]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/xfs/xfs_inode.c
xfs: move xfs_fsb_to_db to xfs_bmap.h
[mirror_ubuntu-hirsute-kernel.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451 25#include "xfs_inum.h"
1da177e4
LT
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_sb.h"
29#include "xfs_ag.h"
1da177e4 30#include "xfs_mount.h"
1da177e4 31#include "xfs_bmap_btree.h"
a844f451 32#include "xfs_alloc_btree.h"
1da177e4 33#include "xfs_ialloc_btree.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4 35#include "xfs_dinode.h"
1da177e4 36#include "xfs_inode.h"
1da177e4 37#include "xfs_buf_item.h"
a844f451
NS
38#include "xfs_inode_item.h"
39#include "xfs_btree.h"
40#include "xfs_alloc.h"
41#include "xfs_ialloc.h"
42#include "xfs_bmap.h"
1da177e4 43#include "xfs_error.h"
1da177e4 44#include "xfs_utils.h"
1da177e4 45#include "xfs_quota.h"
2a82b8be 46#include "xfs_filestream.h"
739bfb2a 47#include "xfs_vnodeops.h"
0b1b213f 48#include "xfs_trace.h"
1da177e4 49
1da177e4
LT
50kmem_zone_t *xfs_ifork_zone;
51kmem_zone_t *xfs_inode_zone;
1da177e4
LT
52
53/*
8f04c47a 54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
55 * freed from a file in a single transaction.
56 */
57#define XFS_ITRUNC_MAX_EXTENTS 2
58
59STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
63
1da177e4
LT
64#ifdef DEBUG
65/*
66 * Make sure that the extents in the given memory buffer
67 * are valid.
68 */
69STATIC void
70xfs_validate_extents(
4eea22f0 71 xfs_ifork_t *ifp,
1da177e4 72 int nrecs,
1da177e4
LT
73 xfs_exntfmt_t fmt)
74{
75 xfs_bmbt_irec_t irec;
a6f64d4a 76 xfs_bmbt_rec_host_t rec;
1da177e4
LT
77 int i;
78
79 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
80 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
81 rec.l0 = get_unaligned(&ep->l0);
82 rec.l1 = get_unaligned(&ep->l1);
83 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
84 if (fmt == XFS_EXTFMT_NOSTATE)
85 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
86 }
87}
88#else /* DEBUG */
a6f64d4a 89#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
90#endif /* DEBUG */
91
92/*
93 * Check that none of the inode's in the buffer have a next
94 * unlinked field of 0.
95 */
96#if defined(DEBUG)
97void
98xfs_inobp_check(
99 xfs_mount_t *mp,
100 xfs_buf_t *bp)
101{
102 int i;
103 int j;
104 xfs_dinode_t *dip;
105
106 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
107
108 for (i = 0; i < j; i++) {
109 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
110 i * mp->m_sb.sb_inodesize);
111 if (!dip->di_next_unlinked) {
53487786
DC
112 xfs_alert(mp,
113 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
1da177e4
LT
114 bp);
115 ASSERT(dip->di_next_unlinked);
116 }
117 }
118}
119#endif
120
4ae29b43
DC
121/*
122 * Find the buffer associated with the given inode map
123 * We do basic validation checks on the buffer once it has been
124 * retrieved from disk.
125 */
126STATIC int
127xfs_imap_to_bp(
128 xfs_mount_t *mp,
129 xfs_trans_t *tp,
92bfc6e7 130 struct xfs_imap *imap,
4ae29b43
DC
131 xfs_buf_t **bpp,
132 uint buf_flags,
b48d8d64 133 uint iget_flags)
4ae29b43
DC
134{
135 int error;
136 int i;
137 int ni;
138 xfs_buf_t *bp;
139
140 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 141 (int)imap->im_len, buf_flags, &bp);
4ae29b43 142 if (error) {
a3f74ffb 143 if (error != EAGAIN) {
0b932ccc
DC
144 xfs_warn(mp,
145 "%s: xfs_trans_read_buf() returned error %d.",
146 __func__, error);
a3f74ffb 147 } else {
0cadda1c 148 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb 149 }
4ae29b43
DC
150 return error;
151 }
152
153 /*
154 * Validate the magic number and version of every inode in the buffer
155 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
156 */
157#ifdef DEBUG
158 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
159#else /* usual case */
160 ni = 1;
161#endif
162
163 for (i = 0; i < ni; i++) {
164 int di_ok;
165 xfs_dinode_t *dip;
166
167 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
168 (i << mp->m_sb.sb_inodelog));
69ef921b 169 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
81591fe2 170 XFS_DINODE_GOOD_VERSION(dip->di_version);
4ae29b43
DC
171 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
172 XFS_ERRTAG_ITOBP_INOTOBP,
173 XFS_RANDOM_ITOBP_INOTOBP))) {
1920779e 174 if (iget_flags & XFS_IGET_UNTRUSTED) {
4ae29b43
DC
175 xfs_trans_brelse(tp, bp);
176 return XFS_ERROR(EINVAL);
177 }
178 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
179 XFS_ERRLEVEL_HIGH, mp, dip);
180#ifdef DEBUG
0b932ccc
DC
181 xfs_emerg(mp,
182 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
4ae29b43 183 (unsigned long long)imap->im_blkno, i,
81591fe2 184 be16_to_cpu(dip->di_magic));
0b932ccc 185 ASSERT(0);
4ae29b43
DC
186#endif
187 xfs_trans_brelse(tp, bp);
188 return XFS_ERROR(EFSCORRUPTED);
189 }
190 }
191
192 xfs_inobp_check(mp, bp);
4ae29b43
DC
193 *bpp = bp;
194 return 0;
195}
196
1da177e4
LT
197/*
198 * This routine is called to map an inode number within a file
199 * system to the buffer containing the on-disk version of the
200 * inode. It returns a pointer to the buffer containing the
201 * on-disk inode in the bpp parameter, and in the dip parameter
202 * it returns a pointer to the on-disk inode within that buffer.
203 *
204 * If a non-zero error is returned, then the contents of bpp and
205 * dipp are undefined.
206 *
207 * Use xfs_imap() to determine the size and location of the
208 * buffer to read from disk.
209 */
c679eef0 210int
1da177e4
LT
211xfs_inotobp(
212 xfs_mount_t *mp,
213 xfs_trans_t *tp,
214 xfs_ino_t ino,
215 xfs_dinode_t **dipp,
216 xfs_buf_t **bpp,
c679eef0
CH
217 int *offset,
218 uint imap_flags)
1da177e4 219{
92bfc6e7 220 struct xfs_imap imap;
1da177e4
LT
221 xfs_buf_t *bp;
222 int error;
1da177e4 223
1da177e4 224 imap.im_blkno = 0;
a1941895 225 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
4ae29b43 226 if (error)
1da177e4 227 return error;
1da177e4 228
a8acad70 229 error = xfs_imap_to_bp(mp, tp, &imap, &bp, 0, imap_flags);
4ae29b43 230 if (error)
1da177e4 231 return error;
1da177e4 232
1da177e4
LT
233 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
234 *bpp = bp;
235 *offset = imap.im_boffset;
236 return 0;
237}
238
239
240/*
241 * This routine is called to map an inode to the buffer containing
242 * the on-disk version of the inode. It returns a pointer to the
243 * buffer containing the on-disk inode in the bpp parameter, and in
244 * the dip parameter it returns a pointer to the on-disk inode within
245 * that buffer.
246 *
247 * If a non-zero error is returned, then the contents of bpp and
248 * dipp are undefined.
249 *
76d8b277
CH
250 * The inode is expected to already been mapped to its buffer and read
251 * in once, thus we can use the mapping information stored in the inode
252 * rather than calling xfs_imap(). This allows us to avoid the overhead
253 * of looking at the inode btree for small block file systems
94e1b69d 254 * (see xfs_imap()).
1da177e4
LT
255 */
256int
257xfs_itobp(
258 xfs_mount_t *mp,
259 xfs_trans_t *tp,
260 xfs_inode_t *ip,
261 xfs_dinode_t **dipp,
262 xfs_buf_t **bpp,
a3f74ffb 263 uint buf_flags)
1da177e4
LT
264{
265 xfs_buf_t *bp;
266 int error;
1da177e4 267
92bfc6e7 268 ASSERT(ip->i_imap.im_blkno != 0);
1da177e4 269
92bfc6e7 270 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
4ae29b43 271 if (error)
1da177e4 272 return error;
1da177e4 273
a3f74ffb 274 if (!bp) {
0cadda1c 275 ASSERT(buf_flags & XBF_TRYLOCK);
a3f74ffb
DC
276 ASSERT(tp == NULL);
277 *bpp = NULL;
278 return EAGAIN;
279 }
280
92bfc6e7 281 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4
LT
282 *bpp = bp;
283 return 0;
284}
285
286/*
287 * Move inode type and inode format specific information from the
288 * on-disk inode to the in-core inode. For fifos, devs, and sockets
289 * this means set if_rdev to the proper value. For files, directories,
290 * and symlinks this means to bring in the in-line data or extent
291 * pointers. For a file in B-tree format, only the root is immediately
292 * brought in-core. The rest will be in-lined in if_extents when it
293 * is first referenced (see xfs_iread_extents()).
294 */
295STATIC int
296xfs_iformat(
297 xfs_inode_t *ip,
298 xfs_dinode_t *dip)
299{
300 xfs_attr_shortform_t *atp;
301 int size;
8096b1eb 302 int error = 0;
1da177e4 303 xfs_fsize_t di_size;
1da177e4 304
81591fe2
CH
305 if (unlikely(be32_to_cpu(dip->di_nextents) +
306 be16_to_cpu(dip->di_anextents) >
307 be64_to_cpu(dip->di_nblocks))) {
65333b4c 308 xfs_warn(ip->i_mount,
3762ec6b 309 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 310 (unsigned long long)ip->i_ino,
81591fe2
CH
311 (int)(be32_to_cpu(dip->di_nextents) +
312 be16_to_cpu(dip->di_anextents)),
1da177e4 313 (unsigned long long)
81591fe2 314 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
315 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
316 ip->i_mount, dip);
317 return XFS_ERROR(EFSCORRUPTED);
318 }
319
81591fe2 320 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
65333b4c 321 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 322 (unsigned long long)ip->i_ino,
81591fe2 323 dip->di_forkoff);
1da177e4
LT
324 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
325 ip->i_mount, dip);
326 return XFS_ERROR(EFSCORRUPTED);
327 }
328
b89d4208
CH
329 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
330 !ip->i_mount->m_rtdev_targp)) {
65333b4c 331 xfs_warn(ip->i_mount,
b89d4208
CH
332 "corrupt dinode %Lu, has realtime flag set.",
333 ip->i_ino);
334 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
335 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
336 return XFS_ERROR(EFSCORRUPTED);
337 }
338
1da177e4
LT
339 switch (ip->i_d.di_mode & S_IFMT) {
340 case S_IFIFO:
341 case S_IFCHR:
342 case S_IFBLK:
343 case S_IFSOCK:
81591fe2 344 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
345 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
346 ip->i_mount, dip);
347 return XFS_ERROR(EFSCORRUPTED);
348 }
349 ip->i_d.di_size = 0;
81591fe2 350 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
351 break;
352
353 case S_IFREG:
354 case S_IFLNK:
355 case S_IFDIR:
81591fe2 356 switch (dip->di_format) {
1da177e4
LT
357 case XFS_DINODE_FMT_LOCAL:
358 /*
359 * no local regular files yet
360 */
abbede1b 361 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
65333b4c
DC
362 xfs_warn(ip->i_mount,
363 "corrupt inode %Lu (local format for regular file).",
1da177e4
LT
364 (unsigned long long) ip->i_ino);
365 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
366 XFS_ERRLEVEL_LOW,
367 ip->i_mount, dip);
368 return XFS_ERROR(EFSCORRUPTED);
369 }
370
81591fe2 371 di_size = be64_to_cpu(dip->di_size);
1da177e4 372 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
65333b4c
DC
373 xfs_warn(ip->i_mount,
374 "corrupt inode %Lu (bad size %Ld for local inode).",
1da177e4
LT
375 (unsigned long long) ip->i_ino,
376 (long long) di_size);
377 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
378 XFS_ERRLEVEL_LOW,
379 ip->i_mount, dip);
380 return XFS_ERROR(EFSCORRUPTED);
381 }
382
383 size = (int)di_size;
384 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
385 break;
386 case XFS_DINODE_FMT_EXTENTS:
387 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
388 break;
389 case XFS_DINODE_FMT_BTREE:
390 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
391 break;
392 default:
393 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
394 ip->i_mount);
395 return XFS_ERROR(EFSCORRUPTED);
396 }
397 break;
398
399 default:
400 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
401 return XFS_ERROR(EFSCORRUPTED);
402 }
403 if (error) {
404 return error;
405 }
406 if (!XFS_DFORK_Q(dip))
407 return 0;
8096b1eb 408
1da177e4 409 ASSERT(ip->i_afp == NULL);
4a7edddc 410 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
8096b1eb 411
81591fe2 412 switch (dip->di_aformat) {
1da177e4
LT
413 case XFS_DINODE_FMT_LOCAL:
414 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 415 size = be16_to_cpu(atp->hdr.totsize);
2809f76a
CH
416
417 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
65333b4c
DC
418 xfs_warn(ip->i_mount,
419 "corrupt inode %Lu (bad attr fork size %Ld).",
2809f76a
CH
420 (unsigned long long) ip->i_ino,
421 (long long) size);
422 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
423 XFS_ERRLEVEL_LOW,
424 ip->i_mount, dip);
425 return XFS_ERROR(EFSCORRUPTED);
426 }
427
1da177e4
LT
428 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
429 break;
430 case XFS_DINODE_FMT_EXTENTS:
431 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
432 break;
433 case XFS_DINODE_FMT_BTREE:
434 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
435 break;
436 default:
437 error = XFS_ERROR(EFSCORRUPTED);
438 break;
439 }
440 if (error) {
441 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
442 ip->i_afp = NULL;
443 xfs_idestroy_fork(ip, XFS_DATA_FORK);
444 }
445 return error;
446}
447
448/*
449 * The file is in-lined in the on-disk inode.
450 * If it fits into if_inline_data, then copy
451 * it there, otherwise allocate a buffer for it
452 * and copy the data there. Either way, set
453 * if_data to point at the data.
454 * If we allocate a buffer for the data, make
455 * sure that its size is a multiple of 4 and
456 * record the real size in i_real_bytes.
457 */
458STATIC int
459xfs_iformat_local(
460 xfs_inode_t *ip,
461 xfs_dinode_t *dip,
462 int whichfork,
463 int size)
464{
465 xfs_ifork_t *ifp;
466 int real_size;
467
468 /*
469 * If the size is unreasonable, then something
470 * is wrong and we just bail out rather than crash in
471 * kmem_alloc() or memcpy() below.
472 */
473 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c
DC
474 xfs_warn(ip->i_mount,
475 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
1da177e4
LT
476 (unsigned long long) ip->i_ino, size,
477 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
478 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
479 ip->i_mount, dip);
480 return XFS_ERROR(EFSCORRUPTED);
481 }
482 ifp = XFS_IFORK_PTR(ip, whichfork);
483 real_size = 0;
484 if (size == 0)
485 ifp->if_u1.if_data = NULL;
486 else if (size <= sizeof(ifp->if_u2.if_inline_data))
487 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
488 else {
489 real_size = roundup(size, 4);
4a7edddc 490 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
491 }
492 ifp->if_bytes = size;
493 ifp->if_real_bytes = real_size;
494 if (size)
495 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
496 ifp->if_flags &= ~XFS_IFEXTENTS;
497 ifp->if_flags |= XFS_IFINLINE;
498 return 0;
499}
500
501/*
502 * The file consists of a set of extents all
503 * of which fit into the on-disk inode.
504 * If there are few enough extents to fit into
505 * the if_inline_ext, then copy them there.
506 * Otherwise allocate a buffer for them and copy
507 * them into it. Either way, set if_extents
508 * to point at the extents.
509 */
510STATIC int
511xfs_iformat_extents(
512 xfs_inode_t *ip,
513 xfs_dinode_t *dip,
514 int whichfork)
515{
a6f64d4a 516 xfs_bmbt_rec_t *dp;
1da177e4
LT
517 xfs_ifork_t *ifp;
518 int nex;
1da177e4
LT
519 int size;
520 int i;
521
522 ifp = XFS_IFORK_PTR(ip, whichfork);
523 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
524 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
525
526 /*
527 * If the number of extents is unreasonable, then something
528 * is wrong and we just bail out rather than crash in
529 * kmem_alloc() or memcpy() below.
530 */
531 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c 532 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
533 (unsigned long long) ip->i_ino, nex);
534 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
535 ip->i_mount, dip);
536 return XFS_ERROR(EFSCORRUPTED);
537 }
538
4eea22f0 539 ifp->if_real_bytes = 0;
1da177e4
LT
540 if (nex == 0)
541 ifp->if_u1.if_extents = NULL;
542 else if (nex <= XFS_INLINE_EXTS)
543 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
544 else
545 xfs_iext_add(ifp, 0, nex);
546
1da177e4 547 ifp->if_bytes = size;
1da177e4
LT
548 if (size) {
549 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 550 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 551 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 552 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
553 ep->l0 = get_unaligned_be64(&dp->l0);
554 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 555 }
3a59c94c 556 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
557 if (whichfork != XFS_DATA_FORK ||
558 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
559 if (unlikely(xfs_check_nostate_extents(
4eea22f0 560 ifp, 0, nex))) {
1da177e4
LT
561 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
562 XFS_ERRLEVEL_LOW,
563 ip->i_mount);
564 return XFS_ERROR(EFSCORRUPTED);
565 }
566 }
567 ifp->if_flags |= XFS_IFEXTENTS;
568 return 0;
569}
570
571/*
572 * The file has too many extents to fit into
573 * the inode, so they are in B-tree format.
574 * Allocate a buffer for the root of the B-tree
575 * and copy the root into it. The i_extents
576 * field will remain NULL until all of the
577 * extents are read in (when they are needed).
578 */
579STATIC int
580xfs_iformat_btree(
581 xfs_inode_t *ip,
582 xfs_dinode_t *dip,
583 int whichfork)
584{
585 xfs_bmdr_block_t *dfp;
586 xfs_ifork_t *ifp;
587 /* REFERENCED */
588 int nrecs;
589 int size;
590
591 ifp = XFS_IFORK_PTR(ip, whichfork);
592 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
593 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 594 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
595
596 /*
597 * blow out if -- fork has less extents than can fit in
598 * fork (fork shouldn't be a btree format), root btree
599 * block has more records than can fit into the fork,
600 * or the number of extents is greater than the number of
601 * blocks.
602 */
8096b1eb
CH
603 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
604 XFS_IFORK_MAXEXT(ip, whichfork) ||
605 XFS_BMDR_SPACE_CALC(nrecs) >
606 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
607 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
65333b4c 608 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
1da177e4 609 (unsigned long long) ip->i_ino);
65333b4c
DC
610 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
611 ip->i_mount, dip);
1da177e4
LT
612 return XFS_ERROR(EFSCORRUPTED);
613 }
614
615 ifp->if_broot_bytes = size;
4a7edddc 616 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
1da177e4
LT
617 ASSERT(ifp->if_broot != NULL);
618 /*
619 * Copy and convert from the on-disk structure
620 * to the in-memory structure.
621 */
60197e8d
CH
622 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
623 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
624 ifp->if_broot, size);
1da177e4
LT
625 ifp->if_flags &= ~XFS_IFEXTENTS;
626 ifp->if_flags |= XFS_IFBROOT;
627
628 return 0;
629}
630
d96f8f89 631STATIC void
347d1c01
CH
632xfs_dinode_from_disk(
633 xfs_icdinode_t *to,
81591fe2 634 xfs_dinode_t *from)
1da177e4 635{
347d1c01
CH
636 to->di_magic = be16_to_cpu(from->di_magic);
637 to->di_mode = be16_to_cpu(from->di_mode);
638 to->di_version = from ->di_version;
639 to->di_format = from->di_format;
640 to->di_onlink = be16_to_cpu(from->di_onlink);
641 to->di_uid = be32_to_cpu(from->di_uid);
642 to->di_gid = be32_to_cpu(from->di_gid);
643 to->di_nlink = be32_to_cpu(from->di_nlink);
6743099c
AM
644 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
645 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
347d1c01
CH
646 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
647 to->di_flushiter = be16_to_cpu(from->di_flushiter);
648 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
649 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
650 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
651 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
652 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
653 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
654 to->di_size = be64_to_cpu(from->di_size);
655 to->di_nblocks = be64_to_cpu(from->di_nblocks);
656 to->di_extsize = be32_to_cpu(from->di_extsize);
657 to->di_nextents = be32_to_cpu(from->di_nextents);
658 to->di_anextents = be16_to_cpu(from->di_anextents);
659 to->di_forkoff = from->di_forkoff;
660 to->di_aformat = from->di_aformat;
661 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
662 to->di_dmstate = be16_to_cpu(from->di_dmstate);
663 to->di_flags = be16_to_cpu(from->di_flags);
664 to->di_gen = be32_to_cpu(from->di_gen);
665}
666
667void
668xfs_dinode_to_disk(
81591fe2 669 xfs_dinode_t *to,
347d1c01
CH
670 xfs_icdinode_t *from)
671{
672 to->di_magic = cpu_to_be16(from->di_magic);
673 to->di_mode = cpu_to_be16(from->di_mode);
674 to->di_version = from ->di_version;
675 to->di_format = from->di_format;
676 to->di_onlink = cpu_to_be16(from->di_onlink);
677 to->di_uid = cpu_to_be32(from->di_uid);
678 to->di_gid = cpu_to_be32(from->di_gid);
679 to->di_nlink = cpu_to_be32(from->di_nlink);
6743099c
AM
680 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
681 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
347d1c01
CH
682 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
683 to->di_flushiter = cpu_to_be16(from->di_flushiter);
684 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
685 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
686 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
687 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
688 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
689 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
690 to->di_size = cpu_to_be64(from->di_size);
691 to->di_nblocks = cpu_to_be64(from->di_nblocks);
692 to->di_extsize = cpu_to_be32(from->di_extsize);
693 to->di_nextents = cpu_to_be32(from->di_nextents);
694 to->di_anextents = cpu_to_be16(from->di_anextents);
695 to->di_forkoff = from->di_forkoff;
696 to->di_aformat = from->di_aformat;
697 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
698 to->di_dmstate = cpu_to_be16(from->di_dmstate);
699 to->di_flags = cpu_to_be16(from->di_flags);
700 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
701}
702
703STATIC uint
704_xfs_dic2xflags(
1da177e4
LT
705 __uint16_t di_flags)
706{
707 uint flags = 0;
708
709 if (di_flags & XFS_DIFLAG_ANY) {
710 if (di_flags & XFS_DIFLAG_REALTIME)
711 flags |= XFS_XFLAG_REALTIME;
712 if (di_flags & XFS_DIFLAG_PREALLOC)
713 flags |= XFS_XFLAG_PREALLOC;
714 if (di_flags & XFS_DIFLAG_IMMUTABLE)
715 flags |= XFS_XFLAG_IMMUTABLE;
716 if (di_flags & XFS_DIFLAG_APPEND)
717 flags |= XFS_XFLAG_APPEND;
718 if (di_flags & XFS_DIFLAG_SYNC)
719 flags |= XFS_XFLAG_SYNC;
720 if (di_flags & XFS_DIFLAG_NOATIME)
721 flags |= XFS_XFLAG_NOATIME;
722 if (di_flags & XFS_DIFLAG_NODUMP)
723 flags |= XFS_XFLAG_NODUMP;
724 if (di_flags & XFS_DIFLAG_RTINHERIT)
725 flags |= XFS_XFLAG_RTINHERIT;
726 if (di_flags & XFS_DIFLAG_PROJINHERIT)
727 flags |= XFS_XFLAG_PROJINHERIT;
728 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
729 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
730 if (di_flags & XFS_DIFLAG_EXTSIZE)
731 flags |= XFS_XFLAG_EXTSIZE;
732 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
733 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
734 if (di_flags & XFS_DIFLAG_NODEFRAG)
735 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
736 if (di_flags & XFS_DIFLAG_FILESTREAM)
737 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
738 }
739
740 return flags;
741}
742
743uint
744xfs_ip2xflags(
745 xfs_inode_t *ip)
746{
347d1c01 747 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 748
a916e2bd 749 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 750 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
751}
752
753uint
754xfs_dic2xflags(
45ba598e 755 xfs_dinode_t *dip)
1da177e4 756{
81591fe2 757 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 758 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
759}
760
07c8f675 761/*
24f211ba 762 * Read the disk inode attributes into the in-core inode structure.
1da177e4
LT
763 */
764int
765xfs_iread(
766 xfs_mount_t *mp,
767 xfs_trans_t *tp,
24f211ba 768 xfs_inode_t *ip,
24f211ba 769 uint iget_flags)
1da177e4
LT
770{
771 xfs_buf_t *bp;
772 xfs_dinode_t *dip;
1da177e4
LT
773 int error;
774
1da177e4 775 /*
92bfc6e7 776 * Fill in the location information in the in-core inode.
1da177e4 777 */
24f211ba 778 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
76d8b277 779 if (error)
24f211ba 780 return error;
76d8b277
CH
781
782 /*
92bfc6e7 783 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 784 */
a8acad70 785 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, 0, iget_flags);
9ed0451e 786 if (error)
24f211ba 787 return error;
92bfc6e7 788 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 789
1da177e4
LT
790 /*
791 * If we got something that isn't an inode it means someone
792 * (nfs or dmi) has a stale handle.
793 */
69ef921b 794 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
1da177e4 795#ifdef DEBUG
53487786
DC
796 xfs_alert(mp,
797 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
798 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
1da177e4 799#endif /* DEBUG */
9ed0451e
CH
800 error = XFS_ERROR(EINVAL);
801 goto out_brelse;
1da177e4
LT
802 }
803
804 /*
805 * If the on-disk inode is already linked to a directory
806 * entry, copy all of the inode into the in-core inode.
807 * xfs_iformat() handles copying in the inode format
808 * specific information.
809 * Otherwise, just get the truly permanent information.
810 */
81591fe2
CH
811 if (dip->di_mode) {
812 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
813 error = xfs_iformat(ip, dip);
814 if (error) {
1da177e4 815#ifdef DEBUG
53487786
DC
816 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
817 __func__, error);
1da177e4 818#endif /* DEBUG */
9ed0451e 819 goto out_brelse;
1da177e4
LT
820 }
821 } else {
81591fe2
CH
822 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
823 ip->i_d.di_version = dip->di_version;
824 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
825 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
826 /*
827 * Make sure to pull in the mode here as well in
828 * case the inode is released without being used.
829 * This ensures that xfs_inactive() will see that
830 * the inode is already free and not try to mess
831 * with the uninitialized part of it.
832 */
833 ip->i_d.di_mode = 0;
1da177e4
LT
834 }
835
1da177e4
LT
836 /*
837 * The inode format changed when we moved the link count and
838 * made it 32 bits long. If this is an old format inode,
839 * convert it in memory to look like a new one. If it gets
840 * flushed to disk we will convert back before flushing or
841 * logging it. We zero out the new projid field and the old link
842 * count field. We'll handle clearing the pad field (the remains
843 * of the old uuid field) when we actually convert the inode to
844 * the new format. We don't change the version number so that we
845 * can distinguish this from a real new format inode.
846 */
51ce16d5 847 if (ip->i_d.di_version == 1) {
1da177e4
LT
848 ip->i_d.di_nlink = ip->i_d.di_onlink;
849 ip->i_d.di_onlink = 0;
6743099c 850 xfs_set_projid(ip, 0);
1da177e4
LT
851 }
852
853 ip->i_delayed_blks = 0;
854
855 /*
856 * Mark the buffer containing the inode as something to keep
857 * around for a while. This helps to keep recently accessed
858 * meta-data in-core longer.
859 */
821eb21d 860 xfs_buf_set_ref(bp, XFS_INO_REF);
1da177e4
LT
861
862 /*
863 * Use xfs_trans_brelse() to release the buffer containing the
864 * on-disk inode, because it was acquired with xfs_trans_read_buf()
865 * in xfs_itobp() above. If tp is NULL, this is just a normal
866 * brelse(). If we're within a transaction, then xfs_trans_brelse()
867 * will only release the buffer if it is not dirty within the
868 * transaction. It will be OK to release the buffer in this case,
869 * because inodes on disk are never destroyed and we will be
870 * locking the new in-core inode before putting it in the hash
871 * table where other processes can find it. Thus we don't have
872 * to worry about the inode being changed just because we released
873 * the buffer.
874 */
9ed0451e
CH
875 out_brelse:
876 xfs_trans_brelse(tp, bp);
9ed0451e 877 return error;
1da177e4
LT
878}
879
880/*
881 * Read in extents from a btree-format inode.
882 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
883 */
884int
885xfs_iread_extents(
886 xfs_trans_t *tp,
887 xfs_inode_t *ip,
888 int whichfork)
889{
890 int error;
891 xfs_ifork_t *ifp;
4eea22f0 892 xfs_extnum_t nextents;
1da177e4
LT
893
894 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
895 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
896 ip->i_mount);
897 return XFS_ERROR(EFSCORRUPTED);
898 }
4eea22f0 899 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1da177e4 900 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 901
1da177e4
LT
902 /*
903 * We know that the size is valid (it's checked in iformat_btree)
904 */
4eea22f0 905 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 906 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 907 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
908 error = xfs_bmap_read_extents(tp, ip, whichfork);
909 if (error) {
4eea22f0 910 xfs_iext_destroy(ifp);
1da177e4
LT
911 ifp->if_flags &= ~XFS_IFEXTENTS;
912 return error;
913 }
a6f64d4a 914 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
915 return 0;
916}
917
918/*
919 * Allocate an inode on disk and return a copy of its in-core version.
920 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
921 * appropriately within the inode. The uid and gid for the inode are
922 * set according to the contents of the given cred structure.
923 *
924 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
925 * has a free inode available, call xfs_iget()
926 * to obtain the in-core version of the allocated inode. Finally,
927 * fill in the inode and log its initial contents. In this case,
928 * ialloc_context would be set to NULL and call_again set to false.
929 *
930 * If xfs_dialloc() does not have an available inode,
931 * it will replenish its supply by doing an allocation. Since we can
932 * only do one allocation within a transaction without deadlocks, we
933 * must commit the current transaction before returning the inode itself.
934 * In this case, therefore, we will set call_again to true and return.
935 * The caller should then commit the current transaction, start a new
936 * transaction, and call xfs_ialloc() again to actually get the inode.
937 *
938 * To ensure that some other process does not grab the inode that
939 * was allocated during the first call to xfs_ialloc(), this routine
940 * also returns the [locked] bp pointing to the head of the freelist
941 * as ialloc_context. The caller should hold this buffer across
942 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
943 *
944 * If we are allocating quota inodes, we do not have a parent inode
945 * to attach to or associate with (i.e. pip == NULL) because they
946 * are not linked into the directory structure - they are attached
947 * directly to the superblock - and so have no parent.
1da177e4
LT
948 */
949int
950xfs_ialloc(
951 xfs_trans_t *tp,
952 xfs_inode_t *pip,
576b1d67 953 umode_t mode,
31b084ae 954 xfs_nlink_t nlink,
1da177e4 955 xfs_dev_t rdev,
6743099c 956 prid_t prid,
1da177e4
LT
957 int okalloc,
958 xfs_buf_t **ialloc_context,
959 boolean_t *call_again,
960 xfs_inode_t **ipp)
961{
962 xfs_ino_t ino;
963 xfs_inode_t *ip;
1da177e4
LT
964 uint flags;
965 int error;
dff35fd4 966 timespec_t tv;
bf904248 967 int filestreams = 0;
1da177e4
LT
968
969 /*
970 * Call the space management code to pick
971 * the on-disk inode to be allocated.
972 */
b11f94d5 973 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4 974 ialloc_context, call_again, &ino);
bf904248 975 if (error)
1da177e4 976 return error;
1da177e4
LT
977 if (*call_again || ino == NULLFSINO) {
978 *ipp = NULL;
979 return 0;
980 }
981 ASSERT(*ialloc_context == NULL);
982
983 /*
984 * Get the in-core inode with the lock held exclusively.
985 * This is because we're setting fields here we need
986 * to prevent others from looking at until we're done.
987 */
ec3ba85f
CH
988 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
989 XFS_ILOCK_EXCL, &ip);
bf904248 990 if (error)
1da177e4 991 return error;
1da177e4
LT
992 ASSERT(ip != NULL);
993
576b1d67 994 ip->i_d.di_mode = mode;
1da177e4
LT
995 ip->i_d.di_onlink = 0;
996 ip->i_d.di_nlink = nlink;
997 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
998 ip->i_d.di_uid = current_fsuid();
999 ip->i_d.di_gid = current_fsgid();
6743099c 1000 xfs_set_projid(ip, prid);
1da177e4
LT
1001 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1002
1003 /*
1004 * If the superblock version is up to where we support new format
1005 * inodes and this is currently an old format inode, then change
1006 * the inode version number now. This way we only do the conversion
1007 * here rather than here and in the flush/logging code.
1008 */
62118709 1009 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1010 ip->i_d.di_version == 1) {
1011 ip->i_d.di_version = 2;
1da177e4
LT
1012 /*
1013 * We've already zeroed the old link count, the projid field,
1014 * and the pad field.
1015 */
1016 }
1017
1018 /*
1019 * Project ids won't be stored on disk if we are using a version 1 inode.
1020 */
51ce16d5 1021 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1022 xfs_bump_ino_vers2(tp, ip);
1023
bd186aa9 1024 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 1025 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 1026 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
1027 ip->i_d.di_mode |= S_ISGID;
1028 }
1029 }
1030
1031 /*
1032 * If the group ID of the new file does not match the effective group
1033 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1034 * (and only if the irix_sgid_inherit compatibility variable is set).
1035 */
1036 if ((irix_sgid_inherit) &&
1037 (ip->i_d.di_mode & S_ISGID) &&
1038 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1039 ip->i_d.di_mode &= ~S_ISGID;
1040 }
1041
1042 ip->i_d.di_size = 0;
1043 ip->i_d.di_nextents = 0;
1044 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1045
1046 nanotime(&tv);
1047 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1048 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1049 ip->i_d.di_atime = ip->i_d.di_mtime;
1050 ip->i_d.di_ctime = ip->i_d.di_mtime;
1051
1da177e4
LT
1052 /*
1053 * di_gen will have been taken care of in xfs_iread.
1054 */
1055 ip->i_d.di_extsize = 0;
1056 ip->i_d.di_dmevmask = 0;
1057 ip->i_d.di_dmstate = 0;
1058 ip->i_d.di_flags = 0;
1059 flags = XFS_ILOG_CORE;
1060 switch (mode & S_IFMT) {
1061 case S_IFIFO:
1062 case S_IFCHR:
1063 case S_IFBLK:
1064 case S_IFSOCK:
1065 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1066 ip->i_df.if_u2.if_rdev = rdev;
1067 ip->i_df.if_flags = 0;
1068 flags |= XFS_ILOG_DEV;
1069 break;
1070 case S_IFREG:
bf904248
DC
1071 /*
1072 * we can't set up filestreams until after the VFS inode
1073 * is set up properly.
1074 */
1075 if (pip && xfs_inode_is_filestream(pip))
1076 filestreams = 1;
2a82b8be 1077 /* fall through */
1da177e4 1078 case S_IFDIR:
b11f94d5 1079 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1080 uint di_flags = 0;
1081
abbede1b 1082 if (S_ISDIR(mode)) {
365ca83d
NS
1083 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1084 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1085 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1086 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1087 ip->i_d.di_extsize = pip->i_d.di_extsize;
1088 }
abbede1b 1089 } else if (S_ISREG(mode)) {
613d7043 1090 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1091 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1092 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1093 di_flags |= XFS_DIFLAG_EXTSIZE;
1094 ip->i_d.di_extsize = pip->i_d.di_extsize;
1095 }
1da177e4
LT
1096 }
1097 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1098 xfs_inherit_noatime)
365ca83d 1099 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1100 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1101 xfs_inherit_nodump)
365ca83d 1102 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1103 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1104 xfs_inherit_sync)
365ca83d 1105 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1106 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1107 xfs_inherit_nosymlinks)
365ca83d
NS
1108 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1109 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1110 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1111 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1112 xfs_inherit_nodefrag)
1113 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1114 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1115 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1116 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1117 }
1118 /* FALLTHROUGH */
1119 case S_IFLNK:
1120 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1121 ip->i_df.if_flags = XFS_IFEXTENTS;
1122 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1123 ip->i_df.if_u1.if_extents = NULL;
1124 break;
1125 default:
1126 ASSERT(0);
1127 }
1128 /*
1129 * Attribute fork settings for new inode.
1130 */
1131 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1132 ip->i_d.di_anextents = 0;
1133
1134 /*
1135 * Log the new values stuffed into the inode.
1136 */
ddc3415a 1137 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
1138 xfs_trans_log_inode(tp, ip, flags);
1139
b83bd138 1140 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1141 xfs_setup_inode(ip);
1da177e4 1142
bf904248
DC
1143 /* now we have set up the vfs inode we can associate the filestream */
1144 if (filestreams) {
1145 error = xfs_filestream_associate(pip, ip);
1146 if (error < 0)
1147 return -error;
1148 if (!error)
1149 xfs_iflags_set(ip, XFS_IFILESTREAM);
1150 }
1151
1da177e4
LT
1152 *ipp = ip;
1153 return 0;
1154}
1155
1da177e4 1156/*
8f04c47a
CH
1157 * Free up the underlying blocks past new_size. The new size must be smaller
1158 * than the current size. This routine can be used both for the attribute and
1159 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1160 *
f6485057
DC
1161 * The transaction passed to this routine must have made a permanent log
1162 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1163 * given transaction and start new ones, so make sure everything involved in
1164 * the transaction is tidy before calling here. Some transaction will be
1165 * returned to the caller to be committed. The incoming transaction must
1166 * already include the inode, and both inode locks must be held exclusively.
1167 * The inode must also be "held" within the transaction. On return the inode
1168 * will be "held" within the returned transaction. This routine does NOT
1169 * require any disk space to be reserved for it within the transaction.
1da177e4 1170 *
f6485057
DC
1171 * If we get an error, we must return with the inode locked and linked into the
1172 * current transaction. This keeps things simple for the higher level code,
1173 * because it always knows that the inode is locked and held in the transaction
1174 * that returns to it whether errors occur or not. We don't mark the inode
1175 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1176 */
1177int
8f04c47a
CH
1178xfs_itruncate_extents(
1179 struct xfs_trans **tpp,
1180 struct xfs_inode *ip,
1181 int whichfork,
1182 xfs_fsize_t new_size)
1da177e4 1183{
8f04c47a
CH
1184 struct xfs_mount *mp = ip->i_mount;
1185 struct xfs_trans *tp = *tpp;
1186 struct xfs_trans *ntp;
1187 xfs_bmap_free_t free_list;
1188 xfs_fsblock_t first_block;
1189 xfs_fileoff_t first_unmap_block;
1190 xfs_fileoff_t last_block;
1191 xfs_filblks_t unmap_len;
1192 int committed;
1193 int error = 0;
1194 int done = 0;
1da177e4 1195
579aa9ca 1196 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ce7ae151 1197 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1198 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1199 ASSERT(ip->i_itemp != NULL);
898621d5 1200 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1201 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1202
673e8e59
CH
1203 trace_xfs_itruncate_extents_start(ip, new_size);
1204
1da177e4
LT
1205 /*
1206 * Since it is possible for space to become allocated beyond
1207 * the end of the file (in a crash where the space is allocated
1208 * but the inode size is not yet updated), simply remove any
1209 * blocks which show up between the new EOF and the maximum
1210 * possible file size. If the first block to be removed is
1211 * beyond the maximum file size (ie it is the same as last_block),
1212 * then there is nothing to do.
1213 */
8f04c47a 1214 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1da177e4 1215 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
8f04c47a
CH
1216 if (first_unmap_block == last_block)
1217 return 0;
1218
1219 ASSERT(first_unmap_block < last_block);
1220 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1221 while (!done) {
9d87c319 1222 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1223 error = xfs_bunmapi(tp, ip,
3e57ecf6 1224 first_unmap_block, unmap_len,
8f04c47a 1225 xfs_bmapi_aflag(whichfork),
1da177e4 1226 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1227 &first_block, &free_list,
b4e9181e 1228 &done);
8f04c47a
CH
1229 if (error)
1230 goto out_bmap_cancel;
1da177e4
LT
1231
1232 /*
1233 * Duplicate the transaction that has the permanent
1234 * reservation and commit the old transaction.
1235 */
8f04c47a 1236 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1237 if (committed)
ddc3415a 1238 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1239 if (error)
1240 goto out_bmap_cancel;
1da177e4
LT
1241
1242 if (committed) {
1243 /*
f6485057 1244 * Mark the inode dirty so it will be logged and
e5720eec 1245 * moved forward in the log as part of every commit.
1da177e4 1246 */
8f04c47a 1247 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1248 }
f6485057 1249
8f04c47a
CH
1250 ntp = xfs_trans_dup(tp);
1251 error = xfs_trans_commit(tp, 0);
1252 tp = ntp;
e5720eec 1253
ddc3415a 1254 xfs_trans_ijoin(tp, ip, 0);
f6485057 1255
cc09c0dc 1256 if (error)
8f04c47a
CH
1257 goto out;
1258
cc09c0dc 1259 /*
8f04c47a 1260 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1261 * reference that we gained in xfs_trans_dup()
1262 */
8f04c47a
CH
1263 xfs_log_ticket_put(tp->t_ticket);
1264 error = xfs_trans_reserve(tp, 0,
f6485057
DC
1265 XFS_ITRUNCATE_LOG_RES(mp), 0,
1266 XFS_TRANS_PERM_LOG_RES,
1267 XFS_ITRUNCATE_LOG_COUNT);
1268 if (error)
8f04c47a 1269 goto out;
1da177e4 1270 }
8f04c47a 1271
673e8e59
CH
1272 /*
1273 * Always re-log the inode so that our permanent transaction can keep
1274 * on rolling it forward in the log.
1275 */
1276 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1277
1278 trace_xfs_itruncate_extents_end(ip, new_size);
1279
8f04c47a
CH
1280out:
1281 *tpp = tp;
1282 return error;
1283out_bmap_cancel:
1da177e4 1284 /*
8f04c47a
CH
1285 * If the bunmapi call encounters an error, return to the caller where
1286 * the transaction can be properly aborted. We just need to make sure
1287 * we're not holding any resources that we were not when we came in.
1da177e4 1288 */
8f04c47a
CH
1289 xfs_bmap_cancel(&free_list);
1290 goto out;
1291}
1292
1da177e4
LT
1293/*
1294 * This is called when the inode's link count goes to 0.
1295 * We place the on-disk inode on a list in the AGI. It
1296 * will be pulled from this list when the inode is freed.
1297 */
1298int
1299xfs_iunlink(
1300 xfs_trans_t *tp,
1301 xfs_inode_t *ip)
1302{
1303 xfs_mount_t *mp;
1304 xfs_agi_t *agi;
1305 xfs_dinode_t *dip;
1306 xfs_buf_t *agibp;
1307 xfs_buf_t *ibp;
1da177e4
LT
1308 xfs_agino_t agino;
1309 short bucket_index;
1310 int offset;
1311 int error;
1da177e4
LT
1312
1313 ASSERT(ip->i_d.di_nlink == 0);
1314 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1315
1316 mp = tp->t_mountp;
1317
1da177e4
LT
1318 /*
1319 * Get the agi buffer first. It ensures lock ordering
1320 * on the list.
1321 */
5e1be0fb 1322 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1323 if (error)
1da177e4 1324 return error;
1da177e4 1325 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1326
1da177e4
LT
1327 /*
1328 * Get the index into the agi hash table for the
1329 * list this inode will go on.
1330 */
1331 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1332 ASSERT(agino != 0);
1333 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1334 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1335 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1336
69ef921b 1337 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1338 /*
1339 * There is already another inode in the bucket we need
1340 * to add ourselves to. Add us at the front of the list.
1341 * Here we put the head pointer into our next pointer,
1342 * and then we fall through to point the head at us.
1343 */
a8acad70 1344 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
c319b58b
VA
1345 if (error)
1346 return error;
1347
69ef921b 1348 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1349 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1350 offset = ip->i_imap.im_boffset +
1da177e4
LT
1351 offsetof(xfs_dinode_t, di_next_unlinked);
1352 xfs_trans_inode_buf(tp, ibp);
1353 xfs_trans_log_buf(tp, ibp, offset,
1354 (offset + sizeof(xfs_agino_t) - 1));
1355 xfs_inobp_check(mp, ibp);
1356 }
1357
1358 /*
1359 * Point the bucket head pointer at the inode being inserted.
1360 */
1361 ASSERT(agino != 0);
16259e7d 1362 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1363 offset = offsetof(xfs_agi_t, agi_unlinked) +
1364 (sizeof(xfs_agino_t) * bucket_index);
1365 xfs_trans_log_buf(tp, agibp, offset,
1366 (offset + sizeof(xfs_agino_t) - 1));
1367 return 0;
1368}
1369
1370/*
1371 * Pull the on-disk inode from the AGI unlinked list.
1372 */
1373STATIC int
1374xfs_iunlink_remove(
1375 xfs_trans_t *tp,
1376 xfs_inode_t *ip)
1377{
1378 xfs_ino_t next_ino;
1379 xfs_mount_t *mp;
1380 xfs_agi_t *agi;
1381 xfs_dinode_t *dip;
1382 xfs_buf_t *agibp;
1383 xfs_buf_t *ibp;
1384 xfs_agnumber_t agno;
1da177e4
LT
1385 xfs_agino_t agino;
1386 xfs_agino_t next_agino;
1387 xfs_buf_t *last_ibp;
6fdf8ccc 1388 xfs_dinode_t *last_dip = NULL;
1da177e4 1389 short bucket_index;
6fdf8ccc 1390 int offset, last_offset = 0;
1da177e4 1391 int error;
1da177e4 1392
1da177e4 1393 mp = tp->t_mountp;
1da177e4 1394 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1395
1396 /*
1397 * Get the agi buffer first. It ensures lock ordering
1398 * on the list.
1399 */
5e1be0fb
CH
1400 error = xfs_read_agi(mp, tp, agno, &agibp);
1401 if (error)
1da177e4 1402 return error;
5e1be0fb 1403
1da177e4 1404 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1405
1da177e4
LT
1406 /*
1407 * Get the index into the agi hash table for the
1408 * list this inode will go on.
1409 */
1410 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1411 ASSERT(agino != 0);
1412 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 1413 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
1414 ASSERT(agi->agi_unlinked[bucket_index]);
1415
16259e7d 1416 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1417 /*
1418 * We're at the head of the list. Get the inode's
1419 * on-disk buffer to see if there is anyone after us
1420 * on the list. Only modify our next pointer if it
1421 * is not already NULLAGINO. This saves us the overhead
1422 * of dealing with the buffer when there is no need to
1423 * change it.
1424 */
a8acad70 1425 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1da177e4 1426 if (error) {
0b932ccc
DC
1427 xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1428 __func__, error);
1da177e4
LT
1429 return error;
1430 }
347d1c01 1431 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1432 ASSERT(next_agino != 0);
1433 if (next_agino != NULLAGINO) {
347d1c01 1434 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1435 offset = ip->i_imap.im_boffset +
1da177e4
LT
1436 offsetof(xfs_dinode_t, di_next_unlinked);
1437 xfs_trans_inode_buf(tp, ibp);
1438 xfs_trans_log_buf(tp, ibp, offset,
1439 (offset + sizeof(xfs_agino_t) - 1));
1440 xfs_inobp_check(mp, ibp);
1441 } else {
1442 xfs_trans_brelse(tp, ibp);
1443 }
1444 /*
1445 * Point the bucket head pointer at the next inode.
1446 */
1447 ASSERT(next_agino != 0);
1448 ASSERT(next_agino != agino);
16259e7d 1449 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1450 offset = offsetof(xfs_agi_t, agi_unlinked) +
1451 (sizeof(xfs_agino_t) * bucket_index);
1452 xfs_trans_log_buf(tp, agibp, offset,
1453 (offset + sizeof(xfs_agino_t) - 1));
1454 } else {
1455 /*
1456 * We need to search the list for the inode being freed.
1457 */
16259e7d 1458 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1459 last_ibp = NULL;
1460 while (next_agino != agino) {
1461 /*
1462 * If the last inode wasn't the one pointing to
1463 * us, then release its buffer since we're not
1464 * going to do anything with it.
1465 */
1466 if (last_ibp != NULL) {
1467 xfs_trans_brelse(tp, last_ibp);
1468 }
1469 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1470 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
c679eef0 1471 &last_ibp, &last_offset, 0);
1da177e4 1472 if (error) {
0b932ccc
DC
1473 xfs_warn(mp,
1474 "%s: xfs_inotobp() returned error %d.",
1475 __func__, error);
1da177e4
LT
1476 return error;
1477 }
347d1c01 1478 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1479 ASSERT(next_agino != NULLAGINO);
1480 ASSERT(next_agino != 0);
1481 }
1482 /*
1483 * Now last_ibp points to the buffer previous to us on
1484 * the unlinked list. Pull us from the list.
1485 */
a8acad70 1486 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0);
1da177e4 1487 if (error) {
0b932ccc
DC
1488 xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1489 __func__, error);
1da177e4
LT
1490 return error;
1491 }
347d1c01 1492 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1493 ASSERT(next_agino != 0);
1494 ASSERT(next_agino != agino);
1495 if (next_agino != NULLAGINO) {
347d1c01 1496 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1497 offset = ip->i_imap.im_boffset +
1da177e4
LT
1498 offsetof(xfs_dinode_t, di_next_unlinked);
1499 xfs_trans_inode_buf(tp, ibp);
1500 xfs_trans_log_buf(tp, ibp, offset,
1501 (offset + sizeof(xfs_agino_t) - 1));
1502 xfs_inobp_check(mp, ibp);
1503 } else {
1504 xfs_trans_brelse(tp, ibp);
1505 }
1506 /*
1507 * Point the previous inode on the list to the next inode.
1508 */
347d1c01 1509 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
1510 ASSERT(next_agino != 0);
1511 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1512 xfs_trans_inode_buf(tp, last_ibp);
1513 xfs_trans_log_buf(tp, last_ibp, offset,
1514 (offset + sizeof(xfs_agino_t) - 1));
1515 xfs_inobp_check(mp, last_ibp);
1516 }
1517 return 0;
1518}
1519
5b3eed75
DC
1520/*
1521 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1522 * inodes that are in memory - they all must be marked stale and attached to
1523 * the cluster buffer.
1524 */
2a30f36d 1525STATIC int
1da177e4
LT
1526xfs_ifree_cluster(
1527 xfs_inode_t *free_ip,
1528 xfs_trans_t *tp,
1529 xfs_ino_t inum)
1530{
1531 xfs_mount_t *mp = free_ip->i_mount;
1532 int blks_per_cluster;
1533 int nbufs;
1534 int ninodes;
5b257b4a 1535 int i, j;
1da177e4
LT
1536 xfs_daddr_t blkno;
1537 xfs_buf_t *bp;
5b257b4a 1538 xfs_inode_t *ip;
1da177e4
LT
1539 xfs_inode_log_item_t *iip;
1540 xfs_log_item_t *lip;
5017e97d 1541 struct xfs_perag *pag;
1da177e4 1542
5017e97d 1543 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
1544 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1545 blks_per_cluster = 1;
1546 ninodes = mp->m_sb.sb_inopblock;
1547 nbufs = XFS_IALLOC_BLOCKS(mp);
1548 } else {
1549 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1550 mp->m_sb.sb_blocksize;
1551 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1552 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1553 }
1554
1da177e4
LT
1555 for (j = 0; j < nbufs; j++, inum += ninodes) {
1556 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1557 XFS_INO_TO_AGBNO(mp, inum));
1558
5b257b4a
DC
1559 /*
1560 * We obtain and lock the backing buffer first in the process
1561 * here, as we have to ensure that any dirty inode that we
1562 * can't get the flush lock on is attached to the buffer.
1563 * If we scan the in-memory inodes first, then buffer IO can
1564 * complete before we get a lock on it, and hence we may fail
1565 * to mark all the active inodes on the buffer stale.
1566 */
1567 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
a8acad70 1568 mp->m_bsize * blks_per_cluster, 0);
5b257b4a 1569
2a30f36d
CS
1570 if (!bp)
1571 return ENOMEM;
5b257b4a
DC
1572 /*
1573 * Walk the inodes already attached to the buffer and mark them
1574 * stale. These will all have the flush locks held, so an
5b3eed75
DC
1575 * in-memory inode walk can't lock them. By marking them all
1576 * stale first, we will not attempt to lock them in the loop
1577 * below as the XFS_ISTALE flag will be set.
5b257b4a 1578 */
adadbeef 1579 lip = bp->b_fspriv;
5b257b4a
DC
1580 while (lip) {
1581 if (lip->li_type == XFS_LI_INODE) {
1582 iip = (xfs_inode_log_item_t *)lip;
1583 ASSERT(iip->ili_logged == 1);
ca30b2a7 1584 lip->li_cb = xfs_istale_done;
5b257b4a
DC
1585 xfs_trans_ail_copy_lsn(mp->m_ail,
1586 &iip->ili_flush_lsn,
1587 &iip->ili_item.li_lsn);
1588 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
1589 }
1590 lip = lip->li_bio_list;
1591 }
1da177e4 1592
5b3eed75 1593
1da177e4 1594 /*
5b257b4a
DC
1595 * For each inode in memory attempt to add it to the inode
1596 * buffer and set it up for being staled on buffer IO
1597 * completion. This is safe as we've locked out tail pushing
1598 * and flushing by locking the buffer.
1da177e4 1599 *
5b257b4a
DC
1600 * We have already marked every inode that was part of a
1601 * transaction stale above, which means there is no point in
1602 * even trying to lock them.
1da177e4 1603 */
1da177e4 1604 for (i = 0; i < ninodes; i++) {
5b3eed75 1605retry:
1a3e8f3d 1606 rcu_read_lock();
da353b0d
DC
1607 ip = radix_tree_lookup(&pag->pag_ici_root,
1608 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 1609
1a3e8f3d
DC
1610 /* Inode not in memory, nothing to do */
1611 if (!ip) {
1612 rcu_read_unlock();
1da177e4
LT
1613 continue;
1614 }
1615
1a3e8f3d
DC
1616 /*
1617 * because this is an RCU protected lookup, we could
1618 * find a recently freed or even reallocated inode
1619 * during the lookup. We need to check under the
1620 * i_flags_lock for a valid inode here. Skip it if it
1621 * is not valid, the wrong inode or stale.
1622 */
1623 spin_lock(&ip->i_flags_lock);
1624 if (ip->i_ino != inum + i ||
1625 __xfs_iflags_test(ip, XFS_ISTALE)) {
1626 spin_unlock(&ip->i_flags_lock);
1627 rcu_read_unlock();
1628 continue;
1629 }
1630 spin_unlock(&ip->i_flags_lock);
1631
5b3eed75
DC
1632 /*
1633 * Don't try to lock/unlock the current inode, but we
1634 * _cannot_ skip the other inodes that we did not find
1635 * in the list attached to the buffer and are not
1636 * already marked stale. If we can't lock it, back off
1637 * and retry.
1638 */
5b257b4a
DC
1639 if (ip != free_ip &&
1640 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 1641 rcu_read_unlock();
5b3eed75
DC
1642 delay(1);
1643 goto retry;
1da177e4 1644 }
1a3e8f3d 1645 rcu_read_unlock();
1da177e4 1646
5b3eed75 1647 xfs_iflock(ip);
5b257b4a 1648 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 1649
5b3eed75
DC
1650 /*
1651 * we don't need to attach clean inodes or those only
1652 * with unlogged changes (which we throw away, anyway).
1653 */
1da177e4 1654 iip = ip->i_itemp;
5b3eed75 1655 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 1656 ASSERT(ip != free_ip);
1da177e4
LT
1657 xfs_ifunlock(ip);
1658 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1659 continue;
1660 }
1661
f5d8d5c4
CH
1662 iip->ili_last_fields = iip->ili_fields;
1663 iip->ili_fields = 0;
1da177e4 1664 iip->ili_logged = 1;
7b2e2a31
DC
1665 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1666 &iip->ili_item.li_lsn);
1da177e4 1667
ca30b2a7
CH
1668 xfs_buf_attach_iodone(bp, xfs_istale_done,
1669 &iip->ili_item);
5b257b4a
DC
1670
1671 if (ip != free_ip)
1da177e4 1672 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
1673 }
1674
5b3eed75 1675 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
1676 xfs_trans_binval(tp, bp);
1677 }
1678
5017e97d 1679 xfs_perag_put(pag);
2a30f36d 1680 return 0;
1da177e4
LT
1681}
1682
1683/*
1684 * This is called to return an inode to the inode free list.
1685 * The inode should already be truncated to 0 length and have
1686 * no pages associated with it. This routine also assumes that
1687 * the inode is already a part of the transaction.
1688 *
1689 * The on-disk copy of the inode will have been added to the list
1690 * of unlinked inodes in the AGI. We need to remove the inode from
1691 * that list atomically with respect to freeing it here.
1692 */
1693int
1694xfs_ifree(
1695 xfs_trans_t *tp,
1696 xfs_inode_t *ip,
1697 xfs_bmap_free_t *flist)
1698{
1699 int error;
1700 int delete;
1701 xfs_ino_t first_ino;
c319b58b
VA
1702 xfs_dinode_t *dip;
1703 xfs_buf_t *ibp;
1da177e4 1704
579aa9ca 1705 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
1706 ASSERT(ip->i_d.di_nlink == 0);
1707 ASSERT(ip->i_d.di_nextents == 0);
1708 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 1709 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
1710 ASSERT(ip->i_d.di_nblocks == 0);
1711
1712 /*
1713 * Pull the on-disk inode from the AGI unlinked list.
1714 */
1715 error = xfs_iunlink_remove(tp, ip);
1716 if (error != 0) {
1717 return error;
1718 }
1719
1720 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1721 if (error != 0) {
1722 return error;
1723 }
1724 ip->i_d.di_mode = 0; /* mark incore inode as free */
1725 ip->i_d.di_flags = 0;
1726 ip->i_d.di_dmevmask = 0;
1727 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
1728 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1729 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1730 /*
1731 * Bump the generation count so no one will be confused
1732 * by reincarnations of this inode.
1733 */
1734 ip->i_d.di_gen++;
c319b58b 1735
1da177e4
LT
1736 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1737
a8acad70 1738 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0);
c319b58b
VA
1739 if (error)
1740 return error;
1741
1742 /*
1743 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1744 * from picking up this inode when it is reclaimed (its incore state
1745 * initialzed but not flushed to disk yet). The in-core di_mode is
1746 * already cleared and a corresponding transaction logged.
1747 * The hack here just synchronizes the in-core to on-disk
1748 * di_mode value in advance before the actual inode sync to disk.
1749 * This is OK because the inode is already unlinked and would never
1750 * change its di_mode again for this inode generation.
1751 * This is a temporary hack that would require a proper fix
1752 * in the future.
1753 */
81591fe2 1754 dip->di_mode = 0;
c319b58b 1755
1da177e4 1756 if (delete) {
2a30f36d 1757 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4
LT
1758 }
1759
2a30f36d 1760 return error;
1da177e4
LT
1761}
1762
1763/*
1764 * Reallocate the space for if_broot based on the number of records
1765 * being added or deleted as indicated in rec_diff. Move the records
1766 * and pointers in if_broot to fit the new size. When shrinking this
1767 * will eliminate holes between the records and pointers created by
1768 * the caller. When growing this will create holes to be filled in
1769 * by the caller.
1770 *
1771 * The caller must not request to add more records than would fit in
1772 * the on-disk inode root. If the if_broot is currently NULL, then
1773 * if we adding records one will be allocated. The caller must also
1774 * not request that the number of records go below zero, although
1775 * it can go to zero.
1776 *
1777 * ip -- the inode whose if_broot area is changing
1778 * ext_diff -- the change in the number of records, positive or negative,
1779 * requested for the if_broot array.
1780 */
1781void
1782xfs_iroot_realloc(
1783 xfs_inode_t *ip,
1784 int rec_diff,
1785 int whichfork)
1786{
60197e8d 1787 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
1788 int cur_max;
1789 xfs_ifork_t *ifp;
7cc95a82 1790 struct xfs_btree_block *new_broot;
1da177e4
LT
1791 int new_max;
1792 size_t new_size;
1793 char *np;
1794 char *op;
1795
1796 /*
1797 * Handle the degenerate case quietly.
1798 */
1799 if (rec_diff == 0) {
1800 return;
1801 }
1802
1803 ifp = XFS_IFORK_PTR(ip, whichfork);
1804 if (rec_diff > 0) {
1805 /*
1806 * If there wasn't any memory allocated before, just
1807 * allocate it now and get out.
1808 */
1809 if (ifp->if_broot_bytes == 0) {
1810 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
4a7edddc 1811 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
1812 ifp->if_broot_bytes = (int)new_size;
1813 return;
1814 }
1815
1816 /*
1817 * If there is already an existing if_broot, then we need
1818 * to realloc() it and shift the pointers to their new
1819 * location. The records don't change location because
1820 * they are kept butted up against the btree block header.
1821 */
60197e8d 1822 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
1823 new_max = cur_max + rec_diff;
1824 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 1825 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4 1826 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
4a7edddc 1827 KM_SLEEP | KM_NOFS);
60197e8d
CH
1828 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1829 ifp->if_broot_bytes);
1830 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1831 (int)new_size);
1da177e4
LT
1832 ifp->if_broot_bytes = (int)new_size;
1833 ASSERT(ifp->if_broot_bytes <=
1834 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1835 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1836 return;
1837 }
1838
1839 /*
1840 * rec_diff is less than 0. In this case, we are shrinking the
1841 * if_broot buffer. It must already exist. If we go to zero
1842 * records, just get rid of the root and clear the status bit.
1843 */
1844 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 1845 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
1846 new_max = cur_max + rec_diff;
1847 ASSERT(new_max >= 0);
1848 if (new_max > 0)
1849 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1850 else
1851 new_size = 0;
1852 if (new_size > 0) {
4a7edddc 1853 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
1854 /*
1855 * First copy over the btree block header.
1856 */
7cc95a82 1857 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
1858 } else {
1859 new_broot = NULL;
1860 ifp->if_flags &= ~XFS_IFBROOT;
1861 }
1862
1863 /*
1864 * Only copy the records and pointers if there are any.
1865 */
1866 if (new_max > 0) {
1867 /*
1868 * First copy the records.
1869 */
136341b4
CH
1870 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1871 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
1872 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1873
1874 /*
1875 * Then copy the pointers.
1876 */
60197e8d 1877 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 1878 ifp->if_broot_bytes);
60197e8d 1879 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
1880 (int)new_size);
1881 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1882 }
f0e2d93c 1883 kmem_free(ifp->if_broot);
1da177e4
LT
1884 ifp->if_broot = new_broot;
1885 ifp->if_broot_bytes = (int)new_size;
1886 ASSERT(ifp->if_broot_bytes <=
1887 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1888 return;
1889}
1890
1891
1da177e4
LT
1892/*
1893 * This is called when the amount of space needed for if_data
1894 * is increased or decreased. The change in size is indicated by
1895 * the number of bytes that need to be added or deleted in the
1896 * byte_diff parameter.
1897 *
1898 * If the amount of space needed has decreased below the size of the
1899 * inline buffer, then switch to using the inline buffer. Otherwise,
1900 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1901 * to what is needed.
1902 *
1903 * ip -- the inode whose if_data area is changing
1904 * byte_diff -- the change in the number of bytes, positive or negative,
1905 * requested for the if_data array.
1906 */
1907void
1908xfs_idata_realloc(
1909 xfs_inode_t *ip,
1910 int byte_diff,
1911 int whichfork)
1912{
1913 xfs_ifork_t *ifp;
1914 int new_size;
1915 int real_size;
1916
1917 if (byte_diff == 0) {
1918 return;
1919 }
1920
1921 ifp = XFS_IFORK_PTR(ip, whichfork);
1922 new_size = (int)ifp->if_bytes + byte_diff;
1923 ASSERT(new_size >= 0);
1924
1925 if (new_size == 0) {
1926 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 1927 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
1928 }
1929 ifp->if_u1.if_data = NULL;
1930 real_size = 0;
1931 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1932 /*
1933 * If the valid extents/data can fit in if_inline_ext/data,
1934 * copy them from the malloc'd vector and free it.
1935 */
1936 if (ifp->if_u1.if_data == NULL) {
1937 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1938 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1939 ASSERT(ifp->if_real_bytes != 0);
1940 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
1941 new_size);
f0e2d93c 1942 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
1943 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1944 }
1945 real_size = 0;
1946 } else {
1947 /*
1948 * Stuck with malloc/realloc.
1949 * For inline data, the underlying buffer must be
1950 * a multiple of 4 bytes in size so that it can be
1951 * logged and stay on word boundaries. We enforce
1952 * that here.
1953 */
1954 real_size = roundup(new_size, 4);
1955 if (ifp->if_u1.if_data == NULL) {
1956 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
1957 ifp->if_u1.if_data = kmem_alloc(real_size,
1958 KM_SLEEP | KM_NOFS);
1da177e4
LT
1959 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1960 /*
1961 * Only do the realloc if the underlying size
1962 * is really changing.
1963 */
1964 if (ifp->if_real_bytes != real_size) {
1965 ifp->if_u1.if_data =
1966 kmem_realloc(ifp->if_u1.if_data,
1967 real_size,
1968 ifp->if_real_bytes,
4a7edddc 1969 KM_SLEEP | KM_NOFS);
1da177e4
LT
1970 }
1971 } else {
1972 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
1973 ifp->if_u1.if_data = kmem_alloc(real_size,
1974 KM_SLEEP | KM_NOFS);
1da177e4
LT
1975 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
1976 ifp->if_bytes);
1977 }
1978 }
1979 ifp->if_real_bytes = real_size;
1980 ifp->if_bytes = new_size;
1981 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1982}
1983
1da177e4
LT
1984void
1985xfs_idestroy_fork(
1986 xfs_inode_t *ip,
1987 int whichfork)
1988{
1989 xfs_ifork_t *ifp;
1990
1991 ifp = XFS_IFORK_PTR(ip, whichfork);
1992 if (ifp->if_broot != NULL) {
f0e2d93c 1993 kmem_free(ifp->if_broot);
1da177e4
LT
1994 ifp->if_broot = NULL;
1995 }
1996
1997 /*
1998 * If the format is local, then we can't have an extents
1999 * array so just look for an inline data array. If we're
2000 * not local then we may or may not have an extents list,
2001 * so check and free it up if we do.
2002 */
2003 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2004 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2005 (ifp->if_u1.if_data != NULL)) {
2006 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2007 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2008 ifp->if_u1.if_data = NULL;
2009 ifp->if_real_bytes = 0;
2010 }
2011 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2012 ((ifp->if_flags & XFS_IFEXTIREC) ||
2013 ((ifp->if_u1.if_extents != NULL) &&
2014 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2015 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2016 xfs_iext_destroy(ifp);
1da177e4
LT
2017 }
2018 ASSERT(ifp->if_u1.if_extents == NULL ||
2019 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2020 ASSERT(ifp->if_real_bytes == 0);
2021 if (whichfork == XFS_ATTR_FORK) {
2022 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2023 ip->i_afp = NULL;
2024 }
2025}
2026
1da177e4 2027/*
60ec6783
CH
2028 * This is called to unpin an inode. The caller must have the inode locked
2029 * in at least shared mode so that the buffer cannot be subsequently pinned
2030 * once someone is waiting for it to be unpinned.
1da177e4 2031 */
60ec6783 2032static void
f392e631 2033xfs_iunpin(
60ec6783 2034 struct xfs_inode *ip)
1da177e4 2035{
579aa9ca 2036 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2037
4aaf15d1
DC
2038 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2039
a3f74ffb 2040 /* Give the log a push to start the unpinning I/O */
60ec6783 2041 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2042
a3f74ffb 2043}
1da177e4 2044
f392e631
CH
2045static void
2046__xfs_iunpin_wait(
2047 struct xfs_inode *ip)
2048{
2049 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2050 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2051
2052 xfs_iunpin(ip);
2053
2054 do {
2055 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2056 if (xfs_ipincount(ip))
2057 io_schedule();
2058 } while (xfs_ipincount(ip));
2059 finish_wait(wq, &wait.wait);
2060}
2061
777df5af 2062void
a3f74ffb 2063xfs_iunpin_wait(
60ec6783 2064 struct xfs_inode *ip)
a3f74ffb 2065{
f392e631
CH
2066 if (xfs_ipincount(ip))
2067 __xfs_iunpin_wait(ip);
1da177e4
LT
2068}
2069
1da177e4
LT
2070/*
2071 * xfs_iextents_copy()
2072 *
2073 * This is called to copy the REAL extents (as opposed to the delayed
2074 * allocation extents) from the inode into the given buffer. It
2075 * returns the number of bytes copied into the buffer.
2076 *
2077 * If there are no delayed allocation extents, then we can just
2078 * memcpy() the extents into the buffer. Otherwise, we need to
2079 * examine each extent in turn and skip those which are delayed.
2080 */
2081int
2082xfs_iextents_copy(
2083 xfs_inode_t *ip,
a6f64d4a 2084 xfs_bmbt_rec_t *dp,
1da177e4
LT
2085 int whichfork)
2086{
2087 int copied;
1da177e4
LT
2088 int i;
2089 xfs_ifork_t *ifp;
2090 int nrecs;
2091 xfs_fsblock_t start_block;
2092
2093 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2094 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2095 ASSERT(ifp->if_bytes > 0);
2096
2097 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2098 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2099 ASSERT(nrecs > 0);
2100
2101 /*
2102 * There are some delayed allocation extents in the
2103 * inode, so copy the extents one at a time and skip
2104 * the delayed ones. There must be at least one
2105 * non-delayed extent.
2106 */
1da177e4
LT
2107 copied = 0;
2108 for (i = 0; i < nrecs; i++) {
a6f64d4a 2109 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4 2110 start_block = xfs_bmbt_get_startblock(ep);
9d87c319 2111 if (isnullstartblock(start_block)) {
1da177e4
LT
2112 /*
2113 * It's a delayed allocation extent, so skip it.
2114 */
1da177e4
LT
2115 continue;
2116 }
2117
2118 /* Translate to on disk format */
cd8b0a97
CH
2119 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2120 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2121 dp++;
1da177e4
LT
2122 copied++;
2123 }
2124 ASSERT(copied != 0);
a6f64d4a 2125 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2126
2127 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2128}
2129
2130/*
2131 * Each of the following cases stores data into the same region
2132 * of the on-disk inode, so only one of them can be valid at
2133 * any given time. While it is possible to have conflicting formats
2134 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2135 * in EXTENTS format, this can only happen when the fork has
2136 * changed formats after being modified but before being flushed.
2137 * In these cases, the format always takes precedence, because the
2138 * format indicates the current state of the fork.
2139 */
2140/*ARGSUSED*/
e4ac967b 2141STATIC void
1da177e4
LT
2142xfs_iflush_fork(
2143 xfs_inode_t *ip,
2144 xfs_dinode_t *dip,
2145 xfs_inode_log_item_t *iip,
2146 int whichfork,
2147 xfs_buf_t *bp)
2148{
2149 char *cp;
2150 xfs_ifork_t *ifp;
2151 xfs_mount_t *mp;
2152#ifdef XFS_TRANS_DEBUG
2153 int first;
2154#endif
2155 static const short brootflag[2] =
2156 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2157 static const short dataflag[2] =
2158 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2159 static const short extflag[2] =
2160 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2161
e4ac967b
DC
2162 if (!iip)
2163 return;
1da177e4
LT
2164 ifp = XFS_IFORK_PTR(ip, whichfork);
2165 /*
2166 * This can happen if we gave up in iformat in an error path,
2167 * for the attribute fork.
2168 */
e4ac967b 2169 if (!ifp) {
1da177e4 2170 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2171 return;
1da177e4
LT
2172 }
2173 cp = XFS_DFORK_PTR(dip, whichfork);
2174 mp = ip->i_mount;
2175 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2176 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 2177 if ((iip->ili_fields & dataflag[whichfork]) &&
1da177e4
LT
2178 (ifp->if_bytes > 0)) {
2179 ASSERT(ifp->if_u1.if_data != NULL);
2180 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2181 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2182 }
1da177e4
LT
2183 break;
2184
2185 case XFS_DINODE_FMT_EXTENTS:
2186 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
f5d8d5c4
CH
2187 !(iip->ili_fields & extflag[whichfork]));
2188 if ((iip->ili_fields & extflag[whichfork]) &&
1da177e4 2189 (ifp->if_bytes > 0)) {
ab1908a5 2190 ASSERT(xfs_iext_get_ext(ifp, 0));
1da177e4
LT
2191 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2192 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2193 whichfork);
2194 }
2195 break;
2196
2197 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 2198 if ((iip->ili_fields & brootflag[whichfork]) &&
1da177e4
LT
2199 (ifp->if_broot_bytes > 0)) {
2200 ASSERT(ifp->if_broot != NULL);
2201 ASSERT(ifp->if_broot_bytes <=
2202 (XFS_IFORK_SIZE(ip, whichfork) +
2203 XFS_BROOT_SIZE_ADJ));
60197e8d 2204 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2205 (xfs_bmdr_block_t *)cp,
2206 XFS_DFORK_SIZE(dip, mp, whichfork));
2207 }
2208 break;
2209
2210 case XFS_DINODE_FMT_DEV:
f5d8d5c4 2211 if (iip->ili_fields & XFS_ILOG_DEV) {
1da177e4 2212 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2213 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2214 }
2215 break;
2216
2217 case XFS_DINODE_FMT_UUID:
f5d8d5c4 2218 if (iip->ili_fields & XFS_ILOG_UUID) {
1da177e4 2219 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2220 memcpy(XFS_DFORK_DPTR(dip),
2221 &ip->i_df.if_u2.if_uuid,
2222 sizeof(uuid_t));
1da177e4
LT
2223 }
2224 break;
2225
2226 default:
2227 ASSERT(0);
2228 break;
2229 }
1da177e4
LT
2230}
2231
bad55843
DC
2232STATIC int
2233xfs_iflush_cluster(
2234 xfs_inode_t *ip,
2235 xfs_buf_t *bp)
2236{
2237 xfs_mount_t *mp = ip->i_mount;
5017e97d 2238 struct xfs_perag *pag;
bad55843 2239 unsigned long first_index, mask;
c8f5f12e 2240 unsigned long inodes_per_cluster;
bad55843
DC
2241 int ilist_size;
2242 xfs_inode_t **ilist;
2243 xfs_inode_t *iq;
bad55843
DC
2244 int nr_found;
2245 int clcount = 0;
2246 int bufwasdelwri;
2247 int i;
2248
5017e97d 2249 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
bad55843 2250
c8f5f12e
DC
2251 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2252 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2253 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843 2254 if (!ilist)
44b56e0a 2255 goto out_put;
bad55843
DC
2256
2257 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2258 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
1a3e8f3d 2259 rcu_read_lock();
bad55843
DC
2260 /* really need a gang lookup range call here */
2261 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2262 first_index, inodes_per_cluster);
bad55843
DC
2263 if (nr_found == 0)
2264 goto out_free;
2265
2266 for (i = 0; i < nr_found; i++) {
2267 iq = ilist[i];
2268 if (iq == ip)
2269 continue;
1a3e8f3d
DC
2270
2271 /*
2272 * because this is an RCU protected lookup, we could find a
2273 * recently freed or even reallocated inode during the lookup.
2274 * We need to check under the i_flags_lock for a valid inode
2275 * here. Skip it if it is not valid or the wrong inode.
2276 */
2277 spin_lock(&ip->i_flags_lock);
2278 if (!ip->i_ino ||
2279 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2280 spin_unlock(&ip->i_flags_lock);
2281 continue;
2282 }
2283 spin_unlock(&ip->i_flags_lock);
2284
bad55843
DC
2285 /*
2286 * Do an un-protected check to see if the inode is dirty and
2287 * is a candidate for flushing. These checks will be repeated
2288 * later after the appropriate locks are acquired.
2289 */
33540408 2290 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2291 continue;
bad55843
DC
2292
2293 /*
2294 * Try to get locks. If any are unavailable or it is pinned,
2295 * then this inode cannot be flushed and is skipped.
2296 */
2297
2298 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2299 continue;
2300 if (!xfs_iflock_nowait(iq)) {
2301 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2302 continue;
2303 }
2304 if (xfs_ipincount(iq)) {
2305 xfs_ifunlock(iq);
2306 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2307 continue;
2308 }
2309
2310 /*
2311 * arriving here means that this inode can be flushed. First
2312 * re-check that it's dirty before flushing.
2313 */
33540408
DC
2314 if (!xfs_inode_clean(iq)) {
2315 int error;
bad55843
DC
2316 error = xfs_iflush_int(iq, bp);
2317 if (error) {
2318 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2319 goto cluster_corrupt_out;
2320 }
2321 clcount++;
2322 } else {
2323 xfs_ifunlock(iq);
2324 }
2325 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2326 }
2327
2328 if (clcount) {
2329 XFS_STATS_INC(xs_icluster_flushcnt);
2330 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2331 }
2332
2333out_free:
1a3e8f3d 2334 rcu_read_unlock();
f0e2d93c 2335 kmem_free(ilist);
44b56e0a
DC
2336out_put:
2337 xfs_perag_put(pag);
bad55843
DC
2338 return 0;
2339
2340
2341cluster_corrupt_out:
2342 /*
2343 * Corruption detected in the clustering loop. Invalidate the
2344 * inode buffer and shut down the filesystem.
2345 */
1a3e8f3d 2346 rcu_read_unlock();
bad55843 2347 /*
43ff2122 2348 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
2349 * brelse can handle it with no problems. If not, shut down the
2350 * filesystem before releasing the buffer.
2351 */
43ff2122 2352 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
2353 if (bufwasdelwri)
2354 xfs_buf_relse(bp);
2355
2356 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2357
2358 if (!bufwasdelwri) {
2359 /*
2360 * Just like incore_relse: if we have b_iodone functions,
2361 * mark the buffer as an error and call them. Otherwise
2362 * mark it as stale and brelse.
2363 */
cb669ca5 2364 if (bp->b_iodone) {
bad55843 2365 XFS_BUF_UNDONE(bp);
c867cb61 2366 xfs_buf_stale(bp);
5a52c2a5 2367 xfs_buf_ioerror(bp, EIO);
1a1a3e97 2368 xfs_buf_ioend(bp, 0);
bad55843 2369 } else {
c867cb61 2370 xfs_buf_stale(bp);
bad55843
DC
2371 xfs_buf_relse(bp);
2372 }
2373 }
2374
2375 /*
2376 * Unlocks the flush lock
2377 */
04913fdd 2378 xfs_iflush_abort(iq, false);
f0e2d93c 2379 kmem_free(ilist);
44b56e0a 2380 xfs_perag_put(pag);
bad55843
DC
2381 return XFS_ERROR(EFSCORRUPTED);
2382}
2383
1da177e4 2384/*
4c46819a
CH
2385 * Flush dirty inode metadata into the backing buffer.
2386 *
2387 * The caller must have the inode lock and the inode flush lock held. The
2388 * inode lock will still be held upon return to the caller, and the inode
2389 * flush lock will be released after the inode has reached the disk.
2390 *
2391 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
2392 */
2393int
2394xfs_iflush(
4c46819a
CH
2395 struct xfs_inode *ip,
2396 struct xfs_buf **bpp)
1da177e4 2397{
4c46819a
CH
2398 struct xfs_mount *mp = ip->i_mount;
2399 struct xfs_buf *bp;
2400 struct xfs_dinode *dip;
1da177e4 2401 int error;
1da177e4
LT
2402
2403 XFS_STATS_INC(xs_iflush_count);
2404
579aa9ca 2405 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 2406 ASSERT(xfs_isiflocked(ip));
1da177e4 2407 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2408 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 2409
4c46819a 2410 *bpp = NULL;
1da177e4 2411
1da177e4
LT
2412 xfs_iunpin_wait(ip);
2413
4b6a4688
DC
2414 /*
2415 * For stale inodes we cannot rely on the backing buffer remaining
2416 * stale in cache for the remaining life of the stale inode and so
2417 * xfs_itobp() below may give us a buffer that no longer contains
2418 * inodes below. We have to check this after ensuring the inode is
2419 * unpinned so that it is safe to reclaim the stale inode after the
2420 * flush call.
2421 */
2422 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2423 xfs_ifunlock(ip);
2424 return 0;
2425 }
2426
1da177e4
LT
2427 /*
2428 * This may have been unpinned because the filesystem is shutting
2429 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
2430 * to disk, because the log record didn't make it to disk.
2431 *
2432 * We also have to remove the log item from the AIL in this case,
2433 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
2434 */
2435 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
2436 error = XFS_ERROR(EIO);
2437 goto abort_out;
1da177e4
LT
2438 }
2439
a3f74ffb
DC
2440 /*
2441 * Get the buffer containing the on-disk inode.
2442 */
4c46819a 2443 error = xfs_itobp(mp, NULL, ip, &dip, &bp, XBF_TRYLOCK);
a3f74ffb
DC
2444 if (error || !bp) {
2445 xfs_ifunlock(ip);
2446 return error;
2447 }
2448
1da177e4
LT
2449 /*
2450 * First flush out the inode that xfs_iflush was called with.
2451 */
2452 error = xfs_iflush_int(ip, bp);
bad55843 2453 if (error)
1da177e4 2454 goto corrupt_out;
1da177e4 2455
a3f74ffb
DC
2456 /*
2457 * If the buffer is pinned then push on the log now so we won't
2458 * get stuck waiting in the write for too long.
2459 */
811e64c7 2460 if (xfs_buf_ispinned(bp))
a14a348b 2461 xfs_log_force(mp, 0);
a3f74ffb 2462
1da177e4
LT
2463 /*
2464 * inode clustering:
2465 * see if other inodes can be gathered into this write
2466 */
bad55843
DC
2467 error = xfs_iflush_cluster(ip, bp);
2468 if (error)
2469 goto cluster_corrupt_out;
1da177e4 2470
4c46819a
CH
2471 *bpp = bp;
2472 return 0;
1da177e4
LT
2473
2474corrupt_out:
2475 xfs_buf_relse(bp);
7d04a335 2476 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 2477cluster_corrupt_out:
32ce90a4
CH
2478 error = XFS_ERROR(EFSCORRUPTED);
2479abort_out:
1da177e4
LT
2480 /*
2481 * Unlocks the flush lock
2482 */
04913fdd 2483 xfs_iflush_abort(ip, false);
32ce90a4 2484 return error;
1da177e4
LT
2485}
2486
2487
2488STATIC int
2489xfs_iflush_int(
2490 xfs_inode_t *ip,
2491 xfs_buf_t *bp)
2492{
2493 xfs_inode_log_item_t *iip;
2494 xfs_dinode_t *dip;
2495 xfs_mount_t *mp;
2496#ifdef XFS_TRANS_DEBUG
2497 int first;
2498#endif
1da177e4 2499
579aa9ca 2500 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 2501 ASSERT(xfs_isiflocked(ip));
1da177e4 2502 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2503 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4
LT
2504
2505 iip = ip->i_itemp;
2506 mp = ip->i_mount;
2507
1da177e4 2508 /* set *dip = inode's place in the buffer */
92bfc6e7 2509 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 2510
69ef921b 2511 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 2512 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
2513 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2514 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2515 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
2516 goto corrupt_out;
2517 }
2518 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2519 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
2520 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2521 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2522 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
2523 goto corrupt_out;
2524 }
abbede1b 2525 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
2526 if (XFS_TEST_ERROR(
2527 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2528 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2529 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
2530 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2531 "%s: Bad regular inode %Lu, ptr 0x%p",
2532 __func__, ip->i_ino, ip);
1da177e4
LT
2533 goto corrupt_out;
2534 }
abbede1b 2535 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
2536 if (XFS_TEST_ERROR(
2537 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2538 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2539 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2540 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
2541 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2542 "%s: Bad directory inode %Lu, ptr 0x%p",
2543 __func__, ip->i_ino, ip);
1da177e4
LT
2544 goto corrupt_out;
2545 }
2546 }
2547 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2548 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2549 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
2550 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2551 "%s: detected corrupt incore inode %Lu, "
2552 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2553 __func__, ip->i_ino,
1da177e4 2554 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 2555 ip->i_d.di_nblocks, ip);
1da177e4
LT
2556 goto corrupt_out;
2557 }
2558 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2559 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
2560 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2561 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2562 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
2563 goto corrupt_out;
2564 }
2565 /*
2566 * bump the flush iteration count, used to detect flushes which
2567 * postdate a log record during recovery.
2568 */
2569
2570 ip->i_d.di_flushiter++;
2571
2572 /*
2573 * Copy the dirty parts of the inode into the on-disk
2574 * inode. We always copy out the core of the inode,
2575 * because if the inode is dirty at all the core must
2576 * be.
2577 */
81591fe2 2578 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
2579
2580 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2581 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2582 ip->i_d.di_flushiter = 0;
2583
2584 /*
2585 * If this is really an old format inode and the superblock version
2586 * has not been updated to support only new format inodes, then
2587 * convert back to the old inode format. If the superblock version
2588 * has been updated, then make the conversion permanent.
2589 */
51ce16d5
CH
2590 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2591 if (ip->i_d.di_version == 1) {
62118709 2592 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
2593 /*
2594 * Convert it back.
2595 */
2596 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 2597 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
2598 } else {
2599 /*
2600 * The superblock version has already been bumped,
2601 * so just make the conversion to the new inode
2602 * format permanent.
2603 */
51ce16d5
CH
2604 ip->i_d.di_version = 2;
2605 dip->di_version = 2;
1da177e4 2606 ip->i_d.di_onlink = 0;
81591fe2 2607 dip->di_onlink = 0;
1da177e4 2608 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
2609 memset(&(dip->di_pad[0]), 0,
2610 sizeof(dip->di_pad));
6743099c 2611 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
2612 }
2613 }
2614
e4ac967b
DC
2615 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2616 if (XFS_IFORK_Q(ip))
2617 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
2618 xfs_inobp_check(mp, bp);
2619
2620 /*
f5d8d5c4
CH
2621 * We've recorded everything logged in the inode, so we'd like to clear
2622 * the ili_fields bits so we don't log and flush things unnecessarily.
2623 * However, we can't stop logging all this information until the data
2624 * we've copied into the disk buffer is written to disk. If we did we
2625 * might overwrite the copy of the inode in the log with all the data
2626 * after re-logging only part of it, and in the face of a crash we
2627 * wouldn't have all the data we need to recover.
1da177e4 2628 *
f5d8d5c4
CH
2629 * What we do is move the bits to the ili_last_fields field. When
2630 * logging the inode, these bits are moved back to the ili_fields field.
2631 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2632 * know that the information those bits represent is permanently on
2633 * disk. As long as the flush completes before the inode is logged
2634 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 2635 *
f5d8d5c4
CH
2636 * We can play with the ili_fields bits here, because the inode lock
2637 * must be held exclusively in order to set bits there and the flush
2638 * lock protects the ili_last_fields bits. Set ili_logged so the flush
2639 * done routine can tell whether or not to look in the AIL. Also, store
2640 * the current LSN of the inode so that we can tell whether the item has
2641 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
2642 * need the AIL lock, because it is a 64 bit value that cannot be read
2643 * atomically.
1da177e4 2644 */
f5d8d5c4
CH
2645 if (iip != NULL && iip->ili_fields != 0) {
2646 iip->ili_last_fields = iip->ili_fields;
2647 iip->ili_fields = 0;
1da177e4
LT
2648 iip->ili_logged = 1;
2649
7b2e2a31
DC
2650 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2651 &iip->ili_item.li_lsn);
1da177e4
LT
2652
2653 /*
2654 * Attach the function xfs_iflush_done to the inode's
2655 * buffer. This will remove the inode from the AIL
2656 * and unlock the inode's flush lock when the inode is
2657 * completely written to disk.
2658 */
ca30b2a7 2659 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 2660
adadbeef 2661 ASSERT(bp->b_fspriv != NULL);
cb669ca5 2662 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
2663 } else {
2664 /*
2665 * We're flushing an inode which is not in the AIL and has
8a9c9980 2666 * not been logged. For this case we can immediately drop
1da177e4
LT
2667 * the inode flush lock because we can avoid the whole
2668 * AIL state thing. It's OK to drop the flush lock now,
2669 * because we've already locked the buffer and to do anything
2670 * you really need both.
2671 */
2672 if (iip != NULL) {
2673 ASSERT(iip->ili_logged == 0);
2674 ASSERT(iip->ili_last_fields == 0);
2675 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2676 }
2677 xfs_ifunlock(ip);
2678 }
2679
2680 return 0;
2681
2682corrupt_out:
2683 return XFS_ERROR(EFSCORRUPTED);
2684}
2685
4eea22f0
MK
2686/*
2687 * Return a pointer to the extent record at file index idx.
2688 */
a6f64d4a 2689xfs_bmbt_rec_host_t *
4eea22f0
MK
2690xfs_iext_get_ext(
2691 xfs_ifork_t *ifp, /* inode fork pointer */
2692 xfs_extnum_t idx) /* index of target extent */
2693{
2694 ASSERT(idx >= 0);
87bef181
CH
2695 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2696
0293ce3a
MK
2697 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2698 return ifp->if_u1.if_ext_irec->er_extbuf;
2699 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2700 xfs_ext_irec_t *erp; /* irec pointer */
2701 int erp_idx = 0; /* irec index */
2702 xfs_extnum_t page_idx = idx; /* ext index in target list */
2703
2704 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2705 return &erp->er_extbuf[page_idx];
2706 } else if (ifp->if_bytes) {
4eea22f0
MK
2707 return &ifp->if_u1.if_extents[idx];
2708 } else {
2709 return NULL;
2710 }
2711}
2712
2713/*
2714 * Insert new item(s) into the extent records for incore inode
2715 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2716 */
2717void
2718xfs_iext_insert(
6ef35544 2719 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0
MK
2720 xfs_extnum_t idx, /* starting index of new items */
2721 xfs_extnum_t count, /* number of inserted items */
6ef35544
CH
2722 xfs_bmbt_irec_t *new, /* items to insert */
2723 int state) /* type of extent conversion */
4eea22f0 2724{
6ef35544 2725 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
2726 xfs_extnum_t i; /* extent record index */
2727
0b1b213f
CH
2728 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2729
4eea22f0
MK
2730 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2731 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
2732 for (i = idx; i < idx + count; i++, new++)
2733 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
2734}
2735
2736/*
2737 * This is called when the amount of space required for incore file
2738 * extents needs to be increased. The ext_diff parameter stores the
2739 * number of new extents being added and the idx parameter contains
2740 * the extent index where the new extents will be added. If the new
2741 * extents are being appended, then we just need to (re)allocate and
2742 * initialize the space. Otherwise, if the new extents are being
2743 * inserted into the middle of the existing entries, a bit more work
2744 * is required to make room for the new extents to be inserted. The
2745 * caller is responsible for filling in the new extent entries upon
2746 * return.
2747 */
2748void
2749xfs_iext_add(
2750 xfs_ifork_t *ifp, /* inode fork pointer */
2751 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 2752 int ext_diff) /* number of extents to add */
4eea22f0
MK
2753{
2754 int byte_diff; /* new bytes being added */
2755 int new_size; /* size of extents after adding */
2756 xfs_extnum_t nextents; /* number of extents in file */
2757
2758 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2759 ASSERT((idx >= 0) && (idx <= nextents));
2760 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2761 new_size = ifp->if_bytes + byte_diff;
2762 /*
2763 * If the new number of extents (nextents + ext_diff)
2764 * fits inside the inode, then continue to use the inline
2765 * extent buffer.
2766 */
2767 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2768 if (idx < nextents) {
2769 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2770 &ifp->if_u2.if_inline_ext[idx],
2771 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2772 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2773 }
2774 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2775 ifp->if_real_bytes = 0;
2776 }
2777 /*
2778 * Otherwise use a linear (direct) extent list.
2779 * If the extents are currently inside the inode,
2780 * xfs_iext_realloc_direct will switch us from
2781 * inline to direct extent allocation mode.
2782 */
0293ce3a 2783 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
2784 xfs_iext_realloc_direct(ifp, new_size);
2785 if (idx < nextents) {
2786 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2787 &ifp->if_u1.if_extents[idx],
2788 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2789 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2790 }
2791 }
0293ce3a
MK
2792 /* Indirection array */
2793 else {
2794 xfs_ext_irec_t *erp;
2795 int erp_idx = 0;
2796 int page_idx = idx;
2797
2798 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2799 if (ifp->if_flags & XFS_IFEXTIREC) {
2800 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2801 } else {
2802 xfs_iext_irec_init(ifp);
2803 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2804 erp = ifp->if_u1.if_ext_irec;
2805 }
2806 /* Extents fit in target extent page */
2807 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2808 if (page_idx < erp->er_extcount) {
2809 memmove(&erp->er_extbuf[page_idx + ext_diff],
2810 &erp->er_extbuf[page_idx],
2811 (erp->er_extcount - page_idx) *
2812 sizeof(xfs_bmbt_rec_t));
2813 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2814 }
2815 erp->er_extcount += ext_diff;
2816 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2817 }
2818 /* Insert a new extent page */
2819 else if (erp) {
2820 xfs_iext_add_indirect_multi(ifp,
2821 erp_idx, page_idx, ext_diff);
2822 }
2823 /*
2824 * If extent(s) are being appended to the last page in
2825 * the indirection array and the new extent(s) don't fit
2826 * in the page, then erp is NULL and erp_idx is set to
2827 * the next index needed in the indirection array.
2828 */
2829 else {
2830 int count = ext_diff;
2831
2832 while (count) {
2833 erp = xfs_iext_irec_new(ifp, erp_idx);
2834 erp->er_extcount = count;
2835 count -= MIN(count, (int)XFS_LINEAR_EXTS);
2836 if (count) {
2837 erp_idx++;
2838 }
2839 }
2840 }
2841 }
4eea22f0
MK
2842 ifp->if_bytes = new_size;
2843}
2844
0293ce3a
MK
2845/*
2846 * This is called when incore extents are being added to the indirection
2847 * array and the new extents do not fit in the target extent list. The
2848 * erp_idx parameter contains the irec index for the target extent list
2849 * in the indirection array, and the idx parameter contains the extent
2850 * index within the list. The number of extents being added is stored
2851 * in the count parameter.
2852 *
2853 * |-------| |-------|
2854 * | | | | idx - number of extents before idx
2855 * | idx | | count |
2856 * | | | | count - number of extents being inserted at idx
2857 * |-------| |-------|
2858 * | count | | nex2 | nex2 - number of extents after idx + count
2859 * |-------| |-------|
2860 */
2861void
2862xfs_iext_add_indirect_multi(
2863 xfs_ifork_t *ifp, /* inode fork pointer */
2864 int erp_idx, /* target extent irec index */
2865 xfs_extnum_t idx, /* index within target list */
2866 int count) /* new extents being added */
2867{
2868 int byte_diff; /* new bytes being added */
2869 xfs_ext_irec_t *erp; /* pointer to irec entry */
2870 xfs_extnum_t ext_diff; /* number of extents to add */
2871 xfs_extnum_t ext_cnt; /* new extents still needed */
2872 xfs_extnum_t nex2; /* extents after idx + count */
2873 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
2874 int nlists; /* number of irec's (lists) */
2875
2876 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2877 erp = &ifp->if_u1.if_ext_irec[erp_idx];
2878 nex2 = erp->er_extcount - idx;
2879 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2880
2881 /*
2882 * Save second part of target extent list
2883 * (all extents past */
2884 if (nex2) {
2885 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 2886 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
2887 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2888 erp->er_extcount -= nex2;
2889 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2890 memset(&erp->er_extbuf[idx], 0, byte_diff);
2891 }
2892
2893 /*
2894 * Add the new extents to the end of the target
2895 * list, then allocate new irec record(s) and
2896 * extent buffer(s) as needed to store the rest
2897 * of the new extents.
2898 */
2899 ext_cnt = count;
2900 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2901 if (ext_diff) {
2902 erp->er_extcount += ext_diff;
2903 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2904 ext_cnt -= ext_diff;
2905 }
2906 while (ext_cnt) {
2907 erp_idx++;
2908 erp = xfs_iext_irec_new(ifp, erp_idx);
2909 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2910 erp->er_extcount = ext_diff;
2911 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2912 ext_cnt -= ext_diff;
2913 }
2914
2915 /* Add nex2 extents back to indirection array */
2916 if (nex2) {
2917 xfs_extnum_t ext_avail;
2918 int i;
2919
2920 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2921 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2922 i = 0;
2923 /*
2924 * If nex2 extents fit in the current page, append
2925 * nex2_ep after the new extents.
2926 */
2927 if (nex2 <= ext_avail) {
2928 i = erp->er_extcount;
2929 }
2930 /*
2931 * Otherwise, check if space is available in the
2932 * next page.
2933 */
2934 else if ((erp_idx < nlists - 1) &&
2935 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
2936 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
2937 erp_idx++;
2938 erp++;
2939 /* Create a hole for nex2 extents */
2940 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
2941 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
2942 }
2943 /*
2944 * Final choice, create a new extent page for
2945 * nex2 extents.
2946 */
2947 else {
2948 erp_idx++;
2949 erp = xfs_iext_irec_new(ifp, erp_idx);
2950 }
2951 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 2952 kmem_free(nex2_ep);
0293ce3a
MK
2953 erp->er_extcount += nex2;
2954 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
2955 }
2956}
2957
4eea22f0
MK
2958/*
2959 * This is called when the amount of space required for incore file
2960 * extents needs to be decreased. The ext_diff parameter stores the
2961 * number of extents to be removed and the idx parameter contains
2962 * the extent index where the extents will be removed from.
0293ce3a
MK
2963 *
2964 * If the amount of space needed has decreased below the linear
2965 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
2966 * extent array. Otherwise, use kmem_realloc() to adjust the
2967 * size to what is needed.
4eea22f0
MK
2968 */
2969void
2970xfs_iext_remove(
6ef35544 2971 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0 2972 xfs_extnum_t idx, /* index to begin removing exts */
6ef35544
CH
2973 int ext_diff, /* number of extents to remove */
2974 int state) /* type of extent conversion */
4eea22f0 2975{
6ef35544 2976 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
2977 xfs_extnum_t nextents; /* number of extents in file */
2978 int new_size; /* size of extents after removal */
2979
0b1b213f
CH
2980 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
2981
4eea22f0
MK
2982 ASSERT(ext_diff > 0);
2983 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2984 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
2985
2986 if (new_size == 0) {
2987 xfs_iext_destroy(ifp);
0293ce3a
MK
2988 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2989 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
2990 } else if (ifp->if_real_bytes) {
2991 xfs_iext_remove_direct(ifp, idx, ext_diff);
2992 } else {
2993 xfs_iext_remove_inline(ifp, idx, ext_diff);
2994 }
2995 ifp->if_bytes = new_size;
2996}
2997
2998/*
2999 * This removes ext_diff extents from the inline buffer, beginning
3000 * at extent index idx.
3001 */
3002void
3003xfs_iext_remove_inline(
3004 xfs_ifork_t *ifp, /* inode fork pointer */
3005 xfs_extnum_t idx, /* index to begin removing exts */
3006 int ext_diff) /* number of extents to remove */
3007{
3008 int nextents; /* number of extents in file */
3009
0293ce3a 3010 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3011 ASSERT(idx < XFS_INLINE_EXTS);
3012 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3013 ASSERT(((nextents - ext_diff) > 0) &&
3014 (nextents - ext_diff) < XFS_INLINE_EXTS);
3015
3016 if (idx + ext_diff < nextents) {
3017 memmove(&ifp->if_u2.if_inline_ext[idx],
3018 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3019 (nextents - (idx + ext_diff)) *
3020 sizeof(xfs_bmbt_rec_t));
3021 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3022 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3023 } else {
3024 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3025 ext_diff * sizeof(xfs_bmbt_rec_t));
3026 }
3027}
3028
3029/*
3030 * This removes ext_diff extents from a linear (direct) extent list,
3031 * beginning at extent index idx. If the extents are being removed
3032 * from the end of the list (ie. truncate) then we just need to re-
3033 * allocate the list to remove the extra space. Otherwise, if the
3034 * extents are being removed from the middle of the existing extent
3035 * entries, then we first need to move the extent records beginning
3036 * at idx + ext_diff up in the list to overwrite the records being
3037 * removed, then remove the extra space via kmem_realloc.
3038 */
3039void
3040xfs_iext_remove_direct(
3041 xfs_ifork_t *ifp, /* inode fork pointer */
3042 xfs_extnum_t idx, /* index to begin removing exts */
3043 int ext_diff) /* number of extents to remove */
3044{
3045 xfs_extnum_t nextents; /* number of extents in file */
3046 int new_size; /* size of extents after removal */
3047
0293ce3a 3048 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3049 new_size = ifp->if_bytes -
3050 (ext_diff * sizeof(xfs_bmbt_rec_t));
3051 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3052
3053 if (new_size == 0) {
3054 xfs_iext_destroy(ifp);
3055 return;
3056 }
3057 /* Move extents up in the list (if needed) */
3058 if (idx + ext_diff < nextents) {
3059 memmove(&ifp->if_u1.if_extents[idx],
3060 &ifp->if_u1.if_extents[idx + ext_diff],
3061 (nextents - (idx + ext_diff)) *
3062 sizeof(xfs_bmbt_rec_t));
3063 }
3064 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3065 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3066 /*
3067 * Reallocate the direct extent list. If the extents
3068 * will fit inside the inode then xfs_iext_realloc_direct
3069 * will switch from direct to inline extent allocation
3070 * mode for us.
3071 */
3072 xfs_iext_realloc_direct(ifp, new_size);
3073 ifp->if_bytes = new_size;
3074}
3075
0293ce3a
MK
3076/*
3077 * This is called when incore extents are being removed from the
3078 * indirection array and the extents being removed span multiple extent
3079 * buffers. The idx parameter contains the file extent index where we
3080 * want to begin removing extents, and the count parameter contains
3081 * how many extents need to be removed.
3082 *
3083 * |-------| |-------|
3084 * | nex1 | | | nex1 - number of extents before idx
3085 * |-------| | count |
3086 * | | | | count - number of extents being removed at idx
3087 * | count | |-------|
3088 * | | | nex2 | nex2 - number of extents after idx + count
3089 * |-------| |-------|
3090 */
3091void
3092xfs_iext_remove_indirect(
3093 xfs_ifork_t *ifp, /* inode fork pointer */
3094 xfs_extnum_t idx, /* index to begin removing extents */
3095 int count) /* number of extents to remove */
3096{
3097 xfs_ext_irec_t *erp; /* indirection array pointer */
3098 int erp_idx = 0; /* indirection array index */
3099 xfs_extnum_t ext_cnt; /* extents left to remove */
3100 xfs_extnum_t ext_diff; /* extents to remove in current list */
3101 xfs_extnum_t nex1; /* number of extents before idx */
3102 xfs_extnum_t nex2; /* extents after idx + count */
0293ce3a
MK
3103 int page_idx = idx; /* index in target extent list */
3104
3105 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3106 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3107 ASSERT(erp != NULL);
0293ce3a
MK
3108 nex1 = page_idx;
3109 ext_cnt = count;
3110 while (ext_cnt) {
3111 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3112 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3113 /*
3114 * Check for deletion of entire list;
3115 * xfs_iext_irec_remove() updates extent offsets.
3116 */
3117 if (ext_diff == erp->er_extcount) {
3118 xfs_iext_irec_remove(ifp, erp_idx);
3119 ext_cnt -= ext_diff;
3120 nex1 = 0;
3121 if (ext_cnt) {
3122 ASSERT(erp_idx < ifp->if_real_bytes /
3123 XFS_IEXT_BUFSZ);
3124 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3125 nex1 = 0;
3126 continue;
3127 } else {
3128 break;
3129 }
3130 }
3131 /* Move extents up (if needed) */
3132 if (nex2) {
3133 memmove(&erp->er_extbuf[nex1],
3134 &erp->er_extbuf[nex1 + ext_diff],
3135 nex2 * sizeof(xfs_bmbt_rec_t));
3136 }
3137 /* Zero out rest of page */
3138 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3139 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3140 /* Update remaining counters */
3141 erp->er_extcount -= ext_diff;
3142 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3143 ext_cnt -= ext_diff;
3144 nex1 = 0;
3145 erp_idx++;
3146 erp++;
3147 }
3148 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3149 xfs_iext_irec_compact(ifp);
3150}
3151
4eea22f0
MK
3152/*
3153 * Create, destroy, or resize a linear (direct) block of extents.
3154 */
3155void
3156xfs_iext_realloc_direct(
3157 xfs_ifork_t *ifp, /* inode fork pointer */
3158 int new_size) /* new size of extents */
3159{
3160 int rnew_size; /* real new size of extents */
3161
3162 rnew_size = new_size;
3163
0293ce3a
MK
3164 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3165 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3166 (new_size != ifp->if_real_bytes)));
3167
4eea22f0
MK
3168 /* Free extent records */
3169 if (new_size == 0) {
3170 xfs_iext_destroy(ifp);
3171 }
3172 /* Resize direct extent list and zero any new bytes */
3173 else if (ifp->if_real_bytes) {
3174 /* Check if extents will fit inside the inode */
3175 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3176 xfs_iext_direct_to_inline(ifp, new_size /
3177 (uint)sizeof(xfs_bmbt_rec_t));
3178 ifp->if_bytes = new_size;
3179 return;
3180 }
16a087d8 3181 if (!is_power_of_2(new_size)){
40ebd81d 3182 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3183 }
3184 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3185 ifp->if_u1.if_extents =
4eea22f0
MK
3186 kmem_realloc(ifp->if_u1.if_extents,
3187 rnew_size,
6785073b 3188 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3189 }
3190 if (rnew_size > ifp->if_real_bytes) {
3191 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3192 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3193 rnew_size - ifp->if_real_bytes);
3194 }
3195 }
3196 /*
3197 * Switch from the inline extent buffer to a direct
3198 * extent list. Be sure to include the inline extent
3199 * bytes in new_size.
3200 */
3201 else {
3202 new_size += ifp->if_bytes;
16a087d8 3203 if (!is_power_of_2(new_size)) {
40ebd81d 3204 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3205 }
3206 xfs_iext_inline_to_direct(ifp, rnew_size);
3207 }
3208 ifp->if_real_bytes = rnew_size;
3209 ifp->if_bytes = new_size;
3210}
3211
3212/*
3213 * Switch from linear (direct) extent records to inline buffer.
3214 */
3215void
3216xfs_iext_direct_to_inline(
3217 xfs_ifork_t *ifp, /* inode fork pointer */
3218 xfs_extnum_t nextents) /* number of extents in file */
3219{
3220 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3221 ASSERT(nextents <= XFS_INLINE_EXTS);
3222 /*
3223 * The inline buffer was zeroed when we switched
3224 * from inline to direct extent allocation mode,
3225 * so we don't need to clear it here.
3226 */
3227 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3228 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3229 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3230 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3231 ifp->if_real_bytes = 0;
3232}
3233
3234/*
3235 * Switch from inline buffer to linear (direct) extent records.
3236 * new_size should already be rounded up to the next power of 2
3237 * by the caller (when appropriate), so use new_size as it is.
3238 * However, since new_size may be rounded up, we can't update
3239 * if_bytes here. It is the caller's responsibility to update
3240 * if_bytes upon return.
3241 */
3242void
3243xfs_iext_inline_to_direct(
3244 xfs_ifork_t *ifp, /* inode fork pointer */
3245 int new_size) /* number of extents in file */
3246{
6785073b 3247 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3248 memset(ifp->if_u1.if_extents, 0, new_size);
3249 if (ifp->if_bytes) {
3250 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3251 ifp->if_bytes);
3252 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3253 sizeof(xfs_bmbt_rec_t));
3254 }
3255 ifp->if_real_bytes = new_size;
3256}
3257
0293ce3a
MK
3258/*
3259 * Resize an extent indirection array to new_size bytes.
3260 */
d96f8f89 3261STATIC void
0293ce3a
MK
3262xfs_iext_realloc_indirect(
3263 xfs_ifork_t *ifp, /* inode fork pointer */
3264 int new_size) /* new indirection array size */
3265{
3266 int nlists; /* number of irec's (ex lists) */
3267 int size; /* current indirection array size */
3268
3269 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3270 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3271 size = nlists * sizeof(xfs_ext_irec_t);
3272 ASSERT(ifp->if_real_bytes);
3273 ASSERT((new_size >= 0) && (new_size != size));
3274 if (new_size == 0) {
3275 xfs_iext_destroy(ifp);
3276 } else {
3277 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3278 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3279 new_size, size, KM_NOFS);
0293ce3a
MK
3280 }
3281}
3282
3283/*
3284 * Switch from indirection array to linear (direct) extent allocations.
3285 */
d96f8f89 3286STATIC void
0293ce3a
MK
3287xfs_iext_indirect_to_direct(
3288 xfs_ifork_t *ifp) /* inode fork pointer */
3289{
a6f64d4a 3290 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
3291 xfs_extnum_t nextents; /* number of extents in file */
3292 int size; /* size of file extents */
3293
3294 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3295 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3296 ASSERT(nextents <= XFS_LINEAR_EXTS);
3297 size = nextents * sizeof(xfs_bmbt_rec_t);
3298
71a8c87f 3299 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
3300 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3301
3302 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 3303 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3304 ifp->if_flags &= ~XFS_IFEXTIREC;
3305 ifp->if_u1.if_extents = ep;
3306 ifp->if_bytes = size;
3307 if (nextents < XFS_LINEAR_EXTS) {
3308 xfs_iext_realloc_direct(ifp, size);
3309 }
3310}
3311
4eea22f0
MK
3312/*
3313 * Free incore file extents.
3314 */
3315void
3316xfs_iext_destroy(
3317 xfs_ifork_t *ifp) /* inode fork pointer */
3318{
0293ce3a
MK
3319 if (ifp->if_flags & XFS_IFEXTIREC) {
3320 int erp_idx;
3321 int nlists;
3322
3323 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3324 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3325 xfs_iext_irec_remove(ifp, erp_idx);
3326 }
3327 ifp->if_flags &= ~XFS_IFEXTIREC;
3328 } else if (ifp->if_real_bytes) {
f0e2d93c 3329 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3330 } else if (ifp->if_bytes) {
3331 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3332 sizeof(xfs_bmbt_rec_t));
3333 }
3334 ifp->if_u1.if_extents = NULL;
3335 ifp->if_real_bytes = 0;
3336 ifp->if_bytes = 0;
3337}
0293ce3a 3338
8867bc9b
MK
3339/*
3340 * Return a pointer to the extent record for file system block bno.
3341 */
a6f64d4a 3342xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
3343xfs_iext_bno_to_ext(
3344 xfs_ifork_t *ifp, /* inode fork pointer */
3345 xfs_fileoff_t bno, /* block number to search for */
3346 xfs_extnum_t *idxp) /* index of target extent */
3347{
a6f64d4a 3348 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 3349 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 3350 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 3351 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 3352 int high; /* upper boundary in search */
8867bc9b 3353 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 3354 int low; /* lower boundary in search */
8867bc9b
MK
3355 xfs_extnum_t nextents; /* number of file extents */
3356 xfs_fileoff_t startoff = 0; /* start offset of extent */
3357
3358 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3359 if (nextents == 0) {
3360 *idxp = 0;
3361 return NULL;
3362 }
3363 low = 0;
3364 if (ifp->if_flags & XFS_IFEXTIREC) {
3365 /* Find target extent list */
3366 int erp_idx = 0;
3367 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3368 base = erp->er_extbuf;
3369 high = erp->er_extcount - 1;
3370 } else {
3371 base = ifp->if_u1.if_extents;
3372 high = nextents - 1;
3373 }
3374 /* Binary search extent records */
3375 while (low <= high) {
3376 idx = (low + high) >> 1;
3377 ep = base + idx;
3378 startoff = xfs_bmbt_get_startoff(ep);
3379 blockcount = xfs_bmbt_get_blockcount(ep);
3380 if (bno < startoff) {
3381 high = idx - 1;
3382 } else if (bno >= startoff + blockcount) {
3383 low = idx + 1;
3384 } else {
3385 /* Convert back to file-based extent index */
3386 if (ifp->if_flags & XFS_IFEXTIREC) {
3387 idx += erp->er_extoff;
3388 }
3389 *idxp = idx;
3390 return ep;
3391 }
3392 }
3393 /* Convert back to file-based extent index */
3394 if (ifp->if_flags & XFS_IFEXTIREC) {
3395 idx += erp->er_extoff;
3396 }
3397 if (bno >= startoff + blockcount) {
3398 if (++idx == nextents) {
3399 ep = NULL;
3400 } else {
3401 ep = xfs_iext_get_ext(ifp, idx);
3402 }
3403 }
3404 *idxp = idx;
3405 return ep;
3406}
3407
0293ce3a
MK
3408/*
3409 * Return a pointer to the indirection array entry containing the
3410 * extent record for filesystem block bno. Store the index of the
3411 * target irec in *erp_idxp.
3412 */
8867bc9b 3413xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
3414xfs_iext_bno_to_irec(
3415 xfs_ifork_t *ifp, /* inode fork pointer */
3416 xfs_fileoff_t bno, /* block number to search for */
3417 int *erp_idxp) /* irec index of target ext list */
3418{
3419 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3420 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 3421 int erp_idx; /* indirection array index */
0293ce3a
MK
3422 int nlists; /* number of extent irec's (lists) */
3423 int high; /* binary search upper limit */
3424 int low; /* binary search lower limit */
3425
3426 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3427 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3428 erp_idx = 0;
3429 low = 0;
3430 high = nlists - 1;
3431 while (low <= high) {
3432 erp_idx = (low + high) >> 1;
3433 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3434 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3435 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3436 high = erp_idx - 1;
3437 } else if (erp_next && bno >=
3438 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3439 low = erp_idx + 1;
3440 } else {
3441 break;
3442 }
3443 }
3444 *erp_idxp = erp_idx;
3445 return erp;
3446}
3447
3448/*
3449 * Return a pointer to the indirection array entry containing the
3450 * extent record at file extent index *idxp. Store the index of the
3451 * target irec in *erp_idxp and store the page index of the target
3452 * extent record in *idxp.
3453 */
3454xfs_ext_irec_t *
3455xfs_iext_idx_to_irec(
3456 xfs_ifork_t *ifp, /* inode fork pointer */
3457 xfs_extnum_t *idxp, /* extent index (file -> page) */
3458 int *erp_idxp, /* pointer to target irec */
3459 int realloc) /* new bytes were just added */
3460{
3461 xfs_ext_irec_t *prev; /* pointer to previous irec */
3462 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3463 int erp_idx; /* indirection array index */
3464 int nlists; /* number of irec's (ex lists) */
3465 int high; /* binary search upper limit */
3466 int low; /* binary search lower limit */
3467 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3468
3469 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
87bef181
CH
3470 ASSERT(page_idx >= 0);
3471 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3472 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3473
0293ce3a
MK
3474 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3475 erp_idx = 0;
3476 low = 0;
3477 high = nlists - 1;
3478
3479 /* Binary search extent irec's */
3480 while (low <= high) {
3481 erp_idx = (low + high) >> 1;
3482 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3483 prev = erp_idx > 0 ? erp - 1 : NULL;
3484 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3485 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3486 high = erp_idx - 1;
3487 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3488 (page_idx == erp->er_extoff + erp->er_extcount &&
3489 !realloc)) {
3490 low = erp_idx + 1;
3491 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3492 erp->er_extcount == XFS_LINEAR_EXTS) {
3493 ASSERT(realloc);
3494 page_idx = 0;
3495 erp_idx++;
3496 erp = erp_idx < nlists ? erp + 1 : NULL;
3497 break;
3498 } else {
3499 page_idx -= erp->er_extoff;
3500 break;
3501 }
3502 }
3503 *idxp = page_idx;
3504 *erp_idxp = erp_idx;
3505 return(erp);
3506}
3507
3508/*
3509 * Allocate and initialize an indirection array once the space needed
3510 * for incore extents increases above XFS_IEXT_BUFSZ.
3511 */
3512void
3513xfs_iext_irec_init(
3514 xfs_ifork_t *ifp) /* inode fork pointer */
3515{
3516 xfs_ext_irec_t *erp; /* indirection array pointer */
3517 xfs_extnum_t nextents; /* number of extents in file */
3518
3519 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3520 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3521 ASSERT(nextents <= XFS_LINEAR_EXTS);
3522
6785073b 3523 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
3524
3525 if (nextents == 0) {
6785073b 3526 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3527 } else if (!ifp->if_real_bytes) {
3528 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3529 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3530 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3531 }
3532 erp->er_extbuf = ifp->if_u1.if_extents;
3533 erp->er_extcount = nextents;
3534 erp->er_extoff = 0;
3535
3536 ifp->if_flags |= XFS_IFEXTIREC;
3537 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3538 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3539 ifp->if_u1.if_ext_irec = erp;
3540
3541 return;
3542}
3543
3544/*
3545 * Allocate and initialize a new entry in the indirection array.
3546 */
3547xfs_ext_irec_t *
3548xfs_iext_irec_new(
3549 xfs_ifork_t *ifp, /* inode fork pointer */
3550 int erp_idx) /* index for new irec */
3551{
3552 xfs_ext_irec_t *erp; /* indirection array pointer */
3553 int i; /* loop counter */
3554 int nlists; /* number of irec's (ex lists) */
3555
3556 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3557 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3558
3559 /* Resize indirection array */
3560 xfs_iext_realloc_indirect(ifp, ++nlists *
3561 sizeof(xfs_ext_irec_t));
3562 /*
3563 * Move records down in the array so the
3564 * new page can use erp_idx.
3565 */
3566 erp = ifp->if_u1.if_ext_irec;
3567 for (i = nlists - 1; i > erp_idx; i--) {
3568 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3569 }
3570 ASSERT(i == erp_idx);
3571
3572 /* Initialize new extent record */
3573 erp = ifp->if_u1.if_ext_irec;
6785073b 3574 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3575 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3576 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3577 erp[erp_idx].er_extcount = 0;
3578 erp[erp_idx].er_extoff = erp_idx > 0 ?
3579 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3580 return (&erp[erp_idx]);
3581}
3582
3583/*
3584 * Remove a record from the indirection array.
3585 */
3586void
3587xfs_iext_irec_remove(
3588 xfs_ifork_t *ifp, /* inode fork pointer */
3589 int erp_idx) /* irec index to remove */
3590{
3591 xfs_ext_irec_t *erp; /* indirection array pointer */
3592 int i; /* loop counter */
3593 int nlists; /* number of irec's (ex lists) */
3594
3595 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3596 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3597 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3598 if (erp->er_extbuf) {
3599 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3600 -erp->er_extcount);
f0e2d93c 3601 kmem_free(erp->er_extbuf);
0293ce3a
MK
3602 }
3603 /* Compact extent records */
3604 erp = ifp->if_u1.if_ext_irec;
3605 for (i = erp_idx; i < nlists - 1; i++) {
3606 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3607 }
3608 /*
3609 * Manually free the last extent record from the indirection
3610 * array. A call to xfs_iext_realloc_indirect() with a size
3611 * of zero would result in a call to xfs_iext_destroy() which
3612 * would in turn call this function again, creating a nasty
3613 * infinite loop.
3614 */
3615 if (--nlists) {
3616 xfs_iext_realloc_indirect(ifp,
3617 nlists * sizeof(xfs_ext_irec_t));
3618 } else {
f0e2d93c 3619 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3620 }
3621 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3622}
3623
3624/*
3625 * This is called to clean up large amounts of unused memory allocated
3626 * by the indirection array. Before compacting anything though, verify
3627 * that the indirection array is still needed and switch back to the
3628 * linear extent list (or even the inline buffer) if possible. The
3629 * compaction policy is as follows:
3630 *
3631 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 3632 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
3633 * No Compaction: Extents occupy at least 50% of allocated space
3634 */
3635void
3636xfs_iext_irec_compact(
3637 xfs_ifork_t *ifp) /* inode fork pointer */
3638{
3639 xfs_extnum_t nextents; /* number of extents in file */
3640 int nlists; /* number of irec's (ex lists) */
3641
3642 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3643 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3644 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3645
3646 if (nextents == 0) {
3647 xfs_iext_destroy(ifp);
3648 } else if (nextents <= XFS_INLINE_EXTS) {
3649 xfs_iext_indirect_to_direct(ifp);
3650 xfs_iext_direct_to_inline(ifp, nextents);
3651 } else if (nextents <= XFS_LINEAR_EXTS) {
3652 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
3653 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3654 xfs_iext_irec_compact_pages(ifp);
3655 }
3656}
3657
3658/*
3659 * Combine extents from neighboring extent pages.
3660 */
3661void
3662xfs_iext_irec_compact_pages(
3663 xfs_ifork_t *ifp) /* inode fork pointer */
3664{
3665 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3666 int erp_idx = 0; /* indirection array index */
3667 int nlists; /* number of irec's (ex lists) */
3668
3669 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3670 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3671 while (erp_idx < nlists - 1) {
3672 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3673 erp_next = erp + 1;
3674 if (erp_next->er_extcount <=
3675 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 3676 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
3677 erp_next->er_extbuf, erp_next->er_extcount *
3678 sizeof(xfs_bmbt_rec_t));
3679 erp->er_extcount += erp_next->er_extcount;
3680 /*
3681 * Free page before removing extent record
3682 * so er_extoffs don't get modified in
3683 * xfs_iext_irec_remove.
3684 */
f0e2d93c 3685 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
3686 erp_next->er_extbuf = NULL;
3687 xfs_iext_irec_remove(ifp, erp_idx + 1);
3688 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3689 } else {
3690 erp_idx++;
3691 }
3692 }
3693}
3694
0293ce3a
MK
3695/*
3696 * This is called to update the er_extoff field in the indirection
3697 * array when extents have been added or removed from one of the
3698 * extent lists. erp_idx contains the irec index to begin updating
3699 * at and ext_diff contains the number of extents that were added
3700 * or removed.
3701 */
3702void
3703xfs_iext_irec_update_extoffs(
3704 xfs_ifork_t *ifp, /* inode fork pointer */
3705 int erp_idx, /* irec index to update */
3706 int ext_diff) /* number of new extents */
3707{
3708 int i; /* loop counter */
3709 int nlists; /* number of irec's (ex lists */
3710
3711 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3712 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3713 for (i = erp_idx; i < nlists; i++) {
3714 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3715 }
3716}