]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_inode.c
[XFS] Remove the BPCSHIFT and NB* based macros from XFS.
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451
NS
23#include "xfs_inum.h"
24#include "xfs_imap.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4
LT
29#include "xfs_dir2.h"
30#include "xfs_dmapi.h"
31#include "xfs_mount.h"
1da177e4 32#include "xfs_bmap_btree.h"
a844f451 33#include "xfs_alloc_btree.h"
1da177e4 34#include "xfs_ialloc_btree.h"
1da177e4 35#include "xfs_dir2_sf.h"
a844f451 36#include "xfs_attr_sf.h"
1da177e4 37#include "xfs_dinode.h"
1da177e4 38#include "xfs_inode.h"
1da177e4 39#include "xfs_buf_item.h"
a844f451
NS
40#include "xfs_inode_item.h"
41#include "xfs_btree.h"
42#include "xfs_alloc.h"
43#include "xfs_ialloc.h"
44#include "xfs_bmap.h"
1da177e4
LT
45#include "xfs_rw.h"
46#include "xfs_error.h"
1da177e4
LT
47#include "xfs_utils.h"
48#include "xfs_dir2_trace.h"
49#include "xfs_quota.h"
1da177e4 50#include "xfs_acl.h"
2a82b8be 51#include "xfs_filestream.h"
739bfb2a 52#include "xfs_vnodeops.h"
1da177e4 53
1da177e4
LT
54kmem_zone_t *xfs_ifork_zone;
55kmem_zone_t *xfs_inode_zone;
da353b0d 56kmem_zone_t *xfs_icluster_zone;
1da177e4
LT
57
58/*
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
61 */
62#define XFS_ITRUNC_MAX_EXTENTS 2
63
64STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68
1da177e4
LT
69#ifdef DEBUG
70/*
71 * Make sure that the extents in the given memory buffer
72 * are valid.
73 */
74STATIC void
75xfs_validate_extents(
4eea22f0 76 xfs_ifork_t *ifp,
1da177e4 77 int nrecs,
1da177e4
LT
78 xfs_exntfmt_t fmt)
79{
80 xfs_bmbt_irec_t irec;
a6f64d4a 81 xfs_bmbt_rec_host_t rec;
1da177e4
LT
82 int i;
83
84 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
85 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
86 rec.l0 = get_unaligned(&ep->l0);
87 rec.l1 = get_unaligned(&ep->l1);
88 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
89 if (fmt == XFS_EXTFMT_NOSTATE)
90 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
91 }
92}
93#else /* DEBUG */
a6f64d4a 94#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
95#endif /* DEBUG */
96
97/*
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
100 */
101#if defined(DEBUG)
102void
103xfs_inobp_check(
104 xfs_mount_t *mp,
105 xfs_buf_t *bp)
106{
107 int i;
108 int j;
109 xfs_dinode_t *dip;
110
111 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
112
113 for (i = 0; i < j; i++) {
114 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
115 i * mp->m_sb.sb_inodesize);
116 if (!dip->di_next_unlinked) {
117 xfs_fs_cmn_err(CE_ALERT, mp,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
119 bp);
120 ASSERT(dip->di_next_unlinked);
121 }
122 }
123}
124#endif
125
1da177e4
LT
126/*
127 * This routine is called to map an inode number within a file
128 * system to the buffer containing the on-disk version of the
129 * inode. It returns a pointer to the buffer containing the
130 * on-disk inode in the bpp parameter, and in the dip parameter
131 * it returns a pointer to the on-disk inode within that buffer.
132 *
133 * If a non-zero error is returned, then the contents of bpp and
134 * dipp are undefined.
135 *
136 * Use xfs_imap() to determine the size and location of the
137 * buffer to read from disk.
138 */
ba0f32d4 139STATIC int
1da177e4
LT
140xfs_inotobp(
141 xfs_mount_t *mp,
142 xfs_trans_t *tp,
143 xfs_ino_t ino,
144 xfs_dinode_t **dipp,
145 xfs_buf_t **bpp,
146 int *offset)
147{
148 int di_ok;
149 xfs_imap_t imap;
150 xfs_buf_t *bp;
151 int error;
152 xfs_dinode_t *dip;
153
154 /*
c41564b5 155 * Call the space management code to find the location of the
1da177e4
LT
156 * inode on disk.
157 */
158 imap.im_blkno = 0;
159 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
160 if (error != 0) {
161 cmn_err(CE_WARN,
162 "xfs_inotobp: xfs_imap() returned an "
163 "error %d on %s. Returning error.", error, mp->m_fsname);
164 return error;
165 }
166
167 /*
168 * If the inode number maps to a block outside the bounds of the
169 * file system then return NULL rather than calling read_buf
170 * and panicing when we get an error from the driver.
171 */
172 if ((imap.im_blkno + imap.im_len) >
173 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
174 cmn_err(CE_WARN,
da1650a5 175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
1da177e4 176 "of the file system %s. Returning EINVAL.",
da1650a5
CH
177 (unsigned long long)imap.im_blkno,
178 imap.im_len, mp->m_fsname);
1da177e4
LT
179 return XFS_ERROR(EINVAL);
180 }
181
182 /*
183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
184 * default to just a read_buf() call.
185 */
186 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
187 (int)imap.im_len, XFS_BUF_LOCK, &bp);
188
189 if (error) {
190 cmn_err(CE_WARN,
191 "xfs_inotobp: xfs_trans_read_buf() returned an "
192 "error %d on %s. Returning error.", error, mp->m_fsname);
193 return error;
194 }
195 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
196 di_ok =
347d1c01
CH
197 be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
198 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
1da177e4
LT
199 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
200 XFS_RANDOM_ITOBP_INOTOBP))) {
201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
202 xfs_trans_brelse(tp, bp);
203 cmn_err(CE_WARN,
204 "xfs_inotobp: XFS_TEST_ERROR() returned an "
205 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
206 return XFS_ERROR(EFSCORRUPTED);
207 }
208
209 xfs_inobp_check(mp, bp);
210
211 /*
212 * Set *dipp to point to the on-disk inode in the buffer.
213 */
214 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
215 *bpp = bp;
216 *offset = imap.im_boffset;
217 return 0;
218}
219
220
221/*
222 * This routine is called to map an inode to the buffer containing
223 * the on-disk version of the inode. It returns a pointer to the
224 * buffer containing the on-disk inode in the bpp parameter, and in
225 * the dip parameter it returns a pointer to the on-disk inode within
226 * that buffer.
227 *
228 * If a non-zero error is returned, then the contents of bpp and
229 * dipp are undefined.
230 *
231 * If the inode is new and has not yet been initialized, use xfs_imap()
232 * to determine the size and location of the buffer to read from disk.
233 * If the inode has already been mapped to its buffer and read in once,
234 * then use the mapping information stored in the inode rather than
235 * calling xfs_imap(). This allows us to avoid the overhead of looking
236 * at the inode btree for small block file systems (see xfs_dilocate()).
237 * We can tell whether the inode has been mapped in before by comparing
238 * its disk block address to 0. Only uninitialized inodes will have
239 * 0 for the disk block address.
240 */
241int
242xfs_itobp(
243 xfs_mount_t *mp,
244 xfs_trans_t *tp,
245 xfs_inode_t *ip,
246 xfs_dinode_t **dipp,
247 xfs_buf_t **bpp,
b12dd342
NS
248 xfs_daddr_t bno,
249 uint imap_flags)
1da177e4 250{
4d1a2ed3 251 xfs_imap_t imap;
1da177e4
LT
252 xfs_buf_t *bp;
253 int error;
1da177e4
LT
254 int i;
255 int ni;
1da177e4
LT
256
257 if (ip->i_blkno == (xfs_daddr_t)0) {
258 /*
259 * Call the space management code to find the location of the
260 * inode on disk.
261 */
262 imap.im_blkno = bno;
b12dd342
NS
263 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
264 XFS_IMAP_LOOKUP | imap_flags)))
1da177e4 265 return error;
1da177e4
LT
266
267 /*
268 * If the inode number maps to a block outside the bounds
269 * of the file system then return NULL rather than calling
270 * read_buf and panicing when we get an error from the
271 * driver.
272 */
273 if ((imap.im_blkno + imap.im_len) >
274 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
275#ifdef DEBUG
276 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
277 "(imap.im_blkno (0x%llx) "
278 "+ imap.im_len (0x%llx)) > "
279 " XFS_FSB_TO_BB(mp, "
280 "mp->m_sb.sb_dblocks) (0x%llx)",
281 (unsigned long long) imap.im_blkno,
282 (unsigned long long) imap.im_len,
283 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
284#endif /* DEBUG */
285 return XFS_ERROR(EINVAL);
286 }
287
288 /*
289 * Fill in the fields in the inode that will be used to
290 * map the inode to its buffer from now on.
291 */
292 ip->i_blkno = imap.im_blkno;
293 ip->i_len = imap.im_len;
294 ip->i_boffset = imap.im_boffset;
295 } else {
296 /*
297 * We've already mapped the inode once, so just use the
298 * mapping that we saved the first time.
299 */
300 imap.im_blkno = ip->i_blkno;
301 imap.im_len = ip->i_len;
302 imap.im_boffset = ip->i_boffset;
303 }
304 ASSERT(bno == 0 || bno == imap.im_blkno);
305
306 /*
307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
308 * default to just a read_buf() call.
309 */
310 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
311 (int)imap.im_len, XFS_BUF_LOCK, &bp);
1da177e4
LT
312 if (error) {
313#ifdef DEBUG
314 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
315 "xfs_trans_read_buf() returned error %d, "
316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 error, (unsigned long long) imap.im_blkno,
318 (unsigned long long) imap.im_len);
319#endif /* DEBUG */
320 return error;
321 }
4d1a2ed3 322
1da177e4
LT
323 /*
324 * Validate the magic number and version of every inode in the buffer
325 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
4d1a2ed3 326 * No validation is done here in userspace (xfs_repair).
1da177e4 327 */
4d1a2ed3
NS
328#if !defined(__KERNEL__)
329 ni = 0;
330#elif defined(DEBUG)
41ff715a 331 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
4d1a2ed3 332#else /* usual case */
41ff715a 333 ni = 1;
1da177e4 334#endif
4d1a2ed3 335
1da177e4
LT
336 for (i = 0; i < ni; i++) {
337 int di_ok;
338 xfs_dinode_t *dip;
339
340 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
341 (i << mp->m_sb.sb_inodelog));
347d1c01
CH
342 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
343 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
41ff715a
NS
344 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
345 XFS_ERRTAG_ITOBP_INOTOBP,
346 XFS_RANDOM_ITOBP_INOTOBP))) {
347 if (imap_flags & XFS_IMAP_BULKSTAT) {
348 xfs_trans_brelse(tp, bp);
349 return XFS_ERROR(EINVAL);
350 }
1da177e4 351#ifdef DEBUG
41ff715a 352 cmn_err(CE_ALERT,
4d1a2ed3
NS
353 "Device %s - bad inode magic/vsn "
354 "daddr %lld #%d (magic=%x)",
b6574520 355 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1da177e4 356 (unsigned long long)imap.im_blkno, i,
347d1c01 357 be16_to_cpu(dip->di_core.di_magic));
1da177e4
LT
358#endif
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
360 mp, dip);
361 xfs_trans_brelse(tp, bp);
362 return XFS_ERROR(EFSCORRUPTED);
363 }
364 }
1da177e4
LT
365
366 xfs_inobp_check(mp, bp);
367
368 /*
369 * Mark the buffer as an inode buffer now that it looks good
370 */
371 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
372
373 /*
374 * Set *dipp to point to the on-disk inode in the buffer.
375 */
376 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
377 *bpp = bp;
378 return 0;
379}
380
381/*
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
389 */
390STATIC int
391xfs_iformat(
392 xfs_inode_t *ip,
393 xfs_dinode_t *dip)
394{
395 xfs_attr_shortform_t *atp;
396 int size;
397 int error;
398 xfs_fsize_t di_size;
399 ip->i_df.if_ext_max =
400 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
401 error = 0;
402
347d1c01
CH
403 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
404 be16_to_cpu(dip->di_core.di_anextents) >
405 be64_to_cpu(dip->di_core.di_nblocks))) {
3762ec6b
NS
406 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 408 (unsigned long long)ip->i_ino,
347d1c01
CH
409 (int)(be32_to_cpu(dip->di_core.di_nextents) +
410 be16_to_cpu(dip->di_core.di_anextents)),
1da177e4 411 (unsigned long long)
347d1c01 412 be64_to_cpu(dip->di_core.di_nblocks));
1da177e4
LT
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
414 ip->i_mount, dip);
415 return XFS_ERROR(EFSCORRUPTED);
416 }
417
347d1c01 418 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
419 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 421 (unsigned long long)ip->i_ino,
347d1c01 422 dip->di_core.di_forkoff);
1da177e4
LT
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
424 ip->i_mount, dip);
425 return XFS_ERROR(EFSCORRUPTED);
426 }
427
428 switch (ip->i_d.di_mode & S_IFMT) {
429 case S_IFIFO:
430 case S_IFCHR:
431 case S_IFBLK:
432 case S_IFSOCK:
347d1c01 433 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
435 ip->i_mount, dip);
436 return XFS_ERROR(EFSCORRUPTED);
437 }
438 ip->i_d.di_size = 0;
ba87ea69 439 ip->i_size = 0;
347d1c01 440 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
1da177e4
LT
441 break;
442
443 case S_IFREG:
444 case S_IFLNK:
445 case S_IFDIR:
347d1c01 446 switch (dip->di_core.di_format) {
1da177e4
LT
447 case XFS_DINODE_FMT_LOCAL:
448 /*
449 * no local regular files yet
450 */
347d1c01 451 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
452 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
453 "corrupt inode %Lu "
454 "(local format for regular file).",
1da177e4
LT
455 (unsigned long long) ip->i_ino);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
457 XFS_ERRLEVEL_LOW,
458 ip->i_mount, dip);
459 return XFS_ERROR(EFSCORRUPTED);
460 }
461
347d1c01 462 di_size = be64_to_cpu(dip->di_core.di_size);
1da177e4 463 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
464 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
465 "corrupt inode %Lu "
466 "(bad size %Ld for local inode).",
1da177e4
LT
467 (unsigned long long) ip->i_ino,
468 (long long) di_size);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
470 XFS_ERRLEVEL_LOW,
471 ip->i_mount, dip);
472 return XFS_ERROR(EFSCORRUPTED);
473 }
474
475 size = (int)di_size;
476 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
477 break;
478 case XFS_DINODE_FMT_EXTENTS:
479 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
480 break;
481 case XFS_DINODE_FMT_BTREE:
482 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
483 break;
484 default:
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
486 ip->i_mount);
487 return XFS_ERROR(EFSCORRUPTED);
488 }
489 break;
490
491 default:
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
494 }
495 if (error) {
496 return error;
497 }
498 if (!XFS_DFORK_Q(dip))
499 return 0;
500 ASSERT(ip->i_afp == NULL);
501 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
502 ip->i_afp->if_ext_max =
503 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
347d1c01 504 switch (dip->di_core.di_aformat) {
1da177e4
LT
505 case XFS_DINODE_FMT_LOCAL:
506 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 507 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
508 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
509 break;
510 case XFS_DINODE_FMT_EXTENTS:
511 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
512 break;
513 case XFS_DINODE_FMT_BTREE:
514 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
515 break;
516 default:
517 error = XFS_ERROR(EFSCORRUPTED);
518 break;
519 }
520 if (error) {
521 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
522 ip->i_afp = NULL;
523 xfs_idestroy_fork(ip, XFS_DATA_FORK);
524 }
525 return error;
526}
527
528/*
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
537 */
538STATIC int
539xfs_iformat_local(
540 xfs_inode_t *ip,
541 xfs_dinode_t *dip,
542 int whichfork,
543 int size)
544{
545 xfs_ifork_t *ifp;
546 int real_size;
547
548 /*
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
552 */
553 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
554 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
555 "corrupt inode %Lu "
556 "(bad size %d for local fork, size = %d).",
1da177e4
LT
557 (unsigned long long) ip->i_ino, size,
558 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
560 ip->i_mount, dip);
561 return XFS_ERROR(EFSCORRUPTED);
562 }
563 ifp = XFS_IFORK_PTR(ip, whichfork);
564 real_size = 0;
565 if (size == 0)
566 ifp->if_u1.if_data = NULL;
567 else if (size <= sizeof(ifp->if_u2.if_inline_data))
568 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
569 else {
570 real_size = roundup(size, 4);
571 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
572 }
573 ifp->if_bytes = size;
574 ifp->if_real_bytes = real_size;
575 if (size)
576 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
577 ifp->if_flags &= ~XFS_IFEXTENTS;
578 ifp->if_flags |= XFS_IFINLINE;
579 return 0;
580}
581
582/*
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
590 */
591STATIC int
592xfs_iformat_extents(
593 xfs_inode_t *ip,
594 xfs_dinode_t *dip,
595 int whichfork)
596{
a6f64d4a 597 xfs_bmbt_rec_t *dp;
1da177e4
LT
598 xfs_ifork_t *ifp;
599 int nex;
1da177e4
LT
600 int size;
601 int i;
602
603 ifp = XFS_IFORK_PTR(ip, whichfork);
604 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
605 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
606
607 /*
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
611 */
612 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
613 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
614 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
615 (unsigned long long) ip->i_ino, nex);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
617 ip->i_mount, dip);
618 return XFS_ERROR(EFSCORRUPTED);
619 }
620
4eea22f0 621 ifp->if_real_bytes = 0;
1da177e4
LT
622 if (nex == 0)
623 ifp->if_u1.if_extents = NULL;
624 else if (nex <= XFS_INLINE_EXTS)
625 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
626 else
627 xfs_iext_add(ifp, 0, nex);
628
1da177e4 629 ifp->if_bytes = size;
1da177e4
LT
630 if (size) {
631 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 632 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 633 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 634 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
cd8b0a97
CH
635 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
636 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
1da177e4 637 }
3a59c94c 638 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
639 if (whichfork != XFS_DATA_FORK ||
640 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
641 if (unlikely(xfs_check_nostate_extents(
4eea22f0 642 ifp, 0, nex))) {
1da177e4
LT
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
644 XFS_ERRLEVEL_LOW,
645 ip->i_mount);
646 return XFS_ERROR(EFSCORRUPTED);
647 }
648 }
649 ifp->if_flags |= XFS_IFEXTENTS;
650 return 0;
651}
652
653/*
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
660 */
661STATIC int
662xfs_iformat_btree(
663 xfs_inode_t *ip,
664 xfs_dinode_t *dip,
665 int whichfork)
666{
667 xfs_bmdr_block_t *dfp;
668 xfs_ifork_t *ifp;
669 /* REFERENCED */
670 int nrecs;
671 int size;
672
673 ifp = XFS_IFORK_PTR(ip, whichfork);
674 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
675 size = XFS_BMAP_BROOT_SPACE(dfp);
676 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
677
678 /*
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
683 * blocks.
684 */
685 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs) >
687 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
688 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
689 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
690 "corrupt inode %Lu (btree).",
1da177e4
LT
691 (unsigned long long) ip->i_ino);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
693 ip->i_mount);
694 return XFS_ERROR(EFSCORRUPTED);
695 }
696
697 ifp->if_broot_bytes = size;
698 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
699 ASSERT(ifp->if_broot != NULL);
700 /*
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
703 */
704 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
705 ifp->if_broot, size);
706 ifp->if_flags &= ~XFS_IFEXTENTS;
707 ifp->if_flags |= XFS_IFBROOT;
708
709 return 0;
710}
711
1da177e4 712void
347d1c01
CH
713xfs_dinode_from_disk(
714 xfs_icdinode_t *to,
715 xfs_dinode_core_t *from)
1da177e4 716{
347d1c01
CH
717 to->di_magic = be16_to_cpu(from->di_magic);
718 to->di_mode = be16_to_cpu(from->di_mode);
719 to->di_version = from ->di_version;
720 to->di_format = from->di_format;
721 to->di_onlink = be16_to_cpu(from->di_onlink);
722 to->di_uid = be32_to_cpu(from->di_uid);
723 to->di_gid = be32_to_cpu(from->di_gid);
724 to->di_nlink = be32_to_cpu(from->di_nlink);
725 to->di_projid = be16_to_cpu(from->di_projid);
726 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
727 to->di_flushiter = be16_to_cpu(from->di_flushiter);
728 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
729 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
730 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
731 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
732 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
733 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
734 to->di_size = be64_to_cpu(from->di_size);
735 to->di_nblocks = be64_to_cpu(from->di_nblocks);
736 to->di_extsize = be32_to_cpu(from->di_extsize);
737 to->di_nextents = be32_to_cpu(from->di_nextents);
738 to->di_anextents = be16_to_cpu(from->di_anextents);
739 to->di_forkoff = from->di_forkoff;
740 to->di_aformat = from->di_aformat;
741 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
742 to->di_dmstate = be16_to_cpu(from->di_dmstate);
743 to->di_flags = be16_to_cpu(from->di_flags);
744 to->di_gen = be32_to_cpu(from->di_gen);
745}
746
747void
748xfs_dinode_to_disk(
749 xfs_dinode_core_t *to,
750 xfs_icdinode_t *from)
751{
752 to->di_magic = cpu_to_be16(from->di_magic);
753 to->di_mode = cpu_to_be16(from->di_mode);
754 to->di_version = from ->di_version;
755 to->di_format = from->di_format;
756 to->di_onlink = cpu_to_be16(from->di_onlink);
757 to->di_uid = cpu_to_be32(from->di_uid);
758 to->di_gid = cpu_to_be32(from->di_gid);
759 to->di_nlink = cpu_to_be32(from->di_nlink);
760 to->di_projid = cpu_to_be16(from->di_projid);
761 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
762 to->di_flushiter = cpu_to_be16(from->di_flushiter);
763 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
764 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
765 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
766 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
767 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
768 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
769 to->di_size = cpu_to_be64(from->di_size);
770 to->di_nblocks = cpu_to_be64(from->di_nblocks);
771 to->di_extsize = cpu_to_be32(from->di_extsize);
772 to->di_nextents = cpu_to_be32(from->di_nextents);
773 to->di_anextents = cpu_to_be16(from->di_anextents);
774 to->di_forkoff = from->di_forkoff;
775 to->di_aformat = from->di_aformat;
776 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
777 to->di_dmstate = cpu_to_be16(from->di_dmstate);
778 to->di_flags = cpu_to_be16(from->di_flags);
779 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
780}
781
782STATIC uint
783_xfs_dic2xflags(
1da177e4
LT
784 __uint16_t di_flags)
785{
786 uint flags = 0;
787
788 if (di_flags & XFS_DIFLAG_ANY) {
789 if (di_flags & XFS_DIFLAG_REALTIME)
790 flags |= XFS_XFLAG_REALTIME;
791 if (di_flags & XFS_DIFLAG_PREALLOC)
792 flags |= XFS_XFLAG_PREALLOC;
793 if (di_flags & XFS_DIFLAG_IMMUTABLE)
794 flags |= XFS_XFLAG_IMMUTABLE;
795 if (di_flags & XFS_DIFLAG_APPEND)
796 flags |= XFS_XFLAG_APPEND;
797 if (di_flags & XFS_DIFLAG_SYNC)
798 flags |= XFS_XFLAG_SYNC;
799 if (di_flags & XFS_DIFLAG_NOATIME)
800 flags |= XFS_XFLAG_NOATIME;
801 if (di_flags & XFS_DIFLAG_NODUMP)
802 flags |= XFS_XFLAG_NODUMP;
803 if (di_flags & XFS_DIFLAG_RTINHERIT)
804 flags |= XFS_XFLAG_RTINHERIT;
805 if (di_flags & XFS_DIFLAG_PROJINHERIT)
806 flags |= XFS_XFLAG_PROJINHERIT;
807 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
808 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
809 if (di_flags & XFS_DIFLAG_EXTSIZE)
810 flags |= XFS_XFLAG_EXTSIZE;
811 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
812 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
813 if (di_flags & XFS_DIFLAG_NODEFRAG)
814 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
815 if (di_flags & XFS_DIFLAG_FILESTREAM)
816 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
817 }
818
819 return flags;
820}
821
822uint
823xfs_ip2xflags(
824 xfs_inode_t *ip)
825{
347d1c01 826 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 827
a916e2bd
NS
828 return _xfs_dic2xflags(dic->di_flags) |
829 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
830}
831
832uint
833xfs_dic2xflags(
834 xfs_dinode_core_t *dic)
835{
347d1c01 836 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
a916e2bd 837 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
838}
839
840/*
841 * Given a mount structure and an inode number, return a pointer
c41564b5 842 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
843 * inode number.
844 *
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
847 */
848int
849xfs_iread(
850 xfs_mount_t *mp,
851 xfs_trans_t *tp,
852 xfs_ino_t ino,
853 xfs_inode_t **ipp,
745b1f47
NS
854 xfs_daddr_t bno,
855 uint imap_flags)
1da177e4
LT
856{
857 xfs_buf_t *bp;
858 xfs_dinode_t *dip;
859 xfs_inode_t *ip;
860 int error;
861
862 ASSERT(xfs_inode_zone != NULL);
863
864 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
865 ip->i_ino = ino;
866 ip->i_mount = mp;
b677c210 867 atomic_set(&ip->i_iocount, 0);
f273ab84 868 spin_lock_init(&ip->i_flags_lock);
1da177e4
LT
869
870 /*
871 * Get pointer's to the on-disk inode and the buffer containing it.
872 * If the inode number refers to a block outside the file system
873 * then xfs_itobp() will return NULL. In this case we should
874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
875 * know that this is a new incore inode.
876 */
745b1f47 877 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
b12dd342 878 if (error) {
1da177e4
LT
879 kmem_zone_free(xfs_inode_zone, ip);
880 return error;
881 }
882
883 /*
884 * Initialize inode's trace buffers.
885 * Do this before xfs_iformat in case it adds entries.
886 */
cf441eeb
LM
887#ifdef XFS_INODE_TRACE
888 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
1543d79c 889#endif
1da177e4
LT
890#ifdef XFS_BMAP_TRACE
891 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
892#endif
893#ifdef XFS_BMBT_TRACE
894 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
895#endif
896#ifdef XFS_RW_TRACE
897 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
898#endif
899#ifdef XFS_ILOCK_TRACE
900 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
901#endif
902#ifdef XFS_DIR2_TRACE
903 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
904#endif
905
906 /*
907 * If we got something that isn't an inode it means someone
908 * (nfs or dmi) has a stale handle.
909 */
347d1c01 910 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
1da177e4
LT
911 kmem_zone_free(xfs_inode_zone, ip);
912 xfs_trans_brelse(tp, bp);
913#ifdef DEBUG
914 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
915 "dip->di_core.di_magic (0x%x) != "
916 "XFS_DINODE_MAGIC (0x%x)",
347d1c01 917 be16_to_cpu(dip->di_core.di_magic),
1da177e4
LT
918 XFS_DINODE_MAGIC);
919#endif /* DEBUG */
920 return XFS_ERROR(EINVAL);
921 }
922
923 /*
924 * If the on-disk inode is already linked to a directory
925 * entry, copy all of the inode into the in-core inode.
926 * xfs_iformat() handles copying in the inode format
927 * specific information.
928 * Otherwise, just get the truly permanent information.
929 */
930 if (dip->di_core.di_mode) {
347d1c01 931 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
1da177e4
LT
932 error = xfs_iformat(ip, dip);
933 if (error) {
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
936#ifdef DEBUG
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
939 error);
940#endif /* DEBUG */
941 return error;
942 }
943 } else {
347d1c01
CH
944 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
945 ip->i_d.di_version = dip->di_core.di_version;
946 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
947 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
1da177e4
LT
948 /*
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
954 */
955 ip->i_d.di_mode = 0;
956 /*
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
959 */
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
962 }
963
964 INIT_LIST_HEAD(&ip->i_reclaim);
965
966 /*
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
976 */
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
981 }
982
983 ip->i_delayed_blks = 0;
ba87ea69 984 ip->i_size = ip->i_d.di_size;
1da177e4
LT
985
986 /*
987 * Mark the buffer containing the inode as something to keep
988 * around for a while. This helps to keep recently accessed
989 * meta-data in-core longer.
990 */
991 XFS_BUF_SET_REF(bp, XFS_INO_REF);
992
993 /*
994 * Use xfs_trans_brelse() to release the buffer containing the
995 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 * in xfs_itobp() above. If tp is NULL, this is just a normal
997 * brelse(). If we're within a transaction, then xfs_trans_brelse()
998 * will only release the buffer if it is not dirty within the
999 * transaction. It will be OK to release the buffer in this case,
1000 * because inodes on disk are never destroyed and we will be
1001 * locking the new in-core inode before putting it in the hash
1002 * table where other processes can find it. Thus we don't have
1003 * to worry about the inode being changed just because we released
1004 * the buffer.
1005 */
1006 xfs_trans_brelse(tp, bp);
1007 *ipp = ip;
1008 return 0;
1009}
1010
1011/*
1012 * Read in extents from a btree-format inode.
1013 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1014 */
1015int
1016xfs_iread_extents(
1017 xfs_trans_t *tp,
1018 xfs_inode_t *ip,
1019 int whichfork)
1020{
1021 int error;
1022 xfs_ifork_t *ifp;
4eea22f0 1023 xfs_extnum_t nextents;
1da177e4
LT
1024 size_t size;
1025
1026 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1027 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1028 ip->i_mount);
1029 return XFS_ERROR(EFSCORRUPTED);
1030 }
4eea22f0
MK
1031 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1032 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1033 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1034
1da177e4
LT
1035 /*
1036 * We know that the size is valid (it's checked in iformat_btree)
1037 */
1da177e4 1038 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1039 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1040 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1041 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1042 error = xfs_bmap_read_extents(tp, ip, whichfork);
1043 if (error) {
4eea22f0 1044 xfs_iext_destroy(ifp);
1da177e4
LT
1045 ifp->if_flags &= ~XFS_IFEXTENTS;
1046 return error;
1047 }
a6f64d4a 1048 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1049 return 0;
1050}
1051
1052/*
1053 * Allocate an inode on disk and return a copy of its in-core version.
1054 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1055 * appropriately within the inode. The uid and gid for the inode are
1056 * set according to the contents of the given cred structure.
1057 *
1058 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059 * has a free inode available, call xfs_iget()
1060 * to obtain the in-core version of the allocated inode. Finally,
1061 * fill in the inode and log its initial contents. In this case,
1062 * ialloc_context would be set to NULL and call_again set to false.
1063 *
1064 * If xfs_dialloc() does not have an available inode,
1065 * it will replenish its supply by doing an allocation. Since we can
1066 * only do one allocation within a transaction without deadlocks, we
1067 * must commit the current transaction before returning the inode itself.
1068 * In this case, therefore, we will set call_again to true and return.
1069 * The caller should then commit the current transaction, start a new
1070 * transaction, and call xfs_ialloc() again to actually get the inode.
1071 *
1072 * To ensure that some other process does not grab the inode that
1073 * was allocated during the first call to xfs_ialloc(), this routine
1074 * also returns the [locked] bp pointing to the head of the freelist
1075 * as ialloc_context. The caller should hold this buffer across
1076 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1077 *
1078 * If we are allocating quota inodes, we do not have a parent inode
1079 * to attach to or associate with (i.e. pip == NULL) because they
1080 * are not linked into the directory structure - they are attached
1081 * directly to the superblock - and so have no parent.
1da177e4
LT
1082 */
1083int
1084xfs_ialloc(
1085 xfs_trans_t *tp,
1086 xfs_inode_t *pip,
1087 mode_t mode,
31b084ae 1088 xfs_nlink_t nlink,
1da177e4
LT
1089 xfs_dev_t rdev,
1090 cred_t *cr,
1091 xfs_prid_t prid,
1092 int okalloc,
1093 xfs_buf_t **ialloc_context,
1094 boolean_t *call_again,
1095 xfs_inode_t **ipp)
1096{
1097 xfs_ino_t ino;
1098 xfs_inode_t *ip;
67fcaa73 1099 bhv_vnode_t *vp;
1da177e4
LT
1100 uint flags;
1101 int error;
1102
1103 /*
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1106 */
b11f94d5 1107 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4
LT
1108 ialloc_context, call_again, &ino);
1109 if (error != 0) {
1110 return error;
1111 }
1112 if (*call_again || ino == NULLFSINO) {
1113 *ipp = NULL;
1114 return 0;
1115 }
1116 ASSERT(*ialloc_context == NULL);
1117
1118 /*
1119 * Get the in-core inode with the lock held exclusively.
1120 * This is because we're setting fields here we need
1121 * to prevent others from looking at until we're done.
1122 */
1123 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1124 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1da177e4
LT
1125 if (error != 0) {
1126 return error;
1127 }
1128 ASSERT(ip != NULL);
1129
1130 vp = XFS_ITOV(ip);
1da177e4
LT
1131 ip->i_d.di_mode = (__uint16_t)mode;
1132 ip->i_d.di_onlink = 0;
1133 ip->i_d.di_nlink = nlink;
1134 ASSERT(ip->i_d.di_nlink == nlink);
1135 ip->i_d.di_uid = current_fsuid(cr);
1136 ip->i_d.di_gid = current_fsgid(cr);
1137 ip->i_d.di_projid = prid;
1138 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1139
1140 /*
1141 * If the superblock version is up to where we support new format
1142 * inodes and this is currently an old format inode, then change
1143 * the inode version number now. This way we only do the conversion
1144 * here rather than here and in the flush/logging code.
1145 */
1146 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1147 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1148 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1149 /*
1150 * We've already zeroed the old link count, the projid field,
1151 * and the pad field.
1152 */
1153 }
1154
1155 /*
1156 * Project ids won't be stored on disk if we are using a version 1 inode.
1157 */
2a82b8be 1158 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1da177e4
LT
1159 xfs_bump_ino_vers2(tp, ip);
1160
bd186aa9 1161 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1162 ip->i_d.di_gid = pip->i_d.di_gid;
1163 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1164 ip->i_d.di_mode |= S_ISGID;
1165 }
1166 }
1167
1168 /*
1169 * If the group ID of the new file does not match the effective group
1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 * (and only if the irix_sgid_inherit compatibility variable is set).
1172 */
1173 if ((irix_sgid_inherit) &&
1174 (ip->i_d.di_mode & S_ISGID) &&
1175 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1176 ip->i_d.di_mode &= ~S_ISGID;
1177 }
1178
1179 ip->i_d.di_size = 0;
ba87ea69 1180 ip->i_size = 0;
1da177e4
LT
1181 ip->i_d.di_nextents = 0;
1182 ASSERT(ip->i_d.di_nblocks == 0);
1183 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1184 /*
1185 * di_gen will have been taken care of in xfs_iread.
1186 */
1187 ip->i_d.di_extsize = 0;
1188 ip->i_d.di_dmevmask = 0;
1189 ip->i_d.di_dmstate = 0;
1190 ip->i_d.di_flags = 0;
1191 flags = XFS_ILOG_CORE;
1192 switch (mode & S_IFMT) {
1193 case S_IFIFO:
1194 case S_IFCHR:
1195 case S_IFBLK:
1196 case S_IFSOCK:
1197 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1198 ip->i_df.if_u2.if_rdev = rdev;
1199 ip->i_df.if_flags = 0;
1200 flags |= XFS_ILOG_DEV;
1201 break;
1202 case S_IFREG:
b11f94d5 1203 if (pip && xfs_inode_is_filestream(pip)) {
2a82b8be
DC
1204 error = xfs_filestream_associate(pip, ip);
1205 if (error < 0)
1206 return -error;
1207 if (!error)
1208 xfs_iflags_set(ip, XFS_IFILESTREAM);
1209 }
1210 /* fall through */
1da177e4 1211 case S_IFDIR:
b11f94d5 1212 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1213 uint di_flags = 0;
1214
1215 if ((mode & S_IFMT) == S_IFDIR) {
1216 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1217 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1218 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1219 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1220 ip->i_d.di_extsize = pip->i_d.di_extsize;
1221 }
1222 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1223 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1224 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1225 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1226 di_flags |= XFS_DIFLAG_EXTSIZE;
1227 ip->i_d.di_extsize = pip->i_d.di_extsize;
1228 }
1da177e4
LT
1229 }
1230 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1231 xfs_inherit_noatime)
365ca83d 1232 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1233 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1234 xfs_inherit_nodump)
365ca83d 1235 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1236 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1237 xfs_inherit_sync)
365ca83d 1238 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1239 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1240 xfs_inherit_nosymlinks)
365ca83d
NS
1241 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1242 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1243 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1244 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1245 xfs_inherit_nodefrag)
1246 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1247 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1248 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1249 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1250 }
1251 /* FALLTHROUGH */
1252 case S_IFLNK:
1253 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1254 ip->i_df.if_flags = XFS_IFEXTENTS;
1255 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1256 ip->i_df.if_u1.if_extents = NULL;
1257 break;
1258 default:
1259 ASSERT(0);
1260 }
1261 /*
1262 * Attribute fork settings for new inode.
1263 */
1264 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1265 ip->i_d.di_anextents = 0;
1266
1267 /*
1268 * Log the new values stuffed into the inode.
1269 */
1270 xfs_trans_log_inode(tp, ip, flags);
1271
b83bd138 1272 /* now that we have an i_mode we can setup inode ops and unlock */
745f6919 1273 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1da177e4
LT
1274
1275 *ipp = ip;
1276 return 0;
1277}
1278
1279/*
1280 * Check to make sure that there are no blocks allocated to the
1281 * file beyond the size of the file. We don't check this for
1282 * files with fixed size extents or real time extents, but we
1283 * at least do it for regular files.
1284 */
1285#ifdef DEBUG
1286void
1287xfs_isize_check(
1288 xfs_mount_t *mp,
1289 xfs_inode_t *ip,
1290 xfs_fsize_t isize)
1291{
1292 xfs_fileoff_t map_first;
1293 int nimaps;
1294 xfs_bmbt_irec_t imaps[2];
1295
1296 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1297 return;
1298
71ddabb9
ES
1299 if (XFS_IS_REALTIME_INODE(ip))
1300 return;
1301
1302 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1303 return;
1304
1305 nimaps = 2;
1306 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1307 /*
1308 * The filesystem could be shutting down, so bmapi may return
1309 * an error.
1310 */
1311 if (xfs_bmapi(NULL, ip, map_first,
1312 (XFS_B_TO_FSB(mp,
1313 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1314 map_first),
1315 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1316 NULL, NULL))
1da177e4
LT
1317 return;
1318 ASSERT(nimaps == 1);
1319 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1320}
1321#endif /* DEBUG */
1322
1323/*
1324 * Calculate the last possible buffered byte in a file. This must
1325 * include data that was buffered beyond the EOF by the write code.
1326 * This also needs to deal with overflowing the xfs_fsize_t type
1327 * which can happen for sizes near the limit.
1328 *
1329 * We also need to take into account any blocks beyond the EOF. It
1330 * may be the case that they were buffered by a write which failed.
1331 * In that case the pages will still be in memory, but the inode size
1332 * will never have been updated.
1333 */
1334xfs_fsize_t
1335xfs_file_last_byte(
1336 xfs_inode_t *ip)
1337{
1338 xfs_mount_t *mp;
1339 xfs_fsize_t last_byte;
1340 xfs_fileoff_t last_block;
1341 xfs_fileoff_t size_last_block;
1342 int error;
1343
1344 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1345
1346 mp = ip->i_mount;
1347 /*
1348 * Only check for blocks beyond the EOF if the extents have
1349 * been read in. This eliminates the need for the inode lock,
1350 * and it also saves us from looking when it really isn't
1351 * necessary.
1352 */
1353 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1354 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1355 XFS_DATA_FORK);
1356 if (error) {
1357 last_block = 0;
1358 }
1359 } else {
1360 last_block = 0;
1361 }
ba87ea69 1362 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1363 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1364
1365 last_byte = XFS_FSB_TO_B(mp, last_block);
1366 if (last_byte < 0) {
1367 return XFS_MAXIOFFSET(mp);
1368 }
1369 last_byte += (1 << mp->m_writeio_log);
1370 if (last_byte < 0) {
1371 return XFS_MAXIOFFSET(mp);
1372 }
1373 return last_byte;
1374}
1375
1376#if defined(XFS_RW_TRACE)
1377STATIC void
1378xfs_itrunc_trace(
1379 int tag,
1380 xfs_inode_t *ip,
1381 int flag,
1382 xfs_fsize_t new_size,
1383 xfs_off_t toss_start,
1384 xfs_off_t toss_finish)
1385{
1386 if (ip->i_rwtrace == NULL) {
1387 return;
1388 }
1389
1390 ktrace_enter(ip->i_rwtrace,
1391 (void*)((long)tag),
1392 (void*)ip,
1393 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1394 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1395 (void*)((long)flag),
1396 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1397 (void*)(unsigned long)(new_size & 0xffffffff),
1398 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1399 (void*)(unsigned long)(toss_start & 0xffffffff),
1400 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1401 (void*)(unsigned long)(toss_finish & 0xffffffff),
1402 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1403 (void*)(unsigned long)current_pid(),
1404 (void*)NULL,
1405 (void*)NULL,
1406 (void*)NULL);
1da177e4
LT
1407}
1408#else
1409#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1410#endif
1411
1412/*
1413 * Start the truncation of the file to new_size. The new size
1414 * must be smaller than the current size. This routine will
1415 * clear the buffer and page caches of file data in the removed
1416 * range, and xfs_itruncate_finish() will remove the underlying
1417 * disk blocks.
1418 *
1419 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1420 * must NOT have the inode lock held at all. This is because we're
1421 * calling into the buffer/page cache code and we can't hold the
1422 * inode lock when we do so.
1423 *
38e2299a
DC
1424 * We need to wait for any direct I/Os in flight to complete before we
1425 * proceed with the truncate. This is needed to prevent the extents
1426 * being read or written by the direct I/Os from being removed while the
1427 * I/O is in flight as there is no other method of synchronising
1428 * direct I/O with the truncate operation. Also, because we hold
1429 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1430 * started until the truncate completes and drops the lock. Essentially,
1431 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1432 * between direct I/Os and the truncate operation.
1433 *
1da177e4
LT
1434 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1435 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1436 * in the case that the caller is locking things out of order and
1437 * may not be able to call xfs_itruncate_finish() with the inode lock
1438 * held without dropping the I/O lock. If the caller must drop the
1439 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1440 * must be called again with all the same restrictions as the initial
1441 * call.
1442 */
d3cf2094 1443int
1da177e4
LT
1444xfs_itruncate_start(
1445 xfs_inode_t *ip,
1446 uint flags,
1447 xfs_fsize_t new_size)
1448{
1449 xfs_fsize_t last_byte;
1450 xfs_off_t toss_start;
1451 xfs_mount_t *mp;
67fcaa73 1452 bhv_vnode_t *vp;
d3cf2094 1453 int error = 0;
1da177e4
LT
1454
1455 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
ba87ea69 1456 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1457 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1458 (flags == XFS_ITRUNC_MAYBE));
1459
1460 mp = ip->i_mount;
1461 vp = XFS_ITOV(ip);
9fa8046f 1462
c734c79b
LM
1463 /* wait for the completion of any pending DIOs */
1464 if (new_size < ip->i_size)
1465 vn_iowait(ip);
1466
1da177e4 1467 /*
67fcaa73 1468 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1469 * overlapping the region being removed. We have to use
67fcaa73 1470 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1471 * caller may not be able to finish the truncate without
1472 * dropping the inode's I/O lock. Make sure
1473 * to catch any pages brought in by buffers overlapping
1474 * the EOF by searching out beyond the isize by our
1475 * block size. We round new_size up to a block boundary
1476 * so that we don't toss things on the same block as
1477 * new_size but before it.
1478 *
67fcaa73 1479 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1480 * call remapf() over the same region if the file is mapped.
1481 * This frees up mapped file references to the pages in the
67fcaa73 1482 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1483 * that we get the latest mapped changes flushed out.
1484 */
1485 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1486 toss_start = XFS_FSB_TO_B(mp, toss_start);
1487 if (toss_start < 0) {
1488 /*
1489 * The place to start tossing is beyond our maximum
1490 * file size, so there is no way that the data extended
1491 * out there.
1492 */
d3cf2094 1493 return 0;
1da177e4
LT
1494 }
1495 last_byte = xfs_file_last_byte(ip);
1496 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1497 last_byte);
1498 if (last_byte > toss_start) {
1499 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1500 xfs_tosspages(ip, toss_start,
1501 -1, FI_REMAPF_LOCKED);
1da177e4 1502 } else {
739bfb2a
CH
1503 error = xfs_flushinval_pages(ip, toss_start,
1504 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1505 }
1506 }
1507
1508#ifdef DEBUG
1509 if (new_size == 0) {
1510 ASSERT(VN_CACHED(vp) == 0);
1511 }
1512#endif
d3cf2094 1513 return error;
1da177e4
LT
1514}
1515
1516/*
1517 * Shrink the file to the given new_size. The new
1518 * size must be smaller than the current size.
1519 * This will free up the underlying blocks
1520 * in the removed range after a call to xfs_itruncate_start()
1521 * or xfs_atruncate_start().
1522 *
1523 * The transaction passed to this routine must have made
1524 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1525 * This routine may commit the given transaction and
1526 * start new ones, so make sure everything involved in
1527 * the transaction is tidy before calling here.
1528 * Some transaction will be returned to the caller to be
1529 * committed. The incoming transaction must already include
1530 * the inode, and both inode locks must be held exclusively.
1531 * The inode must also be "held" within the transaction. On
1532 * return the inode will be "held" within the returned transaction.
1533 * This routine does NOT require any disk space to be reserved
1534 * for it within the transaction.
1535 *
1536 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1537 * and it indicates the fork which is to be truncated. For the
1538 * attribute fork we only support truncation to size 0.
1539 *
1540 * We use the sync parameter to indicate whether or not the first
1541 * transaction we perform might have to be synchronous. For the attr fork,
1542 * it needs to be so if the unlink of the inode is not yet known to be
1543 * permanent in the log. This keeps us from freeing and reusing the
1544 * blocks of the attribute fork before the unlink of the inode becomes
1545 * permanent.
1546 *
1547 * For the data fork, we normally have to run synchronously if we're
1548 * being called out of the inactive path or we're being called
1549 * out of the create path where we're truncating an existing file.
1550 * Either way, the truncate needs to be sync so blocks don't reappear
1551 * in the file with altered data in case of a crash. wsync filesystems
1552 * can run the first case async because anything that shrinks the inode
1553 * has to run sync so by the time we're called here from inactive, the
1554 * inode size is permanently set to 0.
1555 *
1556 * Calls from the truncate path always need to be sync unless we're
1557 * in a wsync filesystem and the file has already been unlinked.
1558 *
1559 * The caller is responsible for correctly setting the sync parameter.
1560 * It gets too hard for us to guess here which path we're being called
1561 * out of just based on inode state.
1562 */
1563int
1564xfs_itruncate_finish(
1565 xfs_trans_t **tp,
1566 xfs_inode_t *ip,
1567 xfs_fsize_t new_size,
1568 int fork,
1569 int sync)
1570{
1571 xfs_fsblock_t first_block;
1572 xfs_fileoff_t first_unmap_block;
1573 xfs_fileoff_t last_block;
1574 xfs_filblks_t unmap_len=0;
1575 xfs_mount_t *mp;
1576 xfs_trans_t *ntp;
1577 int done;
1578 int committed;
1579 xfs_bmap_free_t free_list;
1580 int error;
1581
1582 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1583 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
ba87ea69 1584 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1585 ASSERT(*tp != NULL);
1586 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1587 ASSERT(ip->i_transp == *tp);
1588 ASSERT(ip->i_itemp != NULL);
1589 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1590
1591
1592 ntp = *tp;
1593 mp = (ntp)->t_mountp;
1594 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1595
1596 /*
1597 * We only support truncating the entire attribute fork.
1598 */
1599 if (fork == XFS_ATTR_FORK) {
1600 new_size = 0LL;
1601 }
1602 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1603 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1604 /*
1605 * The first thing we do is set the size to new_size permanently
1606 * on disk. This way we don't have to worry about anyone ever
1607 * being able to look at the data being freed even in the face
1608 * of a crash. What we're getting around here is the case where
1609 * we free a block, it is allocated to another file, it is written
1610 * to, and then we crash. If the new data gets written to the
1611 * file but the log buffers containing the free and reallocation
1612 * don't, then we'd end up with garbage in the blocks being freed.
1613 * As long as we make the new_size permanent before actually
1614 * freeing any blocks it doesn't matter if they get writtten to.
1615 *
1616 * The callers must signal into us whether or not the size
1617 * setting here must be synchronous. There are a few cases
1618 * where it doesn't have to be synchronous. Those cases
1619 * occur if the file is unlinked and we know the unlink is
1620 * permanent or if the blocks being truncated are guaranteed
1621 * to be beyond the inode eof (regardless of the link count)
1622 * and the eof value is permanent. Both of these cases occur
1623 * only on wsync-mounted filesystems. In those cases, we're
1624 * guaranteed that no user will ever see the data in the blocks
1625 * that are being truncated so the truncate can run async.
1626 * In the free beyond eof case, the file may wind up with
1627 * more blocks allocated to it than it needs if we crash
1628 * and that won't get fixed until the next time the file
1629 * is re-opened and closed but that's ok as that shouldn't
1630 * be too many blocks.
1631 *
1632 * However, we can't just make all wsync xactions run async
1633 * because there's one call out of the create path that needs
1634 * to run sync where it's truncating an existing file to size
1635 * 0 whose size is > 0.
1636 *
1637 * It's probably possible to come up with a test in this
1638 * routine that would correctly distinguish all the above
1639 * cases from the values of the function parameters and the
1640 * inode state but for sanity's sake, I've decided to let the
1641 * layers above just tell us. It's simpler to correctly figure
1642 * out in the layer above exactly under what conditions we
1643 * can run async and I think it's easier for others read and
1644 * follow the logic in case something has to be changed.
1645 * cscope is your friend -- rcc.
1646 *
1647 * The attribute fork is much simpler.
1648 *
1649 * For the attribute fork we allow the caller to tell us whether
1650 * the unlink of the inode that led to this call is yet permanent
1651 * in the on disk log. If it is not and we will be freeing extents
1652 * in this inode then we make the first transaction synchronous
1653 * to make sure that the unlink is permanent by the time we free
1654 * the blocks.
1655 */
1656 if (fork == XFS_DATA_FORK) {
1657 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1658 /*
1659 * If we are not changing the file size then do
1660 * not update the on-disk file size - we may be
1661 * called from xfs_inactive_free_eofblocks(). If we
1662 * update the on-disk file size and then the system
1663 * crashes before the contents of the file are
1664 * flushed to disk then the files may be full of
1665 * holes (ie NULL files bug).
1666 */
1667 if (ip->i_size != new_size) {
1668 ip->i_d.di_size = new_size;
1669 ip->i_size = new_size;
1670 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1671 }
1da177e4
LT
1672 }
1673 } else if (sync) {
1674 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1675 if (ip->i_d.di_anextents > 0)
1676 xfs_trans_set_sync(ntp);
1677 }
1678 ASSERT(fork == XFS_DATA_FORK ||
1679 (fork == XFS_ATTR_FORK &&
1680 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1681 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1682
1683 /*
1684 * Since it is possible for space to become allocated beyond
1685 * the end of the file (in a crash where the space is allocated
1686 * but the inode size is not yet updated), simply remove any
1687 * blocks which show up between the new EOF and the maximum
1688 * possible file size. If the first block to be removed is
1689 * beyond the maximum file size (ie it is the same as last_block),
1690 * then there is nothing to do.
1691 */
1692 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1693 ASSERT(first_unmap_block <= last_block);
1694 done = 0;
1695 if (last_block == first_unmap_block) {
1696 done = 1;
1697 } else {
1698 unmap_len = last_block - first_unmap_block + 1;
1699 }
1700 while (!done) {
1701 /*
1702 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1703 * will tell us whether it freed the entire range or
1704 * not. If this is a synchronous mount (wsync),
1705 * then we can tell bunmapi to keep all the
1706 * transactions asynchronous since the unlink
1707 * transaction that made this inode inactive has
1708 * already hit the disk. There's no danger of
1709 * the freed blocks being reused, there being a
1710 * crash, and the reused blocks suddenly reappearing
1711 * in this file with garbage in them once recovery
1712 * runs.
1713 */
1714 XFS_BMAP_INIT(&free_list, &first_block);
541d7d3c 1715 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1716 first_unmap_block, unmap_len,
1da177e4
LT
1717 XFS_BMAPI_AFLAG(fork) |
1718 (sync ? 0 : XFS_BMAPI_ASYNC),
1719 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1720 &first_block, &free_list,
1721 NULL, &done);
1da177e4
LT
1722 if (error) {
1723 /*
1724 * If the bunmapi call encounters an error,
1725 * return to the caller where the transaction
1726 * can be properly aborted. We just need to
1727 * make sure we're not holding any resources
1728 * that we were not when we came in.
1729 */
1730 xfs_bmap_cancel(&free_list);
1731 return error;
1732 }
1733
1734 /*
1735 * Duplicate the transaction that has the permanent
1736 * reservation and commit the old transaction.
1737 */
f7c99b6f 1738 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4
LT
1739 ntp = *tp;
1740 if (error) {
1741 /*
1742 * If the bmap finish call encounters an error,
1743 * return to the caller where the transaction
1744 * can be properly aborted. We just need to
1745 * make sure we're not holding any resources
1746 * that we were not when we came in.
1747 *
1748 * Aborting from this point might lose some
1749 * blocks in the file system, but oh well.
1750 */
1751 xfs_bmap_cancel(&free_list);
1752 if (committed) {
1753 /*
1754 * If the passed in transaction committed
1755 * in xfs_bmap_finish(), then we want to
1756 * add the inode to this one before returning.
1757 * This keeps things simple for the higher
1758 * level code, because it always knows that
1759 * the inode is locked and held in the
1760 * transaction that returns to it whether
1761 * errors occur or not. We don't mark the
1762 * inode dirty so that this transaction can
1763 * be easily aborted if possible.
1764 */
1765 xfs_trans_ijoin(ntp, ip,
1766 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1767 xfs_trans_ihold(ntp, ip);
1768 }
1769 return error;
1770 }
1771
1772 if (committed) {
1773 /*
1774 * The first xact was committed,
1775 * so add the inode to the new one.
1776 * Mark it dirty so it will be logged
1777 * and moved forward in the log as
1778 * part of every commit.
1779 */
1780 xfs_trans_ijoin(ntp, ip,
1781 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1782 xfs_trans_ihold(ntp, ip);
1783 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1784 }
1785 ntp = xfs_trans_dup(ntp);
1c72bf90 1786 (void) xfs_trans_commit(*tp, 0);
1da177e4
LT
1787 *tp = ntp;
1788 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1789 XFS_TRANS_PERM_LOG_RES,
1790 XFS_ITRUNCATE_LOG_COUNT);
1791 /*
1792 * Add the inode being truncated to the next chained
1793 * transaction.
1794 */
1795 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1796 xfs_trans_ihold(ntp, ip);
1797 if (error)
1798 return (error);
1799 }
1800 /*
1801 * Only update the size in the case of the data fork, but
1802 * always re-log the inode so that our permanent transaction
1803 * can keep on rolling it forward in the log.
1804 */
1805 if (fork == XFS_DATA_FORK) {
1806 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1807 /*
1808 * If we are not changing the file size then do
1809 * not update the on-disk file size - we may be
1810 * called from xfs_inactive_free_eofblocks(). If we
1811 * update the on-disk file size and then the system
1812 * crashes before the contents of the file are
1813 * flushed to disk then the files may be full of
1814 * holes (ie NULL files bug).
1815 */
1816 if (ip->i_size != new_size) {
1817 ip->i_d.di_size = new_size;
1818 ip->i_size = new_size;
1819 }
1da177e4
LT
1820 }
1821 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1822 ASSERT((new_size != 0) ||
1823 (fork == XFS_ATTR_FORK) ||
1824 (ip->i_delayed_blks == 0));
1825 ASSERT((new_size != 0) ||
1826 (fork == XFS_ATTR_FORK) ||
1827 (ip->i_d.di_nextents == 0));
1828 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1829 return 0;
1830}
1831
1832
1833/*
1834 * xfs_igrow_start
1835 *
1836 * Do the first part of growing a file: zero any data in the last
1837 * block that is beyond the old EOF. We need to do this before
1838 * the inode is joined to the transaction to modify the i_size.
1839 * That way we can drop the inode lock and call into the buffer
1840 * cache to get the buffer mapping the EOF.
1841 */
1842int
1843xfs_igrow_start(
1844 xfs_inode_t *ip,
1845 xfs_fsize_t new_size,
1846 cred_t *credp)
1847{
1da177e4
LT
1848 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1849 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
ba87ea69 1850 ASSERT(new_size > ip->i_size);
1da177e4 1851
1da177e4
LT
1852 /*
1853 * Zero any pages that may have been created by
1854 * xfs_write_file() beyond the end of the file
1855 * and any blocks between the old and new file sizes.
1856 */
541d7d3c 1857 return xfs_zero_eof(ip, new_size, ip->i_size);
1da177e4
LT
1858}
1859
1860/*
1861 * xfs_igrow_finish
1862 *
1863 * This routine is called to extend the size of a file.
1864 * The inode must have both the iolock and the ilock locked
1865 * for update and it must be a part of the current transaction.
1866 * The xfs_igrow_start() function must have been called previously.
1867 * If the change_flag is not zero, the inode change timestamp will
1868 * be updated.
1869 */
1870void
1871xfs_igrow_finish(
1872 xfs_trans_t *tp,
1873 xfs_inode_t *ip,
1874 xfs_fsize_t new_size,
1875 int change_flag)
1876{
1877 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1878 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1879 ASSERT(ip->i_transp == tp);
ba87ea69 1880 ASSERT(new_size > ip->i_size);
1da177e4
LT
1881
1882 /*
1883 * Update the file size. Update the inode change timestamp
1884 * if change_flag set.
1885 */
1886 ip->i_d.di_size = new_size;
ba87ea69 1887 ip->i_size = new_size;
1da177e4
LT
1888 if (change_flag)
1889 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1890 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1891
1892}
1893
1894
1895/*
1896 * This is called when the inode's link count goes to 0.
1897 * We place the on-disk inode on a list in the AGI. It
1898 * will be pulled from this list when the inode is freed.
1899 */
1900int
1901xfs_iunlink(
1902 xfs_trans_t *tp,
1903 xfs_inode_t *ip)
1904{
1905 xfs_mount_t *mp;
1906 xfs_agi_t *agi;
1907 xfs_dinode_t *dip;
1908 xfs_buf_t *agibp;
1909 xfs_buf_t *ibp;
1910 xfs_agnumber_t agno;
1911 xfs_daddr_t agdaddr;
1912 xfs_agino_t agino;
1913 short bucket_index;
1914 int offset;
1915 int error;
1916 int agi_ok;
1917
1918 ASSERT(ip->i_d.di_nlink == 0);
1919 ASSERT(ip->i_d.di_mode != 0);
1920 ASSERT(ip->i_transp == tp);
1921
1922 mp = tp->t_mountp;
1923
1924 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1925 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1926
1927 /*
1928 * Get the agi buffer first. It ensures lock ordering
1929 * on the list.
1930 */
1931 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1932 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
859d7182 1933 if (error)
1da177e4 1934 return error;
859d7182 1935
1da177e4
LT
1936 /*
1937 * Validate the magic number of the agi block.
1938 */
1939 agi = XFS_BUF_TO_AGI(agibp);
1940 agi_ok =
16259e7d
CH
1941 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1942 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1943 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1944 XFS_RANDOM_IUNLINK))) {
1945 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1946 xfs_trans_brelse(tp, agibp);
1947 return XFS_ERROR(EFSCORRUPTED);
1948 }
1949 /*
1950 * Get the index into the agi hash table for the
1951 * list this inode will go on.
1952 */
1953 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1954 ASSERT(agino != 0);
1955 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1956 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1957 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1958
16259e7d 1959 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1960 /*
1961 * There is already another inode in the bucket we need
1962 * to add ourselves to. Add us at the front of the list.
1963 * Here we put the head pointer into our next pointer,
1964 * and then we fall through to point the head at us.
1965 */
c319b58b
VA
1966 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1967 if (error)
1968 return error;
1969
347d1c01 1970 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1971 /* both on-disk, don't endian flip twice */
1972 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1973 offset = ip->i_boffset +
1974 offsetof(xfs_dinode_t, di_next_unlinked);
1975 xfs_trans_inode_buf(tp, ibp);
1976 xfs_trans_log_buf(tp, ibp, offset,
1977 (offset + sizeof(xfs_agino_t) - 1));
1978 xfs_inobp_check(mp, ibp);
1979 }
1980
1981 /*
1982 * Point the bucket head pointer at the inode being inserted.
1983 */
1984 ASSERT(agino != 0);
16259e7d 1985 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1986 offset = offsetof(xfs_agi_t, agi_unlinked) +
1987 (sizeof(xfs_agino_t) * bucket_index);
1988 xfs_trans_log_buf(tp, agibp, offset,
1989 (offset + sizeof(xfs_agino_t) - 1));
1990 return 0;
1991}
1992
1993/*
1994 * Pull the on-disk inode from the AGI unlinked list.
1995 */
1996STATIC int
1997xfs_iunlink_remove(
1998 xfs_trans_t *tp,
1999 xfs_inode_t *ip)
2000{
2001 xfs_ino_t next_ino;
2002 xfs_mount_t *mp;
2003 xfs_agi_t *agi;
2004 xfs_dinode_t *dip;
2005 xfs_buf_t *agibp;
2006 xfs_buf_t *ibp;
2007 xfs_agnumber_t agno;
2008 xfs_daddr_t agdaddr;
2009 xfs_agino_t agino;
2010 xfs_agino_t next_agino;
2011 xfs_buf_t *last_ibp;
6fdf8ccc 2012 xfs_dinode_t *last_dip = NULL;
1da177e4 2013 short bucket_index;
6fdf8ccc 2014 int offset, last_offset = 0;
1da177e4
LT
2015 int error;
2016 int agi_ok;
2017
2018 /*
2019 * First pull the on-disk inode from the AGI unlinked list.
2020 */
2021 mp = tp->t_mountp;
2022
2023 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2024 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
2025
2026 /*
2027 * Get the agi buffer first. It ensures lock ordering
2028 * on the list.
2029 */
2030 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
2031 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
2032 if (error) {
2033 cmn_err(CE_WARN,
2034 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2035 error, mp->m_fsname);
2036 return error;
2037 }
2038 /*
2039 * Validate the magic number of the agi block.
2040 */
2041 agi = XFS_BUF_TO_AGI(agibp);
2042 agi_ok =
16259e7d
CH
2043 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2044 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
2045 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2046 XFS_RANDOM_IUNLINK_REMOVE))) {
2047 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2048 mp, agi);
2049 xfs_trans_brelse(tp, agibp);
2050 cmn_err(CE_WARN,
2051 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2052 mp->m_fsname);
2053 return XFS_ERROR(EFSCORRUPTED);
2054 }
2055 /*
2056 * Get the index into the agi hash table for the
2057 * list this inode will go on.
2058 */
2059 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2060 ASSERT(agino != 0);
2061 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 2062 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
2063 ASSERT(agi->agi_unlinked[bucket_index]);
2064
16259e7d 2065 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
2066 /*
2067 * We're at the head of the list. Get the inode's
2068 * on-disk buffer to see if there is anyone after us
2069 * on the list. Only modify our next pointer if it
2070 * is not already NULLAGINO. This saves us the overhead
2071 * of dealing with the buffer when there is no need to
2072 * change it.
2073 */
b12dd342 2074 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2075 if (error) {
2076 cmn_err(CE_WARN,
2077 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2078 error, mp->m_fsname);
2079 return error;
2080 }
347d1c01 2081 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2082 ASSERT(next_agino != 0);
2083 if (next_agino != NULLAGINO) {
347d1c01 2084 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2085 offset = ip->i_boffset +
2086 offsetof(xfs_dinode_t, di_next_unlinked);
2087 xfs_trans_inode_buf(tp, ibp);
2088 xfs_trans_log_buf(tp, ibp, offset,
2089 (offset + sizeof(xfs_agino_t) - 1));
2090 xfs_inobp_check(mp, ibp);
2091 } else {
2092 xfs_trans_brelse(tp, ibp);
2093 }
2094 /*
2095 * Point the bucket head pointer at the next inode.
2096 */
2097 ASSERT(next_agino != 0);
2098 ASSERT(next_agino != agino);
16259e7d 2099 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2100 offset = offsetof(xfs_agi_t, agi_unlinked) +
2101 (sizeof(xfs_agino_t) * bucket_index);
2102 xfs_trans_log_buf(tp, agibp, offset,
2103 (offset + sizeof(xfs_agino_t) - 1));
2104 } else {
2105 /*
2106 * We need to search the list for the inode being freed.
2107 */
16259e7d 2108 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2109 last_ibp = NULL;
2110 while (next_agino != agino) {
2111 /*
2112 * If the last inode wasn't the one pointing to
2113 * us, then release its buffer since we're not
2114 * going to do anything with it.
2115 */
2116 if (last_ibp != NULL) {
2117 xfs_trans_brelse(tp, last_ibp);
2118 }
2119 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2120 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2121 &last_ibp, &last_offset);
2122 if (error) {
2123 cmn_err(CE_WARN,
2124 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2125 error, mp->m_fsname);
2126 return error;
2127 }
347d1c01 2128 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2129 ASSERT(next_agino != NULLAGINO);
2130 ASSERT(next_agino != 0);
2131 }
2132 /*
2133 * Now last_ibp points to the buffer previous to us on
2134 * the unlinked list. Pull us from the list.
2135 */
b12dd342 2136 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2137 if (error) {
2138 cmn_err(CE_WARN,
2139 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2140 error, mp->m_fsname);
2141 return error;
2142 }
347d1c01 2143 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2144 ASSERT(next_agino != 0);
2145 ASSERT(next_agino != agino);
2146 if (next_agino != NULLAGINO) {
347d1c01 2147 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2148 offset = ip->i_boffset +
2149 offsetof(xfs_dinode_t, di_next_unlinked);
2150 xfs_trans_inode_buf(tp, ibp);
2151 xfs_trans_log_buf(tp, ibp, offset,
2152 (offset + sizeof(xfs_agino_t) - 1));
2153 xfs_inobp_check(mp, ibp);
2154 } else {
2155 xfs_trans_brelse(tp, ibp);
2156 }
2157 /*
2158 * Point the previous inode on the list to the next inode.
2159 */
347d1c01 2160 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2161 ASSERT(next_agino != 0);
2162 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2163 xfs_trans_inode_buf(tp, last_ibp);
2164 xfs_trans_log_buf(tp, last_ibp, offset,
2165 (offset + sizeof(xfs_agino_t) - 1));
2166 xfs_inobp_check(mp, last_ibp);
2167 }
2168 return 0;
2169}
2170
7989cb8e 2171STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
1da177e4
LT
2172{
2173 return (((ip->i_itemp == NULL) ||
2174 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2175 (ip->i_update_core == 0));
2176}
2177
ba0f32d4 2178STATIC void
1da177e4
LT
2179xfs_ifree_cluster(
2180 xfs_inode_t *free_ip,
2181 xfs_trans_t *tp,
2182 xfs_ino_t inum)
2183{
2184 xfs_mount_t *mp = free_ip->i_mount;
2185 int blks_per_cluster;
2186 int nbufs;
2187 int ninodes;
2188 int i, j, found, pre_flushed;
2189 xfs_daddr_t blkno;
2190 xfs_buf_t *bp;
1da177e4
LT
2191 xfs_inode_t *ip, **ip_found;
2192 xfs_inode_log_item_t *iip;
2193 xfs_log_item_t *lip;
da353b0d 2194 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2195
2196 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2197 blks_per_cluster = 1;
2198 ninodes = mp->m_sb.sb_inopblock;
2199 nbufs = XFS_IALLOC_BLOCKS(mp);
2200 } else {
2201 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2202 mp->m_sb.sb_blocksize;
2203 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2204 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2205 }
2206
2207 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2208
2209 for (j = 0; j < nbufs; j++, inum += ninodes) {
2210 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2211 XFS_INO_TO_AGBNO(mp, inum));
2212
2213
2214 /*
2215 * Look for each inode in memory and attempt to lock it,
2216 * we can be racing with flush and tail pushing here.
2217 * any inode we get the locks on, add to an array of
2218 * inode items to process later.
2219 *
2220 * The get the buffer lock, we could beat a flush
2221 * or tail pushing thread to the lock here, in which
2222 * case they will go looking for the inode buffer
2223 * and fail, we need some other form of interlock
2224 * here.
2225 */
2226 found = 0;
2227 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2228 read_lock(&pag->pag_ici_lock);
2229 ip = radix_tree_lookup(&pag->pag_ici_root,
2230 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2231
2232 /* Inode not in memory or we found it already,
2233 * nothing to do
2234 */
7a18c386 2235 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2236 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2237 continue;
2238 }
2239
2240 if (xfs_inode_clean(ip)) {
da353b0d 2241 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2242 continue;
2243 }
2244
2245 /* If we can get the locks then add it to the
2246 * list, otherwise by the time we get the bp lock
2247 * below it will already be attached to the
2248 * inode buffer.
2249 */
2250
2251 /* This inode will already be locked - by us, lets
2252 * keep it that way.
2253 */
2254
2255 if (ip == free_ip) {
2256 if (xfs_iflock_nowait(ip)) {
7a18c386 2257 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2258 if (xfs_inode_clean(ip)) {
2259 xfs_ifunlock(ip);
2260 } else {
2261 ip_found[found++] = ip;
2262 }
2263 }
da353b0d 2264 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2265 continue;
2266 }
2267
2268 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2269 if (xfs_iflock_nowait(ip)) {
7a18c386 2270 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2271
2272 if (xfs_inode_clean(ip)) {
2273 xfs_ifunlock(ip);
2274 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2275 } else {
2276 ip_found[found++] = ip;
2277 }
2278 } else {
2279 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2280 }
2281 }
da353b0d 2282 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2283 }
2284
2285 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2286 mp->m_bsize * blks_per_cluster,
2287 XFS_BUF_LOCK);
2288
2289 pre_flushed = 0;
2290 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2291 while (lip) {
2292 if (lip->li_type == XFS_LI_INODE) {
2293 iip = (xfs_inode_log_item_t *)lip;
2294 ASSERT(iip->ili_logged == 1);
2295 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
287f3dad 2296 spin_lock(&mp->m_ail_lock);
1da177e4 2297 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2298 spin_unlock(&mp->m_ail_lock);
e5ffd2bb 2299 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2300 pre_flushed++;
2301 }
2302 lip = lip->li_bio_list;
2303 }
2304
2305 for (i = 0; i < found; i++) {
2306 ip = ip_found[i];
2307 iip = ip->i_itemp;
2308
2309 if (!iip) {
2310 ip->i_update_core = 0;
2311 xfs_ifunlock(ip);
2312 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2313 continue;
2314 }
2315
2316 iip->ili_last_fields = iip->ili_format.ilf_fields;
2317 iip->ili_format.ilf_fields = 0;
2318 iip->ili_logged = 1;
287f3dad 2319 spin_lock(&mp->m_ail_lock);
1da177e4 2320 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2321 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
2322
2323 xfs_buf_attach_iodone(bp,
2324 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2325 xfs_istale_done, (xfs_log_item_t *)iip);
2326 if (ip != free_ip) {
2327 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2328 }
2329 }
2330
2331 if (found || pre_flushed)
2332 xfs_trans_stale_inode_buf(tp, bp);
2333 xfs_trans_binval(tp, bp);
2334 }
2335
2336 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
da353b0d 2337 xfs_put_perag(mp, pag);
1da177e4
LT
2338}
2339
2340/*
2341 * This is called to return an inode to the inode free list.
2342 * The inode should already be truncated to 0 length and have
2343 * no pages associated with it. This routine also assumes that
2344 * the inode is already a part of the transaction.
2345 *
2346 * The on-disk copy of the inode will have been added to the list
2347 * of unlinked inodes in the AGI. We need to remove the inode from
2348 * that list atomically with respect to freeing it here.
2349 */
2350int
2351xfs_ifree(
2352 xfs_trans_t *tp,
2353 xfs_inode_t *ip,
2354 xfs_bmap_free_t *flist)
2355{
2356 int error;
2357 int delete;
2358 xfs_ino_t first_ino;
c319b58b
VA
2359 xfs_dinode_t *dip;
2360 xfs_buf_t *ibp;
1da177e4
LT
2361
2362 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2363 ASSERT(ip->i_transp == tp);
2364 ASSERT(ip->i_d.di_nlink == 0);
2365 ASSERT(ip->i_d.di_nextents == 0);
2366 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2367 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2368 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2369 ASSERT(ip->i_d.di_nblocks == 0);
2370
2371 /*
2372 * Pull the on-disk inode from the AGI unlinked list.
2373 */
2374 error = xfs_iunlink_remove(tp, ip);
2375 if (error != 0) {
2376 return error;
2377 }
2378
2379 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2380 if (error != 0) {
2381 return error;
2382 }
2383 ip->i_d.di_mode = 0; /* mark incore inode as free */
2384 ip->i_d.di_flags = 0;
2385 ip->i_d.di_dmevmask = 0;
2386 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2387 ip->i_df.if_ext_max =
2388 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2389 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2390 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2391 /*
2392 * Bump the generation count so no one will be confused
2393 * by reincarnations of this inode.
2394 */
2395 ip->i_d.di_gen++;
c319b58b 2396
1da177e4
LT
2397 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2398
c319b58b
VA
2399 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0);
2400 if (error)
2401 return error;
2402
2403 /*
2404 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2405 * from picking up this inode when it is reclaimed (its incore state
2406 * initialzed but not flushed to disk yet). The in-core di_mode is
2407 * already cleared and a corresponding transaction logged.
2408 * The hack here just synchronizes the in-core to on-disk
2409 * di_mode value in advance before the actual inode sync to disk.
2410 * This is OK because the inode is already unlinked and would never
2411 * change its di_mode again for this inode generation.
2412 * This is a temporary hack that would require a proper fix
2413 * in the future.
2414 */
2415 dip->di_core.di_mode = 0;
2416
1da177e4
LT
2417 if (delete) {
2418 xfs_ifree_cluster(ip, tp, first_ino);
2419 }
2420
2421 return 0;
2422}
2423
2424/*
2425 * Reallocate the space for if_broot based on the number of records
2426 * being added or deleted as indicated in rec_diff. Move the records
2427 * and pointers in if_broot to fit the new size. When shrinking this
2428 * will eliminate holes between the records and pointers created by
2429 * the caller. When growing this will create holes to be filled in
2430 * by the caller.
2431 *
2432 * The caller must not request to add more records than would fit in
2433 * the on-disk inode root. If the if_broot is currently NULL, then
2434 * if we adding records one will be allocated. The caller must also
2435 * not request that the number of records go below zero, although
2436 * it can go to zero.
2437 *
2438 * ip -- the inode whose if_broot area is changing
2439 * ext_diff -- the change in the number of records, positive or negative,
2440 * requested for the if_broot array.
2441 */
2442void
2443xfs_iroot_realloc(
2444 xfs_inode_t *ip,
2445 int rec_diff,
2446 int whichfork)
2447{
2448 int cur_max;
2449 xfs_ifork_t *ifp;
2450 xfs_bmbt_block_t *new_broot;
2451 int new_max;
2452 size_t new_size;
2453 char *np;
2454 char *op;
2455
2456 /*
2457 * Handle the degenerate case quietly.
2458 */
2459 if (rec_diff == 0) {
2460 return;
2461 }
2462
2463 ifp = XFS_IFORK_PTR(ip, whichfork);
2464 if (rec_diff > 0) {
2465 /*
2466 * If there wasn't any memory allocated before, just
2467 * allocate it now and get out.
2468 */
2469 if (ifp->if_broot_bytes == 0) {
2470 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2471 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2472 KM_SLEEP);
2473 ifp->if_broot_bytes = (int)new_size;
2474 return;
2475 }
2476
2477 /*
2478 * If there is already an existing if_broot, then we need
2479 * to realloc() it and shift the pointers to their new
2480 * location. The records don't change location because
2481 * they are kept butted up against the btree block header.
2482 */
2483 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2484 new_max = cur_max + rec_diff;
2485 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2486 ifp->if_broot = (xfs_bmbt_block_t *)
2487 kmem_realloc(ifp->if_broot,
2488 new_size,
2489 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2490 KM_SLEEP);
2491 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2492 ifp->if_broot_bytes);
2493 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2494 (int)new_size);
2495 ifp->if_broot_bytes = (int)new_size;
2496 ASSERT(ifp->if_broot_bytes <=
2497 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2498 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2499 return;
2500 }
2501
2502 /*
2503 * rec_diff is less than 0. In this case, we are shrinking the
2504 * if_broot buffer. It must already exist. If we go to zero
2505 * records, just get rid of the root and clear the status bit.
2506 */
2507 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2508 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2509 new_max = cur_max + rec_diff;
2510 ASSERT(new_max >= 0);
2511 if (new_max > 0)
2512 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2513 else
2514 new_size = 0;
2515 if (new_size > 0) {
2516 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2517 /*
2518 * First copy over the btree block header.
2519 */
2520 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2521 } else {
2522 new_broot = NULL;
2523 ifp->if_flags &= ~XFS_IFBROOT;
2524 }
2525
2526 /*
2527 * Only copy the records and pointers if there are any.
2528 */
2529 if (new_max > 0) {
2530 /*
2531 * First copy the records.
2532 */
2533 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2534 ifp->if_broot_bytes);
2535 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2536 (int)new_size);
2537 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2538
2539 /*
2540 * Then copy the pointers.
2541 */
2542 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2543 ifp->if_broot_bytes);
2544 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2545 (int)new_size);
2546 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2547 }
2548 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2549 ifp->if_broot = new_broot;
2550 ifp->if_broot_bytes = (int)new_size;
2551 ASSERT(ifp->if_broot_bytes <=
2552 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2553 return;
2554}
2555
2556
1da177e4
LT
2557/*
2558 * This is called when the amount of space needed for if_data
2559 * is increased or decreased. The change in size is indicated by
2560 * the number of bytes that need to be added or deleted in the
2561 * byte_diff parameter.
2562 *
2563 * If the amount of space needed has decreased below the size of the
2564 * inline buffer, then switch to using the inline buffer. Otherwise,
2565 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2566 * to what is needed.
2567 *
2568 * ip -- the inode whose if_data area is changing
2569 * byte_diff -- the change in the number of bytes, positive or negative,
2570 * requested for the if_data array.
2571 */
2572void
2573xfs_idata_realloc(
2574 xfs_inode_t *ip,
2575 int byte_diff,
2576 int whichfork)
2577{
2578 xfs_ifork_t *ifp;
2579 int new_size;
2580 int real_size;
2581
2582 if (byte_diff == 0) {
2583 return;
2584 }
2585
2586 ifp = XFS_IFORK_PTR(ip, whichfork);
2587 new_size = (int)ifp->if_bytes + byte_diff;
2588 ASSERT(new_size >= 0);
2589
2590 if (new_size == 0) {
2591 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2592 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2593 }
2594 ifp->if_u1.if_data = NULL;
2595 real_size = 0;
2596 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2597 /*
2598 * If the valid extents/data can fit in if_inline_ext/data,
2599 * copy them from the malloc'd vector and free it.
2600 */
2601 if (ifp->if_u1.if_data == NULL) {
2602 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2603 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2604 ASSERT(ifp->if_real_bytes != 0);
2605 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2606 new_size);
2607 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2608 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2609 }
2610 real_size = 0;
2611 } else {
2612 /*
2613 * Stuck with malloc/realloc.
2614 * For inline data, the underlying buffer must be
2615 * a multiple of 4 bytes in size so that it can be
2616 * logged and stay on word boundaries. We enforce
2617 * that here.
2618 */
2619 real_size = roundup(new_size, 4);
2620 if (ifp->if_u1.if_data == NULL) {
2621 ASSERT(ifp->if_real_bytes == 0);
2622 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2623 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2624 /*
2625 * Only do the realloc if the underlying size
2626 * is really changing.
2627 */
2628 if (ifp->if_real_bytes != real_size) {
2629 ifp->if_u1.if_data =
2630 kmem_realloc(ifp->if_u1.if_data,
2631 real_size,
2632 ifp->if_real_bytes,
2633 KM_SLEEP);
2634 }
2635 } else {
2636 ASSERT(ifp->if_real_bytes == 0);
2637 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2638 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2639 ifp->if_bytes);
2640 }
2641 }
2642 ifp->if_real_bytes = real_size;
2643 ifp->if_bytes = new_size;
2644 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2645}
2646
2647
2648
2649
2650/*
2651 * Map inode to disk block and offset.
2652 *
2653 * mp -- the mount point structure for the current file system
2654 * tp -- the current transaction
2655 * ino -- the inode number of the inode to be located
2656 * imap -- this structure is filled in with the information necessary
2657 * to retrieve the given inode from disk
2658 * flags -- flags to pass to xfs_dilocate indicating whether or not
2659 * lookups in the inode btree were OK or not
2660 */
2661int
2662xfs_imap(
2663 xfs_mount_t *mp,
2664 xfs_trans_t *tp,
2665 xfs_ino_t ino,
2666 xfs_imap_t *imap,
2667 uint flags)
2668{
2669 xfs_fsblock_t fsbno;
2670 int len;
2671 int off;
2672 int error;
2673
2674 fsbno = imap->im_blkno ?
2675 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2676 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2677 if (error != 0) {
2678 return error;
2679 }
2680 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2681 imap->im_len = XFS_FSB_TO_BB(mp, len);
2682 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2683 imap->im_ioffset = (ushort)off;
2684 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2685 return 0;
2686}
2687
2688void
2689xfs_idestroy_fork(
2690 xfs_inode_t *ip,
2691 int whichfork)
2692{
2693 xfs_ifork_t *ifp;
2694
2695 ifp = XFS_IFORK_PTR(ip, whichfork);
2696 if (ifp->if_broot != NULL) {
2697 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2698 ifp->if_broot = NULL;
2699 }
2700
2701 /*
2702 * If the format is local, then we can't have an extents
2703 * array so just look for an inline data array. If we're
2704 * not local then we may or may not have an extents list,
2705 * so check and free it up if we do.
2706 */
2707 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2708 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2709 (ifp->if_u1.if_data != NULL)) {
2710 ASSERT(ifp->if_real_bytes != 0);
2711 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2712 ifp->if_u1.if_data = NULL;
2713 ifp->if_real_bytes = 0;
2714 }
2715 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2716 ((ifp->if_flags & XFS_IFEXTIREC) ||
2717 ((ifp->if_u1.if_extents != NULL) &&
2718 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2719 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2720 xfs_iext_destroy(ifp);
1da177e4
LT
2721 }
2722 ASSERT(ifp->if_u1.if_extents == NULL ||
2723 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2724 ASSERT(ifp->if_real_bytes == 0);
2725 if (whichfork == XFS_ATTR_FORK) {
2726 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2727 ip->i_afp = NULL;
2728 }
2729}
2730
2731/*
2732 * This is called free all the memory associated with an inode.
2733 * It must free the inode itself and any buffers allocated for
2734 * if_extents/if_data and if_broot. It must also free the lock
2735 * associated with the inode.
2736 */
2737void
2738xfs_idestroy(
2739 xfs_inode_t *ip)
2740{
1da177e4
LT
2741 switch (ip->i_d.di_mode & S_IFMT) {
2742 case S_IFREG:
2743 case S_IFDIR:
2744 case S_IFLNK:
2745 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2746 break;
2747 }
2748 if (ip->i_afp)
2749 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2750 mrfree(&ip->i_lock);
2751 mrfree(&ip->i_iolock);
2752 freesema(&ip->i_flock);
1543d79c 2753
cf441eeb 2754#ifdef XFS_INODE_TRACE
1543d79c
CH
2755 ktrace_free(ip->i_trace);
2756#endif
1da177e4
LT
2757#ifdef XFS_BMAP_TRACE
2758 ktrace_free(ip->i_xtrace);
2759#endif
2760#ifdef XFS_BMBT_TRACE
2761 ktrace_free(ip->i_btrace);
2762#endif
2763#ifdef XFS_RW_TRACE
2764 ktrace_free(ip->i_rwtrace);
2765#endif
2766#ifdef XFS_ILOCK_TRACE
2767 ktrace_free(ip->i_lock_trace);
2768#endif
2769#ifdef XFS_DIR2_TRACE
2770 ktrace_free(ip->i_dir_trace);
2771#endif
2772 if (ip->i_itemp) {
f74eaf59
DC
2773 /*
2774 * Only if we are shutting down the fs will we see an
2775 * inode still in the AIL. If it is there, we should remove
2776 * it to prevent a use-after-free from occurring.
2777 */
2778 xfs_mount_t *mp = ip->i_mount;
2779 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
f74eaf59
DC
2780
2781 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2782 XFS_FORCED_SHUTDOWN(ip->i_mount));
2783 if (lip->li_flags & XFS_LI_IN_AIL) {
287f3dad 2784 spin_lock(&mp->m_ail_lock);
f74eaf59 2785 if (lip->li_flags & XFS_LI_IN_AIL)
287f3dad 2786 xfs_trans_delete_ail(mp, lip);
f74eaf59 2787 else
287f3dad 2788 spin_unlock(&mp->m_ail_lock);
f74eaf59 2789 }
1da177e4
LT
2790 xfs_inode_item_destroy(ip);
2791 }
2792 kmem_zone_free(xfs_inode_zone, ip);
2793}
2794
2795
2796/*
2797 * Increment the pin count of the given buffer.
2798 * This value is protected by ipinlock spinlock in the mount structure.
2799 */
2800void
2801xfs_ipin(
2802 xfs_inode_t *ip)
2803{
2804 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2805
2806 atomic_inc(&ip->i_pincount);
2807}
2808
2809/*
2810 * Decrement the pin count of the given inode, and wake up
2811 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2812 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2813 */
2814void
2815xfs_iunpin(
2816 xfs_inode_t *ip)
2817{
2818 ASSERT(atomic_read(&ip->i_pincount) > 0);
2819
5d51eff4 2820 if (atomic_dec_and_test(&ip->i_pincount))
1da177e4 2821 wake_up(&ip->i_ipin_wait);
1da177e4
LT
2822}
2823
2824/*
2825 * This is called to wait for the given inode to be unpinned.
2826 * It will sleep until this happens. The caller must have the
2827 * inode locked in at least shared mode so that the buffer cannot
2828 * be subsequently pinned once someone is waiting for it to be
2829 * unpinned.
2830 */
ba0f32d4 2831STATIC void
1da177e4
LT
2832xfs_iunpin_wait(
2833 xfs_inode_t *ip)
2834{
2835 xfs_inode_log_item_t *iip;
2836 xfs_lsn_t lsn;
2837
2838 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2839
2840 if (atomic_read(&ip->i_pincount) == 0) {
2841 return;
2842 }
2843
2844 iip = ip->i_itemp;
2845 if (iip && iip->ili_last_lsn) {
2846 lsn = iip->ili_last_lsn;
2847 } else {
2848 lsn = (xfs_lsn_t)0;
2849 }
2850
2851 /*
2852 * Give the log a push so we don't wait here too long.
2853 */
2854 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2855
2856 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2857}
2858
2859
2860/*
2861 * xfs_iextents_copy()
2862 *
2863 * This is called to copy the REAL extents (as opposed to the delayed
2864 * allocation extents) from the inode into the given buffer. It
2865 * returns the number of bytes copied into the buffer.
2866 *
2867 * If there are no delayed allocation extents, then we can just
2868 * memcpy() the extents into the buffer. Otherwise, we need to
2869 * examine each extent in turn and skip those which are delayed.
2870 */
2871int
2872xfs_iextents_copy(
2873 xfs_inode_t *ip,
a6f64d4a 2874 xfs_bmbt_rec_t *dp,
1da177e4
LT
2875 int whichfork)
2876{
2877 int copied;
1da177e4
LT
2878 int i;
2879 xfs_ifork_t *ifp;
2880 int nrecs;
2881 xfs_fsblock_t start_block;
2882
2883 ifp = XFS_IFORK_PTR(ip, whichfork);
2884 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2885 ASSERT(ifp->if_bytes > 0);
2886
2887 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2888 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2889 ASSERT(nrecs > 0);
2890
2891 /*
2892 * There are some delayed allocation extents in the
2893 * inode, so copy the extents one at a time and skip
2894 * the delayed ones. There must be at least one
2895 * non-delayed extent.
2896 */
1da177e4
LT
2897 copied = 0;
2898 for (i = 0; i < nrecs; i++) {
a6f64d4a 2899 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2900 start_block = xfs_bmbt_get_startblock(ep);
2901 if (ISNULLSTARTBLOCK(start_block)) {
2902 /*
2903 * It's a delayed allocation extent, so skip it.
2904 */
1da177e4
LT
2905 continue;
2906 }
2907
2908 /* Translate to on disk format */
cd8b0a97
CH
2909 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2910 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2911 dp++;
1da177e4
LT
2912 copied++;
2913 }
2914 ASSERT(copied != 0);
a6f64d4a 2915 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2916
2917 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2918}
2919
2920/*
2921 * Each of the following cases stores data into the same region
2922 * of the on-disk inode, so only one of them can be valid at
2923 * any given time. While it is possible to have conflicting formats
2924 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2925 * in EXTENTS format, this can only happen when the fork has
2926 * changed formats after being modified but before being flushed.
2927 * In these cases, the format always takes precedence, because the
2928 * format indicates the current state of the fork.
2929 */
2930/*ARGSUSED*/
2931STATIC int
2932xfs_iflush_fork(
2933 xfs_inode_t *ip,
2934 xfs_dinode_t *dip,
2935 xfs_inode_log_item_t *iip,
2936 int whichfork,
2937 xfs_buf_t *bp)
2938{
2939 char *cp;
2940 xfs_ifork_t *ifp;
2941 xfs_mount_t *mp;
2942#ifdef XFS_TRANS_DEBUG
2943 int first;
2944#endif
2945 static const short brootflag[2] =
2946 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2947 static const short dataflag[2] =
2948 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2949 static const short extflag[2] =
2950 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2951
2952 if (iip == NULL)
2953 return 0;
2954 ifp = XFS_IFORK_PTR(ip, whichfork);
2955 /*
2956 * This can happen if we gave up in iformat in an error path,
2957 * for the attribute fork.
2958 */
2959 if (ifp == NULL) {
2960 ASSERT(whichfork == XFS_ATTR_FORK);
2961 return 0;
2962 }
2963 cp = XFS_DFORK_PTR(dip, whichfork);
2964 mp = ip->i_mount;
2965 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2966 case XFS_DINODE_FMT_LOCAL:
2967 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2968 (ifp->if_bytes > 0)) {
2969 ASSERT(ifp->if_u1.if_data != NULL);
2970 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2971 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2972 }
1da177e4
LT
2973 break;
2974
2975 case XFS_DINODE_FMT_EXTENTS:
2976 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2977 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2978 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2979 (ifp->if_bytes == 0));
2980 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2981 (ifp->if_bytes > 0));
1da177e4
LT
2982 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2983 (ifp->if_bytes > 0)) {
2984 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2985 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2986 whichfork);
2987 }
2988 break;
2989
2990 case XFS_DINODE_FMT_BTREE:
2991 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2992 (ifp->if_broot_bytes > 0)) {
2993 ASSERT(ifp->if_broot != NULL);
2994 ASSERT(ifp->if_broot_bytes <=
2995 (XFS_IFORK_SIZE(ip, whichfork) +
2996 XFS_BROOT_SIZE_ADJ));
2997 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2998 (xfs_bmdr_block_t *)cp,
2999 XFS_DFORK_SIZE(dip, mp, whichfork));
3000 }
3001 break;
3002
3003 case XFS_DINODE_FMT_DEV:
3004 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
3005 ASSERT(whichfork == XFS_DATA_FORK);
347d1c01 3006 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
1da177e4
LT
3007 }
3008 break;
3009
3010 case XFS_DINODE_FMT_UUID:
3011 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
3012 ASSERT(whichfork == XFS_DATA_FORK);
3013 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
3014 sizeof(uuid_t));
3015 }
3016 break;
3017
3018 default:
3019 ASSERT(0);
3020 break;
3021 }
3022
3023 return 0;
3024}
3025
3026/*
3027 * xfs_iflush() will write a modified inode's changes out to the
3028 * inode's on disk home. The caller must have the inode lock held
3029 * in at least shared mode and the inode flush semaphore must be
3030 * held as well. The inode lock will still be held upon return from
3031 * the call and the caller is free to unlock it.
3032 * The inode flush lock will be unlocked when the inode reaches the disk.
3033 * The flags indicate how the inode's buffer should be written out.
3034 */
3035int
3036xfs_iflush(
3037 xfs_inode_t *ip,
3038 uint flags)
3039{
3040 xfs_inode_log_item_t *iip;
3041 xfs_buf_t *bp;
3042 xfs_dinode_t *dip;
3043 xfs_mount_t *mp;
3044 int error;
3045 /* REFERENCED */
1da177e4
LT
3046 xfs_inode_t *iq;
3047 int clcount; /* count of inodes clustered */
3048 int bufwasdelwri;
da353b0d 3049 struct hlist_node *entry;
1da177e4 3050 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3051
3052 XFS_STATS_INC(xs_iflush_count);
3053
3054 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3055 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3056 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3057 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3058
3059 iip = ip->i_itemp;
3060 mp = ip->i_mount;
3061
3062 /*
3063 * If the inode isn't dirty, then just release the inode
3064 * flush lock and do nothing.
3065 */
3066 if ((ip->i_update_core == 0) &&
3067 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3068 ASSERT((iip != NULL) ?
3069 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3070 xfs_ifunlock(ip);
3071 return 0;
3072 }
3073
3074 /*
3075 * We can't flush the inode until it is unpinned, so
3076 * wait for it. We know noone new can pin it, because
3077 * we are holding the inode lock shared and you need
3078 * to hold it exclusively to pin the inode.
3079 */
3080 xfs_iunpin_wait(ip);
3081
3082 /*
3083 * This may have been unpinned because the filesystem is shutting
3084 * down forcibly. If that's the case we must not write this inode
3085 * to disk, because the log record didn't make it to disk!
3086 */
3087 if (XFS_FORCED_SHUTDOWN(mp)) {
3088 ip->i_update_core = 0;
3089 if (iip)
3090 iip->ili_format.ilf_fields = 0;
3091 xfs_ifunlock(ip);
3092 return XFS_ERROR(EIO);
3093 }
3094
3095 /*
3096 * Get the buffer containing the on-disk inode.
3097 */
b12dd342
NS
3098 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3099 if (error) {
1da177e4
LT
3100 xfs_ifunlock(ip);
3101 return error;
3102 }
3103
3104 /*
3105 * Decide how buffer will be flushed out. This is done before
3106 * the call to xfs_iflush_int because this field is zeroed by it.
3107 */
3108 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3109 /*
3110 * Flush out the inode buffer according to the directions
3111 * of the caller. In the cases where the caller has given
3112 * us a choice choose the non-delwri case. This is because
3113 * the inode is in the AIL and we need to get it out soon.
3114 */
3115 switch (flags) {
3116 case XFS_IFLUSH_SYNC:
3117 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3118 flags = 0;
3119 break;
3120 case XFS_IFLUSH_ASYNC:
3121 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3122 flags = INT_ASYNC;
3123 break;
3124 case XFS_IFLUSH_DELWRI:
3125 flags = INT_DELWRI;
3126 break;
3127 default:
3128 ASSERT(0);
3129 flags = 0;
3130 break;
3131 }
3132 } else {
3133 switch (flags) {
3134 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3135 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3136 case XFS_IFLUSH_DELWRI:
3137 flags = INT_DELWRI;
3138 break;
3139 case XFS_IFLUSH_ASYNC:
3140 flags = INT_ASYNC;
3141 break;
3142 case XFS_IFLUSH_SYNC:
3143 flags = 0;
3144 break;
3145 default:
3146 ASSERT(0);
3147 flags = 0;
3148 break;
3149 }
3150 }
3151
3152 /*
3153 * First flush out the inode that xfs_iflush was called with.
3154 */
3155 error = xfs_iflush_int(ip, bp);
3156 if (error) {
3157 goto corrupt_out;
3158 }
3159
3160 /*
3161 * inode clustering:
3162 * see if other inodes can be gathered into this write
3163 */
da353b0d
DC
3164 spin_lock(&ip->i_cluster->icl_lock);
3165 ip->i_cluster->icl_buf = bp;
1da177e4
LT
3166
3167 clcount = 0;
da353b0d
DC
3168 hlist_for_each_entry(iq, entry, &ip->i_cluster->icl_inodes, i_cnode) {
3169 if (iq == ip)
3170 continue;
3171
1da177e4
LT
3172 /*
3173 * Do an un-protected check to see if the inode is dirty and
3174 * is a candidate for flushing. These checks will be repeated
3175 * later after the appropriate locks are acquired.
3176 */
3177 iip = iq->i_itemp;
3178 if ((iq->i_update_core == 0) &&
3179 ((iip == NULL) ||
3180 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3181 xfs_ipincount(iq) == 0) {
3182 continue;
3183 }
3184
3185 /*
3186 * Try to get locks. If any are unavailable,
3187 * then this inode cannot be flushed and is skipped.
3188 */
3189
3190 /* get inode locks (just i_lock) */
3191 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3192 /* get inode flush lock */
3193 if (xfs_iflock_nowait(iq)) {
3194 /* check if pinned */
3195 if (xfs_ipincount(iq) == 0) {
3196 /* arriving here means that
3197 * this inode can be flushed.
3198 * first re-check that it's
3199 * dirty
3200 */
3201 iip = iq->i_itemp;
3202 if ((iq->i_update_core != 0)||
3203 ((iip != NULL) &&
3204 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3205 clcount++;
3206 error = xfs_iflush_int(iq, bp);
3207 if (error) {
3208 xfs_iunlock(iq,
3209 XFS_ILOCK_SHARED);
3210 goto cluster_corrupt_out;
3211 }
3212 } else {
3213 xfs_ifunlock(iq);
3214 }
3215 } else {
3216 xfs_ifunlock(iq);
3217 }
3218 }
3219 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3220 }
3221 }
da353b0d 3222 spin_unlock(&ip->i_cluster->icl_lock);
1da177e4
LT
3223
3224 if (clcount) {
3225 XFS_STATS_INC(xs_icluster_flushcnt);
3226 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3227 }
3228
3229 /*
3230 * If the buffer is pinned then push on the log so we won't
3231 * get stuck waiting in the write for too long.
3232 */
3233 if (XFS_BUF_ISPINNED(bp)){
3234 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3235 }
3236
3237 if (flags & INT_DELWRI) {
3238 xfs_bdwrite(mp, bp);
3239 } else if (flags & INT_ASYNC) {
3240 xfs_bawrite(mp, bp);
3241 } else {
3242 error = xfs_bwrite(mp, bp);
3243 }
3244 return error;
3245
3246corrupt_out:
3247 xfs_buf_relse(bp);
7d04a335 3248 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3249 xfs_iflush_abort(ip);
3250 /*
3251 * Unlocks the flush lock
3252 */
3253 return XFS_ERROR(EFSCORRUPTED);
3254
3255cluster_corrupt_out:
3256 /* Corruption detected in the clustering loop. Invalidate the
3257 * inode buffer and shut down the filesystem.
3258 */
da353b0d 3259 spin_unlock(&ip->i_cluster->icl_lock);
1da177e4
LT
3260
3261 /*
3262 * Clean up the buffer. If it was B_DELWRI, just release it --
3263 * brelse can handle it with no problems. If not, shut down the
3264 * filesystem before releasing the buffer.
3265 */
3266 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3267 xfs_buf_relse(bp);
3268 }
3269
7d04a335 3270 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3271
3272 if(!bufwasdelwri) {
3273 /*
3274 * Just like incore_relse: if we have b_iodone functions,
3275 * mark the buffer as an error and call them. Otherwise
3276 * mark it as stale and brelse.
3277 */
3278 if (XFS_BUF_IODONE_FUNC(bp)) {
3279 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3280 XFS_BUF_UNDONE(bp);
3281 XFS_BUF_STALE(bp);
3282 XFS_BUF_SHUT(bp);
3283 XFS_BUF_ERROR(bp,EIO);
3284 xfs_biodone(bp);
3285 } else {
3286 XFS_BUF_STALE(bp);
3287 xfs_buf_relse(bp);
3288 }
3289 }
3290
3291 xfs_iflush_abort(iq);
3292 /*
3293 * Unlocks the flush lock
3294 */
3295 return XFS_ERROR(EFSCORRUPTED);
3296}
3297
3298
3299STATIC int
3300xfs_iflush_int(
3301 xfs_inode_t *ip,
3302 xfs_buf_t *bp)
3303{
3304 xfs_inode_log_item_t *iip;
3305 xfs_dinode_t *dip;
3306 xfs_mount_t *mp;
3307#ifdef XFS_TRANS_DEBUG
3308 int first;
3309#endif
1da177e4
LT
3310
3311 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3312 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3313 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3314 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3315
3316 iip = ip->i_itemp;
3317 mp = ip->i_mount;
3318
3319
3320 /*
3321 * If the inode isn't dirty, then just release the inode
3322 * flush lock and do nothing.
3323 */
3324 if ((ip->i_update_core == 0) &&
3325 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3326 xfs_ifunlock(ip);
3327 return 0;
3328 }
3329
3330 /* set *dip = inode's place in the buffer */
3331 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3332
3333 /*
3334 * Clear i_update_core before copying out the data.
3335 * This is for coordination with our timestamp updates
3336 * that don't hold the inode lock. They will always
3337 * update the timestamps BEFORE setting i_update_core,
3338 * so if we clear i_update_core after they set it we
3339 * are guaranteed to see their updates to the timestamps.
3340 * I believe that this depends on strongly ordered memory
3341 * semantics, but we have that. We use the SYNCHRONIZE
3342 * macro to make sure that the compiler does not reorder
3343 * the i_update_core access below the data copy below.
3344 */
3345 ip->i_update_core = 0;
3346 SYNCHRONIZE();
3347
42fe2b1f
CH
3348 /*
3349 * Make sure to get the latest atime from the Linux inode.
3350 */
3351 xfs_synchronize_atime(ip);
3352
347d1c01 3353 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3354 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3355 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3356 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
347d1c01 3357 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
1da177e4
LT
3358 goto corrupt_out;
3359 }
3360 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3361 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3362 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3363 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3364 ip->i_ino, ip, ip->i_d.di_magic);
3365 goto corrupt_out;
3366 }
3367 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3368 if (XFS_TEST_ERROR(
3369 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3370 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3371 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3372 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3373 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3374 ip->i_ino, ip);
3375 goto corrupt_out;
3376 }
3377 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3378 if (XFS_TEST_ERROR(
3379 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3380 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3381 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3382 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3383 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3384 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3385 ip->i_ino, ip);
3386 goto corrupt_out;
3387 }
3388 }
3389 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3390 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3391 XFS_RANDOM_IFLUSH_5)) {
3392 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3393 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3394 ip->i_ino,
3395 ip->i_d.di_nextents + ip->i_d.di_anextents,
3396 ip->i_d.di_nblocks,
3397 ip);
3398 goto corrupt_out;
3399 }
3400 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3401 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3402 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3403 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3404 ip->i_ino, ip->i_d.di_forkoff, ip);
3405 goto corrupt_out;
3406 }
3407 /*
3408 * bump the flush iteration count, used to detect flushes which
3409 * postdate a log record during recovery.
3410 */
3411
3412 ip->i_d.di_flushiter++;
3413
3414 /*
3415 * Copy the dirty parts of the inode into the on-disk
3416 * inode. We always copy out the core of the inode,
3417 * because if the inode is dirty at all the core must
3418 * be.
3419 */
347d1c01 3420 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
1da177e4
LT
3421
3422 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3423 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3424 ip->i_d.di_flushiter = 0;
3425
3426 /*
3427 * If this is really an old format inode and the superblock version
3428 * has not been updated to support only new format inodes, then
3429 * convert back to the old inode format. If the superblock version
3430 * has been updated, then make the conversion permanent.
3431 */
3432 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3433 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3434 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3435 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3436 /*
3437 * Convert it back.
3438 */
3439 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
347d1c01 3440 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3441 } else {
3442 /*
3443 * The superblock version has already been bumped,
3444 * so just make the conversion to the new inode
3445 * format permanent.
3446 */
3447 ip->i_d.di_version = XFS_DINODE_VERSION_2;
347d1c01 3448 dip->di_core.di_version = XFS_DINODE_VERSION_2;
1da177e4
LT
3449 ip->i_d.di_onlink = 0;
3450 dip->di_core.di_onlink = 0;
3451 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3452 memset(&(dip->di_core.di_pad[0]), 0,
3453 sizeof(dip->di_core.di_pad));
3454 ASSERT(ip->i_d.di_projid == 0);
3455 }
3456 }
3457
3458 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3459 goto corrupt_out;
3460 }
3461
3462 if (XFS_IFORK_Q(ip)) {
3463 /*
3464 * The only error from xfs_iflush_fork is on the data fork.
3465 */
3466 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3467 }
3468 xfs_inobp_check(mp, bp);
3469
3470 /*
3471 * We've recorded everything logged in the inode, so we'd
3472 * like to clear the ilf_fields bits so we don't log and
3473 * flush things unnecessarily. However, we can't stop
3474 * logging all this information until the data we've copied
3475 * into the disk buffer is written to disk. If we did we might
3476 * overwrite the copy of the inode in the log with all the
3477 * data after re-logging only part of it, and in the face of
3478 * a crash we wouldn't have all the data we need to recover.
3479 *
3480 * What we do is move the bits to the ili_last_fields field.
3481 * When logging the inode, these bits are moved back to the
3482 * ilf_fields field. In the xfs_iflush_done() routine we
3483 * clear ili_last_fields, since we know that the information
3484 * those bits represent is permanently on disk. As long as
3485 * the flush completes before the inode is logged again, then
3486 * both ilf_fields and ili_last_fields will be cleared.
3487 *
3488 * We can play with the ilf_fields bits here, because the inode
3489 * lock must be held exclusively in order to set bits there
3490 * and the flush lock protects the ili_last_fields bits.
3491 * Set ili_logged so the flush done
3492 * routine can tell whether or not to look in the AIL.
3493 * Also, store the current LSN of the inode so that we can tell
3494 * whether the item has moved in the AIL from xfs_iflush_done().
3495 * In order to read the lsn we need the AIL lock, because
3496 * it is a 64 bit value that cannot be read atomically.
3497 */
3498 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3499 iip->ili_last_fields = iip->ili_format.ilf_fields;
3500 iip->ili_format.ilf_fields = 0;
3501 iip->ili_logged = 1;
3502
3503 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
287f3dad 3504 spin_lock(&mp->m_ail_lock);
1da177e4 3505 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 3506 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
3507
3508 /*
3509 * Attach the function xfs_iflush_done to the inode's
3510 * buffer. This will remove the inode from the AIL
3511 * and unlock the inode's flush lock when the inode is
3512 * completely written to disk.
3513 */
3514 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3515 xfs_iflush_done, (xfs_log_item_t *)iip);
3516
3517 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3518 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3519 } else {
3520 /*
3521 * We're flushing an inode which is not in the AIL and has
3522 * not been logged but has i_update_core set. For this
3523 * case we can use a B_DELWRI flush and immediately drop
3524 * the inode flush lock because we can avoid the whole
3525 * AIL state thing. It's OK to drop the flush lock now,
3526 * because we've already locked the buffer and to do anything
3527 * you really need both.
3528 */
3529 if (iip != NULL) {
3530 ASSERT(iip->ili_logged == 0);
3531 ASSERT(iip->ili_last_fields == 0);
3532 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3533 }
3534 xfs_ifunlock(ip);
3535 }
3536
3537 return 0;
3538
3539corrupt_out:
3540 return XFS_ERROR(EFSCORRUPTED);
3541}
3542
3543
3544/*
efa80278 3545 * Flush all inactive inodes in mp.
1da177e4 3546 */
efa80278 3547void
1da177e4 3548xfs_iflush_all(
efa80278 3549 xfs_mount_t *mp)
1da177e4 3550{
1da177e4 3551 xfs_inode_t *ip;
67fcaa73 3552 bhv_vnode_t *vp;
1da177e4 3553
efa80278
CH
3554 again:
3555 XFS_MOUNT_ILOCK(mp);
3556 ip = mp->m_inodes;
3557 if (ip == NULL)
3558 goto out;
1da177e4 3559
efa80278
CH
3560 do {
3561 /* Make sure we skip markers inserted by sync */
3562 if (ip->i_mount == NULL) {
3563 ip = ip->i_mnext;
3564 continue;
3565 }
1da177e4 3566
efa80278
CH
3567 vp = XFS_ITOV_NULL(ip);
3568 if (!vp) {
1da177e4 3569 XFS_MOUNT_IUNLOCK(mp);
efa80278
CH
3570 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3571 goto again;
3572 }
1da177e4 3573
efa80278 3574 ASSERT(vn_count(vp) == 0);
1da177e4 3575
efa80278
CH
3576 ip = ip->i_mnext;
3577 } while (ip != mp->m_inodes);
3578 out:
1da177e4 3579 XFS_MOUNT_IUNLOCK(mp);
1da177e4
LT
3580}
3581
1da177e4
LT
3582/*
3583 * xfs_iaccess: check accessibility of inode for mode.
3584 */
3585int
3586xfs_iaccess(
3587 xfs_inode_t *ip,
3588 mode_t mode,
3589 cred_t *cr)
3590{
3591 int error;
3592 mode_t orgmode = mode;
ec86dc02 3593 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
1da177e4
LT
3594
3595 if (mode & S_IWUSR) {
3596 umode_t imode = inode->i_mode;
3597
3598 if (IS_RDONLY(inode) &&
3599 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3600 return XFS_ERROR(EROFS);
3601
3602 if (IS_IMMUTABLE(inode))
3603 return XFS_ERROR(EACCES);
3604 }
3605
3606 /*
3607 * If there's an Access Control List it's used instead of
3608 * the mode bits.
3609 */
3610 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3611 return error ? XFS_ERROR(error) : 0;
3612
3613 if (current_fsuid(cr) != ip->i_d.di_uid) {
3614 mode >>= 3;
3615 if (!in_group_p((gid_t)ip->i_d.di_gid))
3616 mode >>= 3;
3617 }
3618
3619 /*
3620 * If the DACs are ok we don't need any capability check.
3621 */
3622 if ((ip->i_d.di_mode & mode) == mode)
3623 return 0;
3624 /*
3625 * Read/write DACs are always overridable.
3626 * Executable DACs are overridable if at least one exec bit is set.
3627 */
3628 if (!(orgmode & S_IXUSR) ||
3629 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3630 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3631 return 0;
3632
3633 if ((orgmode == S_IRUSR) ||
3634 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3635 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3636 return 0;
3637#ifdef NOISE
3638 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3639#endif /* NOISE */
3640 return XFS_ERROR(EACCES);
3641 }
3642 return XFS_ERROR(EACCES);
3643}
3644
3645/*
3646 * xfs_iroundup: round up argument to next power of two
3647 */
3648uint
3649xfs_iroundup(
3650 uint v)
3651{
3652 int i;
3653 uint m;
3654
3655 if ((v & (v - 1)) == 0)
3656 return v;
3657 ASSERT((v & 0x80000000) == 0);
3658 if ((v & (v + 1)) == 0)
3659 return v + 1;
3660 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3661 if (v & m)
3662 continue;
3663 v |= m;
3664 if ((v & (v + 1)) == 0)
3665 return v + 1;
3666 }
3667 ASSERT(0);
3668 return( 0 );
3669}
3670
1da177e4
LT
3671#ifdef XFS_ILOCK_TRACE
3672ktrace_t *xfs_ilock_trace_buf;
3673
3674void
3675xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3676{
3677 ktrace_enter(ip->i_lock_trace,
3678 (void *)ip,
3679 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3680 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3681 (void *)ra, /* caller of ilock */
3682 (void *)(unsigned long)current_cpu(),
3683 (void *)(unsigned long)current_pid(),
3684 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3685}
3686#endif
4eea22f0
MK
3687
3688/*
3689 * Return a pointer to the extent record at file index idx.
3690 */
a6f64d4a 3691xfs_bmbt_rec_host_t *
4eea22f0
MK
3692xfs_iext_get_ext(
3693 xfs_ifork_t *ifp, /* inode fork pointer */
3694 xfs_extnum_t idx) /* index of target extent */
3695{
3696 ASSERT(idx >= 0);
0293ce3a
MK
3697 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3698 return ifp->if_u1.if_ext_irec->er_extbuf;
3699 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3700 xfs_ext_irec_t *erp; /* irec pointer */
3701 int erp_idx = 0; /* irec index */
3702 xfs_extnum_t page_idx = idx; /* ext index in target list */
3703
3704 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3705 return &erp->er_extbuf[page_idx];
3706 } else if (ifp->if_bytes) {
4eea22f0
MK
3707 return &ifp->if_u1.if_extents[idx];
3708 } else {
3709 return NULL;
3710 }
3711}
3712
3713/*
3714 * Insert new item(s) into the extent records for incore inode
3715 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3716 */
3717void
3718xfs_iext_insert(
3719 xfs_ifork_t *ifp, /* inode fork pointer */
3720 xfs_extnum_t idx, /* starting index of new items */
3721 xfs_extnum_t count, /* number of inserted items */
3722 xfs_bmbt_irec_t *new) /* items to insert */
3723{
4eea22f0
MK
3724 xfs_extnum_t i; /* extent record index */
3725
3726 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3727 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3728 for (i = idx; i < idx + count; i++, new++)
3729 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3730}
3731
3732/*
3733 * This is called when the amount of space required for incore file
3734 * extents needs to be increased. The ext_diff parameter stores the
3735 * number of new extents being added and the idx parameter contains
3736 * the extent index where the new extents will be added. If the new
3737 * extents are being appended, then we just need to (re)allocate and
3738 * initialize the space. Otherwise, if the new extents are being
3739 * inserted into the middle of the existing entries, a bit more work
3740 * is required to make room for the new extents to be inserted. The
3741 * caller is responsible for filling in the new extent entries upon
3742 * return.
3743 */
3744void
3745xfs_iext_add(
3746 xfs_ifork_t *ifp, /* inode fork pointer */
3747 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3748 int ext_diff) /* number of extents to add */
4eea22f0
MK
3749{
3750 int byte_diff; /* new bytes being added */
3751 int new_size; /* size of extents after adding */
3752 xfs_extnum_t nextents; /* number of extents in file */
3753
3754 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3755 ASSERT((idx >= 0) && (idx <= nextents));
3756 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3757 new_size = ifp->if_bytes + byte_diff;
3758 /*
3759 * If the new number of extents (nextents + ext_diff)
3760 * fits inside the inode, then continue to use the inline
3761 * extent buffer.
3762 */
3763 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3764 if (idx < nextents) {
3765 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3766 &ifp->if_u2.if_inline_ext[idx],
3767 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3768 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3769 }
3770 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3771 ifp->if_real_bytes = 0;
0293ce3a 3772 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3773 }
3774 /*
3775 * Otherwise use a linear (direct) extent list.
3776 * If the extents are currently inside the inode,
3777 * xfs_iext_realloc_direct will switch us from
3778 * inline to direct extent allocation mode.
3779 */
0293ce3a 3780 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3781 xfs_iext_realloc_direct(ifp, new_size);
3782 if (idx < nextents) {
3783 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3784 &ifp->if_u1.if_extents[idx],
3785 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3786 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3787 }
3788 }
0293ce3a
MK
3789 /* Indirection array */
3790 else {
3791 xfs_ext_irec_t *erp;
3792 int erp_idx = 0;
3793 int page_idx = idx;
3794
3795 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3796 if (ifp->if_flags & XFS_IFEXTIREC) {
3797 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3798 } else {
3799 xfs_iext_irec_init(ifp);
3800 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3801 erp = ifp->if_u1.if_ext_irec;
3802 }
3803 /* Extents fit in target extent page */
3804 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3805 if (page_idx < erp->er_extcount) {
3806 memmove(&erp->er_extbuf[page_idx + ext_diff],
3807 &erp->er_extbuf[page_idx],
3808 (erp->er_extcount - page_idx) *
3809 sizeof(xfs_bmbt_rec_t));
3810 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3811 }
3812 erp->er_extcount += ext_diff;
3813 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3814 }
3815 /* Insert a new extent page */
3816 else if (erp) {
3817 xfs_iext_add_indirect_multi(ifp,
3818 erp_idx, page_idx, ext_diff);
3819 }
3820 /*
3821 * If extent(s) are being appended to the last page in
3822 * the indirection array and the new extent(s) don't fit
3823 * in the page, then erp is NULL and erp_idx is set to
3824 * the next index needed in the indirection array.
3825 */
3826 else {
3827 int count = ext_diff;
3828
3829 while (count) {
3830 erp = xfs_iext_irec_new(ifp, erp_idx);
3831 erp->er_extcount = count;
3832 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3833 if (count) {
3834 erp_idx++;
3835 }
3836 }
3837 }
3838 }
4eea22f0
MK
3839 ifp->if_bytes = new_size;
3840}
3841
0293ce3a
MK
3842/*
3843 * This is called when incore extents are being added to the indirection
3844 * array and the new extents do not fit in the target extent list. The
3845 * erp_idx parameter contains the irec index for the target extent list
3846 * in the indirection array, and the idx parameter contains the extent
3847 * index within the list. The number of extents being added is stored
3848 * in the count parameter.
3849 *
3850 * |-------| |-------|
3851 * | | | | idx - number of extents before idx
3852 * | idx | | count |
3853 * | | | | count - number of extents being inserted at idx
3854 * |-------| |-------|
3855 * | count | | nex2 | nex2 - number of extents after idx + count
3856 * |-------| |-------|
3857 */
3858void
3859xfs_iext_add_indirect_multi(
3860 xfs_ifork_t *ifp, /* inode fork pointer */
3861 int erp_idx, /* target extent irec index */
3862 xfs_extnum_t idx, /* index within target list */
3863 int count) /* new extents being added */
3864{
3865 int byte_diff; /* new bytes being added */
3866 xfs_ext_irec_t *erp; /* pointer to irec entry */
3867 xfs_extnum_t ext_diff; /* number of extents to add */
3868 xfs_extnum_t ext_cnt; /* new extents still needed */
3869 xfs_extnum_t nex2; /* extents after idx + count */
3870 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3871 int nlists; /* number of irec's (lists) */
3872
3873 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3874 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3875 nex2 = erp->er_extcount - idx;
3876 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3877
3878 /*
3879 * Save second part of target extent list
3880 * (all extents past */
3881 if (nex2) {
3882 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3883 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3884 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3885 erp->er_extcount -= nex2;
3886 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3887 memset(&erp->er_extbuf[idx], 0, byte_diff);
3888 }
3889
3890 /*
3891 * Add the new extents to the end of the target
3892 * list, then allocate new irec record(s) and
3893 * extent buffer(s) as needed to store the rest
3894 * of the new extents.
3895 */
3896 ext_cnt = count;
3897 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3898 if (ext_diff) {
3899 erp->er_extcount += ext_diff;
3900 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3901 ext_cnt -= ext_diff;
3902 }
3903 while (ext_cnt) {
3904 erp_idx++;
3905 erp = xfs_iext_irec_new(ifp, erp_idx);
3906 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3907 erp->er_extcount = ext_diff;
3908 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3909 ext_cnt -= ext_diff;
3910 }
3911
3912 /* Add nex2 extents back to indirection array */
3913 if (nex2) {
3914 xfs_extnum_t ext_avail;
3915 int i;
3916
3917 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3918 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3919 i = 0;
3920 /*
3921 * If nex2 extents fit in the current page, append
3922 * nex2_ep after the new extents.
3923 */
3924 if (nex2 <= ext_avail) {
3925 i = erp->er_extcount;
3926 }
3927 /*
3928 * Otherwise, check if space is available in the
3929 * next page.
3930 */
3931 else if ((erp_idx < nlists - 1) &&
3932 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3933 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3934 erp_idx++;
3935 erp++;
3936 /* Create a hole for nex2 extents */
3937 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3938 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3939 }
3940 /*
3941 * Final choice, create a new extent page for
3942 * nex2 extents.
3943 */
3944 else {
3945 erp_idx++;
3946 erp = xfs_iext_irec_new(ifp, erp_idx);
3947 }
3948 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3949 kmem_free(nex2_ep, byte_diff);
3950 erp->er_extcount += nex2;
3951 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3952 }
3953}
3954
4eea22f0
MK
3955/*
3956 * This is called when the amount of space required for incore file
3957 * extents needs to be decreased. The ext_diff parameter stores the
3958 * number of extents to be removed and the idx parameter contains
3959 * the extent index where the extents will be removed from.
0293ce3a
MK
3960 *
3961 * If the amount of space needed has decreased below the linear
3962 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3963 * extent array. Otherwise, use kmem_realloc() to adjust the
3964 * size to what is needed.
4eea22f0
MK
3965 */
3966void
3967xfs_iext_remove(
3968 xfs_ifork_t *ifp, /* inode fork pointer */
3969 xfs_extnum_t idx, /* index to begin removing exts */
3970 int ext_diff) /* number of extents to remove */
3971{
3972 xfs_extnum_t nextents; /* number of extents in file */
3973 int new_size; /* size of extents after removal */
3974
3975 ASSERT(ext_diff > 0);
3976 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3977 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3978
3979 if (new_size == 0) {
3980 xfs_iext_destroy(ifp);
0293ce3a
MK
3981 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3982 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3983 } else if (ifp->if_real_bytes) {
3984 xfs_iext_remove_direct(ifp, idx, ext_diff);
3985 } else {
3986 xfs_iext_remove_inline(ifp, idx, ext_diff);
3987 }
3988 ifp->if_bytes = new_size;
3989}
3990
3991/*
3992 * This removes ext_diff extents from the inline buffer, beginning
3993 * at extent index idx.
3994 */
3995void
3996xfs_iext_remove_inline(
3997 xfs_ifork_t *ifp, /* inode fork pointer */
3998 xfs_extnum_t idx, /* index to begin removing exts */
3999 int ext_diff) /* number of extents to remove */
4000{
4001 int nextents; /* number of extents in file */
4002
0293ce3a 4003 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4004 ASSERT(idx < XFS_INLINE_EXTS);
4005 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4006 ASSERT(((nextents - ext_diff) > 0) &&
4007 (nextents - ext_diff) < XFS_INLINE_EXTS);
4008
4009 if (idx + ext_diff < nextents) {
4010 memmove(&ifp->if_u2.if_inline_ext[idx],
4011 &ifp->if_u2.if_inline_ext[idx + ext_diff],
4012 (nextents - (idx + ext_diff)) *
4013 sizeof(xfs_bmbt_rec_t));
4014 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
4015 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4016 } else {
4017 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4018 ext_diff * sizeof(xfs_bmbt_rec_t));
4019 }
4020}
4021
4022/*
4023 * This removes ext_diff extents from a linear (direct) extent list,
4024 * beginning at extent index idx. If the extents are being removed
4025 * from the end of the list (ie. truncate) then we just need to re-
4026 * allocate the list to remove the extra space. Otherwise, if the
4027 * extents are being removed from the middle of the existing extent
4028 * entries, then we first need to move the extent records beginning
4029 * at idx + ext_diff up in the list to overwrite the records being
4030 * removed, then remove the extra space via kmem_realloc.
4031 */
4032void
4033xfs_iext_remove_direct(
4034 xfs_ifork_t *ifp, /* inode fork pointer */
4035 xfs_extnum_t idx, /* index to begin removing exts */
4036 int ext_diff) /* number of extents to remove */
4037{
4038 xfs_extnum_t nextents; /* number of extents in file */
4039 int new_size; /* size of extents after removal */
4040
0293ce3a 4041 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4042 new_size = ifp->if_bytes -
4043 (ext_diff * sizeof(xfs_bmbt_rec_t));
4044 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4045
4046 if (new_size == 0) {
4047 xfs_iext_destroy(ifp);
4048 return;
4049 }
4050 /* Move extents up in the list (if needed) */
4051 if (idx + ext_diff < nextents) {
4052 memmove(&ifp->if_u1.if_extents[idx],
4053 &ifp->if_u1.if_extents[idx + ext_diff],
4054 (nextents - (idx + ext_diff)) *
4055 sizeof(xfs_bmbt_rec_t));
4056 }
4057 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4058 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4059 /*
4060 * Reallocate the direct extent list. If the extents
4061 * will fit inside the inode then xfs_iext_realloc_direct
4062 * will switch from direct to inline extent allocation
4063 * mode for us.
4064 */
4065 xfs_iext_realloc_direct(ifp, new_size);
4066 ifp->if_bytes = new_size;
4067}
4068
0293ce3a
MK
4069/*
4070 * This is called when incore extents are being removed from the
4071 * indirection array and the extents being removed span multiple extent
4072 * buffers. The idx parameter contains the file extent index where we
4073 * want to begin removing extents, and the count parameter contains
4074 * how many extents need to be removed.
4075 *
4076 * |-------| |-------|
4077 * | nex1 | | | nex1 - number of extents before idx
4078 * |-------| | count |
4079 * | | | | count - number of extents being removed at idx
4080 * | count | |-------|
4081 * | | | nex2 | nex2 - number of extents after idx + count
4082 * |-------| |-------|
4083 */
4084void
4085xfs_iext_remove_indirect(
4086 xfs_ifork_t *ifp, /* inode fork pointer */
4087 xfs_extnum_t idx, /* index to begin removing extents */
4088 int count) /* number of extents to remove */
4089{
4090 xfs_ext_irec_t *erp; /* indirection array pointer */
4091 int erp_idx = 0; /* indirection array index */
4092 xfs_extnum_t ext_cnt; /* extents left to remove */
4093 xfs_extnum_t ext_diff; /* extents to remove in current list */
4094 xfs_extnum_t nex1; /* number of extents before idx */
4095 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 4096 int nlists; /* entries in indirection array */
0293ce3a
MK
4097 int page_idx = idx; /* index in target extent list */
4098
4099 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4100 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4101 ASSERT(erp != NULL);
4102 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4103 nex1 = page_idx;
4104 ext_cnt = count;
4105 while (ext_cnt) {
4106 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4107 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4108 /*
4109 * Check for deletion of entire list;
4110 * xfs_iext_irec_remove() updates extent offsets.
4111 */
4112 if (ext_diff == erp->er_extcount) {
4113 xfs_iext_irec_remove(ifp, erp_idx);
4114 ext_cnt -= ext_diff;
4115 nex1 = 0;
4116 if (ext_cnt) {
4117 ASSERT(erp_idx < ifp->if_real_bytes /
4118 XFS_IEXT_BUFSZ);
4119 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4120 nex1 = 0;
4121 continue;
4122 } else {
4123 break;
4124 }
4125 }
4126 /* Move extents up (if needed) */
4127 if (nex2) {
4128 memmove(&erp->er_extbuf[nex1],
4129 &erp->er_extbuf[nex1 + ext_diff],
4130 nex2 * sizeof(xfs_bmbt_rec_t));
4131 }
4132 /* Zero out rest of page */
4133 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4134 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4135 /* Update remaining counters */
4136 erp->er_extcount -= ext_diff;
4137 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4138 ext_cnt -= ext_diff;
4139 nex1 = 0;
4140 erp_idx++;
4141 erp++;
4142 }
4143 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4144 xfs_iext_irec_compact(ifp);
4145}
4146
4eea22f0
MK
4147/*
4148 * Create, destroy, or resize a linear (direct) block of extents.
4149 */
4150void
4151xfs_iext_realloc_direct(
4152 xfs_ifork_t *ifp, /* inode fork pointer */
4153 int new_size) /* new size of extents */
4154{
4155 int rnew_size; /* real new size of extents */
4156
4157 rnew_size = new_size;
4158
0293ce3a
MK
4159 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4160 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4161 (new_size != ifp->if_real_bytes)));
4162
4eea22f0
MK
4163 /* Free extent records */
4164 if (new_size == 0) {
4165 xfs_iext_destroy(ifp);
4166 }
4167 /* Resize direct extent list and zero any new bytes */
4168 else if (ifp->if_real_bytes) {
4169 /* Check if extents will fit inside the inode */
4170 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4171 xfs_iext_direct_to_inline(ifp, new_size /
4172 (uint)sizeof(xfs_bmbt_rec_t));
4173 ifp->if_bytes = new_size;
4174 return;
4175 }
16a087d8 4176 if (!is_power_of_2(new_size)){
4eea22f0
MK
4177 rnew_size = xfs_iroundup(new_size);
4178 }
4179 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 4180 ifp->if_u1.if_extents =
4eea22f0
MK
4181 kmem_realloc(ifp->if_u1.if_extents,
4182 rnew_size,
4183 ifp->if_real_bytes,
4184 KM_SLEEP);
4185 }
4186 if (rnew_size > ifp->if_real_bytes) {
4187 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4188 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4189 rnew_size - ifp->if_real_bytes);
4190 }
4191 }
4192 /*
4193 * Switch from the inline extent buffer to a direct
4194 * extent list. Be sure to include the inline extent
4195 * bytes in new_size.
4196 */
4197 else {
4198 new_size += ifp->if_bytes;
16a087d8 4199 if (!is_power_of_2(new_size)) {
4eea22f0
MK
4200 rnew_size = xfs_iroundup(new_size);
4201 }
4202 xfs_iext_inline_to_direct(ifp, rnew_size);
4203 }
4204 ifp->if_real_bytes = rnew_size;
4205 ifp->if_bytes = new_size;
4206}
4207
4208/*
4209 * Switch from linear (direct) extent records to inline buffer.
4210 */
4211void
4212xfs_iext_direct_to_inline(
4213 xfs_ifork_t *ifp, /* inode fork pointer */
4214 xfs_extnum_t nextents) /* number of extents in file */
4215{
4216 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4217 ASSERT(nextents <= XFS_INLINE_EXTS);
4218 /*
4219 * The inline buffer was zeroed when we switched
4220 * from inline to direct extent allocation mode,
4221 * so we don't need to clear it here.
4222 */
4223 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4224 nextents * sizeof(xfs_bmbt_rec_t));
fe6c1e72 4225 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4eea22f0
MK
4226 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4227 ifp->if_real_bytes = 0;
4228}
4229
4230/*
4231 * Switch from inline buffer to linear (direct) extent records.
4232 * new_size should already be rounded up to the next power of 2
4233 * by the caller (when appropriate), so use new_size as it is.
4234 * However, since new_size may be rounded up, we can't update
4235 * if_bytes here. It is the caller's responsibility to update
4236 * if_bytes upon return.
4237 */
4238void
4239xfs_iext_inline_to_direct(
4240 xfs_ifork_t *ifp, /* inode fork pointer */
4241 int new_size) /* number of extents in file */
4242{
a6f64d4a 4243 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4eea22f0
MK
4244 memset(ifp->if_u1.if_extents, 0, new_size);
4245 if (ifp->if_bytes) {
4246 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4247 ifp->if_bytes);
4248 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4249 sizeof(xfs_bmbt_rec_t));
4250 }
4251 ifp->if_real_bytes = new_size;
4252}
4253
0293ce3a
MK
4254/*
4255 * Resize an extent indirection array to new_size bytes.
4256 */
4257void
4258xfs_iext_realloc_indirect(
4259 xfs_ifork_t *ifp, /* inode fork pointer */
4260 int new_size) /* new indirection array size */
4261{
4262 int nlists; /* number of irec's (ex lists) */
4263 int size; /* current indirection array size */
4264
4265 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4266 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4267 size = nlists * sizeof(xfs_ext_irec_t);
4268 ASSERT(ifp->if_real_bytes);
4269 ASSERT((new_size >= 0) && (new_size != size));
4270 if (new_size == 0) {
4271 xfs_iext_destroy(ifp);
4272 } else {
4273 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4274 kmem_realloc(ifp->if_u1.if_ext_irec,
4275 new_size, size, KM_SLEEP);
4276 }
4277}
4278
4279/*
4280 * Switch from indirection array to linear (direct) extent allocations.
4281 */
4282void
4283xfs_iext_indirect_to_direct(
4284 xfs_ifork_t *ifp) /* inode fork pointer */
4285{
a6f64d4a 4286 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4287 xfs_extnum_t nextents; /* number of extents in file */
4288 int size; /* size of file extents */
4289
4290 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4291 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4292 ASSERT(nextents <= XFS_LINEAR_EXTS);
4293 size = nextents * sizeof(xfs_bmbt_rec_t);
4294
4295 xfs_iext_irec_compact_full(ifp);
4296 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4297
4298 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4299 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4300 ifp->if_flags &= ~XFS_IFEXTIREC;
4301 ifp->if_u1.if_extents = ep;
4302 ifp->if_bytes = size;
4303 if (nextents < XFS_LINEAR_EXTS) {
4304 xfs_iext_realloc_direct(ifp, size);
4305 }
4306}
4307
4eea22f0
MK
4308/*
4309 * Free incore file extents.
4310 */
4311void
4312xfs_iext_destroy(
4313 xfs_ifork_t *ifp) /* inode fork pointer */
4314{
0293ce3a
MK
4315 if (ifp->if_flags & XFS_IFEXTIREC) {
4316 int erp_idx;
4317 int nlists;
4318
4319 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4320 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4321 xfs_iext_irec_remove(ifp, erp_idx);
4322 }
4323 ifp->if_flags &= ~XFS_IFEXTIREC;
4324 } else if (ifp->if_real_bytes) {
4eea22f0
MK
4325 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4326 } else if (ifp->if_bytes) {
4327 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4328 sizeof(xfs_bmbt_rec_t));
4329 }
4330 ifp->if_u1.if_extents = NULL;
4331 ifp->if_real_bytes = 0;
4332 ifp->if_bytes = 0;
4333}
0293ce3a 4334
8867bc9b
MK
4335/*
4336 * Return a pointer to the extent record for file system block bno.
4337 */
a6f64d4a 4338xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4339xfs_iext_bno_to_ext(
4340 xfs_ifork_t *ifp, /* inode fork pointer */
4341 xfs_fileoff_t bno, /* block number to search for */
4342 xfs_extnum_t *idxp) /* index of target extent */
4343{
a6f64d4a 4344 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4345 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4346 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4347 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4348 int high; /* upper boundary in search */
8867bc9b 4349 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4350 int low; /* lower boundary in search */
8867bc9b
MK
4351 xfs_extnum_t nextents; /* number of file extents */
4352 xfs_fileoff_t startoff = 0; /* start offset of extent */
4353
4354 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4355 if (nextents == 0) {
4356 *idxp = 0;
4357 return NULL;
4358 }
4359 low = 0;
4360 if (ifp->if_flags & XFS_IFEXTIREC) {
4361 /* Find target extent list */
4362 int erp_idx = 0;
4363 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4364 base = erp->er_extbuf;
4365 high = erp->er_extcount - 1;
4366 } else {
4367 base = ifp->if_u1.if_extents;
4368 high = nextents - 1;
4369 }
4370 /* Binary search extent records */
4371 while (low <= high) {
4372 idx = (low + high) >> 1;
4373 ep = base + idx;
4374 startoff = xfs_bmbt_get_startoff(ep);
4375 blockcount = xfs_bmbt_get_blockcount(ep);
4376 if (bno < startoff) {
4377 high = idx - 1;
4378 } else if (bno >= startoff + blockcount) {
4379 low = idx + 1;
4380 } else {
4381 /* Convert back to file-based extent index */
4382 if (ifp->if_flags & XFS_IFEXTIREC) {
4383 idx += erp->er_extoff;
4384 }
4385 *idxp = idx;
4386 return ep;
4387 }
4388 }
4389 /* Convert back to file-based extent index */
4390 if (ifp->if_flags & XFS_IFEXTIREC) {
4391 idx += erp->er_extoff;
4392 }
4393 if (bno >= startoff + blockcount) {
4394 if (++idx == nextents) {
4395 ep = NULL;
4396 } else {
4397 ep = xfs_iext_get_ext(ifp, idx);
4398 }
4399 }
4400 *idxp = idx;
4401 return ep;
4402}
4403
0293ce3a
MK
4404/*
4405 * Return a pointer to the indirection array entry containing the
4406 * extent record for filesystem block bno. Store the index of the
4407 * target irec in *erp_idxp.
4408 */
8867bc9b 4409xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4410xfs_iext_bno_to_irec(
4411 xfs_ifork_t *ifp, /* inode fork pointer */
4412 xfs_fileoff_t bno, /* block number to search for */
4413 int *erp_idxp) /* irec index of target ext list */
4414{
4415 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4416 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4417 int erp_idx; /* indirection array index */
0293ce3a
MK
4418 int nlists; /* number of extent irec's (lists) */
4419 int high; /* binary search upper limit */
4420 int low; /* binary search lower limit */
4421
4422 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4423 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4424 erp_idx = 0;
4425 low = 0;
4426 high = nlists - 1;
4427 while (low <= high) {
4428 erp_idx = (low + high) >> 1;
4429 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4430 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4431 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4432 high = erp_idx - 1;
4433 } else if (erp_next && bno >=
4434 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4435 low = erp_idx + 1;
4436 } else {
4437 break;
4438 }
4439 }
4440 *erp_idxp = erp_idx;
4441 return erp;
4442}
4443
4444/*
4445 * Return a pointer to the indirection array entry containing the
4446 * extent record at file extent index *idxp. Store the index of the
4447 * target irec in *erp_idxp and store the page index of the target
4448 * extent record in *idxp.
4449 */
4450xfs_ext_irec_t *
4451xfs_iext_idx_to_irec(
4452 xfs_ifork_t *ifp, /* inode fork pointer */
4453 xfs_extnum_t *idxp, /* extent index (file -> page) */
4454 int *erp_idxp, /* pointer to target irec */
4455 int realloc) /* new bytes were just added */
4456{
4457 xfs_ext_irec_t *prev; /* pointer to previous irec */
4458 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4459 int erp_idx; /* indirection array index */
4460 int nlists; /* number of irec's (ex lists) */
4461 int high; /* binary search upper limit */
4462 int low; /* binary search lower limit */
4463 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4464
4465 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4466 ASSERT(page_idx >= 0 && page_idx <=
4467 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4468 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4469 erp_idx = 0;
4470 low = 0;
4471 high = nlists - 1;
4472
4473 /* Binary search extent irec's */
4474 while (low <= high) {
4475 erp_idx = (low + high) >> 1;
4476 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4477 prev = erp_idx > 0 ? erp - 1 : NULL;
4478 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4479 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4480 high = erp_idx - 1;
4481 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4482 (page_idx == erp->er_extoff + erp->er_extcount &&
4483 !realloc)) {
4484 low = erp_idx + 1;
4485 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4486 erp->er_extcount == XFS_LINEAR_EXTS) {
4487 ASSERT(realloc);
4488 page_idx = 0;
4489 erp_idx++;
4490 erp = erp_idx < nlists ? erp + 1 : NULL;
4491 break;
4492 } else {
4493 page_idx -= erp->er_extoff;
4494 break;
4495 }
4496 }
4497 *idxp = page_idx;
4498 *erp_idxp = erp_idx;
4499 return(erp);
4500}
4501
4502/*
4503 * Allocate and initialize an indirection array once the space needed
4504 * for incore extents increases above XFS_IEXT_BUFSZ.
4505 */
4506void
4507xfs_iext_irec_init(
4508 xfs_ifork_t *ifp) /* inode fork pointer */
4509{
4510 xfs_ext_irec_t *erp; /* indirection array pointer */
4511 xfs_extnum_t nextents; /* number of extents in file */
4512
4513 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4514 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4515 ASSERT(nextents <= XFS_LINEAR_EXTS);
4516
4517 erp = (xfs_ext_irec_t *)
4518 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4519
4520 if (nextents == 0) {
a6f64d4a 4521 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
0293ce3a
MK
4522 } else if (!ifp->if_real_bytes) {
4523 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4524 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4525 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4526 }
4527 erp->er_extbuf = ifp->if_u1.if_extents;
4528 erp->er_extcount = nextents;
4529 erp->er_extoff = 0;
4530
4531 ifp->if_flags |= XFS_IFEXTIREC;
4532 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4533 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4534 ifp->if_u1.if_ext_irec = erp;
4535
4536 return;
4537}
4538
4539/*
4540 * Allocate and initialize a new entry in the indirection array.
4541 */
4542xfs_ext_irec_t *
4543xfs_iext_irec_new(
4544 xfs_ifork_t *ifp, /* inode fork pointer */
4545 int erp_idx) /* index for new irec */
4546{
4547 xfs_ext_irec_t *erp; /* indirection array pointer */
4548 int i; /* loop counter */
4549 int nlists; /* number of irec's (ex lists) */
4550
4551 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4552 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4553
4554 /* Resize indirection array */
4555 xfs_iext_realloc_indirect(ifp, ++nlists *
4556 sizeof(xfs_ext_irec_t));
4557 /*
4558 * Move records down in the array so the
4559 * new page can use erp_idx.
4560 */
4561 erp = ifp->if_u1.if_ext_irec;
4562 for (i = nlists - 1; i > erp_idx; i--) {
4563 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4564 }
4565 ASSERT(i == erp_idx);
4566
4567 /* Initialize new extent record */
4568 erp = ifp->if_u1.if_ext_irec;
a6f64d4a 4569 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
0293ce3a
MK
4570 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4571 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4572 erp[erp_idx].er_extcount = 0;
4573 erp[erp_idx].er_extoff = erp_idx > 0 ?
4574 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4575 return (&erp[erp_idx]);
4576}
4577
4578/*
4579 * Remove a record from the indirection array.
4580 */
4581void
4582xfs_iext_irec_remove(
4583 xfs_ifork_t *ifp, /* inode fork pointer */
4584 int erp_idx) /* irec index to remove */
4585{
4586 xfs_ext_irec_t *erp; /* indirection array pointer */
4587 int i; /* loop counter */
4588 int nlists; /* number of irec's (ex lists) */
4589
4590 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4591 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4592 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4593 if (erp->er_extbuf) {
4594 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4595 -erp->er_extcount);
4596 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4597 }
4598 /* Compact extent records */
4599 erp = ifp->if_u1.if_ext_irec;
4600 for (i = erp_idx; i < nlists - 1; i++) {
4601 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4602 }
4603 /*
4604 * Manually free the last extent record from the indirection
4605 * array. A call to xfs_iext_realloc_indirect() with a size
4606 * of zero would result in a call to xfs_iext_destroy() which
4607 * would in turn call this function again, creating a nasty
4608 * infinite loop.
4609 */
4610 if (--nlists) {
4611 xfs_iext_realloc_indirect(ifp,
4612 nlists * sizeof(xfs_ext_irec_t));
4613 } else {
4614 kmem_free(ifp->if_u1.if_ext_irec,
4615 sizeof(xfs_ext_irec_t));
4616 }
4617 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4618}
4619
4620/*
4621 * This is called to clean up large amounts of unused memory allocated
4622 * by the indirection array. Before compacting anything though, verify
4623 * that the indirection array is still needed and switch back to the
4624 * linear extent list (or even the inline buffer) if possible. The
4625 * compaction policy is as follows:
4626 *
4627 * Full Compaction: Extents fit into a single page (or inline buffer)
4628 * Full Compaction: Extents occupy less than 10% of allocated space
4629 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4630 * No Compaction: Extents occupy at least 50% of allocated space
4631 */
4632void
4633xfs_iext_irec_compact(
4634 xfs_ifork_t *ifp) /* inode fork pointer */
4635{
4636 xfs_extnum_t nextents; /* number of extents in file */
4637 int nlists; /* number of irec's (ex lists) */
4638
4639 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4640 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4641 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4642
4643 if (nextents == 0) {
4644 xfs_iext_destroy(ifp);
4645 } else if (nextents <= XFS_INLINE_EXTS) {
4646 xfs_iext_indirect_to_direct(ifp);
4647 xfs_iext_direct_to_inline(ifp, nextents);
4648 } else if (nextents <= XFS_LINEAR_EXTS) {
4649 xfs_iext_indirect_to_direct(ifp);
4650 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4651 xfs_iext_irec_compact_full(ifp);
4652 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4653 xfs_iext_irec_compact_pages(ifp);
4654 }
4655}
4656
4657/*
4658 * Combine extents from neighboring extent pages.
4659 */
4660void
4661xfs_iext_irec_compact_pages(
4662 xfs_ifork_t *ifp) /* inode fork pointer */
4663{
4664 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4665 int erp_idx = 0; /* indirection array index */
4666 int nlists; /* number of irec's (ex lists) */
4667
4668 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4669 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4670 while (erp_idx < nlists - 1) {
4671 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4672 erp_next = erp + 1;
4673 if (erp_next->er_extcount <=
4674 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4675 memmove(&erp->er_extbuf[erp->er_extcount],
4676 erp_next->er_extbuf, erp_next->er_extcount *
4677 sizeof(xfs_bmbt_rec_t));
4678 erp->er_extcount += erp_next->er_extcount;
4679 /*
4680 * Free page before removing extent record
4681 * so er_extoffs don't get modified in
4682 * xfs_iext_irec_remove.
4683 */
4684 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4685 erp_next->er_extbuf = NULL;
4686 xfs_iext_irec_remove(ifp, erp_idx + 1);
4687 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4688 } else {
4689 erp_idx++;
4690 }
4691 }
4692}
4693
4694/*
4695 * Fully compact the extent records managed by the indirection array.
4696 */
4697void
4698xfs_iext_irec_compact_full(
4699 xfs_ifork_t *ifp) /* inode fork pointer */
4700{
a6f64d4a 4701 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
0293ce3a
MK
4702 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4703 int erp_idx = 0; /* extent irec index */
4704 int ext_avail; /* empty entries in ex list */
4705 int ext_diff; /* number of exts to add */
4706 int nlists; /* number of irec's (ex lists) */
4707
4708 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4709 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4710 erp = ifp->if_u1.if_ext_irec;
4711 ep = &erp->er_extbuf[erp->er_extcount];
4712 erp_next = erp + 1;
4713 ep_next = erp_next->er_extbuf;
4714 while (erp_idx < nlists - 1) {
4715 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4716 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4717 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4718 erp->er_extcount += ext_diff;
4719 erp_next->er_extcount -= ext_diff;
4720 /* Remove next page */
4721 if (erp_next->er_extcount == 0) {
4722 /*
4723 * Free page before removing extent record
4724 * so er_extoffs don't get modified in
4725 * xfs_iext_irec_remove.
4726 */
4727 kmem_free(erp_next->er_extbuf,
4728 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4729 erp_next->er_extbuf = NULL;
4730 xfs_iext_irec_remove(ifp, erp_idx + 1);
4731 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4732 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4733 /* Update next page */
4734 } else {
4735 /* Move rest of page up to become next new page */
4736 memmove(erp_next->er_extbuf, ep_next,
4737 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4738 ep_next = erp_next->er_extbuf;
4739 memset(&ep_next[erp_next->er_extcount], 0,
4740 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4741 sizeof(xfs_bmbt_rec_t));
4742 }
4743 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4744 erp_idx++;
4745 if (erp_idx < nlists)
4746 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4747 else
4748 break;
4749 }
4750 ep = &erp->er_extbuf[erp->er_extcount];
4751 erp_next = erp + 1;
4752 ep_next = erp_next->er_extbuf;
4753 }
4754}
4755
4756/*
4757 * This is called to update the er_extoff field in the indirection
4758 * array when extents have been added or removed from one of the
4759 * extent lists. erp_idx contains the irec index to begin updating
4760 * at and ext_diff contains the number of extents that were added
4761 * or removed.
4762 */
4763void
4764xfs_iext_irec_update_extoffs(
4765 xfs_ifork_t *ifp, /* inode fork pointer */
4766 int erp_idx, /* irec index to update */
4767 int ext_diff) /* number of new extents */
4768{
4769 int i; /* loop counter */
4770 int nlists; /* number of irec's (ex lists */
4771
4772 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4773 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4774 for (i = erp_idx; i < nlists; i++) {
4775 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4776 }
4777}