]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_inode_item.c
xfs: change the xfs_iext_insert / xfs_iext_remove
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_inode_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4
LT
24#include "xfs_trans.h"
25#include "xfs_buf_item.h"
26#include "xfs_sb.h"
a844f451 27#include "xfs_ag.h"
1da177e4
LT
28#include "xfs_dir2.h"
29#include "xfs_dmapi.h"
30#include "xfs_mount.h"
31#include "xfs_trans_priv.h"
1da177e4 32#include "xfs_bmap_btree.h"
a844f451 33#include "xfs_alloc_btree.h"
1da177e4 34#include "xfs_ialloc_btree.h"
1da177e4 35#include "xfs_dir2_sf.h"
a844f451 36#include "xfs_attr_sf.h"
1da177e4 37#include "xfs_dinode.h"
1da177e4 38#include "xfs_inode.h"
a844f451
NS
39#include "xfs_inode_item.h"
40#include "xfs_btree.h"
41#include "xfs_ialloc.h"
1da177e4 42#include "xfs_rw.h"
db7a19f2 43#include "xfs_error.h"
1da177e4
LT
44
45
46kmem_zone_t *xfs_ili_zone; /* inode log item zone */
47
48/*
49 * This returns the number of iovecs needed to log the given inode item.
50 *
51 * We need one iovec for the inode log format structure, one for the
52 * inode core, and possibly one for the inode data/extents/b-tree root
53 * and one for the inode attribute data/extents/b-tree root.
54 */
55STATIC uint
56xfs_inode_item_size(
57 xfs_inode_log_item_t *iip)
58{
59 uint nvecs;
60 xfs_inode_t *ip;
61
62 ip = iip->ili_inode;
63 nvecs = 2;
64
65 /*
66 * Only log the data/extents/b-tree root if there is something
67 * left to log.
68 */
69 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
70
71 switch (ip->i_d.di_format) {
72 case XFS_DINODE_FMT_EXTENTS:
73 iip->ili_format.ilf_fields &=
74 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
75 XFS_ILOG_DEV | XFS_ILOG_UUID);
76 if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
77 (ip->i_d.di_nextents > 0) &&
78 (ip->i_df.if_bytes > 0)) {
79 ASSERT(ip->i_df.if_u1.if_extents != NULL);
80 nvecs++;
81 } else {
82 iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
83 }
84 break;
85
86 case XFS_DINODE_FMT_BTREE:
87 ASSERT(ip->i_df.if_ext_max ==
88 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
89 iip->ili_format.ilf_fields &=
90 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
91 XFS_ILOG_DEV | XFS_ILOG_UUID);
92 if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
93 (ip->i_df.if_broot_bytes > 0)) {
94 ASSERT(ip->i_df.if_broot != NULL);
95 nvecs++;
96 } else {
97 ASSERT(!(iip->ili_format.ilf_fields &
98 XFS_ILOG_DBROOT));
99#ifdef XFS_TRANS_DEBUG
100 if (iip->ili_root_size > 0) {
101 ASSERT(iip->ili_root_size ==
102 ip->i_df.if_broot_bytes);
103 ASSERT(memcmp(iip->ili_orig_root,
104 ip->i_df.if_broot,
105 iip->ili_root_size) == 0);
106 } else {
107 ASSERT(ip->i_df.if_broot_bytes == 0);
108 }
109#endif
110 iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
111 }
112 break;
113
114 case XFS_DINODE_FMT_LOCAL:
115 iip->ili_format.ilf_fields &=
116 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
117 XFS_ILOG_DEV | XFS_ILOG_UUID);
118 if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
119 (ip->i_df.if_bytes > 0)) {
120 ASSERT(ip->i_df.if_u1.if_data != NULL);
121 ASSERT(ip->i_d.di_size > 0);
122 nvecs++;
123 } else {
124 iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
125 }
126 break;
127
128 case XFS_DINODE_FMT_DEV:
129 iip->ili_format.ilf_fields &=
130 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
131 XFS_ILOG_DEXT | XFS_ILOG_UUID);
132 break;
133
134 case XFS_DINODE_FMT_UUID:
135 iip->ili_format.ilf_fields &=
136 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
137 XFS_ILOG_DEXT | XFS_ILOG_DEV);
138 break;
139
140 default:
141 ASSERT(0);
142 break;
143 }
144
145 /*
146 * If there are no attributes associated with this file,
147 * then there cannot be anything more to log.
148 * Clear all attribute-related log flags.
149 */
150 if (!XFS_IFORK_Q(ip)) {
151 iip->ili_format.ilf_fields &=
152 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
153 return nvecs;
154 }
155
156 /*
157 * Log any necessary attribute data.
158 */
159 switch (ip->i_d.di_aformat) {
160 case XFS_DINODE_FMT_EXTENTS:
161 iip->ili_format.ilf_fields &=
162 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
163 if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
164 (ip->i_d.di_anextents > 0) &&
165 (ip->i_afp->if_bytes > 0)) {
166 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
167 nvecs++;
168 } else {
169 iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
170 }
171 break;
172
173 case XFS_DINODE_FMT_BTREE:
174 iip->ili_format.ilf_fields &=
175 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
176 if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
177 (ip->i_afp->if_broot_bytes > 0)) {
178 ASSERT(ip->i_afp->if_broot != NULL);
179 nvecs++;
180 } else {
181 iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
182 }
183 break;
184
185 case XFS_DINODE_FMT_LOCAL:
186 iip->ili_format.ilf_fields &=
187 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
188 if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
189 (ip->i_afp->if_bytes > 0)) {
190 ASSERT(ip->i_afp->if_u1.if_data != NULL);
191 nvecs++;
192 } else {
193 iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
194 }
195 break;
196
197 default:
198 ASSERT(0);
199 break;
200 }
201
202 return nvecs;
203}
204
205/*
206 * This is called to fill in the vector of log iovecs for the
207 * given inode log item. It fills the first item with an inode
208 * log format structure, the second with the on-disk inode structure,
209 * and a possible third and/or fourth with the inode data/extents/b-tree
210 * root and inode attributes data/extents/b-tree root.
211 */
212STATIC void
213xfs_inode_item_format(
214 xfs_inode_log_item_t *iip,
215 xfs_log_iovec_t *log_vector)
216{
217 uint nvecs;
218 xfs_log_iovec_t *vecp;
219 xfs_inode_t *ip;
220 size_t data_bytes;
221 xfs_bmbt_rec_t *ext_buffer;
222 int nrecs;
223 xfs_mount_t *mp;
224
225 ip = iip->ili_inode;
226 vecp = log_vector;
227
228 vecp->i_addr = (xfs_caddr_t)&iip->ili_format;
229 vecp->i_len = sizeof(xfs_inode_log_format_t);
7e9c6396 230 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IFORMAT);
1da177e4
LT
231 vecp++;
232 nvecs = 1;
233
f9581b14
CH
234 /*
235 * Make sure the linux inode is dirty. We do this before
236 * clearing i_update_core as the VFS will call back into
237 * XFS here and set i_update_core, so we need to dirty the
238 * inode first so that the ordering of i_update_core and
239 * unlogged modifications still works as described below.
240 */
241 xfs_mark_inode_dirty_sync(ip);
242
1da177e4
LT
243 /*
244 * Clear i_update_core if the timestamps (or any other
245 * non-transactional modification) need flushing/logging
246 * and we're about to log them with the rest of the core.
247 *
248 * This is the same logic as xfs_iflush() but this code can't
249 * run at the same time as xfs_iflush because we're in commit
250 * processing here and so we have the inode lock held in
251 * exclusive mode. Although it doesn't really matter
252 * for the timestamps if both routines were to grab the
253 * timestamps or not. That would be ok.
254 *
255 * We clear i_update_core before copying out the data.
256 * This is for coordination with our timestamp updates
257 * that don't hold the inode lock. They will always
258 * update the timestamps BEFORE setting i_update_core,
259 * so if we clear i_update_core after they set it we
260 * are guaranteed to see their updates to the timestamps
261 * either here. Likewise, if they set it after we clear it
262 * here, we'll see it either on the next commit of this
263 * inode or the next time the inode gets flushed via
264 * xfs_iflush(). This depends on strongly ordered memory
265 * semantics, but we have that. We use the SYNCHRONIZE
266 * macro to make sure that the compiler does not reorder
267 * the i_update_core access below the data copy below.
268 */
269 if (ip->i_update_core) {
270 ip->i_update_core = 0;
271 SYNCHRONIZE();
272 }
273
42fe2b1f 274 /*
f9581b14 275 * Make sure to get the latest timestamps from the Linux inode.
42fe2b1f 276 */
f9581b14 277 xfs_synchronize_times(ip);
5d51eff4 278
1da177e4 279 vecp->i_addr = (xfs_caddr_t)&ip->i_d;
81591fe2 280 vecp->i_len = sizeof(struct xfs_icdinode);
7e9c6396 281 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ICORE);
1da177e4
LT
282 vecp++;
283 nvecs++;
284 iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
285
286 /*
287 * If this is really an old format inode, then we need to
288 * log it as such. This means that we have to copy the link
289 * count from the new field to the old. We don't have to worry
290 * about the new fields, because nothing trusts them as long as
291 * the old inode version number is there. If the superblock already
292 * has a new version number, then we don't bother converting back.
293 */
294 mp = ip->i_mount;
51ce16d5
CH
295 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
296 if (ip->i_d.di_version == 1) {
62118709 297 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
298 /*
299 * Convert it back.
300 */
301 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
302 ip->i_d.di_onlink = ip->i_d.di_nlink;
303 } else {
304 /*
305 * The superblock version has already been bumped,
306 * so just make the conversion to the new inode
307 * format permanent.
308 */
51ce16d5 309 ip->i_d.di_version = 2;
1da177e4
LT
310 ip->i_d.di_onlink = 0;
311 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
312 }
313 }
314
315 switch (ip->i_d.di_format) {
316 case XFS_DINODE_FMT_EXTENTS:
317 ASSERT(!(iip->ili_format.ilf_fields &
318 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
319 XFS_ILOG_DEV | XFS_ILOG_UUID)));
320 if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
321 ASSERT(ip->i_df.if_bytes > 0);
322 ASSERT(ip->i_df.if_u1.if_extents != NULL);
323 ASSERT(ip->i_d.di_nextents > 0);
324 ASSERT(iip->ili_extents_buf == NULL);
325 nrecs = ip->i_df.if_bytes /
326 (uint)sizeof(xfs_bmbt_rec_t);
327 ASSERT(nrecs > 0);
f016bad6 328#ifdef XFS_NATIVE_HOST
1da177e4
LT
329 if (nrecs == ip->i_d.di_nextents) {
330 /*
331 * There are no delayed allocation
332 * extents, so just point to the
333 * real extents array.
334 */
335 vecp->i_addr =
336 (char *)(ip->i_df.if_u1.if_extents);
337 vecp->i_len = ip->i_df.if_bytes;
7e9c6396 338 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
1da177e4
LT
339 } else
340#endif
341 {
342 /*
343 * There are delayed allocation extents
344 * in the inode, or we need to convert
345 * the extents to on disk format.
346 * Use xfs_iextents_copy()
347 * to copy only the real extents into
348 * a separate buffer. We'll free the
349 * buffer in the unlock routine.
350 */
351 ext_buffer = kmem_alloc(ip->i_df.if_bytes,
352 KM_SLEEP);
353 iip->ili_extents_buf = ext_buffer;
354 vecp->i_addr = (xfs_caddr_t)ext_buffer;
355 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
356 XFS_DATA_FORK);
7e9c6396 357 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IEXT);
1da177e4
LT
358 }
359 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
360 iip->ili_format.ilf_dsize = vecp->i_len;
361 vecp++;
362 nvecs++;
363 }
364 break;
365
366 case XFS_DINODE_FMT_BTREE:
367 ASSERT(!(iip->ili_format.ilf_fields &
368 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
369 XFS_ILOG_DEV | XFS_ILOG_UUID)));
370 if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
371 ASSERT(ip->i_df.if_broot_bytes > 0);
372 ASSERT(ip->i_df.if_broot != NULL);
373 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot;
374 vecp->i_len = ip->i_df.if_broot_bytes;
7e9c6396 375 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IBROOT);
1da177e4
LT
376 vecp++;
377 nvecs++;
378 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
379 }
380 break;
381
382 case XFS_DINODE_FMT_LOCAL:
383 ASSERT(!(iip->ili_format.ilf_fields &
384 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
385 XFS_ILOG_DEV | XFS_ILOG_UUID)));
386 if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
387 ASSERT(ip->i_df.if_bytes > 0);
388 ASSERT(ip->i_df.if_u1.if_data != NULL);
389 ASSERT(ip->i_d.di_size > 0);
390
391 vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data;
392 /*
393 * Round i_bytes up to a word boundary.
394 * The underlying memory is guaranteed to
395 * to be there by xfs_idata_realloc().
396 */
397 data_bytes = roundup(ip->i_df.if_bytes, 4);
398 ASSERT((ip->i_df.if_real_bytes == 0) ||
399 (ip->i_df.if_real_bytes == data_bytes));
400 vecp->i_len = (int)data_bytes;
7e9c6396 401 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_ILOCAL);
1da177e4
LT
402 vecp++;
403 nvecs++;
404 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
405 }
406 break;
407
408 case XFS_DINODE_FMT_DEV:
409 ASSERT(!(iip->ili_format.ilf_fields &
410 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
411 XFS_ILOG_DDATA | XFS_ILOG_UUID)));
412 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
413 iip->ili_format.ilf_u.ilfu_rdev =
414 ip->i_df.if_u2.if_rdev;
415 }
416 break;
417
418 case XFS_DINODE_FMT_UUID:
419 ASSERT(!(iip->ili_format.ilf_fields &
420 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
421 XFS_ILOG_DDATA | XFS_ILOG_DEV)));
422 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
423 iip->ili_format.ilf_u.ilfu_uuid =
424 ip->i_df.if_u2.if_uuid;
425 }
426 break;
427
428 default:
429 ASSERT(0);
430 break;
431 }
432
433 /*
434 * If there are no attributes associated with the file,
435 * then we're done.
436 * Assert that no attribute-related log flags are set.
437 */
438 if (!XFS_IFORK_Q(ip)) {
439 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
440 iip->ili_format.ilf_size = nvecs;
441 ASSERT(!(iip->ili_format.ilf_fields &
442 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
443 return;
444 }
445
446 switch (ip->i_d.di_aformat) {
447 case XFS_DINODE_FMT_EXTENTS:
448 ASSERT(!(iip->ili_format.ilf_fields &
449 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
450 if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
451 ASSERT(ip->i_afp->if_bytes > 0);
452 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
453 ASSERT(ip->i_d.di_anextents > 0);
454#ifdef DEBUG
455 nrecs = ip->i_afp->if_bytes /
456 (uint)sizeof(xfs_bmbt_rec_t);
457#endif
458 ASSERT(nrecs > 0);
459 ASSERT(nrecs == ip->i_d.di_anextents);
f016bad6 460#ifdef XFS_NATIVE_HOST
1da177e4
LT
461 /*
462 * There are not delayed allocation extents
463 * for attributes, so just point at the array.
464 */
465 vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents);
466 vecp->i_len = ip->i_afp->if_bytes;
467#else
468 ASSERT(iip->ili_aextents_buf == NULL);
469 /*
470 * Need to endian flip before logging
471 */
472 ext_buffer = kmem_alloc(ip->i_afp->if_bytes,
473 KM_SLEEP);
474 iip->ili_aextents_buf = ext_buffer;
475 vecp->i_addr = (xfs_caddr_t)ext_buffer;
476 vecp->i_len = xfs_iextents_copy(ip, ext_buffer,
477 XFS_ATTR_FORK);
478#endif
7e9c6396 479 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_EXT);
1da177e4
LT
480 iip->ili_format.ilf_asize = vecp->i_len;
481 vecp++;
482 nvecs++;
483 }
484 break;
485
486 case XFS_DINODE_FMT_BTREE:
487 ASSERT(!(iip->ili_format.ilf_fields &
488 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
489 if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
490 ASSERT(ip->i_afp->if_broot_bytes > 0);
491 ASSERT(ip->i_afp->if_broot != NULL);
492 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot;
493 vecp->i_len = ip->i_afp->if_broot_bytes;
7e9c6396 494 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_BROOT);
1da177e4
LT
495 vecp++;
496 nvecs++;
497 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
498 }
499 break;
500
501 case XFS_DINODE_FMT_LOCAL:
502 ASSERT(!(iip->ili_format.ilf_fields &
503 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
504 if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
505 ASSERT(ip->i_afp->if_bytes > 0);
506 ASSERT(ip->i_afp->if_u1.if_data != NULL);
507
508 vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data;
509 /*
510 * Round i_bytes up to a word boundary.
511 * The underlying memory is guaranteed to
512 * to be there by xfs_idata_realloc().
513 */
514 data_bytes = roundup(ip->i_afp->if_bytes, 4);
515 ASSERT((ip->i_afp->if_real_bytes == 0) ||
516 (ip->i_afp->if_real_bytes == data_bytes));
517 vecp->i_len = (int)data_bytes;
7e9c6396 518 XLOG_VEC_SET_TYPE(vecp, XLOG_REG_TYPE_IATTR_LOCAL);
1da177e4
LT
519 vecp++;
520 nvecs++;
521 iip->ili_format.ilf_asize = (unsigned)data_bytes;
522 }
523 break;
524
525 default:
526 ASSERT(0);
527 break;
528 }
529
530 ASSERT(nvecs == iip->ili_item.li_desc->lid_size);
531 iip->ili_format.ilf_size = nvecs;
532}
533
534
535/*
536 * This is called to pin the inode associated with the inode log
537 * item in memory so it cannot be written out. Do this by calling
538 * xfs_ipin() to bump the pin count in the inode while holding the
539 * inode pin lock.
540 */
541STATIC void
542xfs_inode_item_pin(
543 xfs_inode_log_item_t *iip)
544{
579aa9ca 545 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
1da177e4
LT
546 xfs_ipin(iip->ili_inode);
547}
548
549
550/*
551 * This is called to unpin the inode associated with the inode log
552 * item which was previously pinned with a call to xfs_inode_item_pin().
553 * Just call xfs_iunpin() on the inode to do this.
554 */
555/* ARGSUSED */
556STATIC void
557xfs_inode_item_unpin(
558 xfs_inode_log_item_t *iip,
559 int stale)
560{
561 xfs_iunpin(iip->ili_inode);
562}
563
564/* ARGSUSED */
565STATIC void
566xfs_inode_item_unpin_remove(
567 xfs_inode_log_item_t *iip,
568 xfs_trans_t *tp)
569{
570 xfs_iunpin(iip->ili_inode);
571}
572
573/*
574 * This is called to attempt to lock the inode associated with this
575 * inode log item, in preparation for the push routine which does the actual
576 * iflush. Don't sleep on the inode lock or the flush lock.
577 *
578 * If the flush lock is already held, indicating that the inode has
579 * been or is in the process of being flushed, then (ideally) we'd like to
580 * see if the inode's buffer is still incore, and if so give it a nudge.
581 * We delay doing so until the pushbuf routine, though, to avoid holding
c41564b5 582 * the AIL lock across a call to the blackhole which is the buffer cache.
1da177e4
LT
583 * Also we don't want to sleep in any device strategy routines, which can happen
584 * if we do the subsequent bawrite in here.
585 */
586STATIC uint
587xfs_inode_item_trylock(
588 xfs_inode_log_item_t *iip)
589{
590 register xfs_inode_t *ip;
591
592 ip = iip->ili_inode;
593
594 if (xfs_ipincount(ip) > 0) {
595 return XFS_ITEM_PINNED;
596 }
597
598 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
599 return XFS_ITEM_LOCKED;
600 }
601
602 if (!xfs_iflock_nowait(ip)) {
603 /*
604 * If someone else isn't already trying to push the inode
605 * buffer, we get to do it.
606 */
607 if (iip->ili_pushbuf_flag == 0) {
608 iip->ili_pushbuf_flag = 1;
609#ifdef DEBUG
3762ec6b 610 iip->ili_push_owner = current_pid();
1da177e4
LT
611#endif
612 /*
613 * Inode is left locked in shared mode.
614 * Pushbuf routine gets to unlock it.
615 */
616 return XFS_ITEM_PUSHBUF;
617 } else {
618 /*
287f3dad 619 * We hold the AIL lock, so we must specify the
1da177e4
LT
620 * NONOTIFY flag so that we won't double trip.
621 */
622 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
623 return XFS_ITEM_FLUSHING;
624 }
625 /* NOTREACHED */
626 }
627
628 /* Stale items should force out the iclog */
629 if (ip->i_flags & XFS_ISTALE) {
630 xfs_ifunlock(ip);
631 xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
632 return XFS_ITEM_PINNED;
633 }
634
635#ifdef DEBUG
636 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
637 ASSERT(iip->ili_format.ilf_fields != 0);
638 ASSERT(iip->ili_logged == 0);
639 ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL);
640 }
641#endif
642 return XFS_ITEM_SUCCESS;
643}
644
645/*
646 * Unlock the inode associated with the inode log item.
647 * Clear the fields of the inode and inode log item that
648 * are specific to the current transaction. If the
649 * hold flags is set, do not unlock the inode.
650 */
651STATIC void
652xfs_inode_item_unlock(
653 xfs_inode_log_item_t *iip)
654{
655 uint hold;
656 uint iolocked;
657 uint lock_flags;
658 xfs_inode_t *ip;
659
660 ASSERT(iip != NULL);
661 ASSERT(iip->ili_inode->i_itemp != NULL);
579aa9ca 662 ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
1da177e4
LT
663 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
664 XFS_ILI_IOLOCKED_EXCL)) ||
579aa9ca 665 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_EXCL));
1da177e4
LT
666 ASSERT((!(iip->ili_inode->i_itemp->ili_flags &
667 XFS_ILI_IOLOCKED_SHARED)) ||
579aa9ca 668 xfs_isilocked(iip->ili_inode, XFS_IOLOCK_SHARED));
1da177e4
LT
669 /*
670 * Clear the transaction pointer in the inode.
671 */
672 ip = iip->ili_inode;
673 ip->i_transp = NULL;
674
675 /*
676 * If the inode needed a separate buffer with which to log
677 * its extents, then free it now.
678 */
679 if (iip->ili_extents_buf != NULL) {
680 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
681 ASSERT(ip->i_d.di_nextents > 0);
682 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
683 ASSERT(ip->i_df.if_bytes > 0);
f0e2d93c 684 kmem_free(iip->ili_extents_buf);
1da177e4
LT
685 iip->ili_extents_buf = NULL;
686 }
687 if (iip->ili_aextents_buf != NULL) {
688 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
689 ASSERT(ip->i_d.di_anextents > 0);
690 ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
691 ASSERT(ip->i_afp->if_bytes > 0);
f0e2d93c 692 kmem_free(iip->ili_aextents_buf);
1da177e4
LT
693 iip->ili_aextents_buf = NULL;
694 }
695
696 /*
697 * Figure out if we should unlock the inode or not.
698 */
699 hold = iip->ili_flags & XFS_ILI_HOLD;
700
701 /*
702 * Before clearing out the flags, remember whether we
703 * are holding the inode's IO lock.
704 */
705 iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY;
706
707 /*
708 * Clear out the fields of the inode log item particular
709 * to the current transaction.
710 */
1da177e4
LT
711 iip->ili_flags = 0;
712
713 /*
714 * Unlock the inode if XFS_ILI_HOLD was not set.
715 */
716 if (!hold) {
717 lock_flags = XFS_ILOCK_EXCL;
718 if (iolocked & XFS_ILI_IOLOCKED_EXCL) {
719 lock_flags |= XFS_IOLOCK_EXCL;
720 } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) {
721 lock_flags |= XFS_IOLOCK_SHARED;
722 }
723 xfs_iput(iip->ili_inode, lock_flags);
724 }
725}
726
727/*
728 * This is called to find out where the oldest active copy of the
729 * inode log item in the on disk log resides now that the last log
730 * write of it completed at the given lsn. Since we always re-log
731 * all dirty data in an inode, the latest copy in the on disk log
732 * is the only one that matters. Therefore, simply return the
733 * given lsn.
734 */
735/*ARGSUSED*/
736STATIC xfs_lsn_t
737xfs_inode_item_committed(
738 xfs_inode_log_item_t *iip,
739 xfs_lsn_t lsn)
740{
741 return (lsn);
742}
743
1da177e4
LT
744/*
745 * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
746 * failed to get the inode flush lock but did get the inode locked SHARED.
747 * Here we're trying to see if the inode buffer is incore, and if so whether it's
748 * marked delayed write. If that's the case, we'll initiate a bawrite on that
749 * buffer to expedite the process.
750 *
287f3dad 751 * We aren't holding the AIL lock (or the flush lock) when this gets called,
1da177e4
LT
752 * so it is inherently race-y.
753 */
754STATIC void
755xfs_inode_item_pushbuf(
756 xfs_inode_log_item_t *iip)
757{
758 xfs_inode_t *ip;
759 xfs_mount_t *mp;
760 xfs_buf_t *bp;
761 uint dopush;
762
763 ip = iip->ili_inode;
764
579aa9ca 765 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
1da177e4
LT
766
767 /*
768 * The ili_pushbuf_flag keeps others from
769 * trying to duplicate our effort.
770 */
771 ASSERT(iip->ili_pushbuf_flag != 0);
3762ec6b 772 ASSERT(iip->ili_push_owner == current_pid());
1da177e4
LT
773
774 /*
c63942d3
DC
775 * If a flush is not in progress anymore, chances are that the
776 * inode was taken off the AIL. So, just get out.
1da177e4 777 */
c63942d3 778 if (completion_done(&ip->i_flush) ||
1da177e4
LT
779 ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) {
780 iip->ili_pushbuf_flag = 0;
781 xfs_iunlock(ip, XFS_ILOCK_SHARED);
782 return;
783 }
784
785 mp = ip->i_mount;
786 bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno,
787 iip->ili_format.ilf_len, XFS_INCORE_TRYLOCK);
788
789 if (bp != NULL) {
790 if (XFS_BUF_ISDELAYWRITE(bp)) {
791 /*
792 * We were racing with iflush because we don't hold
287f3dad 793 * the AIL lock or the flush lock. However, at this point,
1da177e4
LT
794 * we have the buffer, and we know that it's dirty.
795 * So, it's possible that iflush raced with us, and
796 * this item is already taken off the AIL.
797 * If not, we can flush it async.
798 */
799 dopush = ((iip->ili_item.li_flags & XFS_LI_IN_AIL) &&
c63942d3 800 !completion_done(&ip->i_flush));
1da177e4
LT
801 iip->ili_pushbuf_flag = 0;
802 xfs_iunlock(ip, XFS_ILOCK_SHARED);
803 xfs_buftrace("INODE ITEM PUSH", bp);
804 if (XFS_BUF_ISPINNED(bp)) {
805 xfs_log_force(mp, (xfs_lsn_t)0,
806 XFS_LOG_FORCE);
807 }
808 if (dopush) {
db7a19f2
DC
809 int error;
810 error = xfs_bawrite(mp, bp);
811 if (error)
812 xfs_fs_cmn_err(CE_WARN, mp,
813 "xfs_inode_item_pushbuf: pushbuf error %d on iip %p, bp %p",
814 error, iip, bp);
1da177e4
LT
815 } else {
816 xfs_buf_relse(bp);
817 }
818 } else {
819 iip->ili_pushbuf_flag = 0;
820 xfs_iunlock(ip, XFS_ILOCK_SHARED);
821 xfs_buf_relse(bp);
822 }
823 return;
824 }
825 /*
826 * We have to be careful about resetting pushbuf flag too early (above).
827 * Even though in theory we can do it as soon as we have the buflock,
828 * we don't want others to be doing work needlessly. They'll come to
829 * this function thinking that pushing the buffer is their
830 * responsibility only to find that the buffer is still locked by
831 * another doing the same thing
832 */
833 iip->ili_pushbuf_flag = 0;
834 xfs_iunlock(ip, XFS_ILOCK_SHARED);
835 return;
836}
837
838
839/*
840 * This is called to asynchronously write the inode associated with this
841 * inode log item out to disk. The inode will already have been locked by
842 * a successful call to xfs_inode_item_trylock().
843 */
844STATIC void
845xfs_inode_item_push(
846 xfs_inode_log_item_t *iip)
847{
848 xfs_inode_t *ip;
849
850 ip = iip->ili_inode;
851
579aa9ca 852 ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
c63942d3 853 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
854 /*
855 * Since we were able to lock the inode's flush lock and
856 * we found it on the AIL, the inode must be dirty. This
857 * is because the inode is removed from the AIL while still
858 * holding the flush lock in xfs_iflush_done(). Thus, if
859 * we found it in the AIL and were able to obtain the flush
860 * lock without sleeping, then there must not have been
861 * anyone in the process of flushing the inode.
862 */
863 ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
864 iip->ili_format.ilf_fields != 0);
865
866 /*
867 * Write out the inode. The completion routine ('iflush_done') will
868 * pull it from the AIL, mark it clean, unlock the flush lock.
869 */
870 (void) xfs_iflush(ip, XFS_IFLUSH_ASYNC);
871 xfs_iunlock(ip, XFS_ILOCK_SHARED);
872
873 return;
874}
875
876/*
877 * XXX rcc - this one really has to do something. Probably needs
878 * to stamp in a new field in the incore inode.
879 */
880/* ARGSUSED */
881STATIC void
882xfs_inode_item_committing(
883 xfs_inode_log_item_t *iip,
884 xfs_lsn_t lsn)
885{
886 iip->ili_last_lsn = lsn;
887 return;
888}
889
890/*
891 * This is the ops vector shared by all buf log items.
892 */
7989cb8e 893static struct xfs_item_ops xfs_inode_item_ops = {
1da177e4
LT
894 .iop_size = (uint(*)(xfs_log_item_t*))xfs_inode_item_size,
895 .iop_format = (void(*)(xfs_log_item_t*, xfs_log_iovec_t*))
896 xfs_inode_item_format,
897 .iop_pin = (void(*)(xfs_log_item_t*))xfs_inode_item_pin,
898 .iop_unpin = (void(*)(xfs_log_item_t*, int))xfs_inode_item_unpin,
899 .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*))
900 xfs_inode_item_unpin_remove,
901 .iop_trylock = (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock,
902 .iop_unlock = (void(*)(xfs_log_item_t*))xfs_inode_item_unlock,
903 .iop_committed = (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t))
904 xfs_inode_item_committed,
905 .iop_push = (void(*)(xfs_log_item_t*))xfs_inode_item_push,
1da177e4
LT
906 .iop_pushbuf = (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf,
907 .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t))
908 xfs_inode_item_committing
909};
910
911
912/*
913 * Initialize the inode log item for a newly allocated (in-core) inode.
914 */
915void
916xfs_inode_item_init(
917 xfs_inode_t *ip,
918 xfs_mount_t *mp)
919{
920 xfs_inode_log_item_t *iip;
921
922 ASSERT(ip->i_itemp == NULL);
923 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
924
925 iip->ili_item.li_type = XFS_LI_INODE;
926 iip->ili_item.li_ops = &xfs_inode_item_ops;
927 iip->ili_item.li_mountp = mp;
fc1829f3 928 iip->ili_item.li_ailp = mp->m_ail;
1da177e4
LT
929 iip->ili_inode = ip;
930
931 /*
932 We have zeroed memory. No need ...
933 iip->ili_extents_buf = NULL;
934 iip->ili_pushbuf_flag = 0;
935 */
936
937 iip->ili_format.ilf_type = XFS_LI_INODE;
938 iip->ili_format.ilf_ino = ip->i_ino;
92bfc6e7
CH
939 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
940 iip->ili_format.ilf_len = ip->i_imap.im_len;
941 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
1da177e4
LT
942}
943
944/*
945 * Free the inode log item and any memory hanging off of it.
946 */
947void
948xfs_inode_item_destroy(
949 xfs_inode_t *ip)
950{
951#ifdef XFS_TRANS_DEBUG
952 if (ip->i_itemp->ili_root_size != 0) {
f0e2d93c 953 kmem_free(ip->i_itemp->ili_orig_root);
1da177e4
LT
954 }
955#endif
956 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
957}
958
959
960/*
961 * This is the inode flushing I/O completion routine. It is called
962 * from interrupt level when the buffer containing the inode is
963 * flushed to disk. It is responsible for removing the inode item
964 * from the AIL if it has not been re-logged, and unlocking the inode's
965 * flush lock.
966 */
967/*ARGSUSED*/
968void
969xfs_iflush_done(
970 xfs_buf_t *bp,
971 xfs_inode_log_item_t *iip)
972{
783a2f65
DC
973 xfs_inode_t *ip = iip->ili_inode;
974 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1da177e4
LT
975
976 /*
977 * We only want to pull the item from the AIL if it is
978 * actually there and its location in the log has not
979 * changed since we started the flush. Thus, we only bother
980 * if the ili_logged flag is set and the inode's lsn has not
981 * changed. First we check the lsn outside
982 * the lock since it's cheaper, and then we recheck while
983 * holding the lock before removing the inode from the AIL.
984 */
985 if (iip->ili_logged &&
986 (iip->ili_item.li_lsn == iip->ili_flush_lsn)) {
783a2f65 987 spin_lock(&ailp->xa_lock);
1da177e4 988 if (iip->ili_item.li_lsn == iip->ili_flush_lsn) {
783a2f65
DC
989 /* xfs_trans_ail_delete() drops the AIL lock. */
990 xfs_trans_ail_delete(ailp, (xfs_log_item_t*)iip);
1da177e4 991 } else {
783a2f65 992 spin_unlock(&ailp->xa_lock);
1da177e4
LT
993 }
994 }
995
996 iip->ili_logged = 0;
997
998 /*
999 * Clear the ili_last_fields bits now that we know that the
1000 * data corresponding to them is safely on disk.
1001 */
1002 iip->ili_last_fields = 0;
1003
1004 /*
1005 * Release the inode's flush lock since we're done with it.
1006 */
1007 xfs_ifunlock(ip);
1008
1009 return;
1010}
1011
1012/*
1013 * This is the inode flushing abort routine. It is called
1014 * from xfs_iflush when the filesystem is shutting down to clean
1015 * up the inode state.
1016 * It is responsible for removing the inode item
1017 * from the AIL if it has not been re-logged, and unlocking the inode's
1018 * flush lock.
1019 */
1020void
1021xfs_iflush_abort(
1022 xfs_inode_t *ip)
1023{
783a2f65 1024 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 1025 xfs_mount_t *mp;
1da177e4
LT
1026
1027 iip = ip->i_itemp;
1028 mp = ip->i_mount;
1029 if (iip) {
783a2f65 1030 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1da177e4 1031 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65 1032 spin_lock(&ailp->xa_lock);
1da177e4 1033 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65
DC
1034 /* xfs_trans_ail_delete() drops the AIL lock. */
1035 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
1da177e4 1036 } else
783a2f65 1037 spin_unlock(&ailp->xa_lock);
1da177e4
LT
1038 }
1039 iip->ili_logged = 0;
1040 /*
1041 * Clear the ili_last_fields bits now that we know that the
1042 * data corresponding to them is safely on disk.
1043 */
1044 iip->ili_last_fields = 0;
1045 /*
1046 * Clear the inode logging fields so no more flushes are
1047 * attempted.
1048 */
1049 iip->ili_format.ilf_fields = 0;
1050 }
1051 /*
1052 * Release the inode's flush lock since we're done with it.
1053 */
1054 xfs_ifunlock(ip);
1055}
1056
1057void
1058xfs_istale_done(
1059 xfs_buf_t *bp,
1060 xfs_inode_log_item_t *iip)
1061{
1062 xfs_iflush_abort(iip->ili_inode);
1063}
6d192a9b
TS
1064
1065/*
1066 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1067 * (which can have different field alignments) to the native version
1068 */
1069int
1070xfs_inode_item_format_convert(
1071 xfs_log_iovec_t *buf,
1072 xfs_inode_log_format_t *in_f)
1073{
1074 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1075 xfs_inode_log_format_32_t *in_f32;
1076
1077 in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr;
1078 in_f->ilf_type = in_f32->ilf_type;
1079 in_f->ilf_size = in_f32->ilf_size;
1080 in_f->ilf_fields = in_f32->ilf_fields;
1081 in_f->ilf_asize = in_f32->ilf_asize;
1082 in_f->ilf_dsize = in_f32->ilf_dsize;
1083 in_f->ilf_ino = in_f32->ilf_ino;
1084 /* copy biggest field of ilf_u */
1085 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1086 in_f32->ilf_u.ilfu_uuid.__u_bits,
1087 sizeof(uuid_t));
1088 in_f->ilf_blkno = in_f32->ilf_blkno;
1089 in_f->ilf_len = in_f32->ilf_len;
1090 in_f->ilf_boffset = in_f32->ilf_boffset;
1091 return 0;
1092 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1093 xfs_inode_log_format_64_t *in_f64;
1094
1095 in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr;
1096 in_f->ilf_type = in_f64->ilf_type;
1097 in_f->ilf_size = in_f64->ilf_size;
1098 in_f->ilf_fields = in_f64->ilf_fields;
1099 in_f->ilf_asize = in_f64->ilf_asize;
1100 in_f->ilf_dsize = in_f64->ilf_dsize;
1101 in_f->ilf_ino = in_f64->ilf_ino;
1102 /* copy biggest field of ilf_u */
1103 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1104 in_f64->ilf_u.ilfu_uuid.__u_bits,
1105 sizeof(uuid_t));
1106 in_f->ilf_blkno = in_f64->ilf_blkno;
1107 in_f->ilf_len = in_f64->ilf_len;
1108 in_f->ilf_boffset = in_f64->ilf_boffset;
1109 return 0;
1110 }
1111 return EFSCORRUPTED;
1112}