs_mount *mp = dp->i_mount;
1335 struct xfs_inode *ip = NULL;
1336 struct xfs_trans *tp = NULL;
1337 int error;
99b6436b
ZYW
1338 prid_t prid;
1339 struct xfs_dquot *udqp = NULL;
1340 struct xfs_dquot *gdqp = NULL;
1341 struct xfs_dquot *pdqp = NULL;
1342 struct xfs_trans_res *tres;
1343 uint resblks;
1344
1345 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1346 return -EIO;
99b6436b
ZYW
1347
1348 prid = xfs_get_initial_prid(dp);
1349
1350 /*
1351 * Make sure that we have allocated dquot(s) on disk.
1352 */
1353 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1354 xfs_kgid_to_gid(current_fsgid()), prid,
1355 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1356 &udqp, &gdqp, &pdqp);
1357 if (error)
1358 return error;
1359
1360 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1361 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1362
1363 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1364 if (error == -ENOSPC) {
99b6436b
ZYW
1365 /* No space at all so try a "no-allocation" reservation */
1366 resblks = 0;
253f4911 1367 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
99b6436b 1368 }
4906e215 1369 if (error)
253f4911 1370 goto out_release_inode;
99b6436b
ZYW
1371
1372 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1373 pdqp, resblks, 1, 0);
1374 if (error)
1375 goto out_trans_cancel;
1376
1377 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1378 prid, resblks > 0, &ip, NULL);
d6077aa3 1379 if (error)
4906e215 1380 goto out_trans_cancel;
99b6436b
ZYW
1381
1382 if (mp->m_flags & XFS_MOUNT_WSYNC)
1383 xfs_trans_set_sync(tp);
1384
1385 /*
1386 * Attach the dquot(s) to the inodes and modify them incore.
1387 * These ids of the inode couldn't have changed since the new
1388 * inode has been locked ever since it was created.
1389 */
1390 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1391
99b6436b
ZYW
1392 error = xfs_iunlink(tp, ip);
1393 if (error)
4906e215 1394 goto out_trans_cancel;
99b6436b 1395
70393313 1396 error = xfs_trans_commit(tp);
99b6436b
ZYW
1397 if (error)
1398 goto out_release_inode;
1399
1400 xfs_qm_dqrele(udqp);
1401 xfs_qm_dqrele(gdqp);
1402 xfs_qm_dqrele(pdqp);
1403
330033d6 1404 *ipp = ip;
99b6436b
ZYW
1405 return 0;
1406
99b6436b 1407 out_trans_cancel:
4906e215 1408 xfs_trans_cancel(tp);
99b6436b
ZYW
1409 out_release_inode:
1410 /*
58c90473
DC
1411 * Wait until after the current transaction is aborted to finish the
1412 * setup of the inode and release the inode. This prevents recursive
1413 * transactions and deadlocks from xfs_inactive.
99b6436b 1414 */
58c90473
DC
1415 if (ip) {
1416 xfs_finish_inode_setup(ip);
99b6436b 1417 IRELE(ip);
58c90473 1418 }
99b6436b
ZYW
1419
1420 xfs_qm_dqrele(udqp);
1421 xfs_qm_dqrele(gdqp);
1422 xfs_qm_dqrele(pdqp);
1423
1424 return error;
1425}
1426
c24b5dfa
DC
1427int
1428xfs_link(
1429 xfs_inode_t *tdp,
1430 xfs_inode_t *sip,
1431 struct xfs_name *target_name)
1432{
1433 xfs_mount_t *mp = tdp->i_mount;
1434 xfs_trans_t *tp;
1435 int error;
2c3234d1 1436 struct xfs_defer_ops dfops;
c24b5dfa 1437 xfs_fsblock_t first_block;
c24b5dfa
DC
1438 int resblks;
1439
1440 trace_xfs_link(tdp, target_name);
1441
c19b3b05 1442 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1443
1444 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1445 return -EIO;
c24b5dfa
DC
1446
1447 error = xfs_qm_dqattach(sip, 0);
1448 if (error)
1449 goto std_return;
1450
1451 error = xfs_qm_dqattach(tdp, 0);
1452 if (error)
1453 goto std_return;
1454
c24b5dfa 1455 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1456 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1457 if (error == -ENOSPC) {
c24b5dfa 1458 resblks = 0;
253f4911 1459 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1460 }
4906e215 1461 if (error)
253f4911 1462 goto std_return;
c24b5dfa
DC
1463
1464 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1465
1466 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1467 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1468
1469 /*
1470 * If we are using project inheritance, we only allow hard link
1471 * creation in our tree when the project IDs are the same; else
1472 * the tree quota mechanism could be circumvented.
1473 */
1474 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1475 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1476 error = -EXDEV;
c24b5dfa
DC
1477 goto error_return;
1478 }
1479
94f3cad5
ES
1480 if (!resblks) {
1481 error = xfs_dir_canenter(tp, tdp, target_name);
1482 if (error)
1483 goto error_return;
1484 }
c24b5dfa 1485
2c3234d1 1486 xfs_defer_init(&dfops, &first_block);
c24b5dfa 1487
54d7b5c1
DC
1488 /*
1489 * Handle initial link state of O_TMPFILE inode
1490 */
1491 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1492 error = xfs_iunlink_remove(tp, sip);
1493 if (error)
4906e215 1494 goto error_return;
ab297431
ZYW
1495 }
1496
c24b5dfa 1497 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
2c3234d1 1498 &first_block, &dfops, resblks);
c24b5dfa 1499 if (error)
4906e215 1500 goto error_return;
c24b5dfa
DC
1501 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1502 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1503
1504 error = xfs_bumplink(tp, sip);
1505 if (error)
4906e215 1506 goto error_return;
c24b5dfa
DC
1507
1508 /*
1509 * If this is a synchronous mount, make sure that the
1510 * link transaction goes to disk before returning to
1511 * the user.
1512 */
f6106efa 1513 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1514 xfs_trans_set_sync(tp);
c24b5dfa 1515
2c3234d1 1516 error = xfs_defer_finish(&tp, &dfops, NULL);
c24b5dfa 1517 if (error) {
2c3234d1 1518 xfs_defer_cancel(&dfops);
4906e215 1519 goto error_return;
c24b5dfa
DC
1520 }
1521
70393313 1522 return xfs_trans_commit(tp);
c24b5dfa 1523
c24b5dfa 1524 error_return:
4906e215 1525 xfs_trans_cancel(tp);
c24b5dfa
DC
1526 std_return:
1527 return error;
1528}
1529
1da177e4 1530/*
8f04c47a
CH
1531 * Free up the underlying blocks past new_size. The new size must be smaller
1532 * than the current size. This routine can be used both for the attribute and
1533 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1534 *
f6485057
DC
1535 * The transaction passed to this routine must have made a permanent log
1536 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1537 * given transaction and start new ones, so make sure everything involved in
1538 * the transaction is tidy before calling here. Some transaction will be
1539 * returned to the caller to be committed. The incoming transaction must
1540 * already include the inode, and both inode locks must be held exclusively.
1541 * The inode must also be "held" within the transaction. On return the inode
1542 * will be "held" within the returned transaction. This routine does NOT
1543 * require any disk space to be reserved for it within the transaction.
1da177e4 1544 *
f6485057
DC
1545 * If we get an error, we must return with the inode locked and linked into the
1546 * current transaction. This keeps things simple for the higher level code,
1547 * because it always knows that the inode is locked and held in the transaction
1548 * that returns to it whether errors occur or not. We don't mark the inode
1549 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1550 */
1551int
8f04c47a
CH
1552xfs_itruncate_extents(
1553 struct xfs_trans **tpp,
1554 struct xfs_inode *ip,
1555 int whichfork,
1556 xfs_fsize_t new_size)
1da177e4 1557{
8f04c47a
CH
1558 struct xfs_mount *mp = ip->i_mount;
1559 struct xfs_trans *tp = *tpp;
2c3234d1 1560 struct xfs_defer_ops dfops;
8f04c47a
CH
1561 xfs_fsblock_t first_block;
1562 xfs_fileoff_t first_unmap_block;
1563 xfs_fileoff_t last_block;
1564 xfs_filblks_t unmap_len;
8f04c47a
CH
1565 int error = 0;
1566 int done = 0;
1da177e4 1567
0b56185b
CH
1568 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1569 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1570 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1571 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1572 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1573 ASSERT(ip->i_itemp != NULL);
898621d5 1574 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1575 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1576
673e8e59
CH
1577 trace_xfs_itruncate_extents_start(ip, new_size);
1578
1da177e4
LT
1579 /*
1580 * Since it is possible for space to become allocated beyond
1581 * the end of the file (in a crash where the space is allocated
1582 * but the inode size is not yet updated), simply remove any
1583 * blocks which show up between the new EOF and the maximum
1584 * possible file size. If the first block to be removed is
1585 * beyond the maximum file size (ie it is the same as last_block),
1586 * then there is nothing to do.
1587 */
8f04c47a 1588 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1589 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1590 if (first_unmap_block == last_block)
1591 return 0;
1592
1593 ASSERT(first_unmap_block < last_block);
1594 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1595 while (!done) {
2c3234d1 1596 xfs_defer_init(&dfops, &first_block);
8f04c47a 1597 error = xfs_bunmapi(tp, ip,
3e57ecf6 1598 first_unmap_block, unmap_len,
8f04c47a 1599 xfs_bmapi_aflag(whichfork),
1da177e4 1600 XFS_ITRUNC_MAX_EXTENTS,
2c3234d1 1601 &first_block, &dfops,
b4e9181e 1602 &done);
8f04c47a
CH
1603 if (error)
1604 goto out_bmap_cancel;
1da177e4
LT
1605
1606 /*
1607 * Duplicate the transaction that has the permanent
1608 * reservation and commit the old transaction.
1609 */
2c3234d1 1610 error = xfs_defer_finish(&tp, &dfops, ip);
8f04c47a
CH
1611 if (error)
1612 goto out_bmap_cancel;
1da177e4 1613
2e6db6c4 1614 error = xfs_trans_roll(&tp, ip);
f6485057 1615 if (error)
8f04c47a 1616 goto out;
1da177e4 1617 }
8f04c47a 1618
aa8968f2
DW
1619 /* Remove all pending CoW reservations. */
1620 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
3802a345 1621 last_block, true);
aa8968f2
DW
1622 if (error)
1623 goto out;
1624
1625 /*
1626 * Clear the reflink flag if we truncated everything.
1627 */
83104d44 1628 if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) {
aa8968f2 1629 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
83104d44
DW
1630 xfs_inode_clear_cowblocks_tag(ip);
1631 }
aa8968f2 1632
673e8e59
CH
1633 /*
1634 * Always re-log the inode so that our permanent transaction can keep
1635 * on rolling it forward in the log.
1636 */
1637 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1638
1639 trace_xfs_itruncate_extents_end(ip, new_size);
1640
8f04c47a
CH
1641out:
1642 *tpp = tp;
1643 return error;
1644out_bmap_cancel:
1da177e4 1645 /*
8f04c47a
CH
1646 * If the bunmapi call encounters an error, return to the caller where
1647 * the transaction can be properly aborted. We just need to make sure
1648 * we're not holding any resources that we were not when we came in.
1da177e4 1649 */
2c3234d1 1650 xfs_defer_cancel(&dfops);
8f04c47a
CH
1651 goto out;
1652}
1653
c24b5dfa
DC
1654int
1655xfs_release(
1656 xfs_inode_t *ip)
1657{
1658 xfs_mount_t *mp = ip->i_mount;
1659 int error;
1660
c19b3b05 1661 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1662 return 0;
1663
1664 /* If this is a read-only mount, don't do this (would generate I/O) */
1665 if (mp->m_flags & XFS_MOUNT_RDONLY)
1666 return 0;
1667
1668 if (!XFS_FORCED_SHUTDOWN(mp)) {
1669 int truncated;
1670
c24b5dfa
DC
1671 /*
1672 * If we previously truncated this file and removed old data
1673 * in the process, we want to initiate "early" writeout on
1674 * the last close. This is an attempt to combat the notorious
1675 * NULL files problem which is particularly noticeable from a
1676 * truncate down, buffered (re-)write (delalloc), followed by
1677 * a crash. What we are effectively doing here is
1678 * significantly reducing the time window where we'd otherwise
1679 * be exposed to that problem.
1680 */
1681 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1682 if (truncated) {
1683 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1684 if (ip->i_delayed_blks > 0) {
2451337d 1685 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1686 if (error)
1687 return error;
1688 }
1689 }
1690 }
1691
54d7b5c1 1692 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1693 return 0;
1694
1695 if (xfs_can_free_eofblocks(ip, false)) {
1696
a36b9261
BF
1697 /*
1698 * Check if the inode is being opened, written and closed
1699 * frequently and we have delayed allocation blocks outstanding
1700 * (e.g. streaming writes from the NFS server), truncating the
1701 * blocks past EOF will cause fragmentation to occur.
1702 *
1703 * In this case don't do the truncation, but we have to be
1704 * careful how we detect this case. Blocks beyond EOF show up as
1705 * i_delayed_blks even when the inode is clean, so we need to
1706 * truncate them away first before checking for a dirty release.
1707 * Hence on the first dirty close we will still remove the
1708 * speculative allocation, but after that we will leave it in
1709 * place.
1710 */
1711 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1712 return 0;
c24b5dfa
DC
1713 /*
1714 * If we can't get the iolock just skip truncating the blocks
1715 * past EOF because we could deadlock with the mmap_sem
a36b9261 1716 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1717 * last reference to the inode is dropped, so we'll never leak
1718 * blocks permanently.
c24b5dfa 1719 */
a36b9261
BF
1720 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1721 error = xfs_free_eofblocks(ip);
1722 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1723 if (error)
1724 return error;
1725 }
c24b5dfa
DC
1726
1727 /* delalloc blocks after truncation means it really is dirty */
1728 if (ip->i_delayed_blks)
1729 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1730 }
1731 return 0;
1732}
1733
f7be2d7f
BF
1734/*
1735 * xfs_inactive_truncate
1736 *
1737 * Called to perform a truncate when an inode becomes unlinked.
1738 */
1739STATIC int
1740xfs_inactive_truncate(
1741 struct xfs_inode *ip)
1742{
1743 struct xfs_mount *mp = ip->i_mount;
1744 struct xfs_trans *tp;
1745 int error;
1746
253f4911 1747 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1748 if (error) {
1749 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1750 return error;
1751 }
1752
1753 xfs_ilock(ip, XFS_ILOCK_EXCL);
1754 xfs_trans_ijoin(tp, ip, 0);
1755
1756 /*
1757 * Log the inode size first to prevent stale data exposure in the event
1758 * of a system crash before the truncate completes. See the related
69bca807 1759 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1760 */
1761 ip->i_d.di_size = 0;
1762 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1763
1764 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1765 if (error)
1766 goto error_trans_cancel;
1767
1768 ASSERT(ip->i_d.di_nextents == 0);
1769
70393313 1770 error = xfs_trans_commit(tp);
f7be2d7f
BF
1771 if (error)
1772 goto error_unlock;
1773
1774 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1775 return 0;
1776
1777error_trans_cancel:
4906e215 1778 xfs_trans_cancel(tp);
f7be2d7f
BF
1779error_unlock:
1780 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781 return error;
1782}
1783
88877d2b
BF
1784/*
1785 * xfs_inactive_ifree()
1786 *
1787 * Perform the inode free when an inode is unlinked.
1788 */
1789STATIC int
1790xfs_inactive_ifree(
1791 struct xfs_inode *ip)
1792{
2c3234d1 1793 struct xfs_defer_ops dfops;
88877d2b 1794 xfs_fsblock_t first_block;
88877d2b
BF
1795 struct xfs_mount *mp = ip->i_mount;
1796 struct xfs_trans *tp;
1797 int error;
1798
9d43b180 1799 /*
76d771b4
CH
1800 * We try to use a per-AG reservation for any block needed by the finobt
1801 * tree, but as the finobt feature predates the per-AG reservation
1802 * support a degraded file system might not have enough space for the
1803 * reservation at mount time. In that case try to dip into the reserved
1804 * pool and pray.
9d43b180
BF
1805 *
1806 * Send a warning if the reservation does happen to fail, as the inode
1807 * now remains allocated and sits on the unlinked list until the fs is
1808 * repaired.
1809 */
76d771b4
CH
1810 if (unlikely(mp->m_inotbt_nores)) {
1811 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1812 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1813 &tp);
1814 } else {
1815 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1816 }
88877d2b 1817 if (error) {
2451337d 1818 if (error == -ENOSPC) {
9d43b180
BF
1819 xfs_warn_ratelimited(mp,
1820 "Failed to remove inode(s) from unlinked list. "
1821 "Please free space, unmount and run xfs_repair.");
1822 } else {
1823 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1824 }
88877d2b
BF
1825 return error;
1826 }
1827
1828 xfs_ilock(ip, XFS_ILOCK_EXCL);
1829 xfs_trans_ijoin(tp, ip, 0);
1830
2c3234d1
DW
1831 xfs_defer_init(&dfops, &first_block);
1832 error = xfs_ifree(tp, ip, &dfops);
88877d2b
BF
1833 if (error) {
1834 /*
1835 * If we fail to free the inode, shut down. The cancel
1836 * might do that, we need to make sure. Otherwise the
1837 * inode might be lost for a long time or forever.
1838 */
1839 if (!XFS_FORCED_SHUTDOWN(mp)) {
1840 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1841 __func__, error);
1842 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1843 }
4906e215 1844 xfs_trans_cancel(tp);
88877d2b
BF
1845 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1846 return error;
1847 }
1848
1849 /*
1850 * Credit the quota account(s). The inode is gone.
1851 */
1852 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1853
1854 /*
d4a97a04
BF
1855 * Just ignore errors at this point. There is nothing we can do except
1856 * to try to keep going. Make sure it's not a silent error.
88877d2b 1857 */
2c3234d1 1858 error = xfs_defer_finish(&tp, &dfops, NULL);
d4a97a04 1859 if (error) {
310a75a3 1860 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
88877d2b 1861 __func__, error);
2c3234d1 1862 xfs_defer_cancel(&dfops);
d4a97a04 1863 }
70393313 1864 error = xfs_trans_commit(tp);
88877d2b
BF
1865 if (error)
1866 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1867 __func__, error);
1868
1869 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1870 return 0;
1871}
1872
c24b5dfa
DC
1873/*
1874 * xfs_inactive
1875 *
1876 * This is called when the vnode reference count for the vnode
1877 * goes to zero. If the file has been unlinked, then it must
1878 * now be truncated. Also, we clear all of the read-ahead state
1879 * kept for the inode here since the file is now closed.
1880 */
74564fb4 1881void
c24b5dfa
DC
1882xfs_inactive(
1883 xfs_inode_t *ip)
1884{
3d3c8b52 1885 struct xfs_mount *mp;
3d3c8b52
JL
1886 int error;
1887 int truncate = 0;
c24b5dfa
DC
1888
1889 /*
1890 * If the inode is already free, then there can be nothing
1891 * to clean up here.
1892 */
c19b3b05 1893 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa
DC
1894 ASSERT(ip->i_df.if_real_bytes == 0);
1895 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1896 return;
c24b5dfa
DC
1897 }
1898
1899 mp = ip->i_mount;
17c12bcd 1900 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1901
c24b5dfa
DC
1902 /* If this is a read-only mount, don't do this (would generate I/O) */
1903 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1904 return;
c24b5dfa 1905
54d7b5c1 1906 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1907 /*
1908 * force is true because we are evicting an inode from the
1909 * cache. Post-eof blocks must be freed, lest we end up with
1910 * broken free space accounting.
3b4683c2
BF
1911 *
1912 * Note: don't bother with iolock here since lockdep complains
1913 * about acquiring it in reclaim context. We have the only
1914 * reference to the inode at this point anyways.
c24b5dfa 1915 */
3b4683c2 1916 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1917 xfs_free_eofblocks(ip);
74564fb4
BF
1918
1919 return;
c24b5dfa
DC
1920 }
1921
c19b3b05 1922 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa
DC
1923 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1924 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1925 truncate = 1;
1926
1927 error = xfs_qm_dqattach(ip, 0);
1928 if (error)
74564fb4 1929 return;
c24b5dfa 1930
c19b3b05 1931 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1932 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1933 else if (truncate)
1934 error = xfs_inactive_truncate(ip);
1935 if (error)
74564fb4 1936 return;
c24b5dfa
DC
1937
1938 /*
1939 * If there are attributes associated with the file then blow them away
1940 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1941 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1942 */
6dfe5a04 1943 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1944 error = xfs_attr_inactive(ip);
1945 if (error)
74564fb4 1946 return;
c24b5dfa
DC
1947 }
1948
6dfe5a04 1949 ASSERT(!ip->i_afp);
c24b5dfa 1950 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1951 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1952
1953 /*
1954 * Free the inode.
1955 */
88877d2b
BF
1956 error = xfs_inactive_ifree(ip);
1957 if (error)
74564fb4 1958 return;
c24b5dfa
DC
1959
1960 /*
1961 * Release the dquots held by inode, if any.
1962 */
1963 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1964}
1965
1da177e4 1966/*
54d7b5c1
DC
1967 * This is called when the inode's link count goes to 0 or we are creating a
1968 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1969 * set to true as the link count is dropped to zero by the VFS after we've
1970 * created the file successfully, so we have to add it to the unlinked list
1971 * while the link count is non-zero.
1972 *
1973 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1974 * list when the inode is freed.
1da177e4 1975 */
54d7b5c1 1976STATIC int
1da177e4 1977xfs_iunlink(
54d7b5c1
DC
1978 struct xfs_trans *tp,
1979 struct xfs_inode *ip)
1da177e4 1980{
54d7b5c1 1981 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1982 xfs_agi_t *agi;
1983 xfs_dinode_t *dip;
1984 xfs_buf_t *agibp;
1985 xfs_buf_t *ibp;
1da177e4
LT
1986 xfs_agino_t agino;
1987 short bucket_index;
1988 int offset;
1989 int error;
1da177e4 1990
c19b3b05 1991 ASSERT(VFS_I(ip)->i_mode != 0);
1da177e4 1992
1da177e4
LT
1993 /*
1994 * Get the agi buffer first. It ensures lock ordering
1995 * on the list.
1996 */
5e1be0fb 1997 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1998 if (error)
1da177e4 1999 return error;
1da177e4 2000 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2001
1da177e4
LT
2002 /*
2003 * Get the index into the agi hash table for the
2004 * list this inode will go on.
2005 */
2006 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2007 ASSERT(agino != 0);
2008 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2009 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 2010 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 2011
69ef921b 2012 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
2013 /*
2014 * There is already another inode in the bucket we need
2015 * to add ourselves to. Add us at the front of the list.
2016 * Here we put the head pointer into our next pointer,
2017 * and then we fall through to point the head at us.
2018 */
475ee413
CH
2019 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2020 0, 0);
c319b58b
VA
2021 if (error)
2022 return error;
2023
69ef921b 2024 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2025 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2026 offset = ip->i_imap.im_boffset +
1da177e4 2027 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2028
2029 /* need to recalc the inode CRC if appropriate */
2030 xfs_dinode_calc_crc(mp, dip);
2031
1da177e4
LT
2032 xfs_trans_inode_buf(tp, ibp);
2033 xfs_trans_log_buf(tp, ibp, offset,
2034 (offset + sizeof(xfs_agino_t) - 1));
2035 xfs_inobp_check(mp, ibp);
2036 }
2037
2038 /*
2039 * Point the bucket head pointer at the inode being inserted.
2040 */
2041 ASSERT(agino != 0);
16259e7d 2042 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2043 offset = offsetof(xfs_agi_t, agi_unlinked) +
2044 (sizeof(xfs_agino_t) * bucket_index);
2045 xfs_trans_log_buf(tp, agibp, offset,
2046 (offset + sizeof(xfs_agino_t) - 1));
2047 return 0;
2048}
2049
2050/*
2051 * Pull the on-disk inode from the AGI unlinked list.
2052 */
2053STATIC int
2054xfs_iunlink_remove(
2055 xfs_trans_t *tp,
2056 xfs_inode_t *ip)
2057{
2058 xfs_ino_t next_ino;
2059 xfs_mount_t *mp;
2060 xfs_agi_t *agi;
2061 xfs_dinode_t *dip;
2062 xfs_buf_t *agibp;
2063 xfs_buf_t *ibp;
2064 xfs_agnumber_t agno;
1da177e4
LT
2065 xfs_agino_t agino;
2066 xfs_agino_t next_agino;
2067 xfs_buf_t *last_ibp;
6fdf8ccc 2068 xfs_dinode_t *last_dip = NULL;
1da177e4 2069 short bucket_index;
6fdf8ccc 2070 int offset, last_offset = 0;
1da177e4 2071 int error;
1da177e4 2072
1da177e4 2073 mp = tp->t_mountp;
1da177e4 2074 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2075
2076 /*
2077 * Get the agi buffer first. It ensures lock ordering
2078 * on the list.
2079 */
5e1be0fb
CH
2080 error = xfs_read_agi(mp, tp, agno, &agibp);
2081 if (error)
1da177e4 2082 return error;
5e1be0fb 2083
1da177e4 2084 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2085
1da177e4
LT
2086 /*
2087 * Get the index into the agi hash table for the
2088 * list this inode will go on.
2089 */
2090 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2091 ASSERT(agino != 0);
2092 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2093 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2094 ASSERT(agi->agi_unlinked[bucket_index]);
2095
16259e7d 2096 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2097 /*
475ee413
CH
2098 * We're at the head of the list. Get the inode's on-disk
2099 * buffer to see if there is anyone after us on the list.
2100 * Only modify our next pointer if it is not already NULLAGINO.
2101 * This saves us the overhead of dealing with the buffer when
2102 * there is no need to change it.
1da177e4 2103 */
475ee413
CH
2104 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2105 0, 0);
1da177e4 2106 if (error) {
475ee413 2107 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2108 __func__, error);
1da177e4
LT
2109 return error;
2110 }
347d1c01 2111 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2112 ASSERT(next_agino != 0);
2113 if (next_agino != NULLAGINO) {
347d1c01 2114 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2115 offset = ip->i_imap.im_boffset +
1da177e4 2116 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2117
2118 /* need to recalc the inode CRC if appropriate */
2119 xfs_dinode_calc_crc(mp, dip);
2120
1da177e4
LT
2121 xfs_trans_inode_buf(tp, ibp);
2122 xfs_trans_log_buf(tp, ibp, offset,
2123 (offset + sizeof(xfs_agino_t) - 1));
2124 xfs_inobp_check(mp, ibp);
2125 } else {
2126 xfs_trans_brelse(tp, ibp);
2127 }
2128 /*
2129 * Point the bucket head pointer at the next inode.
2130 */
2131 ASSERT(next_agino != 0);
2132 ASSERT(next_agino != agino);
16259e7d 2133 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2134 offset = offsetof(xfs_agi_t, agi_unlinked) +
2135 (sizeof(xfs_agino_t) * bucket_index);
2136 xfs_trans_log_buf(tp, agibp, offset,
2137 (offset + sizeof(xfs_agino_t) - 1));
2138 } else {
2139 /*
2140 * We need to search the list for the inode being freed.
2141 */
16259e7d 2142 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2143 last_ibp = NULL;
2144 while (next_agino != agino) {
129dbc9a
CH
2145 struct xfs_imap imap;
2146
2147 if (last_ibp)
1da177e4 2148 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2149
2150 imap.im_blkno = 0;
1da177e4 2151 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2152
2153 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2154 if (error) {
2155 xfs_warn(mp,
2156 "%s: xfs_imap returned error %d.",
2157 __func__, error);
2158 return error;
2159 }
2160
2161 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2162 &last_ibp, 0, 0);
1da177e4 2163 if (error) {
0b932ccc 2164 xfs_warn(mp,
129dbc9a 2165 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2166 __func__, error);
1da177e4
LT
2167 return error;
2168 }
129dbc9a
CH
2169
2170 last_offset = imap.im_boffset;
347d1c01 2171 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2172 ASSERT(next_agino != NULLAGINO);
2173 ASSERT(next_agino != 0);
2174 }
475ee413 2175
1da177e4 2176 /*
475ee413
CH
2177 * Now last_ibp points to the buffer previous to us on the
2178 * unlinked list. Pull us from the list.
1da177e4 2179 */
475ee413
CH
2180 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2181 0, 0);
1da177e4 2182 if (error) {
475ee413 2183 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2184 __func__, error);
1da177e4
LT
2185 return error;
2186 }
347d1c01 2187 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2188 ASSERT(next_agino != 0);
2189 ASSERT(next_agino != agino);
2190 if (next_agino != NULLAGINO) {
347d1c01 2191 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2192 offset = ip->i_imap.im_boffset +
1da177e4 2193 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2194
2195 /* need to recalc the inode CRC if appropriate */
2196 xfs_dinode_calc_crc(mp, dip);
2197
1da177e4
LT
2198 xfs_trans_inode_buf(tp, ibp);
2199 xfs_trans_log_buf(tp, ibp, offset,
2200 (offset + sizeof(xfs_agino_t) - 1));
2201 xfs_inobp_check(mp, ibp);
2202 } else {
2203 xfs_trans_brelse(tp, ibp);
2204 }
2205 /*
2206 * Point the previous inode on the list to the next inode.
2207 */
347d1c01 2208 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2209 ASSERT(next_agino != 0);
2210 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2211
2212 /* need to recalc the inode CRC if appropriate */
2213 xfs_dinode_calc_crc(mp, last_dip);
2214
1da177e4
LT
2215 xfs_trans_inode_buf(tp, last_ibp);
2216 xfs_trans_log_buf(tp, last_ibp, offset,
2217 (offset + sizeof(xfs_agino_t) - 1));
2218 xfs_inobp_check(mp, last_ibp);
2219 }
2220 return 0;
2221}
2222
5b3eed75 2223/*
0b8182db 2224 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2225 * inodes that are in memory - they all must be marked stale and attached to
2226 * the cluster buffer.
2227 */
2a30f36d 2228STATIC int
1da177e4 2229xfs_ifree_cluster(
09b56604
BF
2230 xfs_inode_t *free_ip,
2231 xfs_trans_t *tp,
2232 struct xfs_icluster *xic)
1da177e4
LT
2233{
2234 xfs_mount_t *mp = free_ip->i_mount;
2235 int blks_per_cluster;
982e939e 2236 int inodes_per_cluster;
1da177e4 2237 int nbufs;
5b257b4a 2238 int i, j;
3cdaa189 2239 int ioffset;
1da177e4
LT
2240 xfs_daddr_t blkno;
2241 xfs_buf_t *bp;
5b257b4a 2242 xfs_inode_t *ip;
1da177e4
LT
2243 xfs_inode_log_item_t *iip;
2244 xfs_log_item_t *lip;
5017e97d 2245 struct xfs_perag *pag;
09b56604 2246 xfs_ino_t inum;
1da177e4 2247
09b56604 2248 inum = xic->first_ino;
5017e97d 2249 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2250 blks_per_cluster = xfs_icluster_size_fsb(mp);
2251 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2252 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2253
982e939e 2254 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2255 /*
2256 * The allocation bitmap tells us which inodes of the chunk were
2257 * physically allocated. Skip the cluster if an inode falls into
2258 * a sparse region.
2259 */
3cdaa189
BF
2260 ioffset = inum - xic->first_ino;
2261 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2262 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2263 continue;
2264 }
2265
1da177e4
LT
2266 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2267 XFS_INO_TO_AGBNO(mp, inum));
2268
5b257b4a
DC
2269 /*
2270 * We obtain and lock the backing buffer first in the process
2271 * here, as we have to ensure that any dirty inode that we
2272 * can't get the flush lock on is attached to the buffer.
2273 * If we scan the in-memory inodes first, then buffer IO can
2274 * complete before we get a lock on it, and hence we may fail
2275 * to mark all the active inodes on the buffer stale.
2276 */
2277 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2278 mp->m_bsize * blks_per_cluster,
2279 XBF_UNMAPPED);
5b257b4a 2280
2a30f36d 2281 if (!bp)
2451337d 2282 return -ENOMEM;
b0f539de
DC
2283
2284 /*
2285 * This buffer may not have been correctly initialised as we
2286 * didn't read it from disk. That's not important because we are
2287 * only using to mark the buffer as stale in the log, and to
2288 * attach stale cached inodes on it. That means it will never be
2289 * dispatched for IO. If it is, we want to know about it, and we
2290 * want it to fail. We can acheive this by adding a write
2291 * verifier to the buffer.
2292 */
1813dd64 2293 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2294
5b257b4a
DC
2295 /*
2296 * Walk the inodes already attached to the buffer and mark them
2297 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2298 * in-memory inode walk can't lock them. By marking them all
2299 * stale first, we will not attempt to lock them in the loop
2300 * below as the XFS_ISTALE flag will be set.
5b257b4a 2301 */
adadbeef 2302 lip = bp->b_fspriv;
5b257b4a
DC
2303 while (lip) {
2304 if (lip->li_type == XFS_LI_INODE) {
2305 iip = (xfs_inode_log_item_t *)lip;
2306 ASSERT(iip->ili_logged == 1);
ca30b2a7 2307 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2308 xfs_trans_ail_copy_lsn(mp->m_ail,
2309 &iip->ili_flush_lsn,
2310 &iip->ili_item.li_lsn);
2311 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2312 }
2313 lip = lip->li_bio_list;
2314 }
1da177e4 2315
5b3eed75 2316
1da177e4 2317 /*
5b257b4a
DC
2318 * For each inode in memory attempt to add it to the inode
2319 * buffer and set it up for being staled on buffer IO
2320 * completion. This is safe as we've locked out tail pushing
2321 * and flushing by locking the buffer.
1da177e4 2322 *
5b257b4a
DC
2323 * We have already marked every inode that was part of a
2324 * transaction stale above, which means there is no point in
2325 * even trying to lock them.
1da177e4 2326 */
982e939e 2327 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2328retry:
1a3e8f3d 2329 rcu_read_lock();
da353b0d
DC
2330 ip = radix_tree_lookup(&pag->pag_ici_root,
2331 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2332
1a3e8f3d
DC
2333 /* Inode not in memory, nothing to do */
2334 if (!ip) {
2335 rcu_read_unlock();
1da177e4
LT
2336 continue;
2337 }
2338
1a3e8f3d
DC
2339 /*
2340 * because this is an RCU protected lookup, we could
2341 * find a recently freed or even reallocated inode
2342 * during the lookup. We need to check under the
2343 * i_flags_lock for a valid inode here. Skip it if it
2344 * is not valid, the wrong inode or stale.
2345 */
2346 spin_lock(&ip->i_flags_lock);
2347 if (ip->i_ino != inum + i ||
2348 __xfs_iflags_test(ip, XFS_ISTALE)) {
2349 spin_unlock(&ip->i_flags_lock);
2350 rcu_read_unlock();
2351 continue;
2352 }
2353 spin_unlock(&ip->i_flags_lock);
2354
5b3eed75
DC
2355 /*
2356 * Don't try to lock/unlock the current inode, but we
2357 * _cannot_ skip the other inodes that we did not find
2358 * in the list attached to the buffer and are not
2359 * already marked stale. If we can't lock it, back off
2360 * and retry.
2361 */
5b257b4a
DC
2362 if (ip != free_ip &&
2363 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2364 rcu_read_unlock();
5b3eed75
DC
2365 delay(1);
2366 goto retry;
1da177e4 2367 }
1a3e8f3d 2368 rcu_read_unlock();
1da177e4 2369
5b3eed75 2370 xfs_iflock(ip);
5b257b4a 2371 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2372
5b3eed75
DC
2373 /*
2374 * we don't need to attach clean inodes or those only
2375 * with unlogged changes (which we throw away, anyway).
2376 */
1da177e4 2377 iip = ip->i_itemp;
5b3eed75 2378 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2379 ASSERT(ip != free_ip);
1da177e4
LT
2380 xfs_ifunlock(ip);
2381 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2382 continue;
2383 }
2384
f5d8d5c4
CH
2385 iip->ili_last_fields = iip->ili_fields;
2386 iip->ili_fields = 0;
fc0561ce 2387 iip->ili_fsync_fields = 0;
1da177e4 2388 iip->ili_logged = 1;
7b2e2a31
DC
2389 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2390 &iip->ili_item.li_lsn);
1da177e4 2391
ca30b2a7
CH
2392 xfs_buf_attach_iodone(bp, xfs_istale_done,
2393 &iip->ili_item);
5b257b4a
DC
2394
2395 if (ip != free_ip)
1da177e4 2396 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2397 }
2398
5b3eed75 2399 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2400 xfs_trans_binval(tp, bp);
2401 }
2402
5017e97d 2403 xfs_perag_put(pag);
2a30f36d 2404 return 0;
1da177e4
LT
2405}
2406
2407/*
2408 * This is called to return an inode to the inode free list.
2409 * The inode should already be truncated to 0 length and have
2410 * no pages associated with it. This routine also assumes that
2411 * the inode is already a part of the transaction.
2412 *
2413 * The on-disk copy of the inode will have been added to the list
2414 * of unlinked inodes in the AGI. We need to remove the inode from
2415 * that list atomically with respect to freeing it here.
2416 */
2417int
2418xfs_ifree(
2419 xfs_trans_t *tp,
2420 xfs_inode_t *ip,
2c3234d1 2421 struct xfs_defer_ops *dfops)
1da177e4
LT
2422{
2423 int error;
09b56604 2424 struct xfs_icluster xic = { 0 };
1da177e4 2425
579aa9ca 2426 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2427 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2428 ASSERT(ip->i_d.di_nextents == 0);
2429 ASSERT(ip->i_d.di_anextents == 0);
c19b3b05 2430 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2431 ASSERT(ip->i_d.di_nblocks == 0);
2432
2433 /*
2434 * Pull the on-disk inode from the AGI unlinked list.
2435 */
2436 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2437 if (error)
1da177e4 2438 return error;
1da177e4 2439
2c3234d1 2440 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
1baaed8f 2441 if (error)
1da177e4 2442 return error;
1baaed8f 2443
c19b3b05 2444 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4
LT
2445 ip->i_d.di_flags = 0;
2446 ip->i_d.di_dmevmask = 0;
2447 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2448 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2449 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2450 /*
2451 * Bump the generation count so no one will be confused
2452 * by reincarnations of this inode.
2453 */
9e9a2674 2454 VFS_I(ip)->i_generation++;
1da177e4
LT
2455 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2456
09b56604
BF
2457 if (xic.deleted)
2458 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2459
2a30f36d 2460 return error;
1da177e4
LT
2461}
2462
1da177e4 2463/*
60ec6783
CH
2464 * This is called to unpin an inode. The caller must have the inode locked
2465 * in at least shared mode so that the buffer cannot be subsequently pinned
2466 * once someone is waiting for it to be unpinned.
1da177e4 2467 */
60ec6783 2468static void
f392e631 2469xfs_iunpin(
60ec6783 2470 struct xfs_inode *ip)
1da177e4 2471{
579aa9ca 2472 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2473
4aaf15d1
DC
2474 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2475
a3f74ffb 2476 /* Give the log a push to start the unpinning I/O */
60ec6783 2477 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2478
a3f74ffb 2479}
1da177e4 2480
f392e631
CH
2481static void
2482__xfs_iunpin_wait(
2483 struct xfs_inode *ip)
2484{
2485 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2486 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2487
2488 xfs_iunpin(ip);
2489
2490 do {
21417136 2491 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2492 if (xfs_ipincount(ip))
2493 io_schedule();
2494 } while (xfs_ipincount(ip));
21417136 2495 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2496}
2497
777df5af 2498void
a3f74ffb 2499xfs_iunpin_wait(
60ec6783 2500 struct xfs_inode *ip)
a3f74ffb 2501{
f392e631
CH
2502 if (xfs_ipincount(ip))
2503 __xfs_iunpin_wait(ip);
1da177e4
LT
2504}
2505
27320369
DC
2506/*
2507 * Removing an inode from the namespace involves removing the directory entry
2508 * and dropping the link count on the inode. Removing the directory entry can
2509 * result in locking an AGF (directory blocks were freed) and removing a link
2510 * count can result in placing the inode on an unlinked list which results in
2511 * locking an AGI.
2512 *
2513 * The big problem here is that we have an ordering constraint on AGF and AGI
2514 * locking - inode allocation locks the AGI, then can allocate a new extent for
2515 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2516 * removes the inode from the unlinked list, requiring that we lock the AGI
2517 * first, and then freeing the inode can result in an inode chunk being freed
2518 * and hence freeing disk space requiring that we lock an AGF.
2519 *
2520 * Hence the ordering that is imposed by other parts of the code is AGI before
2521 * AGF. This means we cannot remove the directory entry before we drop the inode
2522 * reference count and put it on the unlinked list as this results in a lock
2523 * order of AGF then AGI, and this can deadlock against inode allocation and
2524 * freeing. Therefore we must drop the link counts before we remove the
2525 * directory entry.
2526 *
2527 * This is still safe from a transactional point of view - it is not until we
310a75a3 2528 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2529 * transactions in this operation. Hence as long as we remove the directory
2530 * entry and drop the link count in the first transaction of the remove
2531 * operation, there are no transactional constraints on the ordering here.
2532 */
c24b5dfa
DC
2533int
2534xfs_remove(
2535 xfs_inode_t *dp,
2536 struct xfs_name *name,
2537 xfs_inode_t *ip)
2538{
2539 xfs_mount_t *mp = dp->i_mount;
2540 xfs_trans_t *tp = NULL;
c19b3b05 2541 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2542 int error = 0;
2c3234d1 2543 struct xfs_defer_ops dfops;
c24b5dfa 2544 xfs_fsblock_t first_block;
c24b5dfa 2545 uint resblks;
c24b5dfa
DC
2546
2547 trace_xfs_remove(dp, name);
2548
2549 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2550 return -EIO;
c24b5dfa
DC
2551
2552 error = xfs_qm_dqattach(dp, 0);
2553 if (error)
2554 goto std_return;
2555
2556 error = xfs_qm_dqattach(ip, 0);
2557 if (error)
2558 goto std_return;
2559
c24b5dfa
DC
2560 /*
2561 * We try to get the real space reservation first,
2562 * allowing for directory btree deletion(s) implying
2563 * possible bmap insert(s). If we can't get the space
2564 * reservation then we use 0 instead, and avoid the bmap
2565 * btree insert(s) in the directory code by, if the bmap
2566 * insert tries to happen, instead trimming the LAST
2567 * block from the directory.
2568 */
2569 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2570 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2571 if (error == -ENOSPC) {
c24b5dfa 2572 resblks = 0;
253f4911
CH
2573 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2574 &tp);
c24b5dfa
DC
2575 }
2576 if (error) {
2451337d 2577 ASSERT(error != -ENOSPC);
253f4911 2578 goto std_return;
c24b5dfa
DC
2579 }
2580
2581 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2582
65523218 2583 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2584 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2585
2586 /*
2587 * If we're removing a directory perform some additional validation.
2588 */
2589 if (is_dir) {
54d7b5c1
DC
2590 ASSERT(VFS_I(ip)->i_nlink >= 2);
2591 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2592 error = -ENOTEMPTY;
c24b5dfa
DC
2593 goto out_trans_cancel;
2594 }
2595 if (!xfs_dir_isempty(ip)) {
2451337d 2596 error = -ENOTEMPTY;
c24b5dfa
DC
2597 goto out_trans_cancel;
2598 }
c24b5dfa 2599
27320369 2600 /* Drop the link from ip's "..". */
c24b5dfa
DC
2601 error = xfs_droplink(tp, dp);
2602 if (error)
27320369 2603 goto out_trans_cancel;
c24b5dfa 2604
27320369 2605 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2606 error = xfs_droplink(tp, ip);
2607 if (error)
27320369 2608 goto out_trans_cancel;
c24b5dfa
DC
2609 } else {
2610 /*
2611 * When removing a non-directory we need to log the parent
2612 * inode here. For a directory this is done implicitly
2613 * by the xfs_droplink call for the ".." entry.
2614 */
2615 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2616 }
27320369 2617 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2618
27320369 2619 /* Drop the link from dp to ip. */
c24b5dfa
DC
2620 error = xfs_droplink(tp, ip);
2621 if (error)
27320369 2622 goto out_trans_cancel;
c24b5dfa 2623
2c3234d1 2624 xfs_defer_init(&dfops, &first_block);
27320369 2625 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2c3234d1 2626 &first_block, &dfops, resblks);
27320369 2627 if (error) {
2451337d 2628 ASSERT(error != -ENOENT);
27320369
DC
2629 goto out_bmap_cancel;
2630 }
2631
c24b5dfa
DC
2632 /*
2633 * If this is a synchronous mount, make sure that the
2634 * remove transaction goes to disk before returning to
2635 * the user.
2636 */
2637 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2638 xfs_trans_set_sync(tp);
2639
2c3234d1 2640 error = xfs_defer_finish(&tp, &dfops, NULL);
c24b5dfa
DC
2641 if (error)
2642 goto out_bmap_cancel;
2643
70393313 2644 error = xfs_trans_commit(tp);
c24b5dfa
DC
2645 if (error)
2646 goto std_return;
2647
2cd2ef6a 2648 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2649 xfs_filestream_deassociate(ip);
2650
2651 return 0;
2652
2653 out_bmap_cancel:
2c3234d1 2654 xfs_defer_cancel(&dfops);
c24b5dfa 2655 out_trans_cancel:
4906e215 2656 xfs_trans_cancel(tp);
c24b5dfa
DC
2657 std_return:
2658 return error;
2659}
2660
f6bba201
DC
2661/*
2662 * Enter all inodes for a rename transaction into a sorted array.
2663 */
95afcf5c 2664#define __XFS_SORT_INODES 5
f6bba201
DC
2665STATIC void
2666xfs_sort_for_rename(
95afcf5c
DC
2667 struct xfs_inode *dp1, /* in: old (source) directory inode */
2668 struct xfs_inode *dp2, /* in: new (target) directory inode */
2669 struct xfs_inode *ip1, /* in: inode of old entry */
2670 struct xfs_inode *ip2, /* in: inode of new entry */
2671 struct xfs_inode *wip, /* in: whiteout inode */
2672 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2673 int *num_inodes) /* in/out: inodes in array */
f6bba201 2674{
f6bba201
DC
2675 int i, j;
2676
95afcf5c
DC
2677 ASSERT(*num_inodes == __XFS_SORT_INODES);
2678 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2679
f6bba201
DC
2680 /*
2681 * i_tab contains a list of pointers to inodes. We initialize
2682 * the table here & we'll sort it. We will then use it to
2683 * order the acquisition of the inode locks.
2684 *
2685 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2686 */
95afcf5c
DC
2687 i = 0;
2688 i_tab[i++] = dp1;
2689 i_tab[i++] = dp2;
2690 i_tab[i++] = ip1;
2691 if (ip2)
2692 i_tab[i++] = ip2;
2693 if (wip)
2694 i_tab[i++] = wip;
2695 *num_inodes = i;
f6bba201
DC
2696
2697 /*
2698 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2699 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2700 */
2701 for (i = 0; i < *num_inodes; i++) {
2702 for (j = 1; j < *num_inodes; j++) {
2703 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2704 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2705 i_tab[j] = i_tab[j-1];
2706 i_tab[j-1] = temp;
2707 }
2708 }
2709 }
2710}
2711
310606b0
DC
2712static int
2713xfs_finish_rename(
2714 struct xfs_trans *tp,
2c3234d1 2715 struct xfs_defer_ops *dfops)
310606b0 2716{
310606b0
DC
2717 int error;
2718
2719 /*
2720 * If this is a synchronous mount, make sure that the rename transaction
2721 * goes to disk before returning to the user.
2722 */
2723 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2724 xfs_trans_set_sync(tp);
2725
2c3234d1 2726 error = xfs_defer_finish(&tp, dfops, NULL);
310606b0 2727 if (error) {
2c3234d1 2728 xfs_defer_cancel(dfops);
4906e215 2729 xfs_trans_cancel(tp);
310606b0
DC
2730 return error;
2731 }
2732
70393313 2733 return xfs_trans_commit(tp);
310606b0
DC
2734}
2735
d31a1825
CM
2736/*
2737 * xfs_cross_rename()
2738 *
2739 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2740 */
2741STATIC int
2742xfs_cross_rename(
2743 struct xfs_trans *tp,
2744 struct xfs_inode *dp1,
2745 struct xfs_name *name1,
2746 struct xfs_inode *ip1,
2747 struct xfs_inode *dp2,
2748 struct xfs_name *name2,
2749 struct xfs_inode *ip2,
2c3234d1 2750 struct xfs_defer_ops *dfops,
d31a1825
CM
2751 xfs_fsblock_t *first_block,
2752 int spaceres)
2753{
2754 int error = 0;
2755 int ip1_flags = 0;
2756 int ip2_flags = 0;
2757 int dp2_flags = 0;
2758
2759 /* Swap inode number for dirent in first parent */
2760 error = xfs_dir_replace(tp, dp1, name1,
2761 ip2->i_ino,
2c3234d1 2762 first_block, dfops, spaceres);
d31a1825 2763 if (error)
eeacd321 2764 goto out_trans_abort;
d31a1825
CM
2765
2766 /* Swap inode number for dirent in second parent */
2767 error = xfs_dir_replace(tp, dp2, name2,
2768 ip1->i_ino,
2c3234d1 2769 first_block, dfops, spaceres);
d31a1825 2770 if (error)
eeacd321 2771 goto out_trans_abort;
d31a1825
CM
2772
2773 /*
2774 * If we're renaming one or more directories across different parents,
2775 * update the respective ".." entries (and link counts) to match the new
2776 * parents.
2777 */
2778 if (dp1 != dp2) {
2779 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2780
c19b3b05 2781 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2782 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2783 dp1->i_ino, first_block,
2c3234d1 2784 dfops, spaceres);
d31a1825 2785 if (error)
eeacd321 2786 goto out_trans_abort;
d31a1825
CM
2787
2788 /* transfer ip2 ".." reference to dp1 */
c19b3b05 2789 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2790 error = xfs_droplink(tp, dp2);
2791 if (error)
eeacd321 2792 goto out_trans_abort;
d31a1825
CM
2793 error = xfs_bumplink(tp, dp1);
2794 if (error)
eeacd321 2795 goto out_trans_abort;
d31a1825
CM
2796 }
2797
2798 /*
2799 * Although ip1 isn't changed here, userspace needs
2800 * to be warned about the change, so that applications
2801 * relying on it (like backup ones), will properly
2802 * notify the change
2803 */
2804 ip1_flags |= XFS_ICHGTIME_CHG;
2805 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2806 }
2807
c19b3b05 2808 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2809 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2810 dp2->i_ino, first_block,
2c3234d1 2811 dfops, spaceres);
d31a1825 2812 if (error)
eeacd321 2813 goto out_trans_abort;
d31a1825
CM
2814
2815 /* transfer ip1 ".." reference to dp2 */
c19b3b05 2816 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2817 error = xfs_droplink(tp, dp1);
2818 if (error)
eeacd321 2819 goto out_trans_abort;
d31a1825
CM
2820 error = xfs_bumplink(tp, dp2);
2821 if (error)
eeacd321 2822 goto out_trans_abort;
d31a1825
CM
2823 }
2824
2825 /*
2826 * Although ip2 isn't changed here, userspace needs
2827 * to be warned about the change, so that applications
2828 * relying on it (like backup ones), will properly
2829 * notify the change
2830 */
2831 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2832 ip2_flags |= XFS_ICHGTIME_CHG;
2833 }
2834 }
2835
2836 if (ip1_flags) {
2837 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2838 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2839 }
2840 if (ip2_flags) {
2841 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2842 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2843 }
2844 if (dp2_flags) {
2845 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2846 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2847 }
2848 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2849 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2c3234d1 2850 return xfs_finish_rename(tp, dfops);
eeacd321
DC
2851
2852out_trans_abort:
2c3234d1 2853 xfs_defer_cancel(dfops);
4906e215 2854 xfs_trans_cancel(tp);
d31a1825
CM
2855 return error;
2856}
2857
7dcf5c3e
DC
2858/*
2859 * xfs_rename_alloc_whiteout()
2860 *
2861 * Return a referenced, unlinked, unlocked inode that that can be used as a
2862 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2863 * crash between allocating the inode and linking it into the rename transaction
2864 * recovery will free the inode and we won't leak it.
2865 */
2866static int
2867xfs_rename_alloc_whiteout(
2868 struct xfs_inode *dp,
2869 struct xfs_inode **wip)
2870{
2871 struct xfs_inode *tmpfile;
2872 int error;
2873
2874 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2875 if (error)
2876 return error;
2877
22419ac9
BF
2878 /*
2879 * Prepare the tmpfile inode as if it were created through the VFS.
2880 * Otherwise, the link increment paths will complain about nlink 0->1.
2881 * Drop the link count as done by d_tmpfile(), complete the inode setup
2882 * and flag it as linkable.
2883 */
2884 drop_nlink(VFS_I(tmpfile));
2b3d1d41 2885 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
2886 xfs_finish_inode_setup(tmpfile);
2887 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2888
2889 *wip = tmpfile;
2890 return 0;
2891}
2892
f6bba201
DC
2893/*
2894 * xfs_rename
2895 */
2896int
2897xfs_rename(
7dcf5c3e
DC
2898 struct xfs_inode *src_dp,
2899 struct xfs_name *src_name,
2900 struct xfs_inode *src_ip,
2901 struct xfs_inode *target_dp,
2902 struct xfs_name *target_name,
2903 struct xfs_inode *target_ip,
2904 unsigned int flags)
f6bba201 2905{
7dcf5c3e
DC
2906 struct xfs_mount *mp = src_dp->i_mount;
2907 struct xfs_trans *tp;
2c3234d1 2908 struct xfs_defer_ops dfops;
7dcf5c3e
DC
2909 xfs_fsblock_t first_block;
2910 struct xfs_inode *wip = NULL; /* whiteout inode */
2911 struct xfs_inode *inodes[__XFS_SORT_INODES];
2912 int num_inodes = __XFS_SORT_INODES;
2b93681f 2913 bool new_parent = (src_dp != target_dp);
c19b3b05 2914 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
2915 int spaceres;
2916 int error;
f6bba201
DC
2917
2918 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2919
eeacd321
DC
2920 if ((flags & RENAME_EXCHANGE) && !target_ip)
2921 return -EINVAL;
2922
7dcf5c3e
DC
2923 /*
2924 * If we are doing a whiteout operation, allocate the whiteout inode
2925 * we will be placing at the target and ensure the type is set
2926 * appropriately.
2927 */
2928 if (flags & RENAME_WHITEOUT) {
2929 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2930 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2931 if (error)
2932 return error;
2933
2934 /* setup target dirent info as whiteout */
2935 src_name->type = XFS_DIR3_FT_CHRDEV;
2936 }
f6bba201 2937
7dcf5c3e 2938 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2939 inodes, &num_inodes);
2940
f6bba201 2941 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 2942 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 2943 if (error == -ENOSPC) {
f6bba201 2944 spaceres = 0;
253f4911
CH
2945 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2946 &tp);
f6bba201 2947 }
445883e8 2948 if (error)
253f4911 2949 goto out_release_wip;
f6bba201
DC
2950
2951 /*
2952 * Attach the dquots to the inodes
2953 */
2954 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2955 if (error)
2956 goto out_trans_cancel;
f6bba201
DC
2957
2958 /*
2959 * Lock all the participating inodes. Depending upon whether
2960 * the target_name exists in the target directory, and
2961 * whether the target directory is the same as the source
2962 * directory, we can lock from 2 to 4 inodes.
2963 */
2964 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2965
2966 /*
2967 * Join all the inodes to the transaction. From this point on,
2968 * we can rely on either trans_commit or trans_cancel to unlock
2969 * them.
2970 */
65523218 2971 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 2972 if (new_parent)
65523218 2973 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
2974 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2975 if (target_ip)
2976 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2977 if (wip)
2978 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2979
2980 /*
2981 * If we are using project inheritance, we only allow renames
2982 * into our tree when the project IDs are the same; else the
2983 * tree quota mechanism would be circumvented.
2984 */
2985 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2986 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2987 error = -EXDEV;
445883e8 2988 goto out_trans_cancel;
f6bba201
DC
2989 }
2990
2c3234d1 2991 xfs_defer_init(&dfops, &first_block);
445883e8 2992
eeacd321
DC
2993 /* RENAME_EXCHANGE is unique from here on. */
2994 if (flags & RENAME_EXCHANGE)
2995 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2996 target_dp, target_name, target_ip,
2c3234d1 2997 &dfops, &first_block, spaceres);
d31a1825 2998
f6bba201
DC
2999 /*
3000 * Set up the target.
3001 */
3002 if (target_ip == NULL) {
3003 /*
3004 * If there's no space reservation, check the entry will
3005 * fit before actually inserting it.
3006 */
94f3cad5
ES
3007 if (!spaceres) {
3008 error = xfs_dir_canenter(tp, target_dp, target_name);
3009 if (error)
445883e8 3010 goto out_trans_cancel;
94f3cad5 3011 }
f6bba201
DC
3012 /*
3013 * If target does not exist and the rename crosses
3014 * directories, adjust the target directory link count
3015 * to account for the ".." reference from the new entry.
3016 */
3017 error = xfs_dir_createname(tp, target_dp, target_name,
3018 src_ip->i_ino, &first_block,
2c3234d1 3019 &dfops, spaceres);
f6bba201 3020 if (error)
4906e215 3021 goto out_bmap_cancel;
f6bba201
DC
3022
3023 xfs_trans_ichgtime(tp, target_dp,
3024 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3025
3026 if (new_parent && src_is_directory) {
3027 error = xfs_bumplink(tp, target_dp);
3028 if (error)
4906e215 3029 goto out_bmap_cancel;
f6bba201
DC
3030 }
3031 } else { /* target_ip != NULL */
3032 /*
3033 * If target exists and it's a directory, check that both
3034 * target and source are directories and that target can be
3035 * destroyed, or that neither is a directory.
3036 */
c19b3b05 3037 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
f6bba201
DC
3038 /*
3039 * Make sure target dir is empty.
3040 */
3041 if (!(xfs_dir_isempty(target_ip)) ||
54d7b5c1 3042 (VFS_I(target_ip)->i_nlink > 2)) {
2451337d 3043 error = -EEXIST;
445883e8 3044 goto out_trans_cancel;
f6bba201
DC
3045 }
3046 }
3047
3048 /*
3049 * Link the source inode under the target name.
3050 * If the source inode is a directory and we are moving
3051 * it across directories, its ".." entry will be
3052 * inconsistent until we replace that down below.
3053 *
3054 * In case there is already an entry with the same
3055 * name at the destination directory, remove it first.
3056 */
3057 error = xfs_dir_replace(tp, target_dp, target_name,
3058 src_ip->i_ino,
2c3234d1 3059 &first_block, &dfops, spaceres);
f6bba201 3060 if (error)
4906e215 3061 goto out_bmap_cancel;
f6bba201
DC
3062
3063 xfs_trans_ichgtime(tp, target_dp,
3064 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3065
3066 /*
3067 * Decrement the link count on the target since the target
3068 * dir no longer points to it.
3069 */
3070 error = xfs_droplink(tp, target_ip);
3071 if (error)
4906e215 3072 goto out_bmap_cancel;
f6bba201
DC
3073
3074 if (src_is_directory) {
3075 /*
3076 * Drop the link from the old "." entry.
3077 */
3078 error = xfs_droplink(tp, target_ip);
3079 if (error)
4906e215 3080 goto out_bmap_cancel;
f6bba201
DC
3081 }
3082 } /* target_ip != NULL */
3083
3084 /*
3085 * Remove the source.
3086 */
3087 if (new_parent && src_is_directory) {
3088 /*
3089 * Rewrite the ".." entry to point to the new
3090 * directory.
3091 */
3092 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3093 target_dp->i_ino,
2c3234d1 3094 &first_block, &dfops, spaceres);
2451337d 3095 ASSERT(error != -EEXIST);
f6bba201 3096 if (error)
4906e215 3097 goto out_bmap_cancel;
f6bba201
DC
3098 }
3099
3100 /*
3101 * We always want to hit the ctime on the source inode.
3102 *
3103 * This isn't strictly required by the standards since the source
3104 * inode isn't really being changed, but old unix file systems did
3105 * it and some incremental backup programs won't work without it.
3106 */
3107 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3108 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3109
3110 /*
3111 * Adjust the link count on src_dp. This is necessary when
3112 * renaming a directory, either within one parent when
3113 * the target existed, or across two parent directories.
3114 */
3115 if (src_is_directory && (new_parent || target_ip != NULL)) {
3116
3117 /*
3118 * Decrement link count on src_directory since the
3119 * entry that's moved no longer points to it.
3120 */
3121 error = xfs_droplink(tp, src_dp);
3122 if (error)
4906e215 3123 goto out_bmap_cancel;
f6bba201
DC
3124 }
3125
7dcf5c3e
DC
3126 /*
3127 * For whiteouts, we only need to update the source dirent with the
3128 * inode number of the whiteout inode rather than removing it
3129 * altogether.
3130 */
3131 if (wip) {
3132 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
2c3234d1 3133 &first_block, &dfops, spaceres);
7dcf5c3e
DC
3134 } else
3135 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2c3234d1 3136 &first_block, &dfops, spaceres);
f6bba201 3137 if (error)
4906e215 3138 goto out_bmap_cancel;
f6bba201
DC
3139
3140 /*
7dcf5c3e
DC
3141 * For whiteouts, we need to bump the link count on the whiteout inode.
3142 * This means that failures all the way up to this point leave the inode
3143 * on the unlinked list and so cleanup is a simple matter of dropping
3144 * the remaining reference to it. If we fail here after bumping the link
3145 * count, we're shutting down the filesystem so we'll never see the
3146 * intermediate state on disk.
f6bba201 3147 */
7dcf5c3e 3148 if (wip) {
54d7b5c1 3149 ASSERT(VFS_I(wip)->i_nlink == 0);
7dcf5c3e
DC
3150 error = xfs_bumplink(tp, wip);
3151 if (error)
4906e215 3152 goto out_bmap_cancel;
7dcf5c3e
DC
3153 error = xfs_iunlink_remove(tp, wip);
3154 if (error)
4906e215 3155 goto out_bmap_cancel;
7dcf5c3e 3156 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3157
7dcf5c3e
DC
3158 /*
3159 * Now we have a real link, clear the "I'm a tmpfile" state
3160 * flag from the inode so it doesn't accidentally get misused in
3161 * future.
3162 */
3163 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3164 }
3165
f6bba201
DC
3166 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3167 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3168 if (new_parent)
3169 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3170
2c3234d1 3171 error = xfs_finish_rename(tp, &dfops);
7dcf5c3e
DC
3172 if (wip)
3173 IRELE(wip);
3174 return error;
f6bba201 3175
445883e8 3176out_bmap_cancel:
2c3234d1 3177 xfs_defer_cancel(&dfops);
445883e8 3178out_trans_cancel:
4906e215 3179 xfs_trans_cancel(tp);
253f4911 3180out_release_wip:
7dcf5c3e
DC
3181 if (wip)
3182 IRELE(wip);
f6bba201
DC
3183 return error;
3184}
3185
5c4d97d0
DC
3186STATIC int
3187xfs_iflush_cluster(
19429363
DC
3188 struct xfs_inode *ip,
3189 struct xfs_buf *bp)
1da177e4 3190{
19429363 3191 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3192 struct xfs_perag *pag;
3193 unsigned long first_index, mask;
3194 unsigned long inodes_per_cluster;
19429363
DC
3195 int cilist_size;
3196 struct xfs_inode **cilist;
3197 struct xfs_inode *cip;
5c4d97d0
DC
3198 int nr_found;
3199 int clcount = 0;
3200 int bufwasdelwri;
1da177e4 3201 int i;
1da177e4 3202
5c4d97d0 3203 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3204
0f49efd8 3205 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
19429363
DC
3206 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3207 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3208 if (!cilist)
5c4d97d0 3209 goto out_put;
1da177e4 3210
0f49efd8 3211 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3212 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3213 rcu_read_lock();
3214 /* really need a gang lookup range call here */
19429363 3215 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
5c4d97d0
DC
3216 first_index, inodes_per_cluster);
3217 if (nr_found == 0)
3218 goto out_free;
3219
3220 for (i = 0; i < nr_found; i++) {
19429363
DC
3221 cip = cilist[i];
3222 if (cip == ip)
bad55843 3223 continue;
1a3e8f3d
DC
3224
3225 /*
3226 * because this is an RCU protected lookup, we could find a
3227 * recently freed or even reallocated inode during the lookup.
3228 * We need to check under the i_flags_lock for a valid inode
3229 * here. Skip it if it is not valid or the wrong inode.
3230 */
19429363
DC
3231 spin_lock(&cip->i_flags_lock);
3232 if (!cip->i_ino ||
3233 __xfs_iflags_test(cip, XFS_ISTALE)) {
3234 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3235 continue;
3236 }
5a90e53e
DC
3237
3238 /*
3239 * Once we fall off the end of the cluster, no point checking
3240 * any more inodes in the list because they will also all be
3241 * outside the cluster.
3242 */
19429363
DC
3243 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3244 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3245 break;
3246 }
19429363 3247 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3248
bad55843
DC
3249 /*
3250 * Do an un-protected check to see if the inode is dirty and
3251 * is a candidate for flushing. These checks will be repeated
3252 * later after the appropriate locks are acquired.
3253 */
19429363 3254 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3255 continue;
bad55843
DC
3256
3257 /*
3258 * Try to get locks. If any are unavailable or it is pinned,
3259 * then this inode cannot be flushed and is skipped.
3260 */
3261
19429363 3262 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3263 continue;
19429363
DC
3264 if (!xfs_iflock_nowait(cip)) {
3265 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3266 continue;
3267 }
19429363
DC
3268 if (xfs_ipincount(cip)) {
3269 xfs_ifunlock(cip);
3270 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3271 continue;
3272 }
3273
8a17d7dd
DC
3274
3275 /*
3276 * Check the inode number again, just to be certain we are not
3277 * racing with freeing in xfs_reclaim_inode(). See the comments
3278 * in that function for more information as to why the initial
3279 * check is not sufficient.
3280 */
19429363
DC
3281 if (!cip->i_ino) {
3282 xfs_ifunlock(cip);
3283 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3284 continue;
3285 }
3286
3287 /*
3288 * arriving here means that this inode can be flushed. First
3289 * re-check that it's dirty before flushing.
3290 */
19429363 3291 if (!xfs_inode_clean(cip)) {
33540408 3292 int error;
19429363 3293 error = xfs_iflush_int(cip, bp);
bad55843 3294 if (error) {
19429363 3295 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3296 goto cluster_corrupt_out;
3297 }
3298 clcount++;
3299 } else {
19429363 3300 xfs_ifunlock(cip);
bad55843 3301 }
19429363 3302 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3303 }
3304
3305 if (clcount) {
ff6d6af2
BD
3306 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3307 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3308 }
3309
3310out_free:
1a3e8f3d 3311 rcu_read_unlock();
19429363 3312 kmem_free(cilist);
44b56e0a
DC
3313out_put:
3314 xfs_perag_put(pag);
bad55843
DC
3315 return 0;
3316
3317
3318cluster_corrupt_out:
3319 /*
3320 * Corruption detected in the clustering loop. Invalidate the
3321 * inode buffer and shut down the filesystem.
3322 */
1a3e8f3d 3323 rcu_read_unlock();
bad55843 3324 /*
43ff2122 3325 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3326 * brelse can handle it with no problems. If not, shut down the
3327 * filesystem before releasing the buffer.
3328 */
43ff2122 3329 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3330 if (bufwasdelwri)
3331 xfs_buf_relse(bp);
3332
3333 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3334
3335 if (!bufwasdelwri) {
3336 /*
3337 * Just like incore_relse: if we have b_iodone functions,
3338 * mark the buffer as an error and call them. Otherwise
3339 * mark it as stale and brelse.
3340 */
cb669ca5 3341 if (bp->b_iodone) {
b0388bf1 3342 bp->b_flags &= ~XBF_DONE;
c867cb61 3343 xfs_buf_stale(bp);
2451337d 3344 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3345 xfs_buf_ioend(bp);
bad55843 3346 } else {
c867cb61 3347 xfs_buf_stale(bp);
bad55843
DC
3348 xfs_buf_relse(bp);
3349 }
3350 }
3351
3352 /*
3353 * Unlocks the flush lock
3354 */
19429363
DC
3355 xfs_iflush_abort(cip, false);
3356 kmem_free(cilist);
44b56e0a 3357 xfs_perag_put(pag);
2451337d 3358 return -EFSCORRUPTED;
bad55843
DC
3359}
3360
1da177e4 3361/*
4c46819a
CH
3362 * Flush dirty inode metadata into the backing buffer.
3363 *
3364 * The caller must have the inode lock and the inode flush lock held. The
3365 * inode lock will still be held upon return to the caller, and the inode
3366 * flush lock will be released after the inode has reached the disk.
3367 *
3368 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3369 */
3370int
3371xfs_iflush(
4c46819a
CH
3372 struct xfs_inode *ip,
3373 struct xfs_buf **bpp)
1da177e4 3374{
4c46819a 3375 struct xfs_mount *mp = ip->i_mount;
b1438f47 3376 struct xfs_buf *bp = NULL;
4c46819a 3377 struct xfs_dinode *dip;
1da177e4 3378 int error;
1da177e4 3379
ff6d6af2 3380 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3381
579aa9ca 3382 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3383 ASSERT(xfs_isiflocked(ip));
1da177e4 3384 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3385 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3386
4c46819a 3387 *bpp = NULL;
1da177e4 3388
1da177e4
LT
3389 xfs_iunpin_wait(ip);
3390
4b6a4688
DC
3391 /*
3392 * For stale inodes we cannot rely on the backing buffer remaining
3393 * stale in cache for the remaining life of the stale inode and so
475ee413 3394 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3395 * inodes below. We have to check this after ensuring the inode is
3396 * unpinned so that it is safe to reclaim the stale inode after the
3397 * flush call.
3398 */
3399 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3400 xfs_ifunlock(ip);
3401 return 0;
3402 }
3403
1da177e4
LT
3404 /*
3405 * This may have been unpinned because the filesystem is shutting
3406 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3407 * to disk, because the log record didn't make it to disk.
3408 *
3409 * We also have to remove the log item from the AIL in this case,
3410 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3411 */
3412 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3413 error = -EIO;
32ce90a4 3414 goto abort_out;
1da177e4
LT
3415 }
3416
a3f74ffb 3417 /*
b1438f47
DC
3418 * Get the buffer containing the on-disk inode. We are doing a try-lock
3419 * operation here, so we may get an EAGAIN error. In that case, we
3420 * simply want to return with the inode still dirty.
3421 *
3422 * If we get any other error, we effectively have a corruption situation
3423 * and we cannot flush the inode, so we treat it the same as failing
3424 * xfs_iflush_int().
a3f74ffb 3425 */
475ee413
CH
3426 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3427 0);
b1438f47 3428 if (error == -EAGAIN) {
a3f74ffb
DC
3429 xfs_ifunlock(ip);
3430 return error;
3431 }
b1438f47
DC
3432 if (error)
3433 goto corrupt_out;
a3f74ffb 3434
1da177e4
LT
3435 /*
3436 * First flush out the inode that xfs_iflush was called with.
3437 */
3438 error = xfs_iflush_int(ip, bp);
bad55843 3439 if (error)
1da177e4 3440 goto corrupt_out;
1da177e4 3441
a3f74ffb
DC
3442 /*
3443 * If the buffer is pinned then push on the log now so we won't
3444 * get stuck waiting in the write for too long.
3445 */
811e64c7 3446 if (xfs_buf_ispinned(bp))
a14a348b 3447 xfs_log_force(mp, 0);
a3f74ffb 3448
1da177e4
LT
3449 /*
3450 * inode clustering:
3451 * see if other inodes can be gathered into this write
3452 */
bad55843
DC
3453 error = xfs_iflush_cluster(ip, bp);
3454 if (error)
3455 goto cluster_corrupt_out;
1da177e4 3456
4c46819a
CH
3457 *bpp = bp;
3458 return 0;
1da177e4
LT
3459
3460corrupt_out:
b1438f47
DC
3461 if (bp)
3462 xfs_buf_relse(bp);
7d04a335 3463 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3464cluster_corrupt_out:
2451337d 3465 error = -EFSCORRUPTED;
32ce90a4 3466abort_out:
1da177e4
LT
3467 /*
3468 * Unlocks the flush lock
3469 */
04913fdd 3470 xfs_iflush_abort(ip, false);
32ce90a4 3471 return error;
1da177e4
LT
3472}
3473
1da177e4
LT
3474STATIC int
3475xfs_iflush_int(
93848a99
CH
3476 struct xfs_inode *ip,
3477 struct xfs_buf *bp)
1da177e4 3478{
93848a99
CH
3479 struct xfs_inode_log_item *iip = ip->i_itemp;
3480 struct xfs_dinode *dip;
3481 struct xfs_mount *mp = ip->i_mount;
1da177e4 3482
579aa9ca 3483 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3484 ASSERT(xfs_isiflocked(ip));
1da177e4 3485 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3486 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3487 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3488 ASSERT(ip->i_d.di_version > 1);
1da177e4 3489
1da177e4 3490 /* set *dip = inode's place in the buffer */
88ee2df7 3491 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3492
69ef921b 3493 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3494 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939
DC
3495 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3496 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3497 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3498 goto corrupt_out;
3499 }
c19b3b05 3500 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4
LT
3501 if (XFS_TEST_ERROR(
3502 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3503 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
9e24cfd0 3504 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939
DC
3505 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3506 "%s: Bad regular inode %Lu, ptr 0x%p",
3507 __func__, ip->i_ino, ip);
1da177e4
LT
3508 goto corrupt_out;
3509 }
c19b3b05 3510 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4
LT
3511 if (XFS_TEST_ERROR(
3512 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3513 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3514 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
9e24cfd0 3515 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939
DC
3516 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3517 "%s: Bad directory inode %Lu, ptr 0x%p",
3518 __func__, ip->i_ino, ip);
1da177e4
LT
3519 goto corrupt_out;
3520 }
3521 }
3522 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
9e24cfd0 3523 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3524 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3525 "%s: detected corrupt incore inode %Lu, "
3526 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3527 __func__, ip->i_ino,
1da177e4 3528 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3529 ip->i_d.di_nblocks, ip);
1da177e4
LT
3530 goto corrupt_out;
3531 }
3532 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3533 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939
DC
3534 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3535 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3536 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3537 goto corrupt_out;
3538 }
e60896d8 3539
1da177e4 3540 /*
263997a6 3541 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3542 * di_flushiter count for correct sequencing. We bump the flush
3543 * iteration count so we can detect flushes which postdate a log record
3544 * during recovery. This is redundant as we now log every change and
3545 * hence this can't happen but we need to still do it to ensure
3546 * backwards compatibility with old kernels that predate logging all
3547 * inode changes.
1da177e4 3548 */
e60896d8
DC
3549 if (ip->i_d.di_version < 3)
3550 ip->i_d.di_flushiter++;
1da177e4 3551
005c5db8
DW
3552 /* Check the inline directory data. */
3553 if (S_ISDIR(VFS_I(ip)->i_mode) &&
3554 ip->i_d.di_format == XFS_DINODE_FMT_LOCAL &&
3555 xfs_dir2_sf_verify(ip))
3556 goto corrupt_out;
3557
1da177e4 3558 /*
3987848c
DC
3559 * Copy the dirty parts of the inode into the on-disk inode. We always
3560 * copy out the core of the inode, because if the inode is dirty at all
3561 * the core must be.
1da177e4 3562 */
93f958f9 3563 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3564
3565 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3566 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3567 ip->i_d.di_flushiter = 0;
3568
005c5db8
DW
3569 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3570 if (XFS_IFORK_Q(ip))
3571 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3572 xfs_inobp_check(mp, bp);
3573
3574 /*
f5d8d5c4
CH
3575 * We've recorded everything logged in the inode, so we'd like to clear
3576 * the ili_fields bits so we don't log and flush things unnecessarily.
3577 * However, we can't stop logging all this information until the data
3578 * we've copied into the disk buffer is written to disk. If we did we
3579 * might overwrite the copy of the inode in the log with all the data
3580 * after re-logging only part of it, and in the face of a crash we
3581 * wouldn't have all the data we need to recover.
1da177e4 3582 *
f5d8d5c4
CH
3583 * What we do is move the bits to the ili_last_fields field. When
3584 * logging the inode, these bits are moved back to the ili_fields field.
3585 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3586 * know that the information those bits represent is permanently on
3587 * disk. As long as the flush completes before the inode is logged
3588 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3589 *
f5d8d5c4
CH
3590 * We can play with the ili_fields bits here, because the inode lock
3591 * must be held exclusively in order to set bits there and the flush
3592 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3593 * done routine can tell whether or not to look in the AIL. Also, store
3594 * the current LSN of the inode so that we can tell whether the item has
3595 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3596 * need the AIL lock, because it is a 64 bit value that cannot be read
3597 * atomically.
1da177e4 3598 */
93848a99
CH
3599 iip->ili_last_fields = iip->ili_fields;
3600 iip->ili_fields = 0;
fc0561ce 3601 iip->ili_fsync_fields = 0;
93848a99 3602 iip->ili_logged = 1;
1da177e4 3603
93848a99
CH
3604 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3605 &iip->ili_item.li_lsn);
1da177e4 3606
93848a99
CH
3607 /*
3608 * Attach the function xfs_iflush_done to the inode's
3609 * buffer. This will remove the inode from the AIL
3610 * and unlock the inode's flush lock when the inode is
3611 * completely written to disk.
3612 */
3613 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3614
93848a99
CH
3615 /* generate the checksum. */
3616 xfs_dinode_calc_crc(mp, dip);
1da177e4 3617
93848a99
CH
3618 ASSERT(bp->b_fspriv != NULL);
3619 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3620 return 0;
3621
3622corrupt_out:
2451337d 3623 return -EFSCORRUPTED;
1da177e4 3624}