]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_inode.c
xfs: remove XFS_IFILESTREAM
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
a844f451 26#include "xfs_inum.h"
1da177e4
LT
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4 29#include "xfs_mount.h"
a4fbe6ab 30#include "xfs_inode.h"
57062787 31#include "xfs_da_format.h"
c24b5dfa 32#include "xfs_da_btree.h"
c24b5dfa 33#include "xfs_dir2.h"
a844f451 34#include "xfs_attr_sf.h"
c24b5dfa 35#include "xfs_attr.h"
239880ef
DC
36#include "xfs_trans_space.h"
37#include "xfs_trans.h"
1da177e4 38#include "xfs_buf_item.h"
a844f451 39#include "xfs_inode_item.h"
a844f451
NS
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
68988114 42#include "xfs_bmap_util.h"
1da177e4 43#include "xfs_error.h"
1da177e4 44#include "xfs_quota.h"
2a82b8be 45#include "xfs_filestream.h"
93848a99 46#include "xfs_cksum.h"
0b1b213f 47#include "xfs_trace.h"
33479e05 48#include "xfs_icache.h"
c24b5dfa 49#include "xfs_symlink.h"
239880ef
DC
50#include "xfs_trans_priv.h"
51#include "xfs_log.h"
a4fbe6ab 52#include "xfs_bmap_btree.h"
1da177e4 53
1da177e4 54kmem_zone_t *xfs_inode_zone;
1da177e4
LT
55
56/*
8f04c47a 57 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
58 * freed from a file in a single transaction.
59 */
60#define XFS_ITRUNC_MAX_EXTENTS 2
61
62STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 63
ab297431
ZYW
64STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
65
2a0ec1d9
DC
66/*
67 * helper function to extract extent size hint from inode
68 */
69xfs_extlen_t
70xfs_get_extsz_hint(
71 struct xfs_inode *ip)
72{
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
78}
79
fa96acad 80/*
efa70be1
CH
81 * These two are wrapper routines around the xfs_ilock() routine used to
82 * centralize some grungy code. They are used in places that wish to lock the
83 * inode solely for reading the extents. The reason these places can't just
84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
85 * bringing in of the extents from disk for a file in b-tree format. If the
86 * inode is in b-tree format, then we need to lock the inode exclusively until
87 * the extents are read in. Locking it exclusively all the time would limit
88 * our parallelism unnecessarily, though. What we do instead is check to see
89 * if the extents have been read in yet, and only lock the inode exclusively
90 * if they have not.
fa96acad 91 *
efa70be1 92 * The functions return a value which should be given to the corresponding
01f4f327 93 * xfs_iunlock() call.
fa96acad
DC
94 */
95uint
309ecac8
CH
96xfs_ilock_data_map_shared(
97 struct xfs_inode *ip)
fa96acad 98{
309ecac8 99 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 100
309ecac8
CH
101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 103 lock_mode = XFS_ILOCK_EXCL;
fa96acad 104 xfs_ilock(ip, lock_mode);
fa96acad
DC
105 return lock_mode;
106}
107
efa70be1
CH
108uint
109xfs_ilock_attr_map_shared(
110 struct xfs_inode *ip)
fa96acad 111{
efa70be1
CH
112 uint lock_mode = XFS_ILOCK_SHARED;
113
114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
116 lock_mode = XFS_ILOCK_EXCL;
117 xfs_ilock(ip, lock_mode);
118 return lock_mode;
fa96acad
DC
119}
120
121/*
122 * The xfs inode contains 2 locks: a multi-reader lock called the
123 * i_iolock and a multi-reader lock called the i_lock. This routine
124 * allows either or both of the locks to be obtained.
125 *
126 * The 2 locks should always be ordered so that the IO lock is
127 * obtained first in order to prevent deadlock.
128 *
129 * ip -- the inode being locked
130 * lock_flags -- this parameter indicates the inode's locks
131 * to be locked. It can be:
132 * XFS_IOLOCK_SHARED,
133 * XFS_IOLOCK_EXCL,
134 * XFS_ILOCK_SHARED,
135 * XFS_ILOCK_EXCL,
136 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
137 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
138 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
139 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
140 */
141void
142xfs_ilock(
143 xfs_inode_t *ip,
144 uint lock_flags)
145{
146 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
147
148 /*
149 * You can't set both SHARED and EXCL for the same lock,
150 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
151 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
152 */
153 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
154 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
155 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
156 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
157 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
158
159 if (lock_flags & XFS_IOLOCK_EXCL)
160 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
161 else if (lock_flags & XFS_IOLOCK_SHARED)
162 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
163
164 if (lock_flags & XFS_ILOCK_EXCL)
165 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_ILOCK_SHARED)
167 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168}
169
170/*
171 * This is just like xfs_ilock(), except that the caller
172 * is guaranteed not to sleep. It returns 1 if it gets
173 * the requested locks and 0 otherwise. If the IO lock is
174 * obtained but the inode lock cannot be, then the IO lock
175 * is dropped before returning.
176 *
177 * ip -- the inode being locked
178 * lock_flags -- this parameter indicates the inode's locks to be
179 * to be locked. See the comment for xfs_ilock() for a list
180 * of valid values.
181 */
182int
183xfs_ilock_nowait(
184 xfs_inode_t *ip,
185 uint lock_flags)
186{
187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
188
189 /*
190 * You can't set both SHARED and EXCL for the same lock,
191 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
192 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
193 */
194 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
195 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
196 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
197 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
198 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
199
200 if (lock_flags & XFS_IOLOCK_EXCL) {
201 if (!mrtryupdate(&ip->i_iolock))
202 goto out;
203 } else if (lock_flags & XFS_IOLOCK_SHARED) {
204 if (!mrtryaccess(&ip->i_iolock))
205 goto out;
206 }
207 if (lock_flags & XFS_ILOCK_EXCL) {
208 if (!mrtryupdate(&ip->i_lock))
209 goto out_undo_iolock;
210 } else if (lock_flags & XFS_ILOCK_SHARED) {
211 if (!mrtryaccess(&ip->i_lock))
212 goto out_undo_iolock;
213 }
214 return 1;
215
216 out_undo_iolock:
217 if (lock_flags & XFS_IOLOCK_EXCL)
218 mrunlock_excl(&ip->i_iolock);
219 else if (lock_flags & XFS_IOLOCK_SHARED)
220 mrunlock_shared(&ip->i_iolock);
221 out:
222 return 0;
223}
224
225/*
226 * xfs_iunlock() is used to drop the inode locks acquired with
227 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
229 * that we know which locks to drop.
230 *
231 * ip -- the inode being unlocked
232 * lock_flags -- this parameter indicates the inode's locks to be
233 * to be unlocked. See the comment for xfs_ilock() for a list
234 * of valid values for this parameter.
235 *
236 */
237void
238xfs_iunlock(
239 xfs_inode_t *ip,
240 uint lock_flags)
241{
242 /*
243 * You can't set both SHARED and EXCL for the same lock,
244 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
245 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
246 */
247 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
248 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
249 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
250 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
251 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
252 ASSERT(lock_flags != 0);
253
254 if (lock_flags & XFS_IOLOCK_EXCL)
255 mrunlock_excl(&ip->i_iolock);
256 else if (lock_flags & XFS_IOLOCK_SHARED)
257 mrunlock_shared(&ip->i_iolock);
258
259 if (lock_flags & XFS_ILOCK_EXCL)
260 mrunlock_excl(&ip->i_lock);
261 else if (lock_flags & XFS_ILOCK_SHARED)
262 mrunlock_shared(&ip->i_lock);
263
264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
265}
266
267/*
268 * give up write locks. the i/o lock cannot be held nested
269 * if it is being demoted.
270 */
271void
272xfs_ilock_demote(
273 xfs_inode_t *ip,
274 uint lock_flags)
275{
276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
277 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
278
279 if (lock_flags & XFS_ILOCK_EXCL)
280 mrdemote(&ip->i_lock);
281 if (lock_flags & XFS_IOLOCK_EXCL)
282 mrdemote(&ip->i_iolock);
283
284 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
285}
286
742ae1e3 287#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
288int
289xfs_isilocked(
290 xfs_inode_t *ip,
291 uint lock_flags)
292{
293 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
294 if (!(lock_flags & XFS_ILOCK_SHARED))
295 return !!ip->i_lock.mr_writer;
296 return rwsem_is_locked(&ip->i_lock.mr_lock);
297 }
298
299 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
300 if (!(lock_flags & XFS_IOLOCK_SHARED))
301 return !!ip->i_iolock.mr_writer;
302 return rwsem_is_locked(&ip->i_iolock.mr_lock);
303 }
304
305 ASSERT(0);
306 return 0;
307}
308#endif
309
c24b5dfa
DC
310#ifdef DEBUG
311int xfs_locked_n;
312int xfs_small_retries;
313int xfs_middle_retries;
314int xfs_lots_retries;
315int xfs_lock_delays;
316#endif
317
318/*
319 * Bump the subclass so xfs_lock_inodes() acquires each lock with
320 * a different value
321 */
322static inline int
323xfs_lock_inumorder(int lock_mode, int subclass)
324{
325 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
327 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
328 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
329
330 return lock_mode;
331}
332
333/*
334 * The following routine will lock n inodes in exclusive mode.
335 * We assume the caller calls us with the inodes in i_ino order.
336 *
337 * We need to detect deadlock where an inode that we lock
338 * is in the AIL and we start waiting for another inode that is locked
339 * by a thread in a long running transaction (such as truncate). This can
340 * result in deadlock since the long running trans might need to wait
341 * for the inode we just locked in order to push the tail and free space
342 * in the log.
343 */
344void
345xfs_lock_inodes(
346 xfs_inode_t **ips,
347 int inodes,
348 uint lock_mode)
349{
350 int attempts = 0, i, j, try_lock;
351 xfs_log_item_t *lp;
352
353 ASSERT(ips && (inodes >= 2)); /* we need at least two */
354
355 try_lock = 0;
356 i = 0;
357
358again:
359 for (; i < inodes; i++) {
360 ASSERT(ips[i]);
361
362 if (i && (ips[i] == ips[i-1])) /* Already locked */
363 continue;
364
365 /*
366 * If try_lock is not set yet, make sure all locked inodes
367 * are not in the AIL.
368 * If any are, set try_lock to be used later.
369 */
370
371 if (!try_lock) {
372 for (j = (i - 1); j >= 0 && !try_lock; j--) {
373 lp = (xfs_log_item_t *)ips[j]->i_itemp;
374 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
375 try_lock++;
376 }
377 }
378 }
379
380 /*
381 * If any of the previous locks we have locked is in the AIL,
382 * we must TRY to get the second and subsequent locks. If
383 * we can't get any, we must release all we have
384 * and try again.
385 */
386
387 if (try_lock) {
388 /* try_lock must be 0 if i is 0. */
389 /*
390 * try_lock means we have an inode locked
391 * that is in the AIL.
392 */
393 ASSERT(i != 0);
394 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
395 attempts++;
396
397 /*
398 * Unlock all previous guys and try again.
399 * xfs_iunlock will try to push the tail
400 * if the inode is in the AIL.
401 */
402
403 for(j = i - 1; j >= 0; j--) {
404
405 /*
406 * Check to see if we've already
407 * unlocked this one.
408 * Not the first one going back,
409 * and the inode ptr is the same.
410 */
411 if ((j != (i - 1)) && ips[j] ==
412 ips[j+1])
413 continue;
414
415 xfs_iunlock(ips[j], lock_mode);
416 }
417
418 if ((attempts % 5) == 0) {
419 delay(1); /* Don't just spin the CPU */
420#ifdef DEBUG
421 xfs_lock_delays++;
422#endif
423 }
424 i = 0;
425 try_lock = 0;
426 goto again;
427 }
428 } else {
429 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
430 }
431 }
432
433#ifdef DEBUG
434 if (attempts) {
435 if (attempts < 5) xfs_small_retries++;
436 else if (attempts < 100) xfs_middle_retries++;
437 else xfs_lots_retries++;
438 } else {
439 xfs_locked_n++;
440 }
441#endif
442}
443
444/*
445 * xfs_lock_two_inodes() can only be used to lock one type of lock
446 * at a time - the iolock or the ilock, but not both at once. If
447 * we lock both at once, lockdep will report false positives saying
448 * we have violated locking orders.
449 */
450void
451xfs_lock_two_inodes(
452 xfs_inode_t *ip0,
453 xfs_inode_t *ip1,
454 uint lock_mode)
455{
456 xfs_inode_t *temp;
457 int attempts = 0;
458 xfs_log_item_t *lp;
459
460 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
461 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
462 ASSERT(ip0->i_ino != ip1->i_ino);
463
464 if (ip0->i_ino > ip1->i_ino) {
465 temp = ip0;
466 ip0 = ip1;
467 ip1 = temp;
468 }
469
470 again:
471 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
472
473 /*
474 * If the first lock we have locked is in the AIL, we must TRY to get
475 * the second lock. If we can't get it, we must release the first one
476 * and try again.
477 */
478 lp = (xfs_log_item_t *)ip0->i_itemp;
479 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
480 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
481 xfs_iunlock(ip0, lock_mode);
482 if ((++attempts % 5) == 0)
483 delay(1); /* Don't just spin the CPU */
484 goto again;
485 }
486 } else {
487 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
488 }
489}
490
491
fa96acad
DC
492void
493__xfs_iflock(
494 struct xfs_inode *ip)
495{
496 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
497 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
498
499 do {
500 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
501 if (xfs_isiflocked(ip))
502 io_schedule();
503 } while (!xfs_iflock_nowait(ip));
504
505 finish_wait(wq, &wait.wait);
506}
507
1da177e4
LT
508STATIC uint
509_xfs_dic2xflags(
1da177e4
LT
510 __uint16_t di_flags)
511{
512 uint flags = 0;
513
514 if (di_flags & XFS_DIFLAG_ANY) {
515 if (di_flags & XFS_DIFLAG_REALTIME)
516 flags |= XFS_XFLAG_REALTIME;
517 if (di_flags & XFS_DIFLAG_PREALLOC)
518 flags |= XFS_XFLAG_PREALLOC;
519 if (di_flags & XFS_DIFLAG_IMMUTABLE)
520 flags |= XFS_XFLAG_IMMUTABLE;
521 if (di_flags & XFS_DIFLAG_APPEND)
522 flags |= XFS_XFLAG_APPEND;
523 if (di_flags & XFS_DIFLAG_SYNC)
524 flags |= XFS_XFLAG_SYNC;
525 if (di_flags & XFS_DIFLAG_NOATIME)
526 flags |= XFS_XFLAG_NOATIME;
527 if (di_flags & XFS_DIFLAG_NODUMP)
528 flags |= XFS_XFLAG_NODUMP;
529 if (di_flags & XFS_DIFLAG_RTINHERIT)
530 flags |= XFS_XFLAG_RTINHERIT;
531 if (di_flags & XFS_DIFLAG_PROJINHERIT)
532 flags |= XFS_XFLAG_PROJINHERIT;
533 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
534 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
535 if (di_flags & XFS_DIFLAG_EXTSIZE)
536 flags |= XFS_XFLAG_EXTSIZE;
537 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
538 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
539 if (di_flags & XFS_DIFLAG_NODEFRAG)
540 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
541 if (di_flags & XFS_DIFLAG_FILESTREAM)
542 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
543 }
544
545 return flags;
546}
547
548uint
549xfs_ip2xflags(
550 xfs_inode_t *ip)
551{
347d1c01 552 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 553
a916e2bd 554 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 555 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
556}
557
558uint
559xfs_dic2xflags(
45ba598e 560 xfs_dinode_t *dip)
1da177e4 561{
81591fe2 562 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 563 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
564}
565
c24b5dfa
DC
566/*
567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
568 * is allowed, otherwise it has to be an exact match. If a CI match is found,
569 * ci_name->name will point to a the actual name (caller must free) or
570 * will be set to NULL if an exact match is found.
571 */
572int
573xfs_lookup(
574 xfs_inode_t *dp,
575 struct xfs_name *name,
576 xfs_inode_t **ipp,
577 struct xfs_name *ci_name)
578{
579 xfs_ino_t inum;
580 int error;
581 uint lock_mode;
582
583 trace_xfs_lookup(dp, name);
584
585 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
586 return XFS_ERROR(EIO);
587
309ecac8 588 lock_mode = xfs_ilock_data_map_shared(dp);
c24b5dfa 589 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
01f4f327 590 xfs_iunlock(dp, lock_mode);
c24b5dfa
DC
591
592 if (error)
593 goto out;
594
595 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
596 if (error)
597 goto out_free_name;
598
599 return 0;
600
601out_free_name:
602 if (ci_name)
603 kmem_free(ci_name->name);
604out:
605 *ipp = NULL;
606 return error;
607}
608
1da177e4
LT
609/*
610 * Allocate an inode on disk and return a copy of its in-core version.
611 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
612 * appropriately within the inode. The uid and gid for the inode are
613 * set according to the contents of the given cred structure.
614 *
615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
616 * has a free inode available, call xfs_iget() to obtain the in-core
617 * version of the allocated inode. Finally, fill in the inode and
618 * log its initial contents. In this case, ialloc_context would be
619 * set to NULL.
1da177e4 620 *
cd856db6
CM
621 * If xfs_dialloc() does not have an available inode, it will replenish
622 * its supply by doing an allocation. Since we can only do one
623 * allocation within a transaction without deadlocks, we must commit
624 * the current transaction before returning the inode itself.
625 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
626 * The caller should then commit the current transaction, start a new
627 * transaction, and call xfs_ialloc() again to actually get the inode.
628 *
629 * To ensure that some other process does not grab the inode that
630 * was allocated during the first call to xfs_ialloc(), this routine
631 * also returns the [locked] bp pointing to the head of the freelist
632 * as ialloc_context. The caller should hold this buffer across
633 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
634 *
635 * If we are allocating quota inodes, we do not have a parent inode
636 * to attach to or associate with (i.e. pip == NULL) because they
637 * are not linked into the directory structure - they are attached
638 * directly to the superblock - and so have no parent.
1da177e4
LT
639 */
640int
641xfs_ialloc(
642 xfs_trans_t *tp,
643 xfs_inode_t *pip,
576b1d67 644 umode_t mode,
31b084ae 645 xfs_nlink_t nlink,
1da177e4 646 xfs_dev_t rdev,
6743099c 647 prid_t prid,
1da177e4
LT
648 int okalloc,
649 xfs_buf_t **ialloc_context,
1da177e4
LT
650 xfs_inode_t **ipp)
651{
93848a99 652 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
653 xfs_ino_t ino;
654 xfs_inode_t *ip;
1da177e4
LT
655 uint flags;
656 int error;
dff35fd4 657 timespec_t tv;
bf904248 658 int filestreams = 0;
1da177e4
LT
659
660 /*
661 * Call the space management code to pick
662 * the on-disk inode to be allocated.
663 */
b11f94d5 664 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 665 ialloc_context, &ino);
bf904248 666 if (error)
1da177e4 667 return error;
08358906 668 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
669 *ipp = NULL;
670 return 0;
671 }
672 ASSERT(*ialloc_context == NULL);
673
674 /*
675 * Get the in-core inode with the lock held exclusively.
676 * This is because we're setting fields here we need
677 * to prevent others from looking at until we're done.
678 */
93848a99 679 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 680 XFS_ILOCK_EXCL, &ip);
bf904248 681 if (error)
1da177e4 682 return error;
1da177e4
LT
683 ASSERT(ip != NULL);
684
576b1d67 685 ip->i_d.di_mode = mode;
1da177e4
LT
686 ip->i_d.di_onlink = 0;
687 ip->i_d.di_nlink = nlink;
688 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
689 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
690 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 691 xfs_set_projid(ip, prid);
1da177e4
LT
692 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
693
694 /*
695 * If the superblock version is up to where we support new format
696 * inodes and this is currently an old format inode, then change
697 * the inode version number now. This way we only do the conversion
698 * here rather than here and in the flush/logging code.
699 */
93848a99 700 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
51ce16d5
CH
701 ip->i_d.di_version == 1) {
702 ip->i_d.di_version = 2;
1da177e4
LT
703 /*
704 * We've already zeroed the old link count, the projid field,
705 * and the pad field.
706 */
707 }
708
709 /*
710 * Project ids won't be stored on disk if we are using a version 1 inode.
711 */
51ce16d5 712 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
713 xfs_bump_ino_vers2(tp, ip);
714
bd186aa9 715 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 716 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 717 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
718 ip->i_d.di_mode |= S_ISGID;
719 }
720 }
721
722 /*
723 * If the group ID of the new file does not match the effective group
724 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
725 * (and only if the irix_sgid_inherit compatibility variable is set).
726 */
727 if ((irix_sgid_inherit) &&
728 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 729 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
730 ip->i_d.di_mode &= ~S_ISGID;
731 }
732
733 ip->i_d.di_size = 0;
734 ip->i_d.di_nextents = 0;
735 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
736
737 nanotime(&tv);
738 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
739 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
740 ip->i_d.di_atime = ip->i_d.di_mtime;
741 ip->i_d.di_ctime = ip->i_d.di_mtime;
742
1da177e4
LT
743 /*
744 * di_gen will have been taken care of in xfs_iread.
745 */
746 ip->i_d.di_extsize = 0;
747 ip->i_d.di_dmevmask = 0;
748 ip->i_d.di_dmstate = 0;
749 ip->i_d.di_flags = 0;
93848a99
CH
750
751 if (ip->i_d.di_version == 3) {
752 ASSERT(ip->i_d.di_ino == ino);
753 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
754 ip->i_d.di_crc = 0;
755 ip->i_d.di_changecount = 1;
756 ip->i_d.di_lsn = 0;
757 ip->i_d.di_flags2 = 0;
758 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
759 ip->i_d.di_crtime = ip->i_d.di_mtime;
760 }
761
762
1da177e4
LT
763 flags = XFS_ILOG_CORE;
764 switch (mode & S_IFMT) {
765 case S_IFIFO:
766 case S_IFCHR:
767 case S_IFBLK:
768 case S_IFSOCK:
769 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
770 ip->i_df.if_u2.if_rdev = rdev;
771 ip->i_df.if_flags = 0;
772 flags |= XFS_ILOG_DEV;
773 break;
774 case S_IFREG:
bf904248
DC
775 /*
776 * we can't set up filestreams until after the VFS inode
777 * is set up properly.
778 */
779 if (pip && xfs_inode_is_filestream(pip))
780 filestreams = 1;
2a82b8be 781 /* fall through */
1da177e4 782 case S_IFDIR:
b11f94d5 783 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
784 uint di_flags = 0;
785
abbede1b 786 if (S_ISDIR(mode)) {
365ca83d
NS
787 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
788 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
789 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
790 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
791 ip->i_d.di_extsize = pip->i_d.di_extsize;
792 }
abbede1b 793 } else if (S_ISREG(mode)) {
613d7043 794 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 795 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
796 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
797 di_flags |= XFS_DIFLAG_EXTSIZE;
798 ip->i_d.di_extsize = pip->i_d.di_extsize;
799 }
1da177e4
LT
800 }
801 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
802 xfs_inherit_noatime)
365ca83d 803 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
804 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
805 xfs_inherit_nodump)
365ca83d 806 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
807 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
808 xfs_inherit_sync)
365ca83d 809 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
810 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
811 xfs_inherit_nosymlinks)
365ca83d
NS
812 di_flags |= XFS_DIFLAG_NOSYMLINKS;
813 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
814 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
815 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
816 xfs_inherit_nodefrag)
817 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
818 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
819 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 820 ip->i_d.di_flags |= di_flags;
1da177e4
LT
821 }
822 /* FALLTHROUGH */
823 case S_IFLNK:
824 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
825 ip->i_df.if_flags = XFS_IFEXTENTS;
826 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
827 ip->i_df.if_u1.if_extents = NULL;
828 break;
829 default:
830 ASSERT(0);
831 }
832 /*
833 * Attribute fork settings for new inode.
834 */
835 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
836 ip->i_d.di_anextents = 0;
837
838 /*
839 * Log the new values stuffed into the inode.
840 */
ddc3415a 841 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
842 xfs_trans_log_inode(tp, ip, flags);
843
b83bd138 844 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 845 xfs_setup_inode(ip);
1da177e4 846
bf904248
DC
847 /* now we have set up the vfs inode we can associate the filestream */
848 if (filestreams) {
849 error = xfs_filestream_associate(pip, ip);
850 if (error < 0)
851 return -error;
bf904248
DC
852 }
853
1da177e4
LT
854 *ipp = ip;
855 return 0;
856}
857
e546cb79
DC
858/*
859 * Allocates a new inode from disk and return a pointer to the
860 * incore copy. This routine will internally commit the current
861 * transaction and allocate a new one if the Space Manager needed
862 * to do an allocation to replenish the inode free-list.
863 *
864 * This routine is designed to be called from xfs_create and
865 * xfs_create_dir.
866 *
867 */
868int
869xfs_dir_ialloc(
870 xfs_trans_t **tpp, /* input: current transaction;
871 output: may be a new transaction. */
872 xfs_inode_t *dp, /* directory within whose allocate
873 the inode. */
874 umode_t mode,
875 xfs_nlink_t nlink,
876 xfs_dev_t rdev,
877 prid_t prid, /* project id */
878 int okalloc, /* ok to allocate new space */
879 xfs_inode_t **ipp, /* pointer to inode; it will be
880 locked. */
881 int *committed)
882
883{
884 xfs_trans_t *tp;
885 xfs_trans_t *ntp;
886 xfs_inode_t *ip;
887 xfs_buf_t *ialloc_context = NULL;
888 int code;
e546cb79
DC
889 void *dqinfo;
890 uint tflags;
891
892 tp = *tpp;
893 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
894
895 /*
896 * xfs_ialloc will return a pointer to an incore inode if
897 * the Space Manager has an available inode on the free
898 * list. Otherwise, it will do an allocation and replenish
899 * the freelist. Since we can only do one allocation per
900 * transaction without deadlocks, we will need to commit the
901 * current transaction and start a new one. We will then
902 * need to call xfs_ialloc again to get the inode.
903 *
904 * If xfs_ialloc did an allocation to replenish the freelist,
905 * it returns the bp containing the head of the freelist as
906 * ialloc_context. We will hold a lock on it across the
907 * transaction commit so that no other process can steal
908 * the inode(s) that we've just allocated.
909 */
910 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
911 &ialloc_context, &ip);
912
913 /*
914 * Return an error if we were unable to allocate a new inode.
915 * This should only happen if we run out of space on disk or
916 * encounter a disk error.
917 */
918 if (code) {
919 *ipp = NULL;
920 return code;
921 }
922 if (!ialloc_context && !ip) {
923 *ipp = NULL;
924 return XFS_ERROR(ENOSPC);
925 }
926
927 /*
928 * If the AGI buffer is non-NULL, then we were unable to get an
929 * inode in one operation. We need to commit the current
930 * transaction and call xfs_ialloc() again. It is guaranteed
931 * to succeed the second time.
932 */
933 if (ialloc_context) {
3d3c8b52
JL
934 struct xfs_trans_res tres;
935
e546cb79
DC
936 /*
937 * Normally, xfs_trans_commit releases all the locks.
938 * We call bhold to hang on to the ialloc_context across
939 * the commit. Holding this buffer prevents any other
940 * processes from doing any allocations in this
941 * allocation group.
942 */
943 xfs_trans_bhold(tp, ialloc_context);
944 /*
945 * Save the log reservation so we can use
946 * them in the next transaction.
947 */
3d3c8b52
JL
948 tres.tr_logres = xfs_trans_get_log_res(tp);
949 tres.tr_logcount = xfs_trans_get_log_count(tp);
e546cb79
DC
950
951 /*
952 * We want the quota changes to be associated with the next
953 * transaction, NOT this one. So, detach the dqinfo from this
954 * and attach it to the next transaction.
955 */
956 dqinfo = NULL;
957 tflags = 0;
958 if (tp->t_dqinfo) {
959 dqinfo = (void *)tp->t_dqinfo;
960 tp->t_dqinfo = NULL;
961 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
962 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
963 }
964
965 ntp = xfs_trans_dup(tp);
966 code = xfs_trans_commit(tp, 0);
967 tp = ntp;
968 if (committed != NULL) {
969 *committed = 1;
970 }
971 /*
972 * If we get an error during the commit processing,
973 * release the buffer that is still held and return
974 * to the caller.
975 */
976 if (code) {
977 xfs_buf_relse(ialloc_context);
978 if (dqinfo) {
979 tp->t_dqinfo = dqinfo;
980 xfs_trans_free_dqinfo(tp);
981 }
982 *tpp = ntp;
983 *ipp = NULL;
984 return code;
985 }
986
987 /*
988 * transaction commit worked ok so we can drop the extra ticket
989 * reference that we gained in xfs_trans_dup()
990 */
991 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52
JL
992 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
993 code = xfs_trans_reserve(tp, &tres, 0, 0);
994
e546cb79
DC
995 /*
996 * Re-attach the quota info that we detached from prev trx.
997 */
998 if (dqinfo) {
999 tp->t_dqinfo = dqinfo;
1000 tp->t_flags |= tflags;
1001 }
1002
1003 if (code) {
1004 xfs_buf_relse(ialloc_context);
1005 *tpp = ntp;
1006 *ipp = NULL;
1007 return code;
1008 }
1009 xfs_trans_bjoin(tp, ialloc_context);
1010
1011 /*
1012 * Call ialloc again. Since we've locked out all
1013 * other allocations in this allocation group,
1014 * this call should always succeed.
1015 */
1016 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1017 okalloc, &ialloc_context, &ip);
1018
1019 /*
1020 * If we get an error at this point, return to the caller
1021 * so that the current transaction can be aborted.
1022 */
1023 if (code) {
1024 *tpp = tp;
1025 *ipp = NULL;
1026 return code;
1027 }
1028 ASSERT(!ialloc_context && ip);
1029
1030 } else {
1031 if (committed != NULL)
1032 *committed = 0;
1033 }
1034
1035 *ipp = ip;
1036 *tpp = tp;
1037
1038 return 0;
1039}
1040
1041/*
1042 * Decrement the link count on an inode & log the change.
1043 * If this causes the link count to go to zero, initiate the
1044 * logging activity required to truncate a file.
1045 */
1046int /* error */
1047xfs_droplink(
1048 xfs_trans_t *tp,
1049 xfs_inode_t *ip)
1050{
1051 int error;
1052
1053 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1054
1055 ASSERT (ip->i_d.di_nlink > 0);
1056 ip->i_d.di_nlink--;
1057 drop_nlink(VFS_I(ip));
1058 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1059
1060 error = 0;
1061 if (ip->i_d.di_nlink == 0) {
1062 /*
1063 * We're dropping the last link to this file.
1064 * Move the on-disk inode to the AGI unlinked list.
1065 * From xfs_inactive() we will pull the inode from
1066 * the list and free it.
1067 */
1068 error = xfs_iunlink(tp, ip);
1069 }
1070 return error;
1071}
1072
1073/*
1074 * This gets called when the inode's version needs to be changed from 1 to 2.
1075 * Currently this happens when the nlink field overflows the old 16-bit value
1076 * or when chproj is called to change the project for the first time.
1077 * As a side effect the superblock version will also get rev'd
1078 * to contain the NLINK bit.
1079 */
1080void
1081xfs_bump_ino_vers2(
1082 xfs_trans_t *tp,
1083 xfs_inode_t *ip)
1084{
1085 xfs_mount_t *mp;
1086
1087 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1088 ASSERT(ip->i_d.di_version == 1);
1089
1090 ip->i_d.di_version = 2;
1091 ip->i_d.di_onlink = 0;
1092 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1093 mp = tp->t_mountp;
1094 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1095 spin_lock(&mp->m_sb_lock);
1096 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1097 xfs_sb_version_addnlink(&mp->m_sb);
1098 spin_unlock(&mp->m_sb_lock);
1099 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1100 } else {
1101 spin_unlock(&mp->m_sb_lock);
1102 }
1103 }
1104 /* Caller must log the inode */
1105}
1106
1107/*
1108 * Increment the link count on an inode & log the change.
1109 */
1110int
1111xfs_bumplink(
1112 xfs_trans_t *tp,
1113 xfs_inode_t *ip)
1114{
1115 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1116
ab297431 1117 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
e546cb79
DC
1118 ip->i_d.di_nlink++;
1119 inc_nlink(VFS_I(ip));
1120 if ((ip->i_d.di_version == 1) &&
1121 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1122 /*
1123 * The inode has increased its number of links beyond
1124 * what can fit in an old format inode. It now needs
1125 * to be converted to a version 2 inode with a 32 bit
1126 * link count. If this is the first inode in the file
1127 * system to do this, then we need to bump the superblock
1128 * version number as well.
1129 */
1130 xfs_bump_ino_vers2(tp, ip);
1131 }
1132
1133 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1134 return 0;
1135}
1136
c24b5dfa
DC
1137int
1138xfs_create(
1139 xfs_inode_t *dp,
1140 struct xfs_name *name,
1141 umode_t mode,
1142 xfs_dev_t rdev,
1143 xfs_inode_t **ipp)
1144{
1145 int is_dir = S_ISDIR(mode);
1146 struct xfs_mount *mp = dp->i_mount;
1147 struct xfs_inode *ip = NULL;
1148 struct xfs_trans *tp = NULL;
1149 int error;
1150 xfs_bmap_free_t free_list;
1151 xfs_fsblock_t first_block;
1152 bool unlock_dp_on_error = false;
1153 uint cancel_flags;
1154 int committed;
1155 prid_t prid;
1156 struct xfs_dquot *udqp = NULL;
1157 struct xfs_dquot *gdqp = NULL;
1158 struct xfs_dquot *pdqp = NULL;
3d3c8b52 1159 struct xfs_trans_res tres;
c24b5dfa 1160 uint resblks;
c24b5dfa
DC
1161
1162 trace_xfs_create(dp, name);
1163
1164 if (XFS_FORCED_SHUTDOWN(mp))
1165 return XFS_ERROR(EIO);
1166
163467d3 1167 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1168
1169 /*
1170 * Make sure that we have allocated dquot(s) on disk.
1171 */
7aab1b28
DE
1172 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1173 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1174 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1175 &udqp, &gdqp, &pdqp);
1176 if (error)
1177 return error;
1178
1179 if (is_dir) {
1180 rdev = 0;
1181 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
3d3c8b52
JL
1182 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1183 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
c24b5dfa
DC
1184 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1185 } else {
1186 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
3d3c8b52
JL
1187 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1188 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
c24b5dfa
DC
1189 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1190 }
1191
1192 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1193
1194 /*
1195 * Initially assume that the file does not exist and
1196 * reserve the resources for that case. If that is not
1197 * the case we'll drop the one we have and get a more
1198 * appropriate transaction later.
1199 */
3d3c8b52
JL
1200 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1201 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1202 if (error == ENOSPC) {
1203 /* flush outstanding delalloc blocks and retry */
1204 xfs_flush_inodes(mp);
3d3c8b52 1205 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1206 }
1207 if (error == ENOSPC) {
1208 /* No space at all so try a "no-allocation" reservation */
1209 resblks = 0;
3d3c8b52 1210 error = xfs_trans_reserve(tp, &tres, 0, 0);
c24b5dfa
DC
1211 }
1212 if (error) {
1213 cancel_flags = 0;
1214 goto out_trans_cancel;
1215 }
1216
1217 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1218 unlock_dp_on_error = true;
1219
1220 xfs_bmap_init(&free_list, &first_block);
1221
1222 /*
1223 * Reserve disk quota and the inode.
1224 */
1225 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1226 pdqp, resblks, 1, 0);
1227 if (error)
1228 goto out_trans_cancel;
1229
1230 error = xfs_dir_canenter(tp, dp, name, resblks);
1231 if (error)
1232 goto out_trans_cancel;
1233
1234 /*
1235 * A newly created regular or special file just has one directory
1236 * entry pointing to them, but a directory also the "." entry
1237 * pointing to itself.
1238 */
1239 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1240 prid, resblks > 0, &ip, &committed);
1241 if (error) {
1242 if (error == ENOSPC)
1243 goto out_trans_cancel;
1244 goto out_trans_abort;
1245 }
1246
1247 /*
1248 * Now we join the directory inode to the transaction. We do not do it
1249 * earlier because xfs_dir_ialloc might commit the previous transaction
1250 * (and release all the locks). An error from here on will result in
1251 * the transaction cancel unlocking dp so don't do it explicitly in the
1252 * error path.
1253 */
1254 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1255 unlock_dp_on_error = false;
1256
1257 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1258 &first_block, &free_list, resblks ?
1259 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1260 if (error) {
1261 ASSERT(error != ENOSPC);
1262 goto out_trans_abort;
1263 }
1264 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1265 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1266
1267 if (is_dir) {
1268 error = xfs_dir_init(tp, ip, dp);
1269 if (error)
1270 goto out_bmap_cancel;
1271
1272 error = xfs_bumplink(tp, dp);
1273 if (error)
1274 goto out_bmap_cancel;
1275 }
1276
1277 /*
1278 * If this is a synchronous mount, make sure that the
1279 * create transaction goes to disk before returning to
1280 * the user.
1281 */
1282 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1283 xfs_trans_set_sync(tp);
1284
1285 /*
1286 * Attach the dquot(s) to the inodes and modify them incore.
1287 * These ids of the inode couldn't have changed since the new
1288 * inode has been locked ever since it was created.
1289 */
1290 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1291
1292 error = xfs_bmap_finish(&tp, &free_list, &committed);
1293 if (error)
1294 goto out_bmap_cancel;
1295
1296 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1297 if (error)
1298 goto out_release_inode;
1299
1300 xfs_qm_dqrele(udqp);
1301 xfs_qm_dqrele(gdqp);
1302 xfs_qm_dqrele(pdqp);
1303
1304 *ipp = ip;
1305 return 0;
1306
1307 out_bmap_cancel:
1308 xfs_bmap_cancel(&free_list);
1309 out_trans_abort:
1310 cancel_flags |= XFS_TRANS_ABORT;
1311 out_trans_cancel:
1312 xfs_trans_cancel(tp, cancel_flags);
1313 out_release_inode:
1314 /*
1315 * Wait until after the current transaction is aborted to
1316 * release the inode. This prevents recursive transactions
1317 * and deadlocks from xfs_inactive.
1318 */
1319 if (ip)
1320 IRELE(ip);
1321
1322 xfs_qm_dqrele(udqp);
1323 xfs_qm_dqrele(gdqp);
1324 xfs_qm_dqrele(pdqp);
1325
1326 if (unlock_dp_on_error)
1327 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1328 return error;
1329}
1330
99b6436b
ZYW
1331int
1332xfs_create_tmpfile(
1333 struct xfs_inode *dp,
1334 struct dentry *dentry,
1335 umode_t mode)
1336{
1337 struct xfs_mount *mp = dp->i_mount;
1338 struct xfs_inode *ip = NULL;
1339 struct xfs_trans *tp = NULL;
1340 int error;
1341 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1342 prid_t prid;
1343 struct xfs_dquot *udqp = NULL;
1344 struct xfs_dquot *gdqp = NULL;
1345 struct xfs_dquot *pdqp = NULL;
1346 struct xfs_trans_res *tres;
1347 uint resblks;
1348
1349 if (XFS_FORCED_SHUTDOWN(mp))
1350 return XFS_ERROR(EIO);
1351
1352 prid = xfs_get_initial_prid(dp);
1353
1354 /*
1355 * Make sure that we have allocated dquot(s) on disk.
1356 */
1357 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1358 xfs_kgid_to_gid(current_fsgid()), prid,
1359 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1360 &udqp, &gdqp, &pdqp);
1361 if (error)
1362 return error;
1363
1364 resblks = XFS_IALLOC_SPACE_RES(mp);
1365 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1366
1367 tres = &M_RES(mp)->tr_create_tmpfile;
1368 error = xfs_trans_reserve(tp, tres, resblks, 0);
1369 if (error == ENOSPC) {
1370 /* No space at all so try a "no-allocation" reservation */
1371 resblks = 0;
1372 error = xfs_trans_reserve(tp, tres, 0, 0);
1373 }
1374 if (error) {
1375 cancel_flags = 0;
1376 goto out_trans_cancel;
1377 }
1378
1379 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1380 pdqp, resblks, 1, 0);
1381 if (error)
1382 goto out_trans_cancel;
1383
1384 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1385 prid, resblks > 0, &ip, NULL);
1386 if (error) {
1387 if (error == ENOSPC)
1388 goto out_trans_cancel;
1389 goto out_trans_abort;
1390 }
1391
1392 if (mp->m_flags & XFS_MOUNT_WSYNC)
1393 xfs_trans_set_sync(tp);
1394
1395 /*
1396 * Attach the dquot(s) to the inodes and modify them incore.
1397 * These ids of the inode couldn't have changed since the new
1398 * inode has been locked ever since it was created.
1399 */
1400 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1401
1402 ip->i_d.di_nlink--;
1403 d_tmpfile(dentry, VFS_I(ip));
1404 error = xfs_iunlink(tp, ip);
1405 if (error)
1406 goto out_trans_abort;
1407
1408 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1409 if (error)
1410 goto out_release_inode;
1411
1412 xfs_qm_dqrele(udqp);
1413 xfs_qm_dqrele(gdqp);
1414 xfs_qm_dqrele(pdqp);
1415
1416 return 0;
1417
1418 out_trans_abort:
1419 cancel_flags |= XFS_TRANS_ABORT;
1420 out_trans_cancel:
1421 xfs_trans_cancel(tp, cancel_flags);
1422 out_release_inode:
1423 /*
1424 * Wait until after the current transaction is aborted to
1425 * release the inode. This prevents recursive transactions
1426 * and deadlocks from xfs_inactive.
1427 */
1428 if (ip)
1429 IRELE(ip);
1430
1431 xfs_qm_dqrele(udqp);
1432 xfs_qm_dqrele(gdqp);
1433 xfs_qm_dqrele(pdqp);
1434
1435 return error;
1436}
1437
c24b5dfa
DC
1438int
1439xfs_link(
1440 xfs_inode_t *tdp,
1441 xfs_inode_t *sip,
1442 struct xfs_name *target_name)
1443{
1444 xfs_mount_t *mp = tdp->i_mount;
1445 xfs_trans_t *tp;
1446 int error;
1447 xfs_bmap_free_t free_list;
1448 xfs_fsblock_t first_block;
1449 int cancel_flags;
1450 int committed;
1451 int resblks;
1452
1453 trace_xfs_link(tdp, target_name);
1454
1455 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1456
1457 if (XFS_FORCED_SHUTDOWN(mp))
1458 return XFS_ERROR(EIO);
1459
1460 error = xfs_qm_dqattach(sip, 0);
1461 if (error)
1462 goto std_return;
1463
1464 error = xfs_qm_dqattach(tdp, 0);
1465 if (error)
1466 goto std_return;
1467
1468 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1469 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1470 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1471 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
c24b5dfa
DC
1472 if (error == ENOSPC) {
1473 resblks = 0;
3d3c8b52 1474 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa
DC
1475 }
1476 if (error) {
1477 cancel_flags = 0;
1478 goto error_return;
1479 }
1480
1481 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1482
1483 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1484 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1485
1486 /*
1487 * If we are using project inheritance, we only allow hard link
1488 * creation in our tree when the project IDs are the same; else
1489 * the tree quota mechanism could be circumvented.
1490 */
1491 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1492 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1493 error = XFS_ERROR(EXDEV);
1494 goto error_return;
1495 }
1496
1497 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1498 if (error)
1499 goto error_return;
1500
1501 xfs_bmap_init(&free_list, &first_block);
1502
ab297431
ZYW
1503 if (sip->i_d.di_nlink == 0) {
1504 error = xfs_iunlink_remove(tp, sip);
1505 if (error)
1506 goto abort_return;
1507 }
1508
c24b5dfa
DC
1509 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1510 &first_block, &free_list, resblks);
1511 if (error)
1512 goto abort_return;
1513 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1514 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1515
1516 error = xfs_bumplink(tp, sip);
1517 if (error)
1518 goto abort_return;
1519
1520 /*
1521 * If this is a synchronous mount, make sure that the
1522 * link transaction goes to disk before returning to
1523 * the user.
1524 */
1525 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1526 xfs_trans_set_sync(tp);
1527 }
1528
1529 error = xfs_bmap_finish (&tp, &free_list, &committed);
1530 if (error) {
1531 xfs_bmap_cancel(&free_list);
1532 goto abort_return;
1533 }
1534
1535 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1536
1537 abort_return:
1538 cancel_flags |= XFS_TRANS_ABORT;
1539 error_return:
1540 xfs_trans_cancel(tp, cancel_flags);
1541 std_return:
1542 return error;
1543}
1544
1da177e4 1545/*
8f04c47a
CH
1546 * Free up the underlying blocks past new_size. The new size must be smaller
1547 * than the current size. This routine can be used both for the attribute and
1548 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1549 *
f6485057
DC
1550 * The transaction passed to this routine must have made a permanent log
1551 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1552 * given transaction and start new ones, so make sure everything involved in
1553 * the transaction is tidy before calling here. Some transaction will be
1554 * returned to the caller to be committed. The incoming transaction must
1555 * already include the inode, and both inode locks must be held exclusively.
1556 * The inode must also be "held" within the transaction. On return the inode
1557 * will be "held" within the returned transaction. This routine does NOT
1558 * require any disk space to be reserved for it within the transaction.
1da177e4 1559 *
f6485057
DC
1560 * If we get an error, we must return with the inode locked and linked into the
1561 * current transaction. This keeps things simple for the higher level code,
1562 * because it always knows that the inode is locked and held in the transaction
1563 * that returns to it whether errors occur or not. We don't mark the inode
1564 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1565 */
1566int
8f04c47a
CH
1567xfs_itruncate_extents(
1568 struct xfs_trans **tpp,
1569 struct xfs_inode *ip,
1570 int whichfork,
1571 xfs_fsize_t new_size)
1da177e4 1572{
8f04c47a
CH
1573 struct xfs_mount *mp = ip->i_mount;
1574 struct xfs_trans *tp = *tpp;
1575 struct xfs_trans *ntp;
1576 xfs_bmap_free_t free_list;
1577 xfs_fsblock_t first_block;
1578 xfs_fileoff_t first_unmap_block;
1579 xfs_fileoff_t last_block;
1580 xfs_filblks_t unmap_len;
1581 int committed;
1582 int error = 0;
1583 int done = 0;
1da177e4 1584
0b56185b
CH
1585 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1586 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1587 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1588 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1589 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1590 ASSERT(ip->i_itemp != NULL);
898621d5 1591 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1592 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1593
673e8e59
CH
1594 trace_xfs_itruncate_extents_start(ip, new_size);
1595
1da177e4
LT
1596 /*
1597 * Since it is possible for space to become allocated beyond
1598 * the end of the file (in a crash where the space is allocated
1599 * but the inode size is not yet updated), simply remove any
1600 * blocks which show up between the new EOF and the maximum
1601 * possible file size. If the first block to be removed is
1602 * beyond the maximum file size (ie it is the same as last_block),
1603 * then there is nothing to do.
1604 */
8f04c47a 1605 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1606 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1607 if (first_unmap_block == last_block)
1608 return 0;
1609
1610 ASSERT(first_unmap_block < last_block);
1611 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1612 while (!done) {
9d87c319 1613 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1614 error = xfs_bunmapi(tp, ip,
3e57ecf6 1615 first_unmap_block, unmap_len,
8f04c47a 1616 xfs_bmapi_aflag(whichfork),
1da177e4 1617 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1618 &first_block, &free_list,
b4e9181e 1619 &done);
8f04c47a
CH
1620 if (error)
1621 goto out_bmap_cancel;
1da177e4
LT
1622
1623 /*
1624 * Duplicate the transaction that has the permanent
1625 * reservation and commit the old transaction.
1626 */
8f04c47a 1627 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1628 if (committed)
ddc3415a 1629 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1630 if (error)
1631 goto out_bmap_cancel;
1da177e4
LT
1632
1633 if (committed) {
1634 /*
f6485057 1635 * Mark the inode dirty so it will be logged and
e5720eec 1636 * moved forward in the log as part of every commit.
1da177e4 1637 */
8f04c47a 1638 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1639 }
f6485057 1640
8f04c47a
CH
1641 ntp = xfs_trans_dup(tp);
1642 error = xfs_trans_commit(tp, 0);
1643 tp = ntp;
e5720eec 1644
ddc3415a 1645 xfs_trans_ijoin(tp, ip, 0);
f6485057 1646
cc09c0dc 1647 if (error)
8f04c47a
CH
1648 goto out;
1649
cc09c0dc 1650 /*
8f04c47a 1651 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1652 * reference that we gained in xfs_trans_dup()
1653 */
8f04c47a 1654 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52 1655 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
f6485057 1656 if (error)
8f04c47a 1657 goto out;
1da177e4 1658 }
8f04c47a 1659
673e8e59
CH
1660 /*
1661 * Always re-log the inode so that our permanent transaction can keep
1662 * on rolling it forward in the log.
1663 */
1664 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1665
1666 trace_xfs_itruncate_extents_end(ip, new_size);
1667
8f04c47a
CH
1668out:
1669 *tpp = tp;
1670 return error;
1671out_bmap_cancel:
1da177e4 1672 /*
8f04c47a
CH
1673 * If the bunmapi call encounters an error, return to the caller where
1674 * the transaction can be properly aborted. We just need to make sure
1675 * we're not holding any resources that we were not when we came in.
1da177e4 1676 */
8f04c47a
CH
1677 xfs_bmap_cancel(&free_list);
1678 goto out;
1679}
1680
c24b5dfa
DC
1681int
1682xfs_release(
1683 xfs_inode_t *ip)
1684{
1685 xfs_mount_t *mp = ip->i_mount;
1686 int error;
1687
1688 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1689 return 0;
1690
1691 /* If this is a read-only mount, don't do this (would generate I/O) */
1692 if (mp->m_flags & XFS_MOUNT_RDONLY)
1693 return 0;
1694
1695 if (!XFS_FORCED_SHUTDOWN(mp)) {
1696 int truncated;
1697
1698 /*
1699 * If we are using filestreams, and we have an unlinked
1700 * file that we are processing the last close on, then nothing
1701 * will be able to reopen and write to this file. Purge this
1702 * inode from the filestreams cache so that it doesn't delay
1703 * teardown of the inode.
1704 */
1705 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1706 xfs_filestream_deassociate(ip);
1707
1708 /*
1709 * If we previously truncated this file and removed old data
1710 * in the process, we want to initiate "early" writeout on
1711 * the last close. This is an attempt to combat the notorious
1712 * NULL files problem which is particularly noticeable from a
1713 * truncate down, buffered (re-)write (delalloc), followed by
1714 * a crash. What we are effectively doing here is
1715 * significantly reducing the time window where we'd otherwise
1716 * be exposed to that problem.
1717 */
1718 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1719 if (truncated) {
1720 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1721 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1722 error = -filemap_flush(VFS_I(ip)->i_mapping);
1723 if (error)
1724 return error;
1725 }
1726 }
1727 }
1728
1729 if (ip->i_d.di_nlink == 0)
1730 return 0;
1731
1732 if (xfs_can_free_eofblocks(ip, false)) {
1733
1734 /*
1735 * If we can't get the iolock just skip truncating the blocks
1736 * past EOF because we could deadlock with the mmap_sem
1737 * otherwise. We'll get another chance to drop them once the
1738 * last reference to the inode is dropped, so we'll never leak
1739 * blocks permanently.
1740 *
1741 * Further, check if the inode is being opened, written and
1742 * closed frequently and we have delayed allocation blocks
1743 * outstanding (e.g. streaming writes from the NFS server),
1744 * truncating the blocks past EOF will cause fragmentation to
1745 * occur.
1746 *
1747 * In this case don't do the truncation, either, but we have to
1748 * be careful how we detect this case. Blocks beyond EOF show
1749 * up as i_delayed_blks even when the inode is clean, so we
1750 * need to truncate them away first before checking for a dirty
1751 * release. Hence on the first dirty close we will still remove
1752 * the speculative allocation, but after that we will leave it
1753 * in place.
1754 */
1755 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1756 return 0;
1757
1758 error = xfs_free_eofblocks(mp, ip, true);
1759 if (error && error != EAGAIN)
1760 return error;
1761
1762 /* delalloc blocks after truncation means it really is dirty */
1763 if (ip->i_delayed_blks)
1764 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1765 }
1766 return 0;
1767}
1768
f7be2d7f
BF
1769/*
1770 * xfs_inactive_truncate
1771 *
1772 * Called to perform a truncate when an inode becomes unlinked.
1773 */
1774STATIC int
1775xfs_inactive_truncate(
1776 struct xfs_inode *ip)
1777{
1778 struct xfs_mount *mp = ip->i_mount;
1779 struct xfs_trans *tp;
1780 int error;
1781
1782 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1783 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1784 if (error) {
1785 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1786 xfs_trans_cancel(tp, 0);
1787 return error;
1788 }
1789
1790 xfs_ilock(ip, XFS_ILOCK_EXCL);
1791 xfs_trans_ijoin(tp, ip, 0);
1792
1793 /*
1794 * Log the inode size first to prevent stale data exposure in the event
1795 * of a system crash before the truncate completes. See the related
1796 * comment in xfs_setattr_size() for details.
1797 */
1798 ip->i_d.di_size = 0;
1799 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1800
1801 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1802 if (error)
1803 goto error_trans_cancel;
1804
1805 ASSERT(ip->i_d.di_nextents == 0);
1806
1807 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1808 if (error)
1809 goto error_unlock;
1810
1811 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1812 return 0;
1813
1814error_trans_cancel:
1815 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1816error_unlock:
1817 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1818 return error;
1819}
1820
88877d2b
BF
1821/*
1822 * xfs_inactive_ifree()
1823 *
1824 * Perform the inode free when an inode is unlinked.
1825 */
1826STATIC int
1827xfs_inactive_ifree(
1828 struct xfs_inode *ip)
1829{
1830 xfs_bmap_free_t free_list;
1831 xfs_fsblock_t first_block;
1832 int committed;
1833 struct xfs_mount *mp = ip->i_mount;
1834 struct xfs_trans *tp;
1835 int error;
1836
1837 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1838 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1839 if (error) {
1840 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1841 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1842 return error;
1843 }
1844
1845 xfs_ilock(ip, XFS_ILOCK_EXCL);
1846 xfs_trans_ijoin(tp, ip, 0);
1847
1848 xfs_bmap_init(&free_list, &first_block);
1849 error = xfs_ifree(tp, ip, &free_list);
1850 if (error) {
1851 /*
1852 * If we fail to free the inode, shut down. The cancel
1853 * might do that, we need to make sure. Otherwise the
1854 * inode might be lost for a long time or forever.
1855 */
1856 if (!XFS_FORCED_SHUTDOWN(mp)) {
1857 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1858 __func__, error);
1859 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1860 }
1861 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1862 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1863 return error;
1864 }
1865
1866 /*
1867 * Credit the quota account(s). The inode is gone.
1868 */
1869 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1870
1871 /*
1872 * Just ignore errors at this point. There is nothing we can
1873 * do except to try to keep going. Make sure it's not a silent
1874 * error.
1875 */
1876 error = xfs_bmap_finish(&tp, &free_list, &committed);
1877 if (error)
1878 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1879 __func__, error);
1880 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1881 if (error)
1882 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1883 __func__, error);
1884
1885 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1886 return 0;
1887}
1888
c24b5dfa
DC
1889/*
1890 * xfs_inactive
1891 *
1892 * This is called when the vnode reference count for the vnode
1893 * goes to zero. If the file has been unlinked, then it must
1894 * now be truncated. Also, we clear all of the read-ahead state
1895 * kept for the inode here since the file is now closed.
1896 */
74564fb4 1897void
c24b5dfa
DC
1898xfs_inactive(
1899 xfs_inode_t *ip)
1900{
3d3c8b52 1901 struct xfs_mount *mp;
3d3c8b52
JL
1902 int error;
1903 int truncate = 0;
c24b5dfa
DC
1904
1905 /*
1906 * If the inode is already free, then there can be nothing
1907 * to clean up here.
1908 */
d948709b 1909 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1910 ASSERT(ip->i_df.if_real_bytes == 0);
1911 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1912 return;
c24b5dfa
DC
1913 }
1914
1915 mp = ip->i_mount;
1916
c24b5dfa
DC
1917 /* If this is a read-only mount, don't do this (would generate I/O) */
1918 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1919 return;
c24b5dfa
DC
1920
1921 if (ip->i_d.di_nlink != 0) {
1922 /*
1923 * force is true because we are evicting an inode from the
1924 * cache. Post-eof blocks must be freed, lest we end up with
1925 * broken free space accounting.
1926 */
74564fb4
BF
1927 if (xfs_can_free_eofblocks(ip, true))
1928 xfs_free_eofblocks(mp, ip, false);
1929
1930 return;
c24b5dfa
DC
1931 }
1932
1933 if (S_ISREG(ip->i_d.di_mode) &&
1934 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1935 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1936 truncate = 1;
1937
1938 error = xfs_qm_dqattach(ip, 0);
1939 if (error)
74564fb4 1940 return;
c24b5dfa 1941
f7be2d7f 1942 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1943 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1944 else if (truncate)
1945 error = xfs_inactive_truncate(ip);
1946 if (error)
74564fb4 1947 return;
c24b5dfa
DC
1948
1949 /*
1950 * If there are attributes associated with the file then blow them away
1951 * now. The code calls a routine that recursively deconstructs the
1952 * attribute fork. We need to just commit the current transaction
1953 * because we can't use it for xfs_attr_inactive().
1954 */
1955 if (ip->i_d.di_anextents > 0) {
1956 ASSERT(ip->i_d.di_forkoff != 0);
1957
c24b5dfa
DC
1958 error = xfs_attr_inactive(ip);
1959 if (error)
74564fb4 1960 return;
c24b5dfa
DC
1961 }
1962
1963 if (ip->i_afp)
1964 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1965
1966 ASSERT(ip->i_d.di_anextents == 0);
1967
1968 /*
1969 * Free the inode.
1970 */
88877d2b
BF
1971 error = xfs_inactive_ifree(ip);
1972 if (error)
74564fb4 1973 return;
c24b5dfa
DC
1974
1975 /*
1976 * Release the dquots held by inode, if any.
1977 */
1978 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1979}
1980
1da177e4
LT
1981/*
1982 * This is called when the inode's link count goes to 0.
1983 * We place the on-disk inode on a list in the AGI. It
1984 * will be pulled from this list when the inode is freed.
1985 */
1986int
1987xfs_iunlink(
1988 xfs_trans_t *tp,
1989 xfs_inode_t *ip)
1990{
1991 xfs_mount_t *mp;
1992 xfs_agi_t *agi;
1993 xfs_dinode_t *dip;
1994 xfs_buf_t *agibp;
1995 xfs_buf_t *ibp;
1da177e4
LT
1996 xfs_agino_t agino;
1997 short bucket_index;
1998 int offset;
1999 int error;
1da177e4
LT
2000
2001 ASSERT(ip->i_d.di_nlink == 0);
2002 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
2003
2004 mp = tp->t_mountp;
2005
1da177e4
LT
2006 /*
2007 * Get the agi buffer first. It ensures lock ordering
2008 * on the list.
2009 */
5e1be0fb 2010 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 2011 if (error)
1da177e4 2012 return error;
1da177e4 2013 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2014
1da177e4
LT
2015 /*
2016 * Get the index into the agi hash table for the
2017 * list this inode will go on.
2018 */
2019 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2020 ASSERT(agino != 0);
2021 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2022 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 2023 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 2024
69ef921b 2025 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
2026 /*
2027 * There is already another inode in the bucket we need
2028 * to add ourselves to. Add us at the front of the list.
2029 * Here we put the head pointer into our next pointer,
2030 * and then we fall through to point the head at us.
2031 */
475ee413
CH
2032 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2033 0, 0);
c319b58b
VA
2034 if (error)
2035 return error;
2036
69ef921b 2037 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2038 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2039 offset = ip->i_imap.im_boffset +
1da177e4 2040 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2041
2042 /* need to recalc the inode CRC if appropriate */
2043 xfs_dinode_calc_crc(mp, dip);
2044
1da177e4
LT
2045 xfs_trans_inode_buf(tp, ibp);
2046 xfs_trans_log_buf(tp, ibp, offset,
2047 (offset + sizeof(xfs_agino_t) - 1));
2048 xfs_inobp_check(mp, ibp);
2049 }
2050
2051 /*
2052 * Point the bucket head pointer at the inode being inserted.
2053 */
2054 ASSERT(agino != 0);
16259e7d 2055 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2056 offset = offsetof(xfs_agi_t, agi_unlinked) +
2057 (sizeof(xfs_agino_t) * bucket_index);
2058 xfs_trans_log_buf(tp, agibp, offset,
2059 (offset + sizeof(xfs_agino_t) - 1));
2060 return 0;
2061}
2062
2063/*
2064 * Pull the on-disk inode from the AGI unlinked list.
2065 */
2066STATIC int
2067xfs_iunlink_remove(
2068 xfs_trans_t *tp,
2069 xfs_inode_t *ip)
2070{
2071 xfs_ino_t next_ino;
2072 xfs_mount_t *mp;
2073 xfs_agi_t *agi;
2074 xfs_dinode_t *dip;
2075 xfs_buf_t *agibp;
2076 xfs_buf_t *ibp;
2077 xfs_agnumber_t agno;
1da177e4
LT
2078 xfs_agino_t agino;
2079 xfs_agino_t next_agino;
2080 xfs_buf_t *last_ibp;
6fdf8ccc 2081 xfs_dinode_t *last_dip = NULL;
1da177e4 2082 short bucket_index;
6fdf8ccc 2083 int offset, last_offset = 0;
1da177e4 2084 int error;
1da177e4 2085
1da177e4 2086 mp = tp->t_mountp;
1da177e4 2087 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2088
2089 /*
2090 * Get the agi buffer first. It ensures lock ordering
2091 * on the list.
2092 */
5e1be0fb
CH
2093 error = xfs_read_agi(mp, tp, agno, &agibp);
2094 if (error)
1da177e4 2095 return error;
5e1be0fb 2096
1da177e4 2097 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2098
1da177e4
LT
2099 /*
2100 * Get the index into the agi hash table for the
2101 * list this inode will go on.
2102 */
2103 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2104 ASSERT(agino != 0);
2105 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2106 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2107 ASSERT(agi->agi_unlinked[bucket_index]);
2108
16259e7d 2109 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2110 /*
475ee413
CH
2111 * We're at the head of the list. Get the inode's on-disk
2112 * buffer to see if there is anyone after us on the list.
2113 * Only modify our next pointer if it is not already NULLAGINO.
2114 * This saves us the overhead of dealing with the buffer when
2115 * there is no need to change it.
1da177e4 2116 */
475ee413
CH
2117 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2118 0, 0);
1da177e4 2119 if (error) {
475ee413 2120 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2121 __func__, error);
1da177e4
LT
2122 return error;
2123 }
347d1c01 2124 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2125 ASSERT(next_agino != 0);
2126 if (next_agino != NULLAGINO) {
347d1c01 2127 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2128 offset = ip->i_imap.im_boffset +
1da177e4 2129 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2130
2131 /* need to recalc the inode CRC if appropriate */
2132 xfs_dinode_calc_crc(mp, dip);
2133
1da177e4
LT
2134 xfs_trans_inode_buf(tp, ibp);
2135 xfs_trans_log_buf(tp, ibp, offset,
2136 (offset + sizeof(xfs_agino_t) - 1));
2137 xfs_inobp_check(mp, ibp);
2138 } else {
2139 xfs_trans_brelse(tp, ibp);
2140 }
2141 /*
2142 * Point the bucket head pointer at the next inode.
2143 */
2144 ASSERT(next_agino != 0);
2145 ASSERT(next_agino != agino);
16259e7d 2146 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2147 offset = offsetof(xfs_agi_t, agi_unlinked) +
2148 (sizeof(xfs_agino_t) * bucket_index);
2149 xfs_trans_log_buf(tp, agibp, offset,
2150 (offset + sizeof(xfs_agino_t) - 1));
2151 } else {
2152 /*
2153 * We need to search the list for the inode being freed.
2154 */
16259e7d 2155 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2156 last_ibp = NULL;
2157 while (next_agino != agino) {
129dbc9a
CH
2158 struct xfs_imap imap;
2159
2160 if (last_ibp)
1da177e4 2161 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2162
2163 imap.im_blkno = 0;
1da177e4 2164 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2165
2166 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2167 if (error) {
2168 xfs_warn(mp,
2169 "%s: xfs_imap returned error %d.",
2170 __func__, error);
2171 return error;
2172 }
2173
2174 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2175 &last_ibp, 0, 0);
1da177e4 2176 if (error) {
0b932ccc 2177 xfs_warn(mp,
129dbc9a 2178 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2179 __func__, error);
1da177e4
LT
2180 return error;
2181 }
129dbc9a
CH
2182
2183 last_offset = imap.im_boffset;
347d1c01 2184 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2185 ASSERT(next_agino != NULLAGINO);
2186 ASSERT(next_agino != 0);
2187 }
475ee413 2188
1da177e4 2189 /*
475ee413
CH
2190 * Now last_ibp points to the buffer previous to us on the
2191 * unlinked list. Pull us from the list.
1da177e4 2192 */
475ee413
CH
2193 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2194 0, 0);
1da177e4 2195 if (error) {
475ee413 2196 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2197 __func__, error);
1da177e4
LT
2198 return error;
2199 }
347d1c01 2200 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2201 ASSERT(next_agino != 0);
2202 ASSERT(next_agino != agino);
2203 if (next_agino != NULLAGINO) {
347d1c01 2204 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2205 offset = ip->i_imap.im_boffset +
1da177e4 2206 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2207
2208 /* need to recalc the inode CRC if appropriate */
2209 xfs_dinode_calc_crc(mp, dip);
2210
1da177e4
LT
2211 xfs_trans_inode_buf(tp, ibp);
2212 xfs_trans_log_buf(tp, ibp, offset,
2213 (offset + sizeof(xfs_agino_t) - 1));
2214 xfs_inobp_check(mp, ibp);
2215 } else {
2216 xfs_trans_brelse(tp, ibp);
2217 }
2218 /*
2219 * Point the previous inode on the list to the next inode.
2220 */
347d1c01 2221 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2222 ASSERT(next_agino != 0);
2223 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2224
2225 /* need to recalc the inode CRC if appropriate */
2226 xfs_dinode_calc_crc(mp, last_dip);
2227
1da177e4
LT
2228 xfs_trans_inode_buf(tp, last_ibp);
2229 xfs_trans_log_buf(tp, last_ibp, offset,
2230 (offset + sizeof(xfs_agino_t) - 1));
2231 xfs_inobp_check(mp, last_ibp);
2232 }
2233 return 0;
2234}
2235
5b3eed75 2236/*
0b8182db 2237 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2238 * inodes that are in memory - they all must be marked stale and attached to
2239 * the cluster buffer.
2240 */
2a30f36d 2241STATIC int
1da177e4
LT
2242xfs_ifree_cluster(
2243 xfs_inode_t *free_ip,
2244 xfs_trans_t *tp,
2245 xfs_ino_t inum)
2246{
2247 xfs_mount_t *mp = free_ip->i_mount;
2248 int blks_per_cluster;
982e939e 2249 int inodes_per_cluster;
1da177e4 2250 int nbufs;
5b257b4a 2251 int i, j;
1da177e4
LT
2252 xfs_daddr_t blkno;
2253 xfs_buf_t *bp;
5b257b4a 2254 xfs_inode_t *ip;
1da177e4
LT
2255 xfs_inode_log_item_t *iip;
2256 xfs_log_item_t *lip;
5017e97d 2257 struct xfs_perag *pag;
1da177e4 2258
5017e97d 2259 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2260 blks_per_cluster = xfs_icluster_size_fsb(mp);
2261 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2262 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2263
982e939e 2264 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
1da177e4
LT
2265 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2266 XFS_INO_TO_AGBNO(mp, inum));
2267
5b257b4a
DC
2268 /*
2269 * We obtain and lock the backing buffer first in the process
2270 * here, as we have to ensure that any dirty inode that we
2271 * can't get the flush lock on is attached to the buffer.
2272 * If we scan the in-memory inodes first, then buffer IO can
2273 * complete before we get a lock on it, and hence we may fail
2274 * to mark all the active inodes on the buffer stale.
2275 */
2276 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2277 mp->m_bsize * blks_per_cluster,
2278 XBF_UNMAPPED);
5b257b4a 2279
2a30f36d
CS
2280 if (!bp)
2281 return ENOMEM;
b0f539de
DC
2282
2283 /*
2284 * This buffer may not have been correctly initialised as we
2285 * didn't read it from disk. That's not important because we are
2286 * only using to mark the buffer as stale in the log, and to
2287 * attach stale cached inodes on it. That means it will never be
2288 * dispatched for IO. If it is, we want to know about it, and we
2289 * want it to fail. We can acheive this by adding a write
2290 * verifier to the buffer.
2291 */
1813dd64 2292 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2293
5b257b4a
DC
2294 /*
2295 * Walk the inodes already attached to the buffer and mark them
2296 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2297 * in-memory inode walk can't lock them. By marking them all
2298 * stale first, we will not attempt to lock them in the loop
2299 * below as the XFS_ISTALE flag will be set.
5b257b4a 2300 */
adadbeef 2301 lip = bp->b_fspriv;
5b257b4a
DC
2302 while (lip) {
2303 if (lip->li_type == XFS_LI_INODE) {
2304 iip = (xfs_inode_log_item_t *)lip;
2305 ASSERT(iip->ili_logged == 1);
ca30b2a7 2306 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2307 xfs_trans_ail_copy_lsn(mp->m_ail,
2308 &iip->ili_flush_lsn,
2309 &iip->ili_item.li_lsn);
2310 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2311 }
2312 lip = lip->li_bio_list;
2313 }
1da177e4 2314
5b3eed75 2315
1da177e4 2316 /*
5b257b4a
DC
2317 * For each inode in memory attempt to add it to the inode
2318 * buffer and set it up for being staled on buffer IO
2319 * completion. This is safe as we've locked out tail pushing
2320 * and flushing by locking the buffer.
1da177e4 2321 *
5b257b4a
DC
2322 * We have already marked every inode that was part of a
2323 * transaction stale above, which means there is no point in
2324 * even trying to lock them.
1da177e4 2325 */
982e939e 2326 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2327retry:
1a3e8f3d 2328 rcu_read_lock();
da353b0d
DC
2329 ip = radix_tree_lookup(&pag->pag_ici_root,
2330 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2331
1a3e8f3d
DC
2332 /* Inode not in memory, nothing to do */
2333 if (!ip) {
2334 rcu_read_unlock();
1da177e4
LT
2335 continue;
2336 }
2337
1a3e8f3d
DC
2338 /*
2339 * because this is an RCU protected lookup, we could
2340 * find a recently freed or even reallocated inode
2341 * during the lookup. We need to check under the
2342 * i_flags_lock for a valid inode here. Skip it if it
2343 * is not valid, the wrong inode or stale.
2344 */
2345 spin_lock(&ip->i_flags_lock);
2346 if (ip->i_ino != inum + i ||
2347 __xfs_iflags_test(ip, XFS_ISTALE)) {
2348 spin_unlock(&ip->i_flags_lock);
2349 rcu_read_unlock();
2350 continue;
2351 }
2352 spin_unlock(&ip->i_flags_lock);
2353
5b3eed75
DC
2354 /*
2355 * Don't try to lock/unlock the current inode, but we
2356 * _cannot_ skip the other inodes that we did not find
2357 * in the list attached to the buffer and are not
2358 * already marked stale. If we can't lock it, back off
2359 * and retry.
2360 */
5b257b4a
DC
2361 if (ip != free_ip &&
2362 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2363 rcu_read_unlock();
5b3eed75
DC
2364 delay(1);
2365 goto retry;
1da177e4 2366 }
1a3e8f3d 2367 rcu_read_unlock();
1da177e4 2368
5b3eed75 2369 xfs_iflock(ip);
5b257b4a 2370 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2371
5b3eed75
DC
2372 /*
2373 * we don't need to attach clean inodes or those only
2374 * with unlogged changes (which we throw away, anyway).
2375 */
1da177e4 2376 iip = ip->i_itemp;
5b3eed75 2377 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2378 ASSERT(ip != free_ip);
1da177e4
LT
2379 xfs_ifunlock(ip);
2380 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2381 continue;
2382 }
2383
f5d8d5c4
CH
2384 iip->ili_last_fields = iip->ili_fields;
2385 iip->ili_fields = 0;
1da177e4 2386 iip->ili_logged = 1;
7b2e2a31
DC
2387 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2388 &iip->ili_item.li_lsn);
1da177e4 2389
ca30b2a7
CH
2390 xfs_buf_attach_iodone(bp, xfs_istale_done,
2391 &iip->ili_item);
5b257b4a
DC
2392
2393 if (ip != free_ip)
1da177e4 2394 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2395 }
2396
5b3eed75 2397 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2398 xfs_trans_binval(tp, bp);
2399 }
2400
5017e97d 2401 xfs_perag_put(pag);
2a30f36d 2402 return 0;
1da177e4
LT
2403}
2404
2405/*
2406 * This is called to return an inode to the inode free list.
2407 * The inode should already be truncated to 0 length and have
2408 * no pages associated with it. This routine also assumes that
2409 * the inode is already a part of the transaction.
2410 *
2411 * The on-disk copy of the inode will have been added to the list
2412 * of unlinked inodes in the AGI. We need to remove the inode from
2413 * that list atomically with respect to freeing it here.
2414 */
2415int
2416xfs_ifree(
2417 xfs_trans_t *tp,
2418 xfs_inode_t *ip,
2419 xfs_bmap_free_t *flist)
2420{
2421 int error;
2422 int delete;
2423 xfs_ino_t first_ino;
2424
579aa9ca 2425 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2426 ASSERT(ip->i_d.di_nlink == 0);
2427 ASSERT(ip->i_d.di_nextents == 0);
2428 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2429 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2430 ASSERT(ip->i_d.di_nblocks == 0);
2431
2432 /*
2433 * Pull the on-disk inode from the AGI unlinked list.
2434 */
2435 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2436 if (error)
1da177e4 2437 return error;
1da177e4
LT
2438
2439 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1baaed8f 2440 if (error)
1da177e4 2441 return error;
1baaed8f 2442
1da177e4
LT
2443 ip->i_d.di_mode = 0; /* mark incore inode as free */
2444 ip->i_d.di_flags = 0;
2445 ip->i_d.di_dmevmask = 0;
2446 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2447 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2448 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2449 /*
2450 * Bump the generation count so no one will be confused
2451 * by reincarnations of this inode.
2452 */
2453 ip->i_d.di_gen++;
2454 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2455
1baaed8f 2456 if (delete)
2a30f36d 2457 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4 2458
2a30f36d 2459 return error;
1da177e4
LT
2460}
2461
1da177e4 2462/*
60ec6783
CH
2463 * This is called to unpin an inode. The caller must have the inode locked
2464 * in at least shared mode so that the buffer cannot be subsequently pinned
2465 * once someone is waiting for it to be unpinned.
1da177e4 2466 */
60ec6783 2467static void
f392e631 2468xfs_iunpin(
60ec6783 2469 struct xfs_inode *ip)
1da177e4 2470{
579aa9ca 2471 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2472
4aaf15d1
DC
2473 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2474
a3f74ffb 2475 /* Give the log a push to start the unpinning I/O */
60ec6783 2476 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2477
a3f74ffb 2478}
1da177e4 2479
f392e631
CH
2480static void
2481__xfs_iunpin_wait(
2482 struct xfs_inode *ip)
2483{
2484 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2485 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2486
2487 xfs_iunpin(ip);
2488
2489 do {
2490 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2491 if (xfs_ipincount(ip))
2492 io_schedule();
2493 } while (xfs_ipincount(ip));
2494 finish_wait(wq, &wait.wait);
2495}
2496
777df5af 2497void
a3f74ffb 2498xfs_iunpin_wait(
60ec6783 2499 struct xfs_inode *ip)
a3f74ffb 2500{
f392e631
CH
2501 if (xfs_ipincount(ip))
2502 __xfs_iunpin_wait(ip);
1da177e4
LT
2503}
2504
27320369
DC
2505/*
2506 * Removing an inode from the namespace involves removing the directory entry
2507 * and dropping the link count on the inode. Removing the directory entry can
2508 * result in locking an AGF (directory blocks were freed) and removing a link
2509 * count can result in placing the inode on an unlinked list which results in
2510 * locking an AGI.
2511 *
2512 * The big problem here is that we have an ordering constraint on AGF and AGI
2513 * locking - inode allocation locks the AGI, then can allocate a new extent for
2514 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2515 * removes the inode from the unlinked list, requiring that we lock the AGI
2516 * first, and then freeing the inode can result in an inode chunk being freed
2517 * and hence freeing disk space requiring that we lock an AGF.
2518 *
2519 * Hence the ordering that is imposed by other parts of the code is AGI before
2520 * AGF. This means we cannot remove the directory entry before we drop the inode
2521 * reference count and put it on the unlinked list as this results in a lock
2522 * order of AGF then AGI, and this can deadlock against inode allocation and
2523 * freeing. Therefore we must drop the link counts before we remove the
2524 * directory entry.
2525 *
2526 * This is still safe from a transactional point of view - it is not until we
2527 * get to xfs_bmap_finish() that we have the possibility of multiple
2528 * transactions in this operation. Hence as long as we remove the directory
2529 * entry and drop the link count in the first transaction of the remove
2530 * operation, there are no transactional constraints on the ordering here.
2531 */
c24b5dfa
DC
2532int
2533xfs_remove(
2534 xfs_inode_t *dp,
2535 struct xfs_name *name,
2536 xfs_inode_t *ip)
2537{
2538 xfs_mount_t *mp = dp->i_mount;
2539 xfs_trans_t *tp = NULL;
2540 int is_dir = S_ISDIR(ip->i_d.di_mode);
2541 int error = 0;
2542 xfs_bmap_free_t free_list;
2543 xfs_fsblock_t first_block;
2544 int cancel_flags;
2545 int committed;
2546 int link_zero;
2547 uint resblks;
2548 uint log_count;
2549
2550 trace_xfs_remove(dp, name);
2551
2552 if (XFS_FORCED_SHUTDOWN(mp))
2553 return XFS_ERROR(EIO);
2554
2555 error = xfs_qm_dqattach(dp, 0);
2556 if (error)
2557 goto std_return;
2558
2559 error = xfs_qm_dqattach(ip, 0);
2560 if (error)
2561 goto std_return;
2562
2563 if (is_dir) {
2564 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2565 log_count = XFS_DEFAULT_LOG_COUNT;
2566 } else {
2567 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2568 log_count = XFS_REMOVE_LOG_COUNT;
2569 }
2570 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2571
2572 /*
2573 * We try to get the real space reservation first,
2574 * allowing for directory btree deletion(s) implying
2575 * possible bmap insert(s). If we can't get the space
2576 * reservation then we use 0 instead, and avoid the bmap
2577 * btree insert(s) in the directory code by, if the bmap
2578 * insert tries to happen, instead trimming the LAST
2579 * block from the directory.
2580 */
2581 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2582 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
c24b5dfa
DC
2583 if (error == ENOSPC) {
2584 resblks = 0;
3d3c8b52 2585 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2586 }
2587 if (error) {
2588 ASSERT(error != ENOSPC);
2589 cancel_flags = 0;
2590 goto out_trans_cancel;
2591 }
2592
2593 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2594
2595 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2596 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2597
2598 /*
2599 * If we're removing a directory perform some additional validation.
2600 */
27320369 2601 cancel_flags |= XFS_TRANS_ABORT;
c24b5dfa
DC
2602 if (is_dir) {
2603 ASSERT(ip->i_d.di_nlink >= 2);
2604 if (ip->i_d.di_nlink != 2) {
2605 error = XFS_ERROR(ENOTEMPTY);
2606 goto out_trans_cancel;
2607 }
2608 if (!xfs_dir_isempty(ip)) {
2609 error = XFS_ERROR(ENOTEMPTY);
2610 goto out_trans_cancel;
2611 }
c24b5dfa 2612
27320369 2613 /* Drop the link from ip's "..". */
c24b5dfa
DC
2614 error = xfs_droplink(tp, dp);
2615 if (error)
27320369 2616 goto out_trans_cancel;
c24b5dfa 2617
27320369 2618 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2619 error = xfs_droplink(tp, ip);
2620 if (error)
27320369 2621 goto out_trans_cancel;
c24b5dfa
DC
2622 } else {
2623 /*
2624 * When removing a non-directory we need to log the parent
2625 * inode here. For a directory this is done implicitly
2626 * by the xfs_droplink call for the ".." entry.
2627 */
2628 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2629 }
27320369 2630 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2631
27320369 2632 /* Drop the link from dp to ip. */
c24b5dfa
DC
2633 error = xfs_droplink(tp, ip);
2634 if (error)
27320369 2635 goto out_trans_cancel;
c24b5dfa 2636
27320369 2637 /* Determine if this is the last link while the inode is locked */
c24b5dfa
DC
2638 link_zero = (ip->i_d.di_nlink == 0);
2639
27320369
DC
2640 xfs_bmap_init(&free_list, &first_block);
2641 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2642 &first_block, &free_list, resblks);
2643 if (error) {
2644 ASSERT(error != ENOENT);
2645 goto out_bmap_cancel;
2646 }
2647
c24b5dfa
DC
2648 /*
2649 * If this is a synchronous mount, make sure that the
2650 * remove transaction goes to disk before returning to
2651 * the user.
2652 */
2653 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2654 xfs_trans_set_sync(tp);
2655
2656 error = xfs_bmap_finish(&tp, &free_list, &committed);
2657 if (error)
2658 goto out_bmap_cancel;
2659
2660 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2661 if (error)
2662 goto std_return;
2663
2664 /*
2665 * If we are using filestreams, kill the stream association.
2666 * If the file is still open it may get a new one but that
2667 * will get killed on last close in xfs_close() so we don't
2668 * have to worry about that.
2669 */
2670 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2671 xfs_filestream_deassociate(ip);
2672
2673 return 0;
2674
2675 out_bmap_cancel:
2676 xfs_bmap_cancel(&free_list);
c24b5dfa
DC
2677 out_trans_cancel:
2678 xfs_trans_cancel(tp, cancel_flags);
2679 std_return:
2680 return error;
2681}
2682
f6bba201
DC
2683/*
2684 * Enter all inodes for a rename transaction into a sorted array.
2685 */
2686STATIC void
2687xfs_sort_for_rename(
2688 xfs_inode_t *dp1, /* in: old (source) directory inode */
2689 xfs_inode_t *dp2, /* in: new (target) directory inode */
2690 xfs_inode_t *ip1, /* in: inode of old entry */
2691 xfs_inode_t *ip2, /* in: inode of new entry, if it
2692 already exists, NULL otherwise. */
2693 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2694 int *num_inodes) /* out: number of inodes in array */
2695{
2696 xfs_inode_t *temp;
2697 int i, j;
2698
2699 /*
2700 * i_tab contains a list of pointers to inodes. We initialize
2701 * the table here & we'll sort it. We will then use it to
2702 * order the acquisition of the inode locks.
2703 *
2704 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2705 */
2706 i_tab[0] = dp1;
2707 i_tab[1] = dp2;
2708 i_tab[2] = ip1;
2709 if (ip2) {
2710 *num_inodes = 4;
2711 i_tab[3] = ip2;
2712 } else {
2713 *num_inodes = 3;
2714 i_tab[3] = NULL;
2715 }
2716
2717 /*
2718 * Sort the elements via bubble sort. (Remember, there are at
2719 * most 4 elements to sort, so this is adequate.)
2720 */
2721 for (i = 0; i < *num_inodes; i++) {
2722 for (j = 1; j < *num_inodes; j++) {
2723 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2724 temp = i_tab[j];
2725 i_tab[j] = i_tab[j-1];
2726 i_tab[j-1] = temp;
2727 }
2728 }
2729 }
2730}
2731
2732/*
2733 * xfs_rename
2734 */
2735int
2736xfs_rename(
2737 xfs_inode_t *src_dp,
2738 struct xfs_name *src_name,
2739 xfs_inode_t *src_ip,
2740 xfs_inode_t *target_dp,
2741 struct xfs_name *target_name,
2742 xfs_inode_t *target_ip)
2743{
2744 xfs_trans_t *tp = NULL;
2745 xfs_mount_t *mp = src_dp->i_mount;
2746 int new_parent; /* moving to a new dir */
2747 int src_is_directory; /* src_name is a directory */
2748 int error;
2749 xfs_bmap_free_t free_list;
2750 xfs_fsblock_t first_block;
2751 int cancel_flags;
2752 int committed;
2753 xfs_inode_t *inodes[4];
2754 int spaceres;
2755 int num_inodes;
2756
2757 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2758
2759 new_parent = (src_dp != target_dp);
2760 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2761
2762 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2763 inodes, &num_inodes);
2764
2765 xfs_bmap_init(&free_list, &first_block);
2766 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2767 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2768 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2769 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
f6bba201
DC
2770 if (error == ENOSPC) {
2771 spaceres = 0;
3d3c8b52 2772 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201
DC
2773 }
2774 if (error) {
2775 xfs_trans_cancel(tp, 0);
2776 goto std_return;
2777 }
2778
2779 /*
2780 * Attach the dquots to the inodes
2781 */
2782 error = xfs_qm_vop_rename_dqattach(inodes);
2783 if (error) {
2784 xfs_trans_cancel(tp, cancel_flags);
2785 goto std_return;
2786 }
2787
2788 /*
2789 * Lock all the participating inodes. Depending upon whether
2790 * the target_name exists in the target directory, and
2791 * whether the target directory is the same as the source
2792 * directory, we can lock from 2 to 4 inodes.
2793 */
2794 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2795
2796 /*
2797 * Join all the inodes to the transaction. From this point on,
2798 * we can rely on either trans_commit or trans_cancel to unlock
2799 * them.
2800 */
2801 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2802 if (new_parent)
2803 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2804 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2805 if (target_ip)
2806 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2807
2808 /*
2809 * If we are using project inheritance, we only allow renames
2810 * into our tree when the project IDs are the same; else the
2811 * tree quota mechanism would be circumvented.
2812 */
2813 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2814 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2815 error = XFS_ERROR(EXDEV);
2816 goto error_return;
2817 }
2818
2819 /*
2820 * Set up the target.
2821 */
2822 if (target_ip == NULL) {
2823 /*
2824 * If there's no space reservation, check the entry will
2825 * fit before actually inserting it.
2826 */
2827 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2828 if (error)
2829 goto error_return;
2830 /*
2831 * If target does not exist and the rename crosses
2832 * directories, adjust the target directory link count
2833 * to account for the ".." reference from the new entry.
2834 */
2835 error = xfs_dir_createname(tp, target_dp, target_name,
2836 src_ip->i_ino, &first_block,
2837 &free_list, spaceres);
2838 if (error == ENOSPC)
2839 goto error_return;
2840 if (error)
2841 goto abort_return;
2842
2843 xfs_trans_ichgtime(tp, target_dp,
2844 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2845
2846 if (new_parent && src_is_directory) {
2847 error = xfs_bumplink(tp, target_dp);
2848 if (error)
2849 goto abort_return;
2850 }
2851 } else { /* target_ip != NULL */
2852 /*
2853 * If target exists and it's a directory, check that both
2854 * target and source are directories and that target can be
2855 * destroyed, or that neither is a directory.
2856 */
2857 if (S_ISDIR(target_ip->i_d.di_mode)) {
2858 /*
2859 * Make sure target dir is empty.
2860 */
2861 if (!(xfs_dir_isempty(target_ip)) ||
2862 (target_ip->i_d.di_nlink > 2)) {
2863 error = XFS_ERROR(EEXIST);
2864 goto error_return;
2865 }
2866 }
2867
2868 /*
2869 * Link the source inode under the target name.
2870 * If the source inode is a directory and we are moving
2871 * it across directories, its ".." entry will be
2872 * inconsistent until we replace that down below.
2873 *
2874 * In case there is already an entry with the same
2875 * name at the destination directory, remove it first.
2876 */
2877 error = xfs_dir_replace(tp, target_dp, target_name,
2878 src_ip->i_ino,
2879 &first_block, &free_list, spaceres);
2880 if (error)
2881 goto abort_return;
2882
2883 xfs_trans_ichgtime(tp, target_dp,
2884 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2885
2886 /*
2887 * Decrement the link count on the target since the target
2888 * dir no longer points to it.
2889 */
2890 error = xfs_droplink(tp, target_ip);
2891 if (error)
2892 goto abort_return;
2893
2894 if (src_is_directory) {
2895 /*
2896 * Drop the link from the old "." entry.
2897 */
2898 error = xfs_droplink(tp, target_ip);
2899 if (error)
2900 goto abort_return;
2901 }
2902 } /* target_ip != NULL */
2903
2904 /*
2905 * Remove the source.
2906 */
2907 if (new_parent && src_is_directory) {
2908 /*
2909 * Rewrite the ".." entry to point to the new
2910 * directory.
2911 */
2912 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2913 target_dp->i_ino,
2914 &first_block, &free_list, spaceres);
2915 ASSERT(error != EEXIST);
2916 if (error)
2917 goto abort_return;
2918 }
2919
2920 /*
2921 * We always want to hit the ctime on the source inode.
2922 *
2923 * This isn't strictly required by the standards since the source
2924 * inode isn't really being changed, but old unix file systems did
2925 * it and some incremental backup programs won't work without it.
2926 */
2927 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2928 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2929
2930 /*
2931 * Adjust the link count on src_dp. This is necessary when
2932 * renaming a directory, either within one parent when
2933 * the target existed, or across two parent directories.
2934 */
2935 if (src_is_directory && (new_parent || target_ip != NULL)) {
2936
2937 /*
2938 * Decrement link count on src_directory since the
2939 * entry that's moved no longer points to it.
2940 */
2941 error = xfs_droplink(tp, src_dp);
2942 if (error)
2943 goto abort_return;
2944 }
2945
2946 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2947 &first_block, &free_list, spaceres);
2948 if (error)
2949 goto abort_return;
2950
2951 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2952 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2953 if (new_parent)
2954 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2955
2956 /*
2957 * If this is a synchronous mount, make sure that the
2958 * rename transaction goes to disk before returning to
2959 * the user.
2960 */
2961 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2962 xfs_trans_set_sync(tp);
2963 }
2964
2965 error = xfs_bmap_finish(&tp, &free_list, &committed);
2966 if (error) {
2967 xfs_bmap_cancel(&free_list);
2968 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2969 XFS_TRANS_ABORT));
2970 goto std_return;
2971 }
2972
2973 /*
2974 * trans_commit will unlock src_ip, target_ip & decrement
2975 * the vnode references.
2976 */
2977 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2978
2979 abort_return:
2980 cancel_flags |= XFS_TRANS_ABORT;
2981 error_return:
2982 xfs_bmap_cancel(&free_list);
2983 xfs_trans_cancel(tp, cancel_flags);
2984 std_return:
2985 return error;
2986}
2987
5c4d97d0
DC
2988STATIC int
2989xfs_iflush_cluster(
2990 xfs_inode_t *ip,
2991 xfs_buf_t *bp)
1da177e4 2992{
5c4d97d0
DC
2993 xfs_mount_t *mp = ip->i_mount;
2994 struct xfs_perag *pag;
2995 unsigned long first_index, mask;
2996 unsigned long inodes_per_cluster;
2997 int ilist_size;
2998 xfs_inode_t **ilist;
2999 xfs_inode_t *iq;
3000 int nr_found;
3001 int clcount = 0;
3002 int bufwasdelwri;
1da177e4 3003 int i;
1da177e4 3004
5c4d97d0 3005 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3006
0f49efd8 3007 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
5c4d97d0
DC
3008 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3009 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3010 if (!ilist)
3011 goto out_put;
1da177e4 3012
0f49efd8 3013 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3014 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3015 rcu_read_lock();
3016 /* really need a gang lookup range call here */
3017 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3018 first_index, inodes_per_cluster);
3019 if (nr_found == 0)
3020 goto out_free;
3021
3022 for (i = 0; i < nr_found; i++) {
3023 iq = ilist[i];
3024 if (iq == ip)
bad55843 3025 continue;
1a3e8f3d
DC
3026
3027 /*
3028 * because this is an RCU protected lookup, we could find a
3029 * recently freed or even reallocated inode during the lookup.
3030 * We need to check under the i_flags_lock for a valid inode
3031 * here. Skip it if it is not valid or the wrong inode.
3032 */
3033 spin_lock(&ip->i_flags_lock);
3034 if (!ip->i_ino ||
3035 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3036 spin_unlock(&ip->i_flags_lock);
3037 continue;
3038 }
3039 spin_unlock(&ip->i_flags_lock);
3040
bad55843
DC
3041 /*
3042 * Do an un-protected check to see if the inode is dirty and
3043 * is a candidate for flushing. These checks will be repeated
3044 * later after the appropriate locks are acquired.
3045 */
33540408 3046 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3047 continue;
bad55843
DC
3048
3049 /*
3050 * Try to get locks. If any are unavailable or it is pinned,
3051 * then this inode cannot be flushed and is skipped.
3052 */
3053
3054 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3055 continue;
3056 if (!xfs_iflock_nowait(iq)) {
3057 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3058 continue;
3059 }
3060 if (xfs_ipincount(iq)) {
3061 xfs_ifunlock(iq);
3062 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3063 continue;
3064 }
3065
3066 /*
3067 * arriving here means that this inode can be flushed. First
3068 * re-check that it's dirty before flushing.
3069 */
33540408
DC
3070 if (!xfs_inode_clean(iq)) {
3071 int error;
bad55843
DC
3072 error = xfs_iflush_int(iq, bp);
3073 if (error) {
3074 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3075 goto cluster_corrupt_out;
3076 }
3077 clcount++;
3078 } else {
3079 xfs_ifunlock(iq);
3080 }
3081 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3082 }
3083
3084 if (clcount) {
3085 XFS_STATS_INC(xs_icluster_flushcnt);
3086 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3087 }
3088
3089out_free:
1a3e8f3d 3090 rcu_read_unlock();
f0e2d93c 3091 kmem_free(ilist);
44b56e0a
DC
3092out_put:
3093 xfs_perag_put(pag);
bad55843
DC
3094 return 0;
3095
3096
3097cluster_corrupt_out:
3098 /*
3099 * Corruption detected in the clustering loop. Invalidate the
3100 * inode buffer and shut down the filesystem.
3101 */
1a3e8f3d 3102 rcu_read_unlock();
bad55843 3103 /*
43ff2122 3104 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3105 * brelse can handle it with no problems. If not, shut down the
3106 * filesystem before releasing the buffer.
3107 */
43ff2122 3108 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3109 if (bufwasdelwri)
3110 xfs_buf_relse(bp);
3111
3112 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3113
3114 if (!bufwasdelwri) {
3115 /*
3116 * Just like incore_relse: if we have b_iodone functions,
3117 * mark the buffer as an error and call them. Otherwise
3118 * mark it as stale and brelse.
3119 */
cb669ca5 3120 if (bp->b_iodone) {
bad55843 3121 XFS_BUF_UNDONE(bp);
c867cb61 3122 xfs_buf_stale(bp);
5a52c2a5 3123 xfs_buf_ioerror(bp, EIO);
1a1a3e97 3124 xfs_buf_ioend(bp, 0);
bad55843 3125 } else {
c867cb61 3126 xfs_buf_stale(bp);
bad55843
DC
3127 xfs_buf_relse(bp);
3128 }
3129 }
3130
3131 /*
3132 * Unlocks the flush lock
3133 */
04913fdd 3134 xfs_iflush_abort(iq, false);
f0e2d93c 3135 kmem_free(ilist);
44b56e0a 3136 xfs_perag_put(pag);
bad55843
DC
3137 return XFS_ERROR(EFSCORRUPTED);
3138}
3139
1da177e4 3140/*
4c46819a
CH
3141 * Flush dirty inode metadata into the backing buffer.
3142 *
3143 * The caller must have the inode lock and the inode flush lock held. The
3144 * inode lock will still be held upon return to the caller, and the inode
3145 * flush lock will be released after the inode has reached the disk.
3146 *
3147 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3148 */
3149int
3150xfs_iflush(
4c46819a
CH
3151 struct xfs_inode *ip,
3152 struct xfs_buf **bpp)
1da177e4 3153{
4c46819a
CH
3154 struct xfs_mount *mp = ip->i_mount;
3155 struct xfs_buf *bp;
3156 struct xfs_dinode *dip;
1da177e4 3157 int error;
1da177e4
LT
3158
3159 XFS_STATS_INC(xs_iflush_count);
3160
579aa9ca 3161 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3162 ASSERT(xfs_isiflocked(ip));
1da177e4 3163 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3164 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3165
4c46819a 3166 *bpp = NULL;
1da177e4 3167
1da177e4
LT
3168 xfs_iunpin_wait(ip);
3169
4b6a4688
DC
3170 /*
3171 * For stale inodes we cannot rely on the backing buffer remaining
3172 * stale in cache for the remaining life of the stale inode and so
475ee413 3173 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3174 * inodes below. We have to check this after ensuring the inode is
3175 * unpinned so that it is safe to reclaim the stale inode after the
3176 * flush call.
3177 */
3178 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3179 xfs_ifunlock(ip);
3180 return 0;
3181 }
3182
1da177e4
LT
3183 /*
3184 * This may have been unpinned because the filesystem is shutting
3185 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3186 * to disk, because the log record didn't make it to disk.
3187 *
3188 * We also have to remove the log item from the AIL in this case,
3189 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3190 */
3191 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
3192 error = XFS_ERROR(EIO);
3193 goto abort_out;
1da177e4
LT
3194 }
3195
a3f74ffb
DC
3196 /*
3197 * Get the buffer containing the on-disk inode.
3198 */
475ee413
CH
3199 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3200 0);
a3f74ffb
DC
3201 if (error || !bp) {
3202 xfs_ifunlock(ip);
3203 return error;
3204 }
3205
1da177e4
LT
3206 /*
3207 * First flush out the inode that xfs_iflush was called with.
3208 */
3209 error = xfs_iflush_int(ip, bp);
bad55843 3210 if (error)
1da177e4 3211 goto corrupt_out;
1da177e4 3212
a3f74ffb
DC
3213 /*
3214 * If the buffer is pinned then push on the log now so we won't
3215 * get stuck waiting in the write for too long.
3216 */
811e64c7 3217 if (xfs_buf_ispinned(bp))
a14a348b 3218 xfs_log_force(mp, 0);
a3f74ffb 3219
1da177e4
LT
3220 /*
3221 * inode clustering:
3222 * see if other inodes can be gathered into this write
3223 */
bad55843
DC
3224 error = xfs_iflush_cluster(ip, bp);
3225 if (error)
3226 goto cluster_corrupt_out;
1da177e4 3227
4c46819a
CH
3228 *bpp = bp;
3229 return 0;
1da177e4
LT
3230
3231corrupt_out:
3232 xfs_buf_relse(bp);
7d04a335 3233 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3234cluster_corrupt_out:
32ce90a4
CH
3235 error = XFS_ERROR(EFSCORRUPTED);
3236abort_out:
1da177e4
LT
3237 /*
3238 * Unlocks the flush lock
3239 */
04913fdd 3240 xfs_iflush_abort(ip, false);
32ce90a4 3241 return error;
1da177e4
LT
3242}
3243
1da177e4
LT
3244STATIC int
3245xfs_iflush_int(
93848a99
CH
3246 struct xfs_inode *ip,
3247 struct xfs_buf *bp)
1da177e4 3248{
93848a99
CH
3249 struct xfs_inode_log_item *iip = ip->i_itemp;
3250 struct xfs_dinode *dip;
3251 struct xfs_mount *mp = ip->i_mount;
1da177e4 3252
579aa9ca 3253 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3254 ASSERT(xfs_isiflocked(ip));
1da177e4 3255 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3256 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3257 ASSERT(iip != NULL && iip->ili_fields != 0);
1da177e4 3258
1da177e4 3259 /* set *dip = inode's place in the buffer */
92bfc6e7 3260 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3261
69ef921b 3262 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3263 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3264 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3265 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3266 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3267 goto corrupt_out;
3268 }
3269 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3270 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3271 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3272 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3273 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3274 goto corrupt_out;
3275 }
abbede1b 3276 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3277 if (XFS_TEST_ERROR(
3278 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3279 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3280 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3281 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3282 "%s: Bad regular inode %Lu, ptr 0x%p",
3283 __func__, ip->i_ino, ip);
1da177e4
LT
3284 goto corrupt_out;
3285 }
abbede1b 3286 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3287 if (XFS_TEST_ERROR(
3288 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3289 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3290 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3291 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3292 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3293 "%s: Bad directory inode %Lu, ptr 0x%p",
3294 __func__, ip->i_ino, ip);
1da177e4
LT
3295 goto corrupt_out;
3296 }
3297 }
3298 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3299 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3300 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3301 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3302 "%s: detected corrupt incore inode %Lu, "
3303 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3304 __func__, ip->i_ino,
1da177e4 3305 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3306 ip->i_d.di_nblocks, ip);
1da177e4
LT
3307 goto corrupt_out;
3308 }
3309 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3310 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3311 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3312 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3313 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3314 goto corrupt_out;
3315 }
e60896d8 3316
1da177e4 3317 /*
e60896d8
DC
3318 * Inode item log recovery for v1/v2 inodes are dependent on the
3319 * di_flushiter count for correct sequencing. We bump the flush
3320 * iteration count so we can detect flushes which postdate a log record
3321 * during recovery. This is redundant as we now log every change and
3322 * hence this can't happen but we need to still do it to ensure
3323 * backwards compatibility with old kernels that predate logging all
3324 * inode changes.
1da177e4 3325 */
e60896d8
DC
3326 if (ip->i_d.di_version < 3)
3327 ip->i_d.di_flushiter++;
1da177e4
LT
3328
3329 /*
3330 * Copy the dirty parts of the inode into the on-disk
3331 * inode. We always copy out the core of the inode,
3332 * because if the inode is dirty at all the core must
3333 * be.
3334 */
81591fe2 3335 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3336
3337 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3338 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3339 ip->i_d.di_flushiter = 0;
3340
3341 /*
3342 * If this is really an old format inode and the superblock version
3343 * has not been updated to support only new format inodes, then
3344 * convert back to the old inode format. If the superblock version
3345 * has been updated, then make the conversion permanent.
3346 */
51ce16d5
CH
3347 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3348 if (ip->i_d.di_version == 1) {
62118709 3349 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3350 /*
3351 * Convert it back.
3352 */
3353 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 3354 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3355 } else {
3356 /*
3357 * The superblock version has already been bumped,
3358 * so just make the conversion to the new inode
3359 * format permanent.
3360 */
51ce16d5
CH
3361 ip->i_d.di_version = 2;
3362 dip->di_version = 2;
1da177e4 3363 ip->i_d.di_onlink = 0;
81591fe2 3364 dip->di_onlink = 0;
1da177e4 3365 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
3366 memset(&(dip->di_pad[0]), 0,
3367 sizeof(dip->di_pad));
6743099c 3368 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
3369 }
3370 }
3371
e4ac967b
DC
3372 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3373 if (XFS_IFORK_Q(ip))
3374 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3375 xfs_inobp_check(mp, bp);
3376
3377 /*
f5d8d5c4
CH
3378 * We've recorded everything logged in the inode, so we'd like to clear
3379 * the ili_fields bits so we don't log and flush things unnecessarily.
3380 * However, we can't stop logging all this information until the data
3381 * we've copied into the disk buffer is written to disk. If we did we
3382 * might overwrite the copy of the inode in the log with all the data
3383 * after re-logging only part of it, and in the face of a crash we
3384 * wouldn't have all the data we need to recover.
1da177e4 3385 *
f5d8d5c4
CH
3386 * What we do is move the bits to the ili_last_fields field. When
3387 * logging the inode, these bits are moved back to the ili_fields field.
3388 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3389 * know that the information those bits represent is permanently on
3390 * disk. As long as the flush completes before the inode is logged
3391 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3392 *
f5d8d5c4
CH
3393 * We can play with the ili_fields bits here, because the inode lock
3394 * must be held exclusively in order to set bits there and the flush
3395 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3396 * done routine can tell whether or not to look in the AIL. Also, store
3397 * the current LSN of the inode so that we can tell whether the item has
3398 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3399 * need the AIL lock, because it is a 64 bit value that cannot be read
3400 * atomically.
1da177e4 3401 */
93848a99
CH
3402 iip->ili_last_fields = iip->ili_fields;
3403 iip->ili_fields = 0;
3404 iip->ili_logged = 1;
1da177e4 3405
93848a99
CH
3406 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3407 &iip->ili_item.li_lsn);
1da177e4 3408
93848a99
CH
3409 /*
3410 * Attach the function xfs_iflush_done to the inode's
3411 * buffer. This will remove the inode from the AIL
3412 * and unlock the inode's flush lock when the inode is
3413 * completely written to disk.
3414 */
3415 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3416
93848a99
CH
3417 /* update the lsn in the on disk inode if required */
3418 if (ip->i_d.di_version == 3)
3419 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3420
3421 /* generate the checksum. */
3422 xfs_dinode_calc_crc(mp, dip);
1da177e4 3423
93848a99
CH
3424 ASSERT(bp->b_fspriv != NULL);
3425 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3426 return 0;
3427
3428corrupt_out:
3429 return XFS_ERROR(EFSCORRUPTED);
3430}