]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_inode_item.c
xfs: remove some obsolete comments in xfs_trans_ail.c
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_inode_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
1da177e4 25#include "xfs_sb.h"
a844f451 26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_trans_priv.h"
1da177e4 29#include "xfs_bmap_btree.h"
1da177e4 30#include "xfs_dinode.h"
1da177e4 31#include "xfs_inode.h"
a844f451 32#include "xfs_inode_item.h"
db7a19f2 33#include "xfs_error.h"
0b1b213f 34#include "xfs_trace.h"
1da177e4
LT
35
36
37kmem_zone_t *xfs_ili_zone; /* inode log item zone */
38
7bfa31d8
CH
39static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
40{
41 return container_of(lip, struct xfs_inode_log_item, ili_item);
42}
43
44
1da177e4
LT
45/*
46 * This returns the number of iovecs needed to log the given inode item.
47 *
48 * We need one iovec for the inode log format structure, one for the
49 * inode core, and possibly one for the inode data/extents/b-tree root
50 * and one for the inode attribute data/extents/b-tree root.
51 */
52STATIC uint
53xfs_inode_item_size(
7bfa31d8 54 struct xfs_log_item *lip)
1da177e4 55{
7bfa31d8
CH
56 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 struct xfs_inode *ip = iip->ili_inode;
58 uint nvecs = 2;
1da177e4 59
1da177e4
LT
60 switch (ip->i_d.di_format) {
61 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 62 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
339a5f5d
CH
63 ip->i_d.di_nextents > 0 &&
64 ip->i_df.if_bytes > 0)
1da177e4 65 nvecs++;
1da177e4
LT
66 break;
67
68 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 69 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
339a5f5d 70 ip->i_df.if_broot_bytes > 0)
1da177e4 71 nvecs++;
1da177e4
LT
72 break;
73
74 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 75 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
339a5f5d 76 ip->i_df.if_bytes > 0)
1da177e4 77 nvecs++;
1da177e4
LT
78 break;
79
80 case XFS_DINODE_FMT_DEV:
1da177e4 81 case XFS_DINODE_FMT_UUID:
1da177e4
LT
82 break;
83
84 default:
85 ASSERT(0);
86 break;
87 }
88
339a5f5d 89 if (!XFS_IFORK_Q(ip))
1da177e4 90 return nvecs;
339a5f5d 91
1da177e4
LT
92
93 /*
94 * Log any necessary attribute data.
95 */
96 switch (ip->i_d.di_aformat) {
97 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 98 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
339a5f5d
CH
99 ip->i_d.di_anextents > 0 &&
100 ip->i_afp->if_bytes > 0)
1da177e4 101 nvecs++;
1da177e4
LT
102 break;
103
104 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 105 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
339a5f5d 106 ip->i_afp->if_broot_bytes > 0)
1da177e4 107 nvecs++;
1da177e4
LT
108 break;
109
110 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 111 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
339a5f5d 112 ip->i_afp->if_bytes > 0)
1da177e4 113 nvecs++;
1da177e4
LT
114 break;
115
116 default:
117 ASSERT(0);
118 break;
119 }
120
121 return nvecs;
122}
123
e828776a
DC
124/*
125 * xfs_inode_item_format_extents - convert in-core extents to on-disk form
126 *
127 * For either the data or attr fork in extent format, we need to endian convert
128 * the in-core extent as we place them into the on-disk inode. In this case, we
129 * need to do this conversion before we write the extents into the log. Because
130 * we don't have the disk inode to write into here, we allocate a buffer and
131 * format the extents into it via xfs_iextents_copy(). We free the buffer in
132 * the unlock routine after the copy for the log has been made.
133 *
134 * In the case of the data fork, the in-core and on-disk fork sizes can be
135 * different due to delayed allocation extents. We only log on-disk extents
136 * here, so always use the physical fork size to determine the size of the
137 * buffer we need to allocate.
138 */
139STATIC void
140xfs_inode_item_format_extents(
141 struct xfs_inode *ip,
142 struct xfs_log_iovec *vecp,
143 int whichfork,
144 int type)
145{
146 xfs_bmbt_rec_t *ext_buffer;
147
148 ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
149 if (whichfork == XFS_DATA_FORK)
150 ip->i_itemp->ili_extents_buf = ext_buffer;
151 else
152 ip->i_itemp->ili_aextents_buf = ext_buffer;
153
154 vecp->i_addr = ext_buffer;
155 vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
156 vecp->i_type = type;
157}
158
1da177e4
LT
159/*
160 * This is called to fill in the vector of log iovecs for the
161 * given inode log item. It fills the first item with an inode
162 * log format structure, the second with the on-disk inode structure,
163 * and a possible third and/or fourth with the inode data/extents/b-tree
164 * root and inode attributes data/extents/b-tree root.
165 */
166STATIC void
167xfs_inode_item_format(
7bfa31d8
CH
168 struct xfs_log_item *lip,
169 struct xfs_log_iovec *vecp)
1da177e4 170{
7bfa31d8
CH
171 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
172 struct xfs_inode *ip = iip->ili_inode;
1da177e4 173 uint nvecs;
1da177e4 174 size_t data_bytes;
1da177e4
LT
175 xfs_mount_t *mp;
176
4e0d5f92 177 vecp->i_addr = &iip->ili_format;
1da177e4 178 vecp->i_len = sizeof(xfs_inode_log_format_t);
4139b3b3 179 vecp->i_type = XLOG_REG_TYPE_IFORMAT;
1da177e4
LT
180 vecp++;
181 nvecs = 1;
182
4e0d5f92 183 vecp->i_addr = &ip->i_d;
81591fe2 184 vecp->i_len = sizeof(struct xfs_icdinode);
4139b3b3 185 vecp->i_type = XLOG_REG_TYPE_ICORE;
1da177e4
LT
186 vecp++;
187 nvecs++;
1da177e4
LT
188
189 /*
190 * If this is really an old format inode, then we need to
191 * log it as such. This means that we have to copy the link
192 * count from the new field to the old. We don't have to worry
193 * about the new fields, because nothing trusts them as long as
194 * the old inode version number is there. If the superblock already
195 * has a new version number, then we don't bother converting back.
196 */
197 mp = ip->i_mount;
51ce16d5
CH
198 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
199 if (ip->i_d.di_version == 1) {
62118709 200 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
201 /*
202 * Convert it back.
203 */
204 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
205 ip->i_d.di_onlink = ip->i_d.di_nlink;
206 } else {
207 /*
208 * The superblock version has already been bumped,
209 * so just make the conversion to the new inode
210 * format permanent.
211 */
51ce16d5 212 ip->i_d.di_version = 2;
1da177e4
LT
213 ip->i_d.di_onlink = 0;
214 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
215 }
216 }
217
218 switch (ip->i_d.di_format) {
219 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 220 iip->ili_fields &=
339a5f5d
CH
221 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
222 XFS_ILOG_DEV | XFS_ILOG_UUID);
223
f5d8d5c4 224 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
339a5f5d
CH
225 ip->i_d.di_nextents > 0 &&
226 ip->i_df.if_bytes > 0) {
1da177e4 227 ASSERT(ip->i_df.if_u1.if_extents != NULL);
339a5f5d 228 ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
1da177e4 229 ASSERT(iip->ili_extents_buf == NULL);
339a5f5d 230
f016bad6 231#ifdef XFS_NATIVE_HOST
696123fc
DC
232 if (ip->i_d.di_nextents == ip->i_df.if_bytes /
233 (uint)sizeof(xfs_bmbt_rec_t)) {
1da177e4
LT
234 /*
235 * There are no delayed allocation
236 * extents, so just point to the
237 * real extents array.
238 */
4e0d5f92 239 vecp->i_addr = ip->i_df.if_u1.if_extents;
1da177e4 240 vecp->i_len = ip->i_df.if_bytes;
4139b3b3 241 vecp->i_type = XLOG_REG_TYPE_IEXT;
1da177e4
LT
242 } else
243#endif
244 {
e828776a
DC
245 xfs_inode_item_format_extents(ip, vecp,
246 XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
1da177e4
LT
247 }
248 ASSERT(vecp->i_len <= ip->i_df.if_bytes);
249 iip->ili_format.ilf_dsize = vecp->i_len;
250 vecp++;
251 nvecs++;
339a5f5d 252 } else {
f5d8d5c4 253 iip->ili_fields &= ~XFS_ILOG_DEXT;
1da177e4
LT
254 }
255 break;
256
257 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 258 iip->ili_fields &=
339a5f5d
CH
259 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
260 XFS_ILOG_DEV | XFS_ILOG_UUID);
261
f5d8d5c4 262 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
339a5f5d 263 ip->i_df.if_broot_bytes > 0) {
1da177e4 264 ASSERT(ip->i_df.if_broot != NULL);
4e0d5f92 265 vecp->i_addr = ip->i_df.if_broot;
1da177e4 266 vecp->i_len = ip->i_df.if_broot_bytes;
4139b3b3 267 vecp->i_type = XLOG_REG_TYPE_IBROOT;
1da177e4
LT
268 vecp++;
269 nvecs++;
270 iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
339a5f5d 271 } else {
f5d8d5c4 272 ASSERT(!(iip->ili_fields &
339a5f5d
CH
273 XFS_ILOG_DBROOT));
274#ifdef XFS_TRANS_DEBUG
275 if (iip->ili_root_size > 0) {
276 ASSERT(iip->ili_root_size ==
277 ip->i_df.if_broot_bytes);
278 ASSERT(memcmp(iip->ili_orig_root,
279 ip->i_df.if_broot,
280 iip->ili_root_size) == 0);
281 } else {
282 ASSERT(ip->i_df.if_broot_bytes == 0);
283 }
284#endif
f5d8d5c4 285 iip->ili_fields &= ~XFS_ILOG_DBROOT;
1da177e4
LT
286 }
287 break;
288
289 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 290 iip->ili_fields &=
339a5f5d
CH
291 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
292 XFS_ILOG_DEV | XFS_ILOG_UUID);
f5d8d5c4 293 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
339a5f5d 294 ip->i_df.if_bytes > 0) {
1da177e4
LT
295 ASSERT(ip->i_df.if_u1.if_data != NULL);
296 ASSERT(ip->i_d.di_size > 0);
297
4e0d5f92 298 vecp->i_addr = ip->i_df.if_u1.if_data;
1da177e4
LT
299 /*
300 * Round i_bytes up to a word boundary.
301 * The underlying memory is guaranteed to
302 * to be there by xfs_idata_realloc().
303 */
304 data_bytes = roundup(ip->i_df.if_bytes, 4);
305 ASSERT((ip->i_df.if_real_bytes == 0) ||
306 (ip->i_df.if_real_bytes == data_bytes));
307 vecp->i_len = (int)data_bytes;
4139b3b3 308 vecp->i_type = XLOG_REG_TYPE_ILOCAL;
1da177e4
LT
309 vecp++;
310 nvecs++;
311 iip->ili_format.ilf_dsize = (unsigned)data_bytes;
339a5f5d 312 } else {
f5d8d5c4 313 iip->ili_fields &= ~XFS_ILOG_DDATA;
1da177e4
LT
314 }
315 break;
316
317 case XFS_DINODE_FMT_DEV:
f5d8d5c4 318 iip->ili_fields &=
339a5f5d
CH
319 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
320 XFS_ILOG_DEXT | XFS_ILOG_UUID);
f5d8d5c4 321 if (iip->ili_fields & XFS_ILOG_DEV) {
1da177e4
LT
322 iip->ili_format.ilf_u.ilfu_rdev =
323 ip->i_df.if_u2.if_rdev;
324 }
325 break;
326
327 case XFS_DINODE_FMT_UUID:
f5d8d5c4 328 iip->ili_fields &=
339a5f5d
CH
329 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
330 XFS_ILOG_DEXT | XFS_ILOG_DEV);
f5d8d5c4 331 if (iip->ili_fields & XFS_ILOG_UUID) {
1da177e4
LT
332 iip->ili_format.ilf_u.ilfu_uuid =
333 ip->i_df.if_u2.if_uuid;
334 }
335 break;
336
337 default:
338 ASSERT(0);
339 break;
340 }
341
342 /*
339a5f5d 343 * If there are no attributes associated with the file, then we're done.
1da177e4
LT
344 */
345 if (!XFS_IFORK_Q(ip)) {
f5d8d5c4 346 iip->ili_fields &=
339a5f5d 347 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
f5d8d5c4 348 goto out;
1da177e4
LT
349 }
350
351 switch (ip->i_d.di_aformat) {
352 case XFS_DINODE_FMT_EXTENTS:
f5d8d5c4 353 iip->ili_fields &=
339a5f5d
CH
354 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
355
f5d8d5c4 356 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
339a5f5d
CH
357 ip->i_d.di_anextents > 0 &&
358 ip->i_afp->if_bytes > 0) {
359 ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
360 ip->i_d.di_anextents);
73523a2e 361 ASSERT(ip->i_afp->if_u1.if_extents != NULL);
f016bad6 362#ifdef XFS_NATIVE_HOST
1da177e4
LT
363 /*
364 * There are not delayed allocation extents
365 * for attributes, so just point at the array.
366 */
4e0d5f92 367 vecp->i_addr = ip->i_afp->if_u1.if_extents;
1da177e4 368 vecp->i_len = ip->i_afp->if_bytes;
e828776a 369 vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
1da177e4
LT
370#else
371 ASSERT(iip->ili_aextents_buf == NULL);
e828776a
DC
372 xfs_inode_item_format_extents(ip, vecp,
373 XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
1da177e4
LT
374#endif
375 iip->ili_format.ilf_asize = vecp->i_len;
376 vecp++;
377 nvecs++;
339a5f5d 378 } else {
f5d8d5c4 379 iip->ili_fields &= ~XFS_ILOG_AEXT;
1da177e4
LT
380 }
381 break;
382
383 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 384 iip->ili_fields &=
339a5f5d
CH
385 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
386
f5d8d5c4 387 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
339a5f5d 388 ip->i_afp->if_broot_bytes > 0) {
1da177e4 389 ASSERT(ip->i_afp->if_broot != NULL);
339a5f5d 390
4e0d5f92 391 vecp->i_addr = ip->i_afp->if_broot;
1da177e4 392 vecp->i_len = ip->i_afp->if_broot_bytes;
4139b3b3 393 vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
1da177e4
LT
394 vecp++;
395 nvecs++;
396 iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
339a5f5d 397 } else {
f5d8d5c4 398 iip->ili_fields &= ~XFS_ILOG_ABROOT;
1da177e4
LT
399 }
400 break;
401
402 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 403 iip->ili_fields &=
339a5f5d
CH
404 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
405
f5d8d5c4 406 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
339a5f5d 407 ip->i_afp->if_bytes > 0) {
1da177e4
LT
408 ASSERT(ip->i_afp->if_u1.if_data != NULL);
409
4e0d5f92 410 vecp->i_addr = ip->i_afp->if_u1.if_data;
1da177e4
LT
411 /*
412 * Round i_bytes up to a word boundary.
413 * The underlying memory is guaranteed to
414 * to be there by xfs_idata_realloc().
415 */
416 data_bytes = roundup(ip->i_afp->if_bytes, 4);
417 ASSERT((ip->i_afp->if_real_bytes == 0) ||
418 (ip->i_afp->if_real_bytes == data_bytes));
419 vecp->i_len = (int)data_bytes;
4139b3b3 420 vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
1da177e4
LT
421 vecp++;
422 nvecs++;
423 iip->ili_format.ilf_asize = (unsigned)data_bytes;
339a5f5d 424 } else {
f5d8d5c4 425 iip->ili_fields &= ~XFS_ILOG_ADATA;
1da177e4
LT
426 }
427 break;
428
429 default:
430 ASSERT(0);
431 break;
432 }
433
f5d8d5c4
CH
434out:
435 /*
436 * Now update the log format that goes out to disk from the in-core
437 * values. We always write the inode core to make the arithmetic
438 * games in recovery easier, which isn't a big deal as just about any
439 * transaction would dirty it anyway.
440 */
8f639dde
CH
441 iip->ili_format.ilf_fields = XFS_ILOG_CORE |
442 (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
1da177e4
LT
443 iip->ili_format.ilf_size = nvecs;
444}
445
446
447/*
448 * This is called to pin the inode associated with the inode log
a14a5ab5 449 * item in memory so it cannot be written out.
1da177e4
LT
450 */
451STATIC void
452xfs_inode_item_pin(
7bfa31d8 453 struct xfs_log_item *lip)
1da177e4 454{
7bfa31d8 455 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
a14a5ab5 456
7bfa31d8
CH
457 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
458
459 trace_xfs_inode_pin(ip, _RET_IP_);
460 atomic_inc(&ip->i_pincount);
1da177e4
LT
461}
462
463
464/*
465 * This is called to unpin the inode associated with the inode log
466 * item which was previously pinned with a call to xfs_inode_item_pin().
a14a5ab5
CH
467 *
468 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
1da177e4 469 */
1da177e4
LT
470STATIC void
471xfs_inode_item_unpin(
7bfa31d8 472 struct xfs_log_item *lip,
9412e318 473 int remove)
1da177e4 474{
7bfa31d8 475 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
a14a5ab5 476
4aaf15d1 477 trace_xfs_inode_unpin(ip, _RET_IP_);
a14a5ab5
CH
478 ASSERT(atomic_read(&ip->i_pincount) > 0);
479 if (atomic_dec_and_test(&ip->i_pincount))
f392e631 480 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
1da177e4
LT
481}
482
1da177e4 483STATIC uint
43ff2122
CH
484xfs_inode_item_push(
485 struct xfs_log_item *lip,
486 struct list_head *buffer_list)
1da177e4 487{
7bfa31d8
CH
488 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
489 struct xfs_inode *ip = iip->ili_inode;
43ff2122
CH
490 struct xfs_buf *bp = NULL;
491 uint rval = XFS_ITEM_SUCCESS;
492 int error;
1da177e4 493
7bfa31d8 494 if (xfs_ipincount(ip) > 0)
1da177e4 495 return XFS_ITEM_PINNED;
1da177e4 496
7bfa31d8 497 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
1da177e4 498 return XFS_ITEM_LOCKED;
1da177e4 499
4c46819a
CH
500 /*
501 * Re-check the pincount now that we stabilized the value by
502 * taking the ilock.
503 */
504 if (xfs_ipincount(ip) > 0) {
43ff2122
CH
505 rval = XFS_ITEM_PINNED;
506 goto out_unlock;
4c46819a
CH
507 }
508
43ff2122
CH
509 /*
510 * Someone else is already flushing the inode. Nothing we can do
511 * here but wait for the flush to finish and remove the item from
512 * the AIL.
513 */
1da177e4 514 if (!xfs_iflock_nowait(ip)) {
43ff2122
CH
515 rval = XFS_ITEM_FLUSHING;
516 goto out_unlock;
1da177e4
LT
517 }
518
43ff2122
CH
519 /*
520 * Stale inode items should force out the iclog.
521 */
1da177e4
LT
522 if (ip->i_flags & XFS_ISTALE) {
523 xfs_ifunlock(ip);
5b03ff1b 524 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1da177e4
LT
525 return XFS_ITEM_PINNED;
526 }
527
43ff2122
CH
528 ASSERT(iip->ili_fields != 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
529 ASSERT(iip->ili_logged == 0 || XFS_FORCED_SHUTDOWN(ip->i_mount));
530
531 spin_unlock(&lip->li_ailp->xa_lock);
532
533 error = xfs_iflush(ip, &bp);
534 if (!error) {
535 if (!xfs_buf_delwri_queue(bp, buffer_list))
536 rval = XFS_ITEM_FLUSHING;
537 xfs_buf_relse(bp);
1da177e4 538 }
43ff2122
CH
539
540 spin_lock(&lip->li_ailp->xa_lock);
541out_unlock:
542 xfs_iunlock(ip, XFS_ILOCK_SHARED);
543 return rval;
1da177e4
LT
544}
545
546/*
547 * Unlock the inode associated with the inode log item.
548 * Clear the fields of the inode and inode log item that
549 * are specific to the current transaction. If the
550 * hold flags is set, do not unlock the inode.
551 */
552STATIC void
553xfs_inode_item_unlock(
7bfa31d8 554 struct xfs_log_item *lip)
1da177e4 555{
7bfa31d8
CH
556 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
557 struct xfs_inode *ip = iip->ili_inode;
898621d5 558 unsigned short lock_flags;
1da177e4 559
f3ca8738
CH
560 ASSERT(ip->i_itemp != NULL);
561 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
562
563 /*
564 * If the inode needed a separate buffer with which to log
565 * its extents, then free it now.
566 */
567 if (iip->ili_extents_buf != NULL) {
568 ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
569 ASSERT(ip->i_d.di_nextents > 0);
f5d8d5c4 570 ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
1da177e4 571 ASSERT(ip->i_df.if_bytes > 0);
f0e2d93c 572 kmem_free(iip->ili_extents_buf);
1da177e4
LT
573 iip->ili_extents_buf = NULL;
574 }
575 if (iip->ili_aextents_buf != NULL) {
576 ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
577 ASSERT(ip->i_d.di_anextents > 0);
f5d8d5c4 578 ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
1da177e4 579 ASSERT(ip->i_afp->if_bytes > 0);
f0e2d93c 580 kmem_free(iip->ili_aextents_buf);
1da177e4
LT
581 iip->ili_aextents_buf = NULL;
582 }
583
898621d5
CH
584 lock_flags = iip->ili_lock_flags;
585 iip->ili_lock_flags = 0;
ddc3415a 586 if (lock_flags)
f3ca8738 587 xfs_iunlock(ip, lock_flags);
1da177e4
LT
588}
589
590/*
de25c181
DC
591 * This is called to find out where the oldest active copy of the inode log
592 * item in the on disk log resides now that the last log write of it completed
593 * at the given lsn. Since we always re-log all dirty data in an inode, the
594 * latest copy in the on disk log is the only one that matters. Therefore,
595 * simply return the given lsn.
596 *
597 * If the inode has been marked stale because the cluster is being freed, we
598 * don't want to (re-)insert this inode into the AIL. There is a race condition
599 * where the cluster buffer may be unpinned before the inode is inserted into
600 * the AIL during transaction committed processing. If the buffer is unpinned
601 * before the inode item has been committed and inserted, then it is possible
1316d4da 602 * for the buffer to be written and IO completes before the inode is inserted
de25c181
DC
603 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
604 * AIL which will never get removed. It will, however, get reclaimed which
605 * triggers an assert in xfs_inode_free() complaining about freein an inode
606 * still in the AIL.
607 *
1316d4da
DC
608 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
609 * transaction committed code knows that it does not need to do any further
610 * processing on the item.
1da177e4 611 */
1da177e4
LT
612STATIC xfs_lsn_t
613xfs_inode_item_committed(
7bfa31d8 614 struct xfs_log_item *lip,
1da177e4
LT
615 xfs_lsn_t lsn)
616{
de25c181
DC
617 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
618 struct xfs_inode *ip = iip->ili_inode;
619
1316d4da
DC
620 if (xfs_iflags_test(ip, XFS_ISTALE)) {
621 xfs_inode_item_unpin(lip, 0);
622 return -1;
623 }
7bfa31d8 624 return lsn;
1da177e4
LT
625}
626
1da177e4
LT
627/*
628 * XXX rcc - this one really has to do something. Probably needs
629 * to stamp in a new field in the incore inode.
630 */
1da177e4
LT
631STATIC void
632xfs_inode_item_committing(
7bfa31d8 633 struct xfs_log_item *lip,
1da177e4
LT
634 xfs_lsn_t lsn)
635{
7bfa31d8 636 INODE_ITEM(lip)->ili_last_lsn = lsn;
1da177e4
LT
637}
638
639/*
640 * This is the ops vector shared by all buf log items.
641 */
272e42b2 642static const struct xfs_item_ops xfs_inode_item_ops = {
7bfa31d8
CH
643 .iop_size = xfs_inode_item_size,
644 .iop_format = xfs_inode_item_format,
645 .iop_pin = xfs_inode_item_pin,
646 .iop_unpin = xfs_inode_item_unpin,
7bfa31d8
CH
647 .iop_unlock = xfs_inode_item_unlock,
648 .iop_committed = xfs_inode_item_committed,
649 .iop_push = xfs_inode_item_push,
7bfa31d8 650 .iop_committing = xfs_inode_item_committing
1da177e4
LT
651};
652
653
654/*
655 * Initialize the inode log item for a newly allocated (in-core) inode.
656 */
657void
658xfs_inode_item_init(
7bfa31d8
CH
659 struct xfs_inode *ip,
660 struct xfs_mount *mp)
1da177e4 661{
7bfa31d8 662 struct xfs_inode_log_item *iip;
1da177e4
LT
663
664 ASSERT(ip->i_itemp == NULL);
665 iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
666
1da177e4 667 iip->ili_inode = ip;
43f5efc5
DC
668 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
669 &xfs_inode_item_ops);
1da177e4
LT
670 iip->ili_format.ilf_type = XFS_LI_INODE;
671 iip->ili_format.ilf_ino = ip->i_ino;
92bfc6e7
CH
672 iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
673 iip->ili_format.ilf_len = ip->i_imap.im_len;
674 iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
1da177e4
LT
675}
676
677/*
678 * Free the inode log item and any memory hanging off of it.
679 */
680void
681xfs_inode_item_destroy(
682 xfs_inode_t *ip)
683{
684#ifdef XFS_TRANS_DEBUG
685 if (ip->i_itemp->ili_root_size != 0) {
f0e2d93c 686 kmem_free(ip->i_itemp->ili_orig_root);
1da177e4
LT
687 }
688#endif
689 kmem_zone_free(xfs_ili_zone, ip->i_itemp);
690}
691
692
693/*
694 * This is the inode flushing I/O completion routine. It is called
695 * from interrupt level when the buffer containing the inode is
696 * flushed to disk. It is responsible for removing the inode item
697 * from the AIL if it has not been re-logged, and unlocking the inode's
698 * flush lock.
30136832
DC
699 *
700 * To reduce AIL lock traffic as much as possible, we scan the buffer log item
701 * list for other inodes that will run this function. We remove them from the
702 * buffer list so we can process all the inode IO completions in one AIL lock
703 * traversal.
1da177e4 704 */
1da177e4
LT
705void
706xfs_iflush_done(
ca30b2a7
CH
707 struct xfs_buf *bp,
708 struct xfs_log_item *lip)
1da177e4 709{
30136832
DC
710 struct xfs_inode_log_item *iip;
711 struct xfs_log_item *blip;
712 struct xfs_log_item *next;
713 struct xfs_log_item *prev;
ca30b2a7 714 struct xfs_ail *ailp = lip->li_ailp;
30136832
DC
715 int need_ail = 0;
716
717 /*
718 * Scan the buffer IO completions for other inodes being completed and
719 * attach them to the current inode log item.
720 */
adadbeef 721 blip = bp->b_fspriv;
30136832
DC
722 prev = NULL;
723 while (blip != NULL) {
724 if (lip->li_cb != xfs_iflush_done) {
725 prev = blip;
726 blip = blip->li_bio_list;
727 continue;
728 }
729
730 /* remove from list */
731 next = blip->li_bio_list;
732 if (!prev) {
adadbeef 733 bp->b_fspriv = next;
30136832
DC
734 } else {
735 prev->li_bio_list = next;
736 }
737
738 /* add to current list */
739 blip->li_bio_list = lip->li_bio_list;
740 lip->li_bio_list = blip;
741
742 /*
743 * while we have the item, do the unlocked check for needing
744 * the AIL lock.
745 */
746 iip = INODE_ITEM(blip);
747 if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
748 need_ail++;
749
750 blip = next;
751 }
752
753 /* make sure we capture the state of the initial inode. */
754 iip = INODE_ITEM(lip);
755 if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
756 need_ail++;
1da177e4
LT
757
758 /*
759 * We only want to pull the item from the AIL if it is
760 * actually there and its location in the log has not
761 * changed since we started the flush. Thus, we only bother
762 * if the ili_logged flag is set and the inode's lsn has not
763 * changed. First we check the lsn outside
764 * the lock since it's cheaper, and then we recheck while
765 * holding the lock before removing the inode from the AIL.
766 */
30136832
DC
767 if (need_ail) {
768 struct xfs_log_item *log_items[need_ail];
769 int i = 0;
783a2f65 770 spin_lock(&ailp->xa_lock);
30136832
DC
771 for (blip = lip; blip; blip = blip->li_bio_list) {
772 iip = INODE_ITEM(blip);
773 if (iip->ili_logged &&
774 blip->li_lsn == iip->ili_flush_lsn) {
775 log_items[i++] = blip;
776 }
777 ASSERT(i <= need_ail);
1da177e4 778 }
30136832
DC
779 /* xfs_trans_ail_delete_bulk() drops the AIL lock. */
780 xfs_trans_ail_delete_bulk(ailp, log_items, i);
1da177e4
LT
781 }
782
1da177e4
LT
783
784 /*
30136832
DC
785 * clean up and unlock the flush lock now we are done. We can clear the
786 * ili_last_fields bits now that we know that the data corresponding to
787 * them is safely on disk.
1da177e4 788 */
30136832
DC
789 for (blip = lip; blip; blip = next) {
790 next = blip->li_bio_list;
791 blip->li_bio_list = NULL;
792
793 iip = INODE_ITEM(blip);
794 iip->ili_logged = 0;
795 iip->ili_last_fields = 0;
796 xfs_ifunlock(iip->ili_inode);
797 }
1da177e4
LT
798}
799
800/*
801 * This is the inode flushing abort routine. It is called
802 * from xfs_iflush when the filesystem is shutting down to clean
803 * up the inode state.
804 * It is responsible for removing the inode item
805 * from the AIL if it has not been re-logged, and unlocking the inode's
806 * flush lock.
807 */
808void
809xfs_iflush_abort(
810 xfs_inode_t *ip)
811{
783a2f65 812 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 813
1da177e4 814 if (iip) {
783a2f65 815 struct xfs_ail *ailp = iip->ili_item.li_ailp;
1da177e4 816 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65 817 spin_lock(&ailp->xa_lock);
1da177e4 818 if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
783a2f65
DC
819 /* xfs_trans_ail_delete() drops the AIL lock. */
820 xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
1da177e4 821 } else
783a2f65 822 spin_unlock(&ailp->xa_lock);
1da177e4
LT
823 }
824 iip->ili_logged = 0;
825 /*
826 * Clear the ili_last_fields bits now that we know that the
827 * data corresponding to them is safely on disk.
828 */
829 iip->ili_last_fields = 0;
830 /*
831 * Clear the inode logging fields so no more flushes are
832 * attempted.
833 */
f5d8d5c4 834 iip->ili_fields = 0;
1da177e4
LT
835 }
836 /*
837 * Release the inode's flush lock since we're done with it.
838 */
839 xfs_ifunlock(ip);
840}
841
842void
843xfs_istale_done(
ca30b2a7
CH
844 struct xfs_buf *bp,
845 struct xfs_log_item *lip)
1da177e4 846{
ca30b2a7 847 xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
1da177e4 848}
6d192a9b
TS
849
850/*
851 * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
852 * (which can have different field alignments) to the native version
853 */
854int
855xfs_inode_item_format_convert(
856 xfs_log_iovec_t *buf,
857 xfs_inode_log_format_t *in_f)
858{
859 if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
4e0d5f92 860 xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
6d192a9b 861
6d192a9b
TS
862 in_f->ilf_type = in_f32->ilf_type;
863 in_f->ilf_size = in_f32->ilf_size;
864 in_f->ilf_fields = in_f32->ilf_fields;
865 in_f->ilf_asize = in_f32->ilf_asize;
866 in_f->ilf_dsize = in_f32->ilf_dsize;
867 in_f->ilf_ino = in_f32->ilf_ino;
868 /* copy biggest field of ilf_u */
869 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
870 in_f32->ilf_u.ilfu_uuid.__u_bits,
871 sizeof(uuid_t));
872 in_f->ilf_blkno = in_f32->ilf_blkno;
873 in_f->ilf_len = in_f32->ilf_len;
874 in_f->ilf_boffset = in_f32->ilf_boffset;
875 return 0;
876 } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
4e0d5f92 877 xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
6d192a9b 878
6d192a9b
TS
879 in_f->ilf_type = in_f64->ilf_type;
880 in_f->ilf_size = in_f64->ilf_size;
881 in_f->ilf_fields = in_f64->ilf_fields;
882 in_f->ilf_asize = in_f64->ilf_asize;
883 in_f->ilf_dsize = in_f64->ilf_dsize;
884 in_f->ilf_ino = in_f64->ilf_ino;
885 /* copy biggest field of ilf_u */
886 memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
887 in_f64->ilf_u.ilfu_uuid.__u_bits,
888 sizeof(uuid_t));
889 in_f->ilf_blkno = in_f64->ilf_blkno;
890 in_f->ilf_len = in_f64->ilf_len;
891 in_f->ilf_boffset = in_f64->ilf_boffset;
892 return 0;
893 }
894 return EFSCORRUPTED;
895}