]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_inode_item.c
xfs: fix debug_object WARN at xfs_alloc_vextent()
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_inode_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
1da177e4
LT
21#include "xfs_log.h"
22#include "xfs_trans.h"
1da177e4 23#include "xfs_sb.h"
a844f451 24#include "xfs_ag.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_trans_priv.h"
1da177e4 27#include "xfs_bmap_btree.h"
1da177e4 28#include "xfs_dinode.h"
1da177e4 29#include "xfs_inode.h"
a844f451 30#include "xfs_inode_item.h"
db7a19f2 31#include "xfs_error.h"
0b1b213f 32#include "xfs_trace.h"
1da177e4
LT
33
34
35kmem_zone_t *xfs_ili_zone; /* inode log item zone */
36
7bfa31d8
CH
37static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
38{
39 return container_of(lip, struct xfs_inode_log_item, ili_item);
40}
41
42
1da177e4
LT
43/*
44 * This returns the number of iovecs needed to log the given inode item.
45 *
46 * We need one iovec for the inode log format structure, one for the
47 * inode core, and possibly one for the inode data/extents/b-tree root
48 * and one for the inode attribute data/extents/b-tree root.
49 */
50STATIC uint
51xfs_inode_item_size(
7bfa31d8 52 struct xfs_log_item *lip)
1da177e4 53{
7bfa31d8
CH
54 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
55 struct xfs_inode *ip = iip->ili_inode;
56 uint nvecs = 2;
1da177e4 57
1da177e4
LT
58 switch (ip->i_d.di_format) {
59 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 60 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
339a5f5d
CH
61 ip->i_d.di_nextents > 0 &&
62 ip->i_df.if_bytes > 0)
1da177e4 63 nvecs++;
1da177e4
LT
64 break;
65
66 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 67 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
339a5f5d 68 ip->i_df.if_broot_bytes > 0)
1da177e4 69 nvecs++;
1da177e4
LT
70 break;
71
72 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 73 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
339a5f5d 74 ip->i_df.if_bytes > 0)
1da177e4 75 nvecs++;
1da177e4
LT
76 break;
77
78 case XFS_DINODE_FMT_DEV:
1da177e4 79 case XFS_DINODE_FMT_UUID:
1da177e4
LT
80 break;
81
82 default:
83 ASSERT(0);
84 break;
85 }
86
339a5f5d 87 if (!XFS_IFORK_Q(ip))
1da177e4 88 return nvecs;
339a5f5d 89
1da177e4
LT
90
91 /*
92 * Log any necessary attribute data.
93 */
94 switch (ip->i_d.di_aformat) {
95 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 96 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
339a5f5d
CH
97 ip->i_d.di_anextents > 0 &&
98 ip->i_afp->if_bytes > 0)
1da177e4 99 nvecs++;
1da177e4
LT
100 break;
101
102 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 103 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
339a5f5d 104 ip->i_afp->if_broot_bytes > 0)
1da177e4 105 nvecs++;
1da177e4
LT
106 break;
107
108 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 109 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
339a5f5d 110 ip->i_afp->if_bytes > 0)
1da177e4 111 nvecs++;
1da177e4
LT
112 break;
113
114 default:
115 ASSERT(0);
116 break;
117 }
118
119 return nvecs;
120}
121
e828776a
DC
122/*
123 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
124 *
125 * For either the data or attr fork in extent format, we need to endian convert
126 * the in-core extent as we place them into the on-disk inode. In this case, we
127 * need to do this conversion before we write the extents into the log. Because
128 * we don't have the disk inode to write into here, we allocate a buffer and
129 * format the extents into it via xfs_iextents_copy(). We free the buffer in
130 * the unlock routine after the copy for the log has been made.
131 *
132 * In the case of the data fork, the in-core and on-disk fork sizes can be
133 * different due to delayed allocation extents. We only log on-disk extents
134 * here, so always use the physical fork size to determine the size of the
135 * buffer we need to allocate.
136 */
137STATIC void
138xfs_inode_item_format_extents(
139 struct xfs_inode *ip,
140 struct xfs_log_iovec *vecp,
141 int whichfork,
142 int type)
143{
144 xfs_bmbt_rec_t *ext_buffer;
145
146 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
147 if (whichfork == XFS_DATA_FORK)
148 ip->i_itemp->ili_extents_buf = ext_buffer;
149 else
150 ip->i_itemp->ili_aextents_buf = ext_buffer;
151
152 vecp->i_addr = ext_buffer;
153 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
154 vecp->i_type = type;
155}
156
1da177e4
LT
157/*
158 * This is called to fill in the vector of log iovecs for the
159 * given inode log item. It fills the first item with an inode
160 * log format structure, the second with the on-disk inode structure,
161 * and a possible third and/or fourth with the inode data/extents/b-tree
162 * root and inode attributes data/extents/b-tree root.
163 */
164STATIC void
165xfs_inode_item_format(
7bfa31d8
CH
166 struct xfs_log_item *lip,
167 struct xfs_log_iovec *vecp)
1da177e4 168{
7bfa31d8
CH
169 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
170 struct xfs_inode *ip = iip->ili_inode;
1da177e4 171 uint nvecs;
1da177e4 172 size_t data_bytes;
1da177e4
LT
173 xfs_mount_t *mp;
174
4e0d5f92 175 vecp->i_addr = &iip->ili_format;
1da177e4 176 vecp->i_len = sizeof(xfs_inode_log_format_t);
4139b3b3 177 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
1da177e4
LT
178 vecp++;
179 nvecs = 1;
180
4e0d5f92 181 vecp->i_addr = &ip->i_d;
81591fe2 182 vecp->i_len = sizeof(struct xfs_icdinode);
4139b3b3 183 vecp->i_type = XLOG_REG_TYPE_ICORE;
1da177e4
LT
184 vecp++;
185 nvecs++;
1da177e4
LT
186
187 /*
188 * If this is really an old format inode, then we need to
189 * log it as such. This means that we have to copy the link
190 * count from the new field to the old. We don't have to worry
191 * about the new fields, because nothing trusts them as long as
192 * the old inode version number is there. If the superblock already
193 * has a new version number, then we don't bother converting back.
194 */
195 mp = ip->i_mount;
51ce16d5
CH
196 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
197 if (ip->i_d.di_version == 1) {
62118709 198 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
199 /*
200 * Convert it back.
201 */
202 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
203 ip->i_d.di_onlink = ip->i_d.di_nlink;
204 } else {
205 /*
206 * The superblock version has already been bumped,
207 * so just make the conversion to the new inode
208 * format permanent.
209 */
51ce16d5 210 ip->i_d.di_version = 2;
1da177e4
LT
211 ip->i_d.di_onlink = 0;
212 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
213 }
214 }
215
216 switch (ip->i_d.di_format) {
217 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 218 iip->ili_fields &=
339a5f5d
CH
219 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
220 XFS_ILOG_DEV | XFS_ILOG_UUID);
221
f5d8d5c4 222 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
339a5f5d
CH
223 ip->i_d.di_nextents > 0 &&
224 ip->i_df.if_bytes > 0) {
1da177e4 225 ASSERT(ip->i_df.if_u1.if_extents != NULL);
339a5f5d 226 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
1da177e4 227 ASSERT(iip->ili_extents_buf == NULL);
339a5f5d 228
f016bad6 229#ifdef XFS_NATIVE_HOST
696123fc
DC
230 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
231 (uint)sizeof(xfs_bmbt_rec_t)) {
1da177e4
LT
232 /*
233 * There are no delayed allocation
234 * extents, so just point to the
235 * real extents array.
236 */
4e0d5f92 237 vecp->i_addr = ip->i_df.if_u1.if_extents;
1da177e4 238 vecp->i_len = ip->i_df.if_bytes;
4139b3b3 239 vecp->i_type = XLOG_REG_TYPE_IEXT;
1da177e4
LT
240 } else
241#endif
242 {
e828776a
DC
243 xfs_inode_item_format_extents(ip, vecp,
244 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
1da177e4
LT
245 }
246 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
247 iip->ili_format.ilf_dsize = vecp->i_len;
248 vecp++;
249 nvecs++;
339a5f5d 250 } else {
f5d8d5c4 251 iip->ili_fields &= ~XFS_ILOG_DEXT;
1da177e4
LT
252 }
253 break;
254
255 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 256 iip->ili_fields &=
339a5f5d
CH
257 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
258 XFS_ILOG_DEV | XFS_ILOG_UUID);
259
f5d8d5c4 260 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
339a5f5d 261 ip->i_df.if_broot_bytes > 0) {
1da177e4 262 ASSERT(ip->i_df.if_broot != NULL);
4e0d5f92 263 vecp->i_addr = ip->i_df.if_broot;
1da177e4 264 vecp->i_len = ip->i_df.if_broot_bytes;
4139b3b3 265 vecp->i_type = XLOG_REG_TYPE_IBROOT;
1da177e4
LT
266 vecp++;
267 nvecs++;
268 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
339a5f5d 269 } else {
f5d8d5c4 270 ASSERT(!(iip->ili_fields &
339a5f5d
CH
271 XFS_ILOG_DBROOT));
272#ifdef XFS_TRANS_DEBUG
273 if (iip->ili_root_size > 0) {
274 ASSERT(iip->ili_root_size ==
275 ip->i_df.if_broot_bytes);
276 ASSERT(memcmp(iip->ili_orig_root,
277 ip->i_df.if_broot,
278 iip->ili_root_size) == 0);
279 } else {
280 ASSERT(ip->i_df.if_broot_bytes == 0);
281 }
282#endif
f5d8d5c4 283 iip->ili_fields &= ~XFS_ILOG_DBROOT;
1da177e4
LT
284 }
285 break;
286
287 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 288 iip->ili_fields &=
339a5f5d
CH
289 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
290 XFS_ILOG_DEV | XFS_ILOG_UUID);
f5d8d5c4 291 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
339a5f5d 292 ip->i_df.if_bytes > 0) {
1da177e4
LT
293 ASSERT(ip->i_df.if_u1.if_data != NULL);
294 ASSERT(ip->i_d.di_size > 0);
295
4e0d5f92 296 vecp->i_addr = ip->i_df.if_u1.if_data;
1da177e4
LT
297 /*
298 * Round i_bytes up to a word boundary.
299 * The underlying memory is guaranteed to
300 * to be there by xfs_idata_realloc().
301 */
302 data_bytes = roundup(ip->i_df.if_bytes, 4);
303 ASSERT((ip->i_df.if_real_bytes == 0) ||
304 (ip->i_df.if_real_bytes == data_bytes));
305 vecp->i_len = (int)data_bytes;
4139b3b3 306 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
1da177e4
LT
307 vecp++;
308 nvecs++;
309 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
339a5f5d 310 } else {
f5d8d5c4 311 iip->ili_fields &= ~XFS_ILOG_DDATA;
1da177e4
LT
312 }
313 break;
314
315 case XFS_DINODE_FMT_DEV:
f5d8d5c4 316 iip->ili_fields &=
339a5f5d
CH
317 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
318 XFS_ILOG_DEXT | XFS_ILOG_UUID);
f5d8d5c4 319 if (iip->ili_fields & XFS_ILOG_DEV) {
1da177e4
LT
320 iip->ili_format.ilf_u.ilfu_rdev =
321 ip->i_df.if_u2.if_rdev;
322 }
323 break;
324
325 case XFS_DINODE_FMT_UUID:
f5d8d5c4 326 iip->ili_fields &=
339a5f5d
CH
327 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
328 XFS_ILOG_DEXT | XFS_ILOG_DEV);
f5d8d5c4 329 if (iip->ili_fields & XFS_ILOG_UUID) {
1da177e4
LT
330 iip->ili_format.ilf_u.ilfu_uuid =
331 ip->i_df.if_u2.if_uuid;
332 }
333 break;
334
335 default:
336 ASSERT(0);
337 break;
338 }
339
340 /*
339a5f5d 341 * If there are no attributes associated with the file, then we're done.
1da177e4
LT
342 */
343 if (!XFS_IFORK_Q(ip)) {
f5d8d5c4 344 iip->ili_fields &=
339a5f5d 345 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
f5d8d5c4 346 goto out;
1da177e4
LT
347 }
348
349 switch (ip->i_d.di_aformat) {
350 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 351 iip->ili_fields &=
339a5f5d
CH
352 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
353
f5d8d5c4 354 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
339a5f5d
CH
355 ip->i_d.di_anextents > 0 &&
356 ip->i_afp->if_bytes > 0) {
357 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
358 ip->i_d.di_anextents);
73523a2e 359 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
f016bad6 360#ifdef XFS_NATIVE_HOST
1da177e4
LT
361 /*
362 * There are not delayed allocation extents
363 * for attributes, so just point at the array.
364 */
4e0d5f92 365 vecp->i_addr = ip->i_afp->if_u1.if_extents;
1da177e4 366 vecp->i_len = ip->i_afp->if_bytes;
e828776a 367 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
1da177e4
LT
368#else
369 ASSERT(iip->ili_aextents_buf == NULL);
e828776a
DC
370 xfs_inode_item_format_extents(ip, vecp,
371 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
1da177e4
LT
372#endif
373 iip->ili_format.ilf_asize = vecp->i_len;
374 vecp++;
375 nvecs++;
339a5f5d 376 } else {
f5d8d5c4 377 iip->ili_fields &= ~XFS_ILOG_AEXT;
1da177e4
LT
378 }
379 break;
380
381 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 382 iip->ili_fields &=
339a5f5d
CH
383 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
384
f5d8d5c4 385 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
339a5f5d 386 ip->i_afp->if_broot_bytes > 0) {
1da177e4 387 ASSERT(ip->i_afp->if_broot != NULL);
339a5f5d 388
4e0d5f92 389 vecp->i_addr = ip->i_afp->if_broot;
1da177e4 390 vecp->i_len = ip->i_afp->if_broot_bytes;
4139b3b3 391 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
1da177e4
LT
392 vecp++;
393 nvecs++;
394 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
339a5f5d 395 } else {
f5d8d5c4 396 iip->ili_fields &= ~XFS_ILOG_ABROOT;
1da177e4
LT
397 }
398 break;
399
400 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 401 iip->ili_fields &=
339a5f5d
CH
402 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
403
f5d8d5c4 404 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
339a5f5d 405 ip->i_afp->if_bytes > 0) {
1da177e4
LT
406 ASSERT(ip->i_afp->if_u1.if_data != NULL);
407
4e0d5f92 408 vecp->i_addr = ip->i_afp->if_u1.if_data;
1da177e4
LT
409 /*
410 * Round i_bytes up to a word boundary.
411 * The underlying memory is guaranteed to
412 * to be there by xfs_idata_realloc().
413 */
414 data_bytes = roundup(ip->i_afp->if_bytes, 4);
415 ASSERT((ip->i_afp->if_real_bytes == 0) ||
416 (ip->i_afp->if_real_bytes == data_bytes));
417 vecp->i_len = (int)data_bytes;
4139b3b3 418 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
1da177e4
LT
419 vecp++;
420 nvecs++;
421 iip->ili_format.ilf_asize = (unsigned)data_bytes;
339a5f5d 422 } else {
f5d8d5c4 423 iip->ili_fields &= ~XFS_ILOG_ADATA;
1da177e4
LT
424 }
425 break;
426
427 default:
428 ASSERT(0);
429 break;
430 }
431
f5d8d5c4
CH
432out:
433 /*
434 * Now update the log format that goes out to disk from the in-core
435 * values. We always write the inode core to make the arithmetic
436 * games in recovery easier, which isn't a big deal as just about any
437 * transaction would dirty it anyway.
438 */
8f639dde
CH
439 iip->ili_format.ilf_fields = XFS_ILOG_CORE |
440 (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
1da177e4
LT
441 iip->ili_format.ilf_size = nvecs;
442}
443
444
445/*
446 * This is called to pin the inode associated with the inode log
a14a5ab5 447 * item in memory so it cannot be written out.
1da177e4
LT
448 */
449STATIC void
450xfs_inode_item_pin(
7bfa31d8 451 struct xfs_log_item *lip)
1da177e4 452{
7bfa31d8 453 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
a14a5ab5 454
7bfa31d8
CH
455 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
456
457 trace_xfs_inode_pin(ip, _RET_IP_);
458 atomic_inc(&ip->i_pincount);
1da177e4
LT
459}
460
461
462/*
463 * This is called to unpin the inode associated with the inode log
464 * item which was previously pinned with a call to xfs_inode_item_pin().
a14a5ab5
CH
465 *
466 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
1da177e4 467 */
1da177e4
LT
468STATIC void
469xfs_inode_item_unpin(
7bfa31d8 470 struct xfs_log_item *lip,
9412e318 471 int remove)
1da177e4 472{
7bfa31d8 473 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
a14a5ab5 474
4aaf15d1 475 trace_xfs_inode_unpin(ip, _RET_IP_);
a14a5ab5
CH
476 ASSERT(atomic_read(&ip->i_pincount) > 0);
477 if (atomic_dec_and_test(&ip->i_pincount))
f392e631 478 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
1da177e4
LT
479}
480
1da177e4 481STATIC uint
43ff2122
CH
482xfs_inode_item_push(
483 struct xfs_log_item *lip,
484 struct list_head *buffer_list)
1da177e4 485{
7bfa31d8
CH
486 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
487 struct xfs_inode *ip = iip->ili_inode;
43ff2122
CH
488 struct xfs_buf *bp = NULL;
489 uint rval = XFS_ITEM_SUCCESS;
490 int error;
1da177e4 491
7bfa31d8 492 if (xfs_ipincount(ip) > 0)
1da177e4 493 return XFS_ITEM_PINNED;
1da177e4 494
7bfa31d8 495 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
1da177e4 496 return XFS_ITEM_LOCKED;
1da177e4 497
4c46819a
CH
498 /*
499 * Re-check the pincount now that we stabilized the value by
500 * taking the ilock.
501 */
502 if (xfs_ipincount(ip) > 0) {
43ff2122
CH
503 rval = XFS_ITEM_PINNED;
504 goto out_unlock;
4c46819a
CH
505 }
506
43ff2122
CH
507 /*
508 * Someone else is already flushing the inode. Nothing we can do
509 * here but wait for the flush to finish and remove the item from
510 * the AIL.
511 */
1da177e4 512 if (!xfs_iflock_nowait(ip)) {
43ff2122
CH
513 rval = XFS_ITEM_FLUSHING;
514 goto out_unlock;
1da177e4
LT
515 }
516
43ff2122
CH
517 /*
518 * Stale inode items should force out the iclog.
519 */
1da177e4
LT
520 if (ip->i_flags & XFS_ISTALE) {
521 xfs_ifunlock(ip);
5b03ff1b 522 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1da177e4
LT
523 return XFS_ITEM_PINNED;
524 }
525
43ff2122
CH
526 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
527 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
528
529 spin_unlock(&lip->li_ailp->xa_lock);
530
531 error = xfs_iflush(ip, &bp);
532 if (!error) {
533 if (!xfs_buf_delwri_queue(bp, buffer_list))
534 rval = XFS_ITEM_FLUSHING;
535 xfs_buf_relse(bp);
1da177e4 536 }
43ff2122
CH
537
538 spin_lock(&lip->li_ailp->xa_lock);
539out_unlock:
540 xfs_iunlock(ip, XFS_ILOCK_SHARED);
541 return rval;
1da177e4
LT
542}
543
544/*
545 * Unlock the inode associated with the inode log item.
546 * Clear the fields of the inode and inode log item that
547 * are specific to the current transaction. If the
548 * hold flags is set, do not unlock the inode.
549 */
550STATIC void
551xfs_inode_item_unlock(
7bfa31d8 552 struct xfs_log_item *lip)
1da177e4 553{
7bfa31d8
CH
554 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
555 struct xfs_inode *ip = iip->ili_inode;
898621d5 556 unsigned short lock_flags;
1da177e4 557
f3ca8738
CH
558 ASSERT(ip->i_itemp != NULL);
559 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
560
561 /*
562 * If the inode needed a separate buffer with which to log
563 * its extents, then free it now.
564 */
565 if (iip->ili_extents_buf != NULL) {
566 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
567 ASSERT(ip->i_d.di_nextents > 0);
f5d8d5c4 568 ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
1da177e4 569 ASSERT(ip->i_df.if_bytes > 0);
f0e2d93c 570 kmem_free(iip->ili_extents_buf);
1da177e4
LT
571 iip->ili_extents_buf = NULL;
572 }
573 if (iip->ili_aextents_buf != NULL) {
574 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
575 ASSERT(ip->i_d.di_anextents > 0);
f5d8d5c4 576 ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
1da177e4 577 ASSERT(ip->i_afp->if_bytes > 0);
f0e2d93c 578 kmem_free(iip->ili_aextents_buf);
1da177e4
LT
579 iip->ili_aextents_buf = NULL;
580 }
581
898621d5
CH
582 lock_flags = iip->ili_lock_flags;
583 iip->ili_lock_flags = 0;
ddc3415a 584 if (lock_flags)
f3ca8738 585 xfs_iunlock(ip, lock_flags);
1da177e4
LT
586}
587
588/*
de25c181
DC
589 * This is called to find out where the oldest active copy of the inode log
590 * item in the on disk log resides now that the last log write of it completed
591 * at the given lsn. Since we always re-log all dirty data in an inode, the
592 * latest copy in the on disk log is the only one that matters. Therefore,
593 * simply return the given lsn.
594 *
595 * If the inode has been marked stale because the cluster is being freed, we
596 * don't want to (re-)insert this inode into the AIL. There is a race condition
597 * where the cluster buffer may be unpinned before the inode is inserted into
598 * the AIL during transaction committed processing. If the buffer is unpinned
599 * before the inode item has been committed and inserted, then it is possible
1316d4da 600 * for the buffer to be written and IO completes before the inode is inserted
de25c181
DC
601 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
602 * AIL which will never get removed. It will, however, get reclaimed which
603 * triggers an assert in xfs_inode_free() complaining about freein an inode
604 * still in the AIL.
605 *
1316d4da
DC
606 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
607 * transaction committed code knows that it does not need to do any further
608 * processing on the item.
1da177e4 609 */
1da177e4
LT
610STATIC xfs_lsn_t
611xfs_inode_item_committed(
7bfa31d8 612 struct xfs_log_item *lip,
1da177e4
LT
613 xfs_lsn_t lsn)
614{
de25c181
DC
615 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
616 struct xfs_inode *ip = iip->ili_inode;
617
1316d4da
DC
618 if (xfs_iflags_test(ip, XFS_ISTALE)) {
619 xfs_inode_item_unpin(lip, 0);
620 return -1;
621 }
7bfa31d8 622 return lsn;
1da177e4
LT
623}
624
1da177e4
LT
625/*
626 * XXX rcc - this one really has to do something. Probably needs
627 * to stamp in a new field in the incore inode.
628 */
1da177e4
LT
629STATIC void
630xfs_inode_item_committing(
7bfa31d8 631 struct xfs_log_item *lip,
1da177e4
LT
632 xfs_lsn_t lsn)
633{
7bfa31d8 634 INODE_ITEM(lip)->ili_last_lsn = lsn;
1da177e4
LT
635}
636
637/*
638 * This is the ops vector shared by all buf log items.
639 */
272e42b2 640static const struct xfs_item_ops xfs_inode_item_ops = {
7bfa31d8
CH
641 .iop_size = xfs_inode_item_size,
642 .iop_format = xfs_inode_item_format,
643 .iop_pin = xfs_inode_item_pin,
644 .iop_unpin = xfs_inode_item_unpin,
7bfa31d8
CH
645 .iop_unlock = xfs_inode_item_unlock,
646 .iop_committed = xfs_inode_item_committed,
647 .iop_push = xfs_inode_item_push,
7bfa31d8 648 .iop_committing = xfs_inode_item_committing
1da177e4
LT
649};
650
651
652/*
653 * Initialize the inode log item for a newly allocated (in-core) inode.
654 */
655void
656xfs_inode_item_init(
7bfa31d8
CH
657 struct xfs_inode *ip,
658 struct xfs_mount *mp)
1da177e4 659{
7bfa31d8 660 struct xfs_inode_log_item *iip;
1da177e4
LT
661
662 ASSERT(ip->i_itemp == NULL);
663 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
664
1da177e4 665 iip->ili_inode = ip;
43f5efc5
DC
666 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
667 &xfs_inode_item_ops);
1da177e4
LT
668 iip->ili_format.ilf_type = XFS_LI_INODE;
669 iip->ili_format.ilf_ino = ip->i_ino;
92bfc6e7
CH
670 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
671 iip->ili_format.ilf_len = ip->i_imap.im_len;
672 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
1da177e4
LT
673}
674
675/*
676 * Free the inode log item and any memory hanging off of it.
677 */
678void
679xfs_inode_item_destroy(
680 xfs_inode_t *ip)
681{
682#ifdef XFS_TRANS_DEBUG
683 if (ip->i_itemp->ili_root_size != 0) {
f0e2d93c 684 kmem_free(ip->i_itemp->ili_orig_root);
1da177e4
LT
685 }
686#endif
687 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
688}
689
690
691/*
692 * This is the inode flushing I/O completion routine. It is called
693 * from interrupt level when the buffer containing the inode is
694 * flushed to disk. It is responsible for removing the inode item
695 * from the AIL if it has not been re-logged, and unlocking the inode's
696 * flush lock.
30136832
DC
697 *
698 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
699 * list for other inodes that will run this function. We remove them from the
700 * buffer list so we can process all the inode IO completions in one AIL lock
701 * traversal.
1da177e4 702 */
1da177e4
LT
703void
704xfs_iflush_done(
ca30b2a7
CH
705 struct xfs_buf *bp,
706 struct xfs_log_item *lip)
1da177e4 707{
30136832
DC
708 struct xfs_inode_log_item *iip;
709 struct xfs_log_item *blip;
710 struct xfs_log_item *next;
711 struct xfs_log_item *prev;
ca30b2a7 712 struct xfs_ail *ailp = lip->li_ailp;
30136832
DC
713 int need_ail = 0;
714
715 /*
716 * Scan the buffer IO completions for other inodes being completed and
717 * attach them to the current inode log item.
718 */
adadbeef 719 blip = bp->b_fspriv;
30136832
DC
720 prev = NULL;
721 while (blip != NULL) {
722 if (lip->li_cb != xfs_iflush_done) {
723 prev = blip;
724 blip = blip->li_bio_list;
725 continue;
726 }
727
728 /* remove from list */
729 next = blip->li_bio_list;
730 if (!prev) {
adadbeef 731 bp->b_fspriv = next;
30136832
DC
732 } else {
733 prev->li_bio_list = next;
734 }
735
736 /* add to current list */
737 blip->li_bio_list = lip->li_bio_list;
738 lip->li_bio_list = blip;
739
740 /*
741 * while we have the item, do the unlocked check for needing
742 * the AIL lock.
743 */
744 iip = INODE_ITEM(blip);
745 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
746 need_ail++;
747
748 blip = next;
749 }
750
751 /* make sure we capture the state of the initial inode. */
752 iip = INODE_ITEM(lip);
753 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
754 need_ail++;
1da177e4
LT
755
756 /*
757 * We only want to pull the item from the AIL if it is
758 * actually there and its location in the log has not
759 * changed since we started the flush. Thus, we only bother
760 * if the ili_logged flag is set and the inode's lsn has not
761 * changed. First we check the lsn outside
762 * the lock since it's cheaper, and then we recheck while
763 * holding the lock before removing the inode from the AIL.
764 */
30136832
DC
765 if (need_ail) {
766 struct xfs_log_item *log_items[need_ail];
767 int i = 0;
783a2f65 768 spin_lock(&ailp->xa_lock);
30136832
DC
769 for (blip = lip; blip; blip = blip->li_bio_list) {
770 iip = INODE_ITEM(blip);
771 if (iip->ili_logged &&
772 blip->li_lsn == iip->ili_flush_lsn) {
773 log_items[i++] = blip;
774 }
775 ASSERT(i <= need_ail);
1da177e4 776 }
30136832 777 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
04913fdd
DC
778 xfs_trans_ail_delete_bulk(ailp, log_items, i,
779 SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
780 }
781
1da177e4
LT
782
783 /*
30136832
DC
784 * clean up and unlock the flush lock now we are done. We can clear the
785 * ili_last_fields bits now that we know that the data corresponding to
786 * them is safely on disk.
1da177e4 787 */
30136832
DC
788 for (blip = lip; blip; blip = next) {
789 next = blip->li_bio_list;
790 blip->li_bio_list = NULL;
791
792 iip = INODE_ITEM(blip);
793 iip->ili_logged = 0;
794 iip->ili_last_fields = 0;
795 xfs_ifunlock(iip->ili_inode);
796 }
1da177e4
LT
797}
798
799/*
04913fdd
DC
800 * This is the inode flushing abort routine. It is called from xfs_iflush when
801 * the filesystem is shutting down to clean up the inode state. It is
802 * responsible for removing the inode item from the AIL if it has not been
803 * re-logged, and unlocking the inode's flush lock.
1da177e4
LT
804 */
805void
806xfs_iflush_abort(
04913fdd
DC
807 xfs_inode_t *ip,
808 bool stale)
1da177e4 809{
783a2f65 810 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 811
1da177e4 812 if (iip) {
783a2f65 813 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1da177e4 814 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65 815 spin_lock(&ailp->xa_lock);
1da177e4 816 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65 817 /* xfs_trans_ail_delete() drops the AIL lock. */
04913fdd
DC
818 xfs_trans_ail_delete(ailp, &iip->ili_item,
819 stale ?
820 SHUTDOWN_LOG_IO_ERROR :
821 SHUTDOWN_CORRUPT_INCORE);
1da177e4 822 } else
783a2f65 823 spin_unlock(&ailp->xa_lock);
1da177e4
LT
824 }
825 iip->ili_logged = 0;
826 /*
827 * Clear the ili_last_fields bits now that we know that the
828 * data corresponding to them is safely on disk.
829 */
830 iip->ili_last_fields = 0;
831 /*
832 * Clear the inode logging fields so no more flushes are
833 * attempted.
834 */
f5d8d5c4 835 iip->ili_fields = 0;
1da177e4
LT
836 }
837 /*
838 * Release the inode's flush lock since we're done with it.
839 */
840 xfs_ifunlock(ip);
841}
842
843void
844xfs_istale_done(
ca30b2a7
CH
845 struct xfs_buf *bp,
846 struct xfs_log_item *lip)
1da177e4 847{
04913fdd 848 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode, true);
1da177e4 849}
6d192a9b
TS
850
851/*
852 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
853 * (which can have different field alignments) to the native version
854 */
855int
856xfs_inode_item_format_convert(
857 xfs_log_iovec_t *buf,
858 xfs_inode_log_format_t *in_f)
859{
860 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
4e0d5f92 861 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
6d192a9b 862
6d192a9b
TS
863 in_f->ilf_type = in_f32->ilf_type;
864 in_f->ilf_size = in_f32->ilf_size;
865 in_f->ilf_fields = in_f32->ilf_fields;
866 in_f->ilf_asize = in_f32->ilf_asize;
867 in_f->ilf_dsize = in_f32->ilf_dsize;
868 in_f->ilf_ino = in_f32->ilf_ino;
869 /* copy biggest field of ilf_u */
870 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
871 in_f32->ilf_u.ilfu_uuid.__u_bits,
872 sizeof(uuid_t));
873 in_f->ilf_blkno = in_f32->ilf_blkno;
874 in_f->ilf_len = in_f32->ilf_len;
875 in_f->ilf_boffset = in_f32->ilf_boffset;
876 return 0;
877 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
4e0d5f92 878 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
6d192a9b 879
6d192a9b
TS
880 in_f->ilf_type = in_f64->ilf_type;
881 in_f->ilf_size = in_f64->ilf_size;
882 in_f->ilf_fields = in_f64->ilf_fields;
883 in_f->ilf_asize = in_f64->ilf_asize;
884 in_f->ilf_dsize = in_f64->ilf_dsize;
885 in_f->ilf_ino = in_f64->ilf_ino;
886 /* copy biggest field of ilf_u */
887 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
888 in_f64->ilf_u.ilfu_uuid.__u_bits,
889 sizeof(uuid_t));
890 in_f->ilf_blkno = in_f64->ilf_blkno;
891 in_f->ilf_len = in_f64->ilf_len;
892 in_f->ilf_boffset = in_f64->ilf_boffset;
893 return 0;
894 }
895 return EFSCORRUPTED;
896}