]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_log.c
xfs: move the locking from xlog_state_finish_copy to the callers
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_log.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
e9e899a2 13#include "xfs_errortag.h"
1da177e4 14#include "xfs_error.h"
239880ef
DC
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
1da177e4 18#include "xfs_log_priv.h"
0b1b213f 19#include "xfs_trace.h"
baff4e44 20#include "xfs_sysfs.h"
61e63ecb 21#include "xfs_sb.h"
39353ff6 22#include "xfs_health.h"
1da177e4 23
eb01c9cd 24kmem_zone_t *xfs_log_ticket_zone;
1da177e4 25
1da177e4 26/* Local miscellaneous function prototypes */
ad223e60
MT
27STATIC int
28xlog_commit_record(
29 struct xlog *log,
30 struct xlog_ticket *ticket,
31 struct xlog_in_core **iclog,
32 xfs_lsn_t *commitlsnp);
33
9a8d2fdb
MT
34STATIC struct xlog *
35xlog_alloc_log(
36 struct xfs_mount *mp,
37 struct xfs_buftarg *log_target,
38 xfs_daddr_t blk_offset,
39 int num_bblks);
ad223e60
MT
40STATIC int
41xlog_space_left(
42 struct xlog *log,
43 atomic64_t *head);
9a8d2fdb
MT
44STATIC void
45xlog_dealloc_log(
46 struct xlog *log);
1da177e4
LT
47
48/* local state machine functions */
d15cbf2f
CH
49STATIC void xlog_state_done_syncing(
50 struct xlog_in_core *iclog,
51 bool aborted);
9a8d2fdb
MT
52STATIC int
53xlog_state_get_iclog_space(
54 struct xlog *log,
55 int len,
56 struct xlog_in_core **iclog,
57 struct xlog_ticket *ticket,
58 int *continued_write,
59 int *logoffsetp);
60STATIC int
61xlog_state_release_iclog(
62 struct xlog *log,
63 struct xlog_in_core *iclog);
64STATIC void
65xlog_state_switch_iclogs(
66 struct xlog *log,
67 struct xlog_in_core *iclog,
68 int eventual_size);
69STATIC void
70xlog_state_want_sync(
71 struct xlog *log,
72 struct xlog_in_core *iclog);
1da177e4 73
ad223e60
MT
74STATIC void
75xlog_grant_push_ail(
9a8d2fdb
MT
76 struct xlog *log,
77 int need_bytes);
78STATIC void
79xlog_regrant_reserve_log_space(
80 struct xlog *log,
81 struct xlog_ticket *ticket);
82STATIC void
83xlog_ungrant_log_space(
84 struct xlog *log,
85 struct xlog_ticket *ticket);
1da177e4 86
cfcbbbd0 87#if defined(DEBUG)
9a8d2fdb
MT
88STATIC void
89xlog_verify_dest_ptr(
90 struct xlog *log,
5809d5e0 91 void *ptr);
ad223e60
MT
92STATIC void
93xlog_verify_grant_tail(
9a8d2fdb
MT
94 struct xlog *log);
95STATIC void
96xlog_verify_iclog(
97 struct xlog *log,
98 struct xlog_in_core *iclog,
abca1f33 99 int count);
9a8d2fdb
MT
100STATIC void
101xlog_verify_tail_lsn(
102 struct xlog *log,
103 struct xlog_in_core *iclog,
104 xfs_lsn_t tail_lsn);
1da177e4
LT
105#else
106#define xlog_verify_dest_ptr(a,b)
3f336c6f 107#define xlog_verify_grant_tail(a)
abca1f33 108#define xlog_verify_iclog(a,b,c)
1da177e4
LT
109#define xlog_verify_tail_lsn(a,b,c)
110#endif
111
9a8d2fdb
MT
112STATIC int
113xlog_iclogs_empty(
114 struct xlog *log);
1da177e4 115
dd954c69 116static void
663e496a 117xlog_grant_sub_space(
ad223e60
MT
118 struct xlog *log,
119 atomic64_t *head,
120 int bytes)
dd954c69 121{
d0eb2f38
DC
122 int64_t head_val = atomic64_read(head);
123 int64_t new, old;
a69ed03c 124
d0eb2f38
DC
125 do {
126 int cycle, space;
a69ed03c 127
d0eb2f38 128 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 129
d0eb2f38
DC
130 space -= bytes;
131 if (space < 0) {
132 space += log->l_logsize;
133 cycle--;
134 }
135
136 old = head_val;
137 new = xlog_assign_grant_head_val(cycle, space);
138 head_val = atomic64_cmpxchg(head, old, new);
139 } while (head_val != old);
dd954c69
CH
140}
141
142static void
663e496a 143xlog_grant_add_space(
ad223e60
MT
144 struct xlog *log,
145 atomic64_t *head,
146 int bytes)
dd954c69 147{
d0eb2f38
DC
148 int64_t head_val = atomic64_read(head);
149 int64_t new, old;
a69ed03c 150
d0eb2f38
DC
151 do {
152 int tmp;
153 int cycle, space;
a69ed03c 154
d0eb2f38 155 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 156
d0eb2f38
DC
157 tmp = log->l_logsize - space;
158 if (tmp > bytes)
159 space += bytes;
160 else {
161 space = bytes - tmp;
162 cycle++;
163 }
164
165 old = head_val;
166 new = xlog_assign_grant_head_val(cycle, space);
167 head_val = atomic64_cmpxchg(head, old, new);
168 } while (head_val != old);
dd954c69 169}
a69ed03c 170
c303c5b8
CH
171STATIC void
172xlog_grant_head_init(
173 struct xlog_grant_head *head)
174{
175 xlog_assign_grant_head(&head->grant, 1, 0);
176 INIT_LIST_HEAD(&head->waiters);
177 spin_lock_init(&head->lock);
178}
179
a79bf2d7
CH
180STATIC void
181xlog_grant_head_wake_all(
182 struct xlog_grant_head *head)
183{
184 struct xlog_ticket *tic;
185
186 spin_lock(&head->lock);
187 list_for_each_entry(tic, &head->waiters, t_queue)
188 wake_up_process(tic->t_task);
189 spin_unlock(&head->lock);
190}
191
e179840d
CH
192static inline int
193xlog_ticket_reservation(
ad223e60 194 struct xlog *log,
e179840d
CH
195 struct xlog_grant_head *head,
196 struct xlog_ticket *tic)
9f9c19ec 197{
e179840d
CH
198 if (head == &log->l_write_head) {
199 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
200 return tic->t_unit_res;
201 } else {
9f9c19ec 202 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 203 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 204 else
e179840d 205 return tic->t_unit_res;
9f9c19ec 206 }
9f9c19ec
CH
207}
208
209STATIC bool
e179840d 210xlog_grant_head_wake(
ad223e60 211 struct xlog *log,
e179840d 212 struct xlog_grant_head *head,
9f9c19ec
CH
213 int *free_bytes)
214{
215 struct xlog_ticket *tic;
216 int need_bytes;
7c107afb 217 bool woken_task = false;
9f9c19ec 218
e179840d 219 list_for_each_entry(tic, &head->waiters, t_queue) {
7c107afb
DC
220
221 /*
222 * There is a chance that the size of the CIL checkpoints in
223 * progress at the last AIL push target calculation resulted in
224 * limiting the target to the log head (l_last_sync_lsn) at the
225 * time. This may not reflect where the log head is now as the
226 * CIL checkpoints may have completed.
227 *
228 * Hence when we are woken here, it may be that the head of the
229 * log that has moved rather than the tail. As the tail didn't
230 * move, there still won't be space available for the
231 * reservation we require. However, if the AIL has already
232 * pushed to the target defined by the old log head location, we
233 * will hang here waiting for something else to update the AIL
234 * push target.
235 *
236 * Therefore, if there isn't space to wake the first waiter on
237 * the grant head, we need to push the AIL again to ensure the
238 * target reflects both the current log tail and log head
239 * position before we wait for the tail to move again.
240 */
241
e179840d 242 need_bytes = xlog_ticket_reservation(log, head, tic);
7c107afb
DC
243 if (*free_bytes < need_bytes) {
244 if (!woken_task)
245 xlog_grant_push_ail(log, need_bytes);
9f9c19ec 246 return false;
7c107afb 247 }
9f9c19ec 248
e179840d
CH
249 *free_bytes -= need_bytes;
250 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 251 wake_up_process(tic->t_task);
7c107afb 252 woken_task = true;
9f9c19ec
CH
253 }
254
255 return true;
256}
257
258STATIC int
23ee3df3 259xlog_grant_head_wait(
ad223e60 260 struct xlog *log,
23ee3df3 261 struct xlog_grant_head *head,
9f9c19ec 262 struct xlog_ticket *tic,
a30b0367
DC
263 int need_bytes) __releases(&head->lock)
264 __acquires(&head->lock)
9f9c19ec 265{
23ee3df3 266 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
267
268 do {
269 if (XLOG_FORCED_SHUTDOWN(log))
270 goto shutdown;
271 xlog_grant_push_ail(log, need_bytes);
272
14a7235f 273 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 274 spin_unlock(&head->lock);
14a7235f 275
ff6d6af2 276 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
9f9c19ec 277
14a7235f
CH
278 trace_xfs_log_grant_sleep(log, tic);
279 schedule();
9f9c19ec
CH
280 trace_xfs_log_grant_wake(log, tic);
281
23ee3df3 282 spin_lock(&head->lock);
9f9c19ec
CH
283 if (XLOG_FORCED_SHUTDOWN(log))
284 goto shutdown;
23ee3df3 285 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
286
287 list_del_init(&tic->t_queue);
288 return 0;
289shutdown:
290 list_del_init(&tic->t_queue);
2451337d 291 return -EIO;
9f9c19ec
CH
292}
293
42ceedb3
CH
294/*
295 * Atomically get the log space required for a log ticket.
296 *
297 * Once a ticket gets put onto head->waiters, it will only return after the
298 * needed reservation is satisfied.
299 *
300 * This function is structured so that it has a lock free fast path. This is
301 * necessary because every new transaction reservation will come through this
302 * path. Hence any lock will be globally hot if we take it unconditionally on
303 * every pass.
304 *
305 * As tickets are only ever moved on and off head->waiters under head->lock, we
306 * only need to take that lock if we are going to add the ticket to the queue
307 * and sleep. We can avoid taking the lock if the ticket was never added to
308 * head->waiters because the t_queue list head will be empty and we hold the
309 * only reference to it so it can safely be checked unlocked.
310 */
311STATIC int
312xlog_grant_head_check(
ad223e60 313 struct xlog *log,
42ceedb3
CH
314 struct xlog_grant_head *head,
315 struct xlog_ticket *tic,
316 int *need_bytes)
317{
318 int free_bytes;
319 int error = 0;
320
321 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
322
323 /*
324 * If there are other waiters on the queue then give them a chance at
325 * logspace before us. Wake up the first waiters, if we do not wake
326 * up all the waiters then go to sleep waiting for more free space,
327 * otherwise try to get some space for this transaction.
328 */
329 *need_bytes = xlog_ticket_reservation(log, head, tic);
330 free_bytes = xlog_space_left(log, &head->grant);
331 if (!list_empty_careful(&head->waiters)) {
332 spin_lock(&head->lock);
333 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
334 free_bytes < *need_bytes) {
335 error = xlog_grant_head_wait(log, head, tic,
336 *need_bytes);
337 }
338 spin_unlock(&head->lock);
339 } else if (free_bytes < *need_bytes) {
340 spin_lock(&head->lock);
341 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
342 spin_unlock(&head->lock);
343 }
344
345 return error;
346}
347
0adba536
CH
348static void
349xlog_tic_reset_res(xlog_ticket_t *tic)
350{
351 tic->t_res_num = 0;
352 tic->t_res_arr_sum = 0;
353 tic->t_res_num_ophdrs = 0;
354}
355
356static void
357xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
358{
359 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
360 /* add to overflow and start again */
361 tic->t_res_o_flow += tic->t_res_arr_sum;
362 tic->t_res_num = 0;
363 tic->t_res_arr_sum = 0;
364 }
365
366 tic->t_res_arr[tic->t_res_num].r_len = len;
367 tic->t_res_arr[tic->t_res_num].r_type = type;
368 tic->t_res_arr_sum += len;
369 tic->t_res_num++;
370}
dd954c69 371
9006fb91
CH
372/*
373 * Replenish the byte reservation required by moving the grant write head.
374 */
375int
376xfs_log_regrant(
377 struct xfs_mount *mp,
378 struct xlog_ticket *tic)
379{
ad223e60 380 struct xlog *log = mp->m_log;
9006fb91
CH
381 int need_bytes;
382 int error = 0;
383
384 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 385 return -EIO;
9006fb91 386
ff6d6af2 387 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
388
389 /*
390 * This is a new transaction on the ticket, so we need to change the
391 * transaction ID so that the next transaction has a different TID in
392 * the log. Just add one to the existing tid so that we can see chains
393 * of rolling transactions in the log easily.
394 */
395 tic->t_tid++;
396
397 xlog_grant_push_ail(log, tic->t_unit_res);
398
399 tic->t_curr_res = tic->t_unit_res;
400 xlog_tic_reset_res(tic);
401
402 if (tic->t_cnt > 0)
403 return 0;
404
405 trace_xfs_log_regrant(log, tic);
406
407 error = xlog_grant_head_check(log, &log->l_write_head, tic,
408 &need_bytes);
409 if (error)
410 goto out_error;
411
412 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
413 trace_xfs_log_regrant_exit(log, tic);
414 xlog_verify_grant_tail(log);
415 return 0;
416
417out_error:
418 /*
419 * If we are failing, make sure the ticket doesn't have any current
420 * reservations. We don't want to add this back when the ticket/
421 * transaction gets cancelled.
422 */
423 tic->t_curr_res = 0;
424 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
425 return error;
426}
427
428/*
a0e336ba 429 * Reserve log space and return a ticket corresponding to the reservation.
9006fb91
CH
430 *
431 * Each reservation is going to reserve extra space for a log record header.
432 * When writes happen to the on-disk log, we don't subtract the length of the
433 * log record header from any reservation. By wasting space in each
434 * reservation, we prevent over allocation problems.
435 */
436int
437xfs_log_reserve(
438 struct xfs_mount *mp,
439 int unit_bytes,
440 int cnt,
441 struct xlog_ticket **ticp,
c8ce540d 442 uint8_t client,
710b1e2c 443 bool permanent)
9006fb91 444{
ad223e60 445 struct xlog *log = mp->m_log;
9006fb91
CH
446 struct xlog_ticket *tic;
447 int need_bytes;
448 int error = 0;
449
450 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
451
452 if (XLOG_FORCED_SHUTDOWN(log))
2451337d 453 return -EIO;
9006fb91 454
ff6d6af2 455 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
456
457 ASSERT(*ticp == NULL);
707e0dda 458 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
9006fb91
CH
459 *ticp = tic;
460
437a255a
DC
461 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 : tic->t_unit_res);
9006fb91
CH
463
464 trace_xfs_log_reserve(log, tic);
465
466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 &need_bytes);
468 if (error)
469 goto out_error;
470
471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 trace_xfs_log_reserve_exit(log, tic);
474 xlog_verify_grant_tail(log);
475 return 0;
476
477out_error:
478 /*
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
482 */
483 tic->t_curr_res = 0;
484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485 return error;
486}
487
488
1da177e4
LT
489/*
490 * NOTES:
491 *
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
494 */
495
496/*
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
509 */
510xfs_lsn_t
35a8a72f
CH
511xfs_log_done(
512 struct xfs_mount *mp,
513 struct xlog_ticket *ticket,
514 struct xlog_in_core **iclog,
f78c3901 515 bool regrant)
1da177e4 516{
ad223e60 517 struct xlog *log = mp->m_log;
35a8a72f 518 xfs_lsn_t lsn = 0;
1da177e4 519
1da177e4
LT
520 if (XLOG_FORCED_SHUTDOWN(log) ||
521 /*
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
524 */
525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
55b66332 526 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
1da177e4 527 lsn = (xfs_lsn_t) -1;
f78c3901 528 regrant = false;
1da177e4
LT
529 }
530
531
f78c3901 532 if (!regrant) {
0b1b213f
CH
533 trace_xfs_log_done_nonperm(log, ticket);
534
1da177e4 535 /*
c41564b5 536 * Release ticket if not permanent reservation or a specific
1da177e4
LT
537 * request has been made to release a permanent reservation.
538 */
539 xlog_ungrant_log_space(log, ticket);
1da177e4 540 } else {
0b1b213f
CH
541 trace_xfs_log_done_perm(log, ticket);
542
1da177e4 543 xlog_regrant_reserve_log_space(log, ticket);
c6a7b0f8
LM
544 /* If this ticket was a permanent reservation and we aren't
545 * trying to release it, reset the inited flags; so next time
546 * we write, a start record will be written out.
547 */
1da177e4 548 ticket->t_flags |= XLOG_TIC_INITED;
c6a7b0f8 549 }
1da177e4 550
f78c3901 551 xfs_log_ticket_put(ticket);
1da177e4 552 return lsn;
35a8a72f 553}
1da177e4 554
1da177e4 555int
35a8a72f
CH
556xfs_log_release_iclog(
557 struct xfs_mount *mp,
558 struct xlog_in_core *iclog)
1da177e4 559{
35a8a72f 560 if (xlog_state_release_iclog(mp->m_log, iclog)) {
7d04a335 561 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2451337d 562 return -EIO;
1da177e4
LT
563 }
564
565 return 0;
566}
567
1da177e4
LT
568/*
569 * Mount a log filesystem
570 *
571 * mp - ubiquitous xfs mount point structure
572 * log_target - buftarg of on-disk log device
573 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
574 * num_bblocks - Number of BBSIZE blocks in on-disk log
575 *
576 * Return error or zero.
577 */
578int
249a8c11
DC
579xfs_log_mount(
580 xfs_mount_t *mp,
581 xfs_buftarg_t *log_target,
582 xfs_daddr_t blk_offset,
583 int num_bblks)
1da177e4 584{
9c92ee20 585 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
3e7b91cf
JL
586 int error = 0;
587 int min_logfsbs;
249a8c11 588
c99d609a
DC
589 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
590 xfs_notice(mp, "Mounting V%d Filesystem",
591 XFS_SB_VERSION_NUM(&mp->m_sb));
592 } else {
a0fa2b67 593 xfs_notice(mp,
c99d609a
DC
594"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
595 XFS_SB_VERSION_NUM(&mp->m_sb));
bd186aa9 596 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
597 }
598
599 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
a6cb767e 600 if (IS_ERR(mp->m_log)) {
2451337d 601 error = PTR_ERR(mp->m_log);
644c3567
DC
602 goto out;
603 }
1da177e4 604
3e7b91cf
JL
605 /*
606 * Validate the given log space and drop a critical message via syslog
607 * if the log size is too small that would lead to some unexpected
608 * situations in transaction log space reservation stage.
609 *
610 * Note: we can't just reject the mount if the validation fails. This
611 * would mean that people would have to downgrade their kernel just to
612 * remedy the situation as there is no way to grow the log (short of
613 * black magic surgery with xfs_db).
614 *
615 * We can, however, reject mounts for CRC format filesystems, as the
616 * mkfs binary being used to make the filesystem should never create a
617 * filesystem with a log that is too small.
618 */
619 min_logfsbs = xfs_log_calc_minimum_size(mp);
620
621 if (mp->m_sb.sb_logblocks < min_logfsbs) {
622 xfs_warn(mp,
623 "Log size %d blocks too small, minimum size is %d blocks",
624 mp->m_sb.sb_logblocks, min_logfsbs);
2451337d 625 error = -EINVAL;
3e7b91cf
JL
626 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
627 xfs_warn(mp,
628 "Log size %d blocks too large, maximum size is %lld blocks",
629 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
2451337d 630 error = -EINVAL;
3e7b91cf
JL
631 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
632 xfs_warn(mp,
633 "log size %lld bytes too large, maximum size is %lld bytes",
634 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
635 XFS_MAX_LOG_BYTES);
2451337d 636 error = -EINVAL;
9c92ee20
DW
637 } else if (mp->m_sb.sb_logsunit > 1 &&
638 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
639 xfs_warn(mp,
640 "log stripe unit %u bytes must be a multiple of block size",
641 mp->m_sb.sb_logsunit);
642 error = -EINVAL;
643 fatal = true;
3e7b91cf
JL
644 }
645 if (error) {
9c92ee20
DW
646 /*
647 * Log check errors are always fatal on v5; or whenever bad
648 * metadata leads to a crash.
649 */
650 if (fatal) {
3e7b91cf
JL
651 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
652 ASSERT(0);
653 goto out_free_log;
654 }
f41febd2 655 xfs_crit(mp, "Log size out of supported range.");
3e7b91cf 656 xfs_crit(mp,
f41febd2 657"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
3e7b91cf
JL
658 }
659
249a8c11
DC
660 /*
661 * Initialize the AIL now we have a log.
662 */
249a8c11
DC
663 error = xfs_trans_ail_init(mp);
664 if (error) {
a0fa2b67 665 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 666 goto out_free_log;
249a8c11 667 }
a9c21c1b 668 mp->m_log->l_ailp = mp->m_ail;
249a8c11 669
1da177e4
LT
670 /*
671 * skip log recovery on a norecovery mount. pretend it all
672 * just worked.
673 */
674 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
249a8c11 675 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
676
677 if (readonly)
bd186aa9 678 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4 679
65be6054 680 error = xlog_recover(mp->m_log);
1da177e4
LT
681
682 if (readonly)
bd186aa9 683 mp->m_flags |= XFS_MOUNT_RDONLY;
1da177e4 684 if (error) {
a0fa2b67
DC
685 xfs_warn(mp, "log mount/recovery failed: error %d",
686 error);
f0b2efad 687 xlog_recover_cancel(mp->m_log);
26430752 688 goto out_destroy_ail;
1da177e4
LT
689 }
690 }
691
baff4e44
BF
692 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
693 "log");
694 if (error)
695 goto out_destroy_ail;
696
1da177e4
LT
697 /* Normal transactions can now occur */
698 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
699
71e330b5
DC
700 /*
701 * Now the log has been fully initialised and we know were our
702 * space grant counters are, we can initialise the permanent ticket
703 * needed for delayed logging to work.
704 */
705 xlog_cil_init_post_recovery(mp->m_log);
706
1da177e4 707 return 0;
26430752
CH
708
709out_destroy_ail:
710 xfs_trans_ail_destroy(mp);
711out_free_log:
712 xlog_dealloc_log(mp->m_log);
644c3567 713out:
249a8c11 714 return error;
26430752 715}
1da177e4
LT
716
717/*
f661f1e0
DC
718 * Finish the recovery of the file system. This is separate from the
719 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
720 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
721 * here.
1da177e4 722 *
f661f1e0
DC
723 * If we finish recovery successfully, start the background log work. If we are
724 * not doing recovery, then we have a RO filesystem and we don't need to start
725 * it.
1da177e4
LT
726 */
727int
f0b2efad
BF
728xfs_log_mount_finish(
729 struct xfs_mount *mp)
1da177e4 730{
f661f1e0 731 int error = 0;
6f4a1eef 732 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
f1b92bbc 733 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
1da177e4 734
f0b2efad 735 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
bd186aa9 736 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
f0b2efad 737 return 0;
6f4a1eef
ES
738 } else if (readonly) {
739 /* Allow unlinked processing to proceed */
740 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4
LT
741 }
742
8204f8dd
DW
743 /*
744 * During the second phase of log recovery, we need iget and
745 * iput to behave like they do for an active filesystem.
746 * xfs_fs_drop_inode needs to be able to prevent the deletion
747 * of inodes before we're done replaying log items on those
748 * inodes. Turn it off immediately after recovery finishes
749 * so that we don't leak the quota inodes if subsequent mount
750 * activities fail.
799ea9e9
DW
751 *
752 * We let all inodes involved in redo item processing end up on
753 * the LRU instead of being evicted immediately so that if we do
754 * something to an unlinked inode, the irele won't cause
755 * premature truncation and freeing of the inode, which results
756 * in log recovery failure. We have to evict the unreferenced
1751e8a6 757 * lru inodes after clearing SB_ACTIVE because we don't
799ea9e9
DW
758 * otherwise clean up the lru if there's a subsequent failure in
759 * xfs_mountfs, which leads to us leaking the inodes if nothing
760 * else (e.g. quotacheck) references the inodes before the
761 * mount failure occurs.
8204f8dd 762 */
1751e8a6 763 mp->m_super->s_flags |= SB_ACTIVE;
f0b2efad
BF
764 error = xlog_recover_finish(mp->m_log);
765 if (!error)
766 xfs_log_work_queue(mp);
1751e8a6 767 mp->m_super->s_flags &= ~SB_ACTIVE;
799ea9e9 768 evict_inodes(mp->m_super);
f0b2efad 769
f1b92bbc
BF
770 /*
771 * Drain the buffer LRU after log recovery. This is required for v4
772 * filesystems to avoid leaving around buffers with NULL verifier ops,
773 * but we do it unconditionally to make sure we're always in a clean
774 * cache state after mount.
775 *
776 * Don't push in the error case because the AIL may have pending intents
777 * that aren't removed until recovery is cancelled.
778 */
779 if (!error && recovered) {
780 xfs_log_force(mp, XFS_LOG_SYNC);
781 xfs_ail_push_all_sync(mp->m_ail);
782 }
783 xfs_wait_buftarg(mp->m_ddev_targp);
784
6f4a1eef
ES
785 if (readonly)
786 mp->m_flags |= XFS_MOUNT_RDONLY;
787
f0b2efad
BF
788 return error;
789}
790
791/*
792 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
793 * the log.
794 */
a7a9250e 795void
f0b2efad
BF
796xfs_log_mount_cancel(
797 struct xfs_mount *mp)
798{
a7a9250e 799 xlog_recover_cancel(mp->m_log);
f0b2efad 800 xfs_log_unmount(mp);
1da177e4
LT
801}
802
1da177e4
LT
803/*
804 * Final log writes as part of unmount.
805 *
806 * Mark the filesystem clean as unmount happens. Note that during relocation
807 * this routine needs to be executed as part of source-bag while the
808 * deallocation must not be done until source-end.
809 */
810
53235f22
DW
811/* Actually write the unmount record to disk. */
812static void
813xfs_log_write_unmount_record(
814 struct xfs_mount *mp)
815{
816 /* the data section must be 32 bit size aligned */
817 struct xfs_unmount_log_format magic = {
818 .magic = XLOG_UNMOUNT_TYPE,
819 };
820 struct xfs_log_iovec reg = {
821 .i_addr = &magic,
822 .i_len = sizeof(magic),
823 .i_type = XLOG_REG_TYPE_UNMOUNT,
824 };
825 struct xfs_log_vec vec = {
826 .lv_niovecs = 1,
827 .lv_iovecp = &reg,
828 };
829 struct xlog *log = mp->m_log;
830 struct xlog_in_core *iclog;
831 struct xlog_ticket *tic = NULL;
832 xfs_lsn_t lsn;
f467cad9 833 uint flags = XLOG_UNMOUNT_TRANS;
53235f22
DW
834 int error;
835
836 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
837 if (error)
838 goto out_err;
839
f467cad9
DW
840 /*
841 * If we think the summary counters are bad, clear the unmount header
842 * flag in the unmount record so that the summary counters will be
843 * recalculated during log recovery at next mount. Refer to
844 * xlog_check_unmount_rec for more details.
845 */
39353ff6 846 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
f467cad9
DW
847 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
848 xfs_alert(mp, "%s: will fix summary counters at next mount",
849 __func__);
850 flags &= ~XLOG_UNMOUNT_TRANS;
851 }
852
53235f22
DW
853 /* remove inited flag, and account for space used */
854 tic->t_flags = 0;
855 tic->t_curr_res -= sizeof(magic);
f467cad9 856 error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
53235f22
DW
857 /*
858 * At this point, we're umounting anyway, so there's no point in
859 * transitioning log state to IOERROR. Just continue...
860 */
861out_err:
862 if (error)
863 xfs_alert(mp, "%s: unmount record failed", __func__);
864
865 spin_lock(&log->l_icloglock);
866 iclog = log->l_iclog;
867 atomic_inc(&iclog->ic_refcnt);
868 xlog_state_want_sync(log, iclog);
869 spin_unlock(&log->l_icloglock);
870 error = xlog_state_release_iclog(log, iclog);
871
872 spin_lock(&log->l_icloglock);
873 switch (iclog->ic_state) {
874 default:
875 if (!XLOG_FORCED_SHUTDOWN(log)) {
876 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
877 break;
878 }
879 /* fall through */
880 case XLOG_STATE_ACTIVE:
881 case XLOG_STATE_DIRTY:
882 spin_unlock(&log->l_icloglock);
883 break;
884 }
885
886 if (tic) {
887 trace_xfs_log_umount_write(log, tic);
888 xlog_ungrant_log_space(log, tic);
889 xfs_log_ticket_put(tic);
890 }
891}
892
1da177e4
LT
893/*
894 * Unmount record used to have a string "Unmount filesystem--" in the
895 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
896 * We just write the magic number now since that particular field isn't
8e159e72 897 * currently architecture converted and "Unmount" is a bit foo.
1da177e4
LT
898 * As far as I know, there weren't any dependencies on the old behaviour.
899 */
900
0d5a75e9 901static int
1da177e4
LT
902xfs_log_unmount_write(xfs_mount_t *mp)
903{
9a8d2fdb 904 struct xlog *log = mp->m_log;
1da177e4
LT
905 xlog_in_core_t *iclog;
906#ifdef DEBUG
907 xlog_in_core_t *first_iclog;
908#endif
1da177e4 909 int error;
1da177e4 910
1da177e4 911 /*
757a69ef 912 * Don't write out unmount record on norecovery mounts or ro devices.
1da177e4
LT
913 * Or, if we are doing a forced umount (typically because of IO errors).
914 */
757a69ef 915 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
2d15d2c0 916 xfs_readonly_buftarg(log->l_targ)) {
757a69ef 917 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4 918 return 0;
757a69ef 919 }
1da177e4 920
60e5bb78 921 error = xfs_log_force(mp, XFS_LOG_SYNC);
b911ca04 922 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
1da177e4
LT
923
924#ifdef DEBUG
925 first_iclog = iclog = log->l_iclog;
926 do {
927 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
928 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
929 ASSERT(iclog->ic_offset == 0);
930 }
931 iclog = iclog->ic_next;
932 } while (iclog != first_iclog);
933#endif
934 if (! (XLOG_FORCED_SHUTDOWN(log))) {
53235f22 935 xfs_log_write_unmount_record(mp);
1da177e4
LT
936 } else {
937 /*
938 * We're already in forced_shutdown mode, couldn't
939 * even attempt to write out the unmount transaction.
940 *
941 * Go through the motions of sync'ing and releasing
942 * the iclog, even though no I/O will actually happen,
c41564b5 943 * we need to wait for other log I/Os that may already
1da177e4
LT
944 * be in progress. Do this as a separate section of
945 * code so we'll know if we ever get stuck here that
946 * we're in this odd situation of trying to unmount
947 * a file system that went into forced_shutdown as
948 * the result of an unmount..
949 */
b22cd72c 950 spin_lock(&log->l_icloglock);
1da177e4 951 iclog = log->l_iclog;
155cc6b7 952 atomic_inc(&iclog->ic_refcnt);
1da177e4
LT
953
954 xlog_state_want_sync(log, iclog);
39e2defe 955 spin_unlock(&log->l_icloglock);
1bb7d6b5 956 error = xlog_state_release_iclog(log, iclog);
1da177e4 957
b22cd72c 958 spin_lock(&log->l_icloglock);
1da177e4
LT
959
960 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
961 || iclog->ic_state == XLOG_STATE_DIRTY
962 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
963
eb40a875
DC
964 xlog_wait(&iclog->ic_force_wait,
965 &log->l_icloglock);
1da177e4 966 } else {
b22cd72c 967 spin_unlock(&log->l_icloglock);
1da177e4
LT
968 }
969 }
970
1bb7d6b5 971 return error;
1da177e4
LT
972} /* xfs_log_unmount_write */
973
974/*
c75921a7 975 * Empty the log for unmount/freeze.
cf2931db
DC
976 *
977 * To do this, we first need to shut down the background log work so it is not
978 * trying to cover the log as we clean up. We then need to unpin all objects in
979 * the log so we can then flush them out. Once they have completed their IO and
980 * run the callbacks removing themselves from the AIL, we can write the unmount
c75921a7 981 * record.
1da177e4
LT
982 */
983void
c75921a7
DC
984xfs_log_quiesce(
985 struct xfs_mount *mp)
1da177e4 986{
f661f1e0 987 cancel_delayed_work_sync(&mp->m_log->l_work);
cf2931db
DC
988 xfs_log_force(mp, XFS_LOG_SYNC);
989
990 /*
991 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
992 * will push it, xfs_wait_buftarg() will not wait for it. Further,
993 * xfs_buf_iowait() cannot be used because it was pushed with the
994 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
995 * the IO to complete.
996 */
997 xfs_ail_push_all_sync(mp->m_ail);
998 xfs_wait_buftarg(mp->m_ddev_targp);
999 xfs_buf_lock(mp->m_sb_bp);
1000 xfs_buf_unlock(mp->m_sb_bp);
1001
1002 xfs_log_unmount_write(mp);
c75921a7
DC
1003}
1004
1005/*
1006 * Shut down and release the AIL and Log.
1007 *
1008 * During unmount, we need to ensure we flush all the dirty metadata objects
1009 * from the AIL so that the log is empty before we write the unmount record to
1010 * the log. Once this is done, we can tear down the AIL and the log.
1011 */
1012void
1013xfs_log_unmount(
1014 struct xfs_mount *mp)
1015{
1016 xfs_log_quiesce(mp);
cf2931db 1017
249a8c11 1018 xfs_trans_ail_destroy(mp);
baff4e44
BF
1019
1020 xfs_sysfs_del(&mp->m_log->l_kobj);
1021
c41564b5 1022 xlog_dealloc_log(mp->m_log);
1da177e4
LT
1023}
1024
43f5efc5
DC
1025void
1026xfs_log_item_init(
1027 struct xfs_mount *mp,
1028 struct xfs_log_item *item,
1029 int type,
272e42b2 1030 const struct xfs_item_ops *ops)
43f5efc5
DC
1031{
1032 item->li_mountp = mp;
1033 item->li_ailp = mp->m_ail;
1034 item->li_type = type;
1035 item->li_ops = ops;
71e330b5
DC
1036 item->li_lv = NULL;
1037
1038 INIT_LIST_HEAD(&item->li_ail);
1039 INIT_LIST_HEAD(&item->li_cil);
643c8c05 1040 INIT_LIST_HEAD(&item->li_bio_list);
e6631f85 1041 INIT_LIST_HEAD(&item->li_trans);
43f5efc5
DC
1042}
1043
09a423a3
CH
1044/*
1045 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 1046 */
1da177e4 1047void
09a423a3 1048xfs_log_space_wake(
cfb7cdca 1049 struct xfs_mount *mp)
1da177e4 1050{
ad223e60 1051 struct xlog *log = mp->m_log;
cfb7cdca 1052 int free_bytes;
1da177e4 1053
1da177e4
LT
1054 if (XLOG_FORCED_SHUTDOWN(log))
1055 return;
1da177e4 1056
28496968 1057 if (!list_empty_careful(&log->l_write_head.waiters)) {
09a423a3
CH
1058 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1059
28496968
CH
1060 spin_lock(&log->l_write_head.lock);
1061 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 1062 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 1063 spin_unlock(&log->l_write_head.lock);
1da177e4 1064 }
10547941 1065
28496968 1066 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
09a423a3
CH
1067 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1068
28496968
CH
1069 spin_lock(&log->l_reserve_head.lock);
1070 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 1071 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 1072 spin_unlock(&log->l_reserve_head.lock);
1da177e4 1073 }
3f16b985 1074}
1da177e4
LT
1075
1076/*
2c6e24ce
DC
1077 * Determine if we have a transaction that has gone to disk that needs to be
1078 * covered. To begin the transition to the idle state firstly the log needs to
1079 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1080 * we start attempting to cover the log.
b6f8dd49 1081 *
2c6e24ce
DC
1082 * Only if we are then in a state where covering is needed, the caller is
1083 * informed that dummy transactions are required to move the log into the idle
1084 * state.
1085 *
1086 * If there are any items in the AIl or CIL, then we do not want to attempt to
1087 * cover the log as we may be in a situation where there isn't log space
1088 * available to run a dummy transaction and this can lead to deadlocks when the
1089 * tail of the log is pinned by an item that is modified in the CIL. Hence
1090 * there's no point in running a dummy transaction at this point because we
1091 * can't start trying to idle the log until both the CIL and AIL are empty.
1da177e4 1092 */
0d5a75e9 1093static int
1da177e4
LT
1094xfs_log_need_covered(xfs_mount_t *mp)
1095{
9a8d2fdb 1096 struct xlog *log = mp->m_log;
2c6e24ce 1097 int needed = 0;
1da177e4 1098
91ee575f 1099 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1da177e4
LT
1100 return 0;
1101
2c6e24ce
DC
1102 if (!xlog_cil_empty(log))
1103 return 0;
1104
b22cd72c 1105 spin_lock(&log->l_icloglock);
b6f8dd49
DC
1106 switch (log->l_covered_state) {
1107 case XLOG_STATE_COVER_DONE:
1108 case XLOG_STATE_COVER_DONE2:
1109 case XLOG_STATE_COVER_IDLE:
1110 break;
1111 case XLOG_STATE_COVER_NEED:
1112 case XLOG_STATE_COVER_NEED2:
2c6e24ce
DC
1113 if (xfs_ail_min_lsn(log->l_ailp))
1114 break;
1115 if (!xlog_iclogs_empty(log))
1116 break;
1117
1118 needed = 1;
1119 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1120 log->l_covered_state = XLOG_STATE_COVER_DONE;
1121 else
1122 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1123 break;
b6f8dd49 1124 default:
1da177e4 1125 needed = 1;
b6f8dd49 1126 break;
1da177e4 1127 }
b22cd72c 1128 spin_unlock(&log->l_icloglock);
014c2544 1129 return needed;
1da177e4
LT
1130}
1131
09a423a3 1132/*
1da177e4
LT
1133 * We may be holding the log iclog lock upon entering this routine.
1134 */
1135xfs_lsn_t
1c304625 1136xlog_assign_tail_lsn_locked(
1c3cb9ec 1137 struct xfs_mount *mp)
1da177e4 1138{
ad223e60 1139 struct xlog *log = mp->m_log;
1c304625
CH
1140 struct xfs_log_item *lip;
1141 xfs_lsn_t tail_lsn;
1142
57e80956 1143 assert_spin_locked(&mp->m_ail->ail_lock);
1da177e4 1144
09a423a3
CH
1145 /*
1146 * To make sure we always have a valid LSN for the log tail we keep
1147 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 1148 * and use that when the AIL was empty.
09a423a3 1149 */
1c304625
CH
1150 lip = xfs_ail_min(mp->m_ail);
1151 if (lip)
1152 tail_lsn = lip->li_lsn;
1153 else
84f3c683 1154 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
750b9c90 1155 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1c3cb9ec 1156 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 1157 return tail_lsn;
1c3cb9ec 1158}
1da177e4 1159
1c304625
CH
1160xfs_lsn_t
1161xlog_assign_tail_lsn(
1162 struct xfs_mount *mp)
1163{
1164 xfs_lsn_t tail_lsn;
1165
57e80956 1166 spin_lock(&mp->m_ail->ail_lock);
1c304625 1167 tail_lsn = xlog_assign_tail_lsn_locked(mp);
57e80956 1168 spin_unlock(&mp->m_ail->ail_lock);
1c304625
CH
1169
1170 return tail_lsn;
1171}
1172
1da177e4
LT
1173/*
1174 * Return the space in the log between the tail and the head. The head
1175 * is passed in the cycle/bytes formal parms. In the special case where
1176 * the reserve head has wrapped passed the tail, this calculation is no
1177 * longer valid. In this case, just return 0 which means there is no space
1178 * in the log. This works for all places where this function is called
1179 * with the reserve head. Of course, if the write head were to ever
1180 * wrap the tail, we should blow up. Rather than catch this case here,
1181 * we depend on other ASSERTions in other parts of the code. XXXmiken
1182 *
1183 * This code also handles the case where the reservation head is behind
1184 * the tail. The details of this case are described below, but the end
1185 * result is that we return the size of the log as the amount of space left.
1186 */
a8272ce0 1187STATIC int
a69ed03c 1188xlog_space_left(
ad223e60 1189 struct xlog *log,
c8a09ff8 1190 atomic64_t *head)
1da177e4 1191{
a69ed03c
DC
1192 int free_bytes;
1193 int tail_bytes;
1194 int tail_cycle;
1195 int head_cycle;
1196 int head_bytes;
1da177e4 1197
a69ed03c 1198 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1199 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1200 tail_bytes = BBTOB(tail_bytes);
a69ed03c
DC
1201 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1202 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1203 else if (tail_cycle + 1 < head_cycle)
1da177e4 1204 return 0;
a69ed03c
DC
1205 else if (tail_cycle < head_cycle) {
1206 ASSERT(tail_cycle == (head_cycle - 1));
1207 free_bytes = tail_bytes - head_bytes;
1da177e4
LT
1208 } else {
1209 /*
1210 * The reservation head is behind the tail.
1211 * In this case we just want to return the size of the
1212 * log as the amount of space left.
1213 */
f41febd2 1214 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
a0fa2b67 1215 xfs_alert(log->l_mp,
f41febd2
JP
1216 " tail_cycle = %d, tail_bytes = %d",
1217 tail_cycle, tail_bytes);
1218 xfs_alert(log->l_mp,
1219 " GH cycle = %d, GH bytes = %d",
1220 head_cycle, head_bytes);
1da177e4
LT
1221 ASSERT(0);
1222 free_bytes = log->l_logsize;
1223 }
1224 return free_bytes;
a69ed03c 1225}
1da177e4
LT
1226
1227
0d5a75e9 1228static void
79b54d9b
CH
1229xlog_ioend_work(
1230 struct work_struct *work)
1da177e4 1231{
79b54d9b
CH
1232 struct xlog_in_core *iclog =
1233 container_of(work, struct xlog_in_core, ic_end_io_work);
1234 struct xlog *log = iclog->ic_log;
d15cbf2f 1235 bool aborted = false;
79b54d9b 1236 int error;
1da177e4 1237
79b54d9b 1238 error = blk_status_to_errno(iclog->ic_bio.bi_status);
366fc4b8
CH
1239#ifdef DEBUG
1240 /* treat writes with injected CRC errors as failed */
1241 if (iclog->ic_fail_crc)
79b54d9b 1242 error = -EIO;
366fc4b8
CH
1243#endif
1244
1da177e4 1245 /*
366fc4b8 1246 * Race to shutdown the filesystem if we see an error.
1da177e4 1247 */
79b54d9b
CH
1248 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1249 xfs_alert(log->l_mp, "log I/O error %d", error);
1250 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4
LT
1251 /*
1252 * This flag will be propagated to the trans-committed
1253 * callback routines to let them know that the log-commit
1254 * didn't succeed.
1255 */
d15cbf2f 1256 aborted = true;
1da177e4 1257 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
d15cbf2f 1258 aborted = true;
1da177e4 1259 }
3db296f3 1260
1da177e4 1261 xlog_state_done_syncing(iclog, aborted);
79b54d9b 1262 bio_uninit(&iclog->ic_bio);
9c23eccc 1263
3db296f3 1264 /*
79b54d9b
CH
1265 * Drop the lock to signal that we are done. Nothing references the
1266 * iclog after this, so an unmount waiting on this lock can now tear it
1267 * down safely. As such, it is unsafe to reference the iclog after the
1268 * unlock as we could race with it being freed.
3db296f3 1269 */
79b54d9b 1270 up(&iclog->ic_sema);
c3f8fc73 1271}
1da177e4 1272
1da177e4
LT
1273/*
1274 * Return size of each in-core log record buffer.
1275 *
9da096fd 1276 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1277 *
1278 * If the filesystem blocksize is too large, we may need to choose a
1279 * larger size since the directory code currently logs entire blocks.
1280 */
1da177e4 1281STATIC void
9a8d2fdb
MT
1282xlog_get_iclog_buffer_size(
1283 struct xfs_mount *mp,
1284 struct xlog *log)
1da177e4 1285{
1cb51258 1286 if (mp->m_logbufs <= 0)
4f62282a
CH
1287 mp->m_logbufs = XLOG_MAX_ICLOGS;
1288 if (mp->m_logbsize <= 0)
1289 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1290
1291 log->l_iclog_bufs = mp->m_logbufs;
1292 log->l_iclog_size = mp->m_logbsize;
1da177e4
LT
1293
1294 /*
4f62282a 1295 * # headers = size / 32k - one header holds cycles from 32k of data.
1da177e4 1296 */
4f62282a
CH
1297 log->l_iclog_heads =
1298 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1299 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1300}
1da177e4 1301
f661f1e0
DC
1302void
1303xfs_log_work_queue(
1304 struct xfs_mount *mp)
1305{
696a5620 1306 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
f661f1e0
DC
1307 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1308}
1309
1310/*
1311 * Every sync period we need to unpin all items in the AIL and push them to
1312 * disk. If there is nothing dirty, then we might need to cover the log to
1313 * indicate that the filesystem is idle.
1314 */
0d5a75e9 1315static void
f661f1e0
DC
1316xfs_log_worker(
1317 struct work_struct *work)
1318{
1319 struct xlog *log = container_of(to_delayed_work(work),
1320 struct xlog, l_work);
1321 struct xfs_mount *mp = log->l_mp;
1322
1323 /* dgc: errors ignored - not fatal and nowhere to report them */
61e63ecb
DC
1324 if (xfs_log_need_covered(mp)) {
1325 /*
1326 * Dump a transaction into the log that contains no real change.
1327 * This is needed to stamp the current tail LSN into the log
1328 * during the covering operation.
1329 *
1330 * We cannot use an inode here for this - that will push dirty
1331 * state back up into the VFS and then periodic inode flushing
1332 * will prevent log covering from making progress. Hence we
1333 * synchronously log the superblock instead to ensure the
1334 * superblock is immediately unpinned and can be written back.
1335 */
1336 xfs_sync_sb(mp, true);
1337 } else
f661f1e0
DC
1338 xfs_log_force(mp, 0);
1339
1340 /* start pushing all the metadata that is currently dirty */
1341 xfs_ail_push_all(mp->m_ail);
1342
1343 /* queue us up again */
1344 xfs_log_work_queue(mp);
1345}
1346
1da177e4
LT
1347/*
1348 * This routine initializes some of the log structure for a given mount point.
1349 * Its primary purpose is to fill in enough, so recovery can occur. However,
1350 * some other stuff may be filled in too.
1351 */
9a8d2fdb
MT
1352STATIC struct xlog *
1353xlog_alloc_log(
1354 struct xfs_mount *mp,
1355 struct xfs_buftarg *log_target,
1356 xfs_daddr_t blk_offset,
1357 int num_bblks)
1da177e4 1358{
9a8d2fdb 1359 struct xlog *log;
1da177e4
LT
1360 xlog_rec_header_t *head;
1361 xlog_in_core_t **iclogp;
1362 xlog_in_core_t *iclog, *prev_iclog=NULL;
1da177e4 1363 int i;
2451337d 1364 int error = -ENOMEM;
69ce58f0 1365 uint log2_size = 0;
1da177e4 1366
9a8d2fdb 1367 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1368 if (!log) {
a0fa2b67 1369 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1370 goto out;
1371 }
1da177e4
LT
1372
1373 log->l_mp = mp;
1374 log->l_targ = log_target;
1375 log->l_logsize = BBTOB(num_bblks);
1376 log->l_logBBstart = blk_offset;
1377 log->l_logBBsize = num_bblks;
1378 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1379 log->l_flags |= XLOG_ACTIVE_RECOVERY;
f661f1e0 1380 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1381
1382 log->l_prev_block = -1;
1da177e4 1383 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1384 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1385 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1386 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8
CH
1387
1388 xlog_grant_head_init(&log->l_reserve_head);
1389 xlog_grant_head_init(&log->l_write_head);
1da177e4 1390
2451337d 1391 error = -EFSCORRUPTED;
62118709 1392 if (xfs_sb_version_hassector(&mp->m_sb)) {
69ce58f0
AE
1393 log2_size = mp->m_sb.sb_logsectlog;
1394 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1395 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1396 log2_size, BBSHIFT);
a6cb767e
DC
1397 goto out_free_log;
1398 }
1399
69ce58f0
AE
1400 log2_size -= BBSHIFT;
1401 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1402 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1403 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1404 goto out_free_log;
1405 }
69ce58f0
AE
1406
1407 /* for larger sector sizes, must have v2 or external log */
1408 if (log2_size && log->l_logBBstart > 0 &&
1409 !xfs_sb_version_haslogv2(&mp->m_sb)) {
a0fa2b67
DC
1410 xfs_warn(mp,
1411 "log sector size (0x%x) invalid for configuration.",
1412 log2_size);
a6cb767e
DC
1413 goto out_free_log;
1414 }
1da177e4 1415 }
69ce58f0 1416 log->l_sectBBsize = 1 << log2_size;
1da177e4
LT
1417
1418 xlog_get_iclog_buffer_size(mp, log);
1419
007c61c6 1420 spin_lock_init(&log->l_icloglock);
eb40a875 1421 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1422
1da177e4
LT
1423 iclogp = &log->l_iclog;
1424 /*
1425 * The amount of memory to allocate for the iclog structure is
1426 * rather funky due to the way the structure is defined. It is
1427 * done this way so that we can use different sizes for machines
1428 * with different amounts of memory. See the definition of
1429 * xlog_in_core_t in xfs_log_priv.h for details.
1430 */
1da177e4 1431 ASSERT(log->l_iclog_size >= 4096);
79b54d9b 1432 for (i = 0; i < log->l_iclog_bufs; i++) {
f8f9ee47 1433 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
89b171ac
CH
1434 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1435 sizeof(struct bio_vec);
79b54d9b
CH
1436
1437 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1438 if (!iclog)
644c3567
DC
1439 goto out_free_iclog;
1440
79b54d9b 1441 *iclogp = iclog;
1da177e4
LT
1442 iclog->ic_prev = prev_iclog;
1443 prev_iclog = iclog;
1fa40b01 1444
f8f9ee47 1445 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
3219e8cf 1446 KM_MAYFAIL | KM_ZERO);
79b54d9b 1447 if (!iclog->ic_data)
644c3567 1448 goto out_free_iclog;
4679b2d3 1449#ifdef DEBUG
5809d5e0 1450 log->l_iclog_bak[i] = &iclog->ic_header;
4679b2d3 1451#endif
1da177e4
LT
1452 head = &iclog->ic_header;
1453 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1454 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1455 head->h_version = cpu_to_be32(
62118709 1456 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d 1457 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1458 /* new fields */
b53e675d 1459 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1460 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1461
79b54d9b 1462 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1da177e4
LT
1463 iclog->ic_state = XLOG_STATE_ACTIVE;
1464 iclog->ic_log = log;
114d23aa
DC
1465 atomic_set(&iclog->ic_refcnt, 0);
1466 spin_lock_init(&iclog->ic_callback_lock);
89ae379d 1467 INIT_LIST_HEAD(&iclog->ic_callbacks);
b28708d6 1468 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1469
eb40a875
DC
1470 init_waitqueue_head(&iclog->ic_force_wait);
1471 init_waitqueue_head(&iclog->ic_write_wait);
79b54d9b
CH
1472 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1473 sema_init(&iclog->ic_sema, 1);
1da177e4
LT
1474
1475 iclogp = &iclog->ic_next;
1476 }
1477 *iclogp = log->l_iclog; /* complete ring */
1478 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1479
1058d0f5
CH
1480 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1481 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1482 mp->m_fsname);
1483 if (!log->l_ioend_workqueue)
1484 goto out_free_iclog;
1485
71e330b5
DC
1486 error = xlog_cil_init(log);
1487 if (error)
1058d0f5 1488 goto out_destroy_workqueue;
1da177e4 1489 return log;
644c3567 1490
1058d0f5
CH
1491out_destroy_workqueue:
1492 destroy_workqueue(log->l_ioend_workqueue);
644c3567
DC
1493out_free_iclog:
1494 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1495 prev_iclog = iclog->ic_next;
79b54d9b 1496 kmem_free(iclog->ic_data);
644c3567
DC
1497 kmem_free(iclog);
1498 }
644c3567
DC
1499out_free_log:
1500 kmem_free(log);
a6cb767e 1501out:
2451337d 1502 return ERR_PTR(error);
1da177e4
LT
1503} /* xlog_alloc_log */
1504
1505
1506/*
1507 * Write out the commit record of a transaction associated with the given
1508 * ticket. Return the lsn of the commit record.
1509 */
1510STATIC int
55b66332 1511xlog_commit_record(
ad223e60 1512 struct xlog *log,
55b66332
DC
1513 struct xlog_ticket *ticket,
1514 struct xlog_in_core **iclog,
1515 xfs_lsn_t *commitlsnp)
1da177e4 1516{
55b66332
DC
1517 struct xfs_mount *mp = log->l_mp;
1518 int error;
1519 struct xfs_log_iovec reg = {
1520 .i_addr = NULL,
1521 .i_len = 0,
1522 .i_type = XLOG_REG_TYPE_COMMIT,
1523 };
1524 struct xfs_log_vec vec = {
1525 .lv_niovecs = 1,
1526 .lv_iovecp = &reg,
1527 };
1da177e4
LT
1528
1529 ASSERT_ALWAYS(iclog);
55b66332
DC
1530 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1531 XLOG_COMMIT_TRANS);
1532 if (error)
7d04a335 1533 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 1534 return error;
55b66332 1535}
1da177e4
LT
1536
1537/*
1538 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1539 * log space. This code pushes on the lsn which would supposedly free up
1540 * the 25% which we want to leave free. We may need to adopt a policy which
1541 * pushes on an lsn which is further along in the log once we reach the high
1542 * water mark. In this manner, we would be creating a low water mark.
1543 */
a8272ce0 1544STATIC void
2ced19cb 1545xlog_grant_push_ail(
ad223e60 1546 struct xlog *log,
2ced19cb 1547 int need_bytes)
1da177e4 1548{
2ced19cb 1549 xfs_lsn_t threshold_lsn = 0;
84f3c683 1550 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1551 int free_blocks;
1552 int free_bytes;
1553 int threshold_block;
1554 int threshold_cycle;
1555 int free_threshold;
1556
1557 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1558
28496968 1559 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1560 free_blocks = BTOBBT(free_bytes);
1561
1562 /*
1563 * Set the threshold for the minimum number of free blocks in the
1564 * log to the maximum of what the caller needs, one quarter of the
1565 * log, and 256 blocks.
1566 */
1567 free_threshold = BTOBB(need_bytes);
9bb54cb5
DC
1568 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1569 free_threshold = max(free_threshold, 256);
2ced19cb
DC
1570 if (free_blocks >= free_threshold)
1571 return;
1572
1c3cb9ec
DC
1573 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1574 &threshold_block);
1575 threshold_block += free_threshold;
1da177e4 1576 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1577 threshold_block -= log->l_logBBsize;
1578 threshold_cycle += 1;
1da177e4 1579 }
2ced19cb
DC
1580 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1581 threshold_block);
1582 /*
1583 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1584 * log record known to be on disk. Use a snapshot of the last sync lsn
1585 * so that it doesn't change between the compare and the set.
1da177e4 1586 */
84f3c683
DC
1587 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1588 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1589 threshold_lsn = last_sync_lsn;
2ced19cb
DC
1590
1591 /*
1592 * Get the transaction layer to kick the dirty buffers out to
1593 * disk asynchronously. No point in trying to do this if
1594 * the filesystem is shutting down.
1595 */
1596 if (!XLOG_FORCED_SHUTDOWN(log))
fd074841 1597 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1598}
1da177e4 1599
0e446be4
CH
1600/*
1601 * Stamp cycle number in every block
1602 */
1603STATIC void
1604xlog_pack_data(
1605 struct xlog *log,
1606 struct xlog_in_core *iclog,
1607 int roundoff)
1608{
1609 int i, j, k;
1610 int size = iclog->ic_offset + roundoff;
1611 __be32 cycle_lsn;
b2a922cd 1612 char *dp;
0e446be4
CH
1613
1614 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1615
1616 dp = iclog->ic_datap;
1617 for (i = 0; i < BTOBB(size); i++) {
1618 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1619 break;
1620 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1621 *(__be32 *)dp = cycle_lsn;
1622 dp += BBSIZE;
1623 }
1624
1625 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1626 xlog_in_core_2_t *xhdr = iclog->ic_data;
1627
1628 for ( ; i < BTOBB(size); i++) {
1629 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1630 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1631 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1632 *(__be32 *)dp = cycle_lsn;
1633 dp += BBSIZE;
1634 }
1635
1636 for (i = 1; i < log->l_iclog_heads; i++)
1637 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1638 }
1639}
1640
1641/*
1642 * Calculate the checksum for a log buffer.
1643 *
1644 * This is a little more complicated than it should be because the various
1645 * headers and the actual data are non-contiguous.
1646 */
f9668a09 1647__le32
0e446be4
CH
1648xlog_cksum(
1649 struct xlog *log,
1650 struct xlog_rec_header *rhead,
1651 char *dp,
1652 int size)
1653{
c8ce540d 1654 uint32_t crc;
0e446be4
CH
1655
1656 /* first generate the crc for the record header ... */
cae028df 1657 crc = xfs_start_cksum_update((char *)rhead,
0e446be4
CH
1658 sizeof(struct xlog_rec_header),
1659 offsetof(struct xlog_rec_header, h_crc));
1660
1661 /* ... then for additional cycle data for v2 logs ... */
1662 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1663 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1664 int i;
a3f20014 1665 int xheads;
0e446be4 1666
a3f20014
BF
1667 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1668 if (size % XLOG_HEADER_CYCLE_SIZE)
1669 xheads++;
0e446be4 1670
a3f20014 1671 for (i = 1; i < xheads; i++) {
0e446be4
CH
1672 crc = crc32c(crc, &xhdr[i].hic_xheader,
1673 sizeof(struct xlog_rec_ext_header));
1674 }
1675 }
1676
1677 /* ... and finally for the payload */
1678 crc = crc32c(crc, dp, size);
1679
1680 return xfs_end_cksum(crc);
1681}
1682
79b54d9b
CH
1683static void
1684xlog_bio_end_io(
1685 struct bio *bio)
1686{
1687 struct xlog_in_core *iclog = bio->bi_private;
1688
1058d0f5 1689 queue_work(iclog->ic_log->l_ioend_workqueue,
79b54d9b
CH
1690 &iclog->ic_end_io_work);
1691}
1692
1693static void
1694xlog_map_iclog_data(
1695 struct bio *bio,
1696 void *data,
1697 size_t count)
1698{
1699 do {
1700 struct page *page = kmem_to_page(data);
1701 unsigned int off = offset_in_page(data);
1702 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1703
1704 WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1705
1706 data += len;
1707 count -= len;
1708 } while (count);
1709}
1710
94860a30
CH
1711STATIC void
1712xlog_write_iclog(
1713 struct xlog *log,
1714 struct xlog_in_core *iclog,
94860a30 1715 uint64_t bno,
79b54d9b 1716 unsigned int count,
94860a30 1717 bool need_flush)
873ff550 1718{
94860a30 1719 ASSERT(bno < log->l_logBBsize);
94860a30
CH
1720
1721 /*
1722 * We lock the iclogbufs here so that we can serialise against I/O
1723 * completion during unmount. We might be processing a shutdown
1724 * triggered during unmount, and that can occur asynchronously to the
1725 * unmount thread, and hence we need to ensure that completes before
1726 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1727 * across the log IO to archieve that.
1728 */
79b54d9b 1729 down(&iclog->ic_sema);
94860a30 1730 if (unlikely(iclog->ic_state & XLOG_STATE_IOERROR)) {
873ff550
CH
1731 /*
1732 * It would seem logical to return EIO here, but we rely on
1733 * the log state machine to propagate I/O errors instead of
79b54d9b
CH
1734 * doing it here. We kick of the state machine and unlock
1735 * the buffer manually, the code needs to be kept in sync
1736 * with the I/O completion path.
873ff550 1737 */
cd95cb96 1738 xlog_state_done_syncing(iclog, true);
79b54d9b 1739 up(&iclog->ic_sema);
94860a30 1740 return;
873ff550
CH
1741 }
1742
79b54d9b
CH
1743 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1744 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1745 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1746 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1747 iclog->ic_bio.bi_private = iclog;
1748 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1749 if (need_flush)
1750 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1751
2c68a1df 1752 xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count);
79b54d9b 1753 if (is_vmalloc_addr(iclog->ic_data))
2c68a1df 1754 flush_kernel_vmap_range(iclog->ic_data, count);
79b54d9b
CH
1755
1756 /*
1757 * If this log buffer would straddle the end of the log we will have
1758 * to split it up into two bios, so that we can continue at the start.
1759 */
1760 if (bno + BTOBB(count) > log->l_logBBsize) {
1761 struct bio *split;
1762
1763 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1764 GFP_NOIO, &fs_bio_set);
1765 bio_chain(split, &iclog->ic_bio);
1766 submit_bio(split);
1767
1768 /* restart at logical offset zero for the remainder */
1769 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1770 }
1771
1772 submit_bio(&iclog->ic_bio);
873ff550 1773}
1da177e4 1774
56933848
CH
1775/*
1776 * We need to bump cycle number for the part of the iclog that is
1777 * written to the start of the log. Watch out for the header magic
1778 * number case, though.
1779 */
79b54d9b 1780static void
56933848
CH
1781xlog_split_iclog(
1782 struct xlog *log,
1783 void *data,
1784 uint64_t bno,
1785 unsigned int count)
1786{
1787 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1788 unsigned int i;
1789
1790 for (i = split_offset; i < count; i += BBSIZE) {
1791 uint32_t cycle = get_unaligned_be32(data + i);
1792
1793 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1794 cycle++;
1795 put_unaligned_be32(cycle, data + i);
1796 }
56933848
CH
1797}
1798
db0a6faf
CH
1799static int
1800xlog_calc_iclog_size(
1801 struct xlog *log,
1802 struct xlog_in_core *iclog,
1803 uint32_t *roundoff)
1804{
1805 uint32_t count_init, count;
1806 bool use_lsunit;
1807
1808 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1809 log->l_mp->m_sb.sb_logsunit > 1;
1810
1811 /* Add for LR header */
1812 count_init = log->l_iclog_hsize + iclog->ic_offset;
1813
1814 /* Round out the log write size */
1815 if (use_lsunit) {
1816 /* we have a v2 stripe unit to use */
1817 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1818 } else {
1819 count = BBTOB(BTOBB(count_init));
1820 }
1821
1822 ASSERT(count >= count_init);
1823 *roundoff = count - count_init;
1824
1825 if (use_lsunit)
1826 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1827 else
1828 ASSERT(*roundoff < BBTOB(1));
1829 return count;
1830}
1831
1da177e4
LT
1832/*
1833 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1834 * fashion. Previously, we should have moved the current iclog
1835 * ptr in the log to point to the next available iclog. This allows further
1836 * write to continue while this code syncs out an iclog ready to go.
1837 * Before an in-core log can be written out, the data section must be scanned
1838 * to save away the 1st word of each BBSIZE block into the header. We replace
1839 * it with the current cycle count. Each BBSIZE block is tagged with the
1840 * cycle count because there in an implicit assumption that drives will
1841 * guarantee that entire 512 byte blocks get written at once. In other words,
1842 * we can't have part of a 512 byte block written and part not written. By
1843 * tagging each block, we will know which blocks are valid when recovering
1844 * after an unclean shutdown.
1845 *
1846 * This routine is single threaded on the iclog. No other thread can be in
1847 * this routine with the same iclog. Changing contents of iclog can there-
1848 * fore be done without grabbing the state machine lock. Updating the global
1849 * log will require grabbing the lock though.
1850 *
1851 * The entire log manager uses a logical block numbering scheme. Only
94860a30
CH
1852 * xlog_write_iclog knows about the fact that the log may not start with
1853 * block zero on a given device.
1da177e4 1854 */
94860a30 1855STATIC void
9a8d2fdb
MT
1856xlog_sync(
1857 struct xlog *log,
1858 struct xlog_in_core *iclog)
1da177e4 1859{
db0a6faf
CH
1860 unsigned int count; /* byte count of bwrite */
1861 unsigned int roundoff; /* roundoff to BB or stripe */
1862 uint64_t bno;
db0a6faf 1863 unsigned int size;
79b54d9b 1864 bool need_flush = true, split = false;
1da177e4 1865
155cc6b7 1866 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4 1867
db0a6faf 1868 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1da177e4
LT
1869
1870 /* move grant heads by roundoff in sync */
28496968
CH
1871 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1872 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
1873
1874 /* put cycle number in every block */
1875 xlog_pack_data(log, iclog, roundoff);
1876
1877 /* real byte length */
0e446be4 1878 size = iclog->ic_offset;
db0a6faf 1879 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
0e446be4
CH
1880 size += roundoff;
1881 iclog->ic_header.h_len = cpu_to_be32(size);
1da177e4 1882
9b0489c1 1883 XFS_STATS_INC(log->l_mp, xs_log_writes);
ff6d6af2 1884 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1da177e4 1885
94860a30
CH
1886 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1887
1da177e4 1888 /* Do we need to split this write into 2 parts? */
79b54d9b
CH
1889 if (bno + BTOBB(count) > log->l_logBBsize) {
1890 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1891 split = true;
1892 }
0e446be4
CH
1893
1894 /* calculcate the checksum */
1895 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1896 iclog->ic_datap, size);
609adfc2
BF
1897 /*
1898 * Intentionally corrupt the log record CRC based on the error injection
1899 * frequency, if defined. This facilitates testing log recovery in the
1900 * event of torn writes. Hence, set the IOABORT state to abort the log
1901 * write on I/O completion and shutdown the fs. The subsequent mount
1902 * detects the bad CRC and attempts to recover.
1903 */
366fc4b8 1904#ifdef DEBUG
3e88a007 1905 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
e2a64192 1906 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
366fc4b8 1907 iclog->ic_fail_crc = true;
609adfc2
BF
1908 xfs_warn(log->l_mp,
1909 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1910 be64_to_cpu(iclog->ic_header.h_lsn));
1911 }
366fc4b8 1912#endif
0e446be4 1913
2291dab2
DC
1914 /*
1915 * Flush the data device before flushing the log to make sure all meta
1916 * data written back from the AIL actually made it to disk before
1917 * stamping the new log tail LSN into the log buffer. For an external
1918 * log we need to issue the flush explicitly, and unfortunately
1919 * synchronously here; for an internal log we can simply use the block
1920 * layer state machine for preflushes.
1921 */
2d15d2c0 1922 if (log->l_targ != log->l_mp->m_ddev_targp || split) {
2291dab2 1923 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
94860a30
CH
1924 need_flush = false;
1925 }
1da177e4 1926
abca1f33 1927 xlog_verify_iclog(log, iclog, count);
79b54d9b 1928 xlog_write_iclog(log, iclog, bno, count, need_flush);
94860a30 1929}
1da177e4 1930
1da177e4 1931/*
c41564b5 1932 * Deallocate a log structure
1da177e4 1933 */
a8272ce0 1934STATIC void
9a8d2fdb
MT
1935xlog_dealloc_log(
1936 struct xlog *log)
1da177e4
LT
1937{
1938 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
1939 int i;
1940
71e330b5
DC
1941 xlog_cil_destroy(log);
1942
44396476 1943 /*
9c23eccc
DC
1944 * Cycle all the iclogbuf locks to make sure all log IO completion
1945 * is done before we tear down these buffers.
1946 */
1947 iclog = log->l_iclog;
1948 for (i = 0; i < log->l_iclog_bufs; i++) {
79b54d9b
CH
1949 down(&iclog->ic_sema);
1950 up(&iclog->ic_sema);
9c23eccc
DC
1951 iclog = iclog->ic_next;
1952 }
1953
1da177e4 1954 iclog = log->l_iclog;
9c23eccc 1955 for (i = 0; i < log->l_iclog_bufs; i++) {
1da177e4 1956 next_iclog = iclog->ic_next;
79b54d9b 1957 kmem_free(iclog->ic_data);
f0e2d93c 1958 kmem_free(iclog);
1da177e4
LT
1959 iclog = next_iclog;
1960 }
1da177e4 1961
1da177e4 1962 log->l_mp->m_log = NULL;
1058d0f5 1963 destroy_workqueue(log->l_ioend_workqueue);
f0e2d93c 1964 kmem_free(log);
c41564b5 1965} /* xlog_dealloc_log */
1da177e4
LT
1966
1967/*
1968 * Update counters atomically now that memcpy is done.
1969 */
1da177e4 1970static inline void
9a8d2fdb
MT
1971xlog_state_finish_copy(
1972 struct xlog *log,
1973 struct xlog_in_core *iclog,
1974 int record_cnt,
1975 int copy_bytes)
1da177e4 1976{
390aab0a 1977 lockdep_assert_held(&log->l_icloglock);
1da177e4 1978
413d57c9 1979 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4 1980 iclog->ic_offset += copy_bytes;
390aab0a 1981}
1da177e4 1982
7e9c6396
TS
1983/*
1984 * print out info relating to regions written which consume
1985 * the reservation
1986 */
71e330b5
DC
1987void
1988xlog_print_tic_res(
1989 struct xfs_mount *mp,
1990 struct xlog_ticket *ticket)
7e9c6396
TS
1991{
1992 uint i;
1993 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1994
1995 /* match with XLOG_REG_TYPE_* in xfs_log.h */
5110cd82 1996#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
d31d7185 1997 static char *res_type_str[] = {
5110cd82
DW
1998 REG_TYPE_STR(BFORMAT, "bformat"),
1999 REG_TYPE_STR(BCHUNK, "bchunk"),
2000 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2001 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2002 REG_TYPE_STR(IFORMAT, "iformat"),
2003 REG_TYPE_STR(ICORE, "icore"),
2004 REG_TYPE_STR(IEXT, "iext"),
2005 REG_TYPE_STR(IBROOT, "ibroot"),
2006 REG_TYPE_STR(ILOCAL, "ilocal"),
2007 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2008 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2009 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2010 REG_TYPE_STR(QFORMAT, "qformat"),
2011 REG_TYPE_STR(DQUOT, "dquot"),
2012 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2013 REG_TYPE_STR(LRHEADER, "LR header"),
2014 REG_TYPE_STR(UNMOUNT, "unmount"),
2015 REG_TYPE_STR(COMMIT, "commit"),
2016 REG_TYPE_STR(TRANSHDR, "trans header"),
d31d7185
DW
2017 REG_TYPE_STR(ICREATE, "inode create"),
2018 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2019 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2020 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2021 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2022 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2023 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
7e9c6396 2024 };
d31d7185 2025 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
5110cd82 2026#undef REG_TYPE_STR
7e9c6396 2027
7d2d5653 2028 xfs_warn(mp, "ticket reservation summary:");
f41febd2
JP
2029 xfs_warn(mp, " unit res = %d bytes",
2030 ticket->t_unit_res);
2031 xfs_warn(mp, " current res = %d bytes",
2032 ticket->t_curr_res);
2033 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2034 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2035 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2036 ticket->t_res_num_ophdrs, ophdr_spc);
2037 xfs_warn(mp, " ophdr + reg = %u bytes",
2038 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2039 xfs_warn(mp, " num regions = %u",
2040 ticket->t_res_num);
7e9c6396
TS
2041
2042 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67 2043 uint r_type = ticket->t_res_arr[i].r_type;
08e96e1a 2044 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
7e9c6396 2045 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
5110cd82 2046 "bad-rtype" : res_type_str[r_type]),
7e9c6396
TS
2047 ticket->t_res_arr[i].r_len);
2048 }
2049}
7e9c6396 2050
d4ca1d55
BF
2051/*
2052 * Print a summary of the transaction.
2053 */
2054void
2055xlog_print_trans(
e6631f85 2056 struct xfs_trans *tp)
d4ca1d55 2057{
e6631f85
DC
2058 struct xfs_mount *mp = tp->t_mountp;
2059 struct xfs_log_item *lip;
d4ca1d55
BF
2060
2061 /* dump core transaction and ticket info */
2062 xfs_warn(mp, "transaction summary:");
2c8f6265
BF
2063 xfs_warn(mp, " log res = %d", tp->t_log_res);
2064 xfs_warn(mp, " log count = %d", tp->t_log_count);
2065 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
d4ca1d55
BF
2066
2067 xlog_print_tic_res(mp, tp->t_ticket);
2068
2069 /* dump each log item */
e6631f85 2070 list_for_each_entry(lip, &tp->t_items, li_trans) {
d4ca1d55
BF
2071 struct xfs_log_vec *lv = lip->li_lv;
2072 struct xfs_log_iovec *vec;
2073 int i;
2074
2075 xfs_warn(mp, "log item: ");
2076 xfs_warn(mp, " type = 0x%x", lip->li_type);
22525c17 2077 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
d4ca1d55
BF
2078 if (!lv)
2079 continue;
2080 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2081 xfs_warn(mp, " size = %d", lv->lv_size);
2082 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2083 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2084
2085 /* dump each iovec for the log item */
2086 vec = lv->lv_iovecp;
2087 for (i = 0; i < lv->lv_niovecs; i++) {
2088 int dumplen = min(vec->i_len, 32);
2089
2090 xfs_warn(mp, " iovec[%d]", i);
2091 xfs_warn(mp, " type = 0x%x", vec->i_type);
2092 xfs_warn(mp, " len = %d", vec->i_len);
2093 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
244e3dea 2094 xfs_hex_dump(vec->i_addr, dumplen);
d4ca1d55
BF
2095
2096 vec++;
2097 }
2098 }
2099}
2100
b5203cd0
DC
2101/*
2102 * Calculate the potential space needed by the log vector. Each region gets
2103 * its own xlog_op_header_t and may need to be double word aligned.
2104 */
2105static int
2106xlog_write_calc_vec_length(
2107 struct xlog_ticket *ticket,
55b66332 2108 struct xfs_log_vec *log_vector)
b5203cd0 2109{
55b66332 2110 struct xfs_log_vec *lv;
b5203cd0
DC
2111 int headers = 0;
2112 int len = 0;
2113 int i;
2114
2115 /* acct for start rec of xact */
2116 if (ticket->t_flags & XLOG_TIC_INITED)
2117 headers++;
2118
55b66332 2119 for (lv = log_vector; lv; lv = lv->lv_next) {
fd63875c
DC
2120 /* we don't write ordered log vectors */
2121 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2122 continue;
2123
55b66332
DC
2124 headers += lv->lv_niovecs;
2125
2126 for (i = 0; i < lv->lv_niovecs; i++) {
2127 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 2128
55b66332
DC
2129 len += vecp->i_len;
2130 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2131 }
b5203cd0
DC
2132 }
2133
2134 ticket->t_res_num_ophdrs += headers;
2135 len += headers * sizeof(struct xlog_op_header);
2136
2137 return len;
2138}
2139
2140/*
2141 * If first write for transaction, insert start record We can't be trying to
2142 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2143 */
2144static int
2145xlog_write_start_rec(
e6b1f273 2146 struct xlog_op_header *ophdr,
b5203cd0
DC
2147 struct xlog_ticket *ticket)
2148{
b5203cd0
DC
2149 if (!(ticket->t_flags & XLOG_TIC_INITED))
2150 return 0;
2151
2152 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2153 ophdr->oh_clientid = ticket->t_clientid;
2154 ophdr->oh_len = 0;
2155 ophdr->oh_flags = XLOG_START_TRANS;
2156 ophdr->oh_res2 = 0;
2157
2158 ticket->t_flags &= ~XLOG_TIC_INITED;
2159
2160 return sizeof(struct xlog_op_header);
2161}
2162
2163static xlog_op_header_t *
2164xlog_write_setup_ophdr(
ad223e60 2165 struct xlog *log,
e6b1f273 2166 struct xlog_op_header *ophdr,
b5203cd0
DC
2167 struct xlog_ticket *ticket,
2168 uint flags)
2169{
b5203cd0
DC
2170 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2171 ophdr->oh_clientid = ticket->t_clientid;
2172 ophdr->oh_res2 = 0;
2173
2174 /* are we copying a commit or unmount record? */
2175 ophdr->oh_flags = flags;
2176
2177 /*
2178 * We've seen logs corrupted with bad transaction client ids. This
2179 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2180 * and shut down the filesystem.
2181 */
2182 switch (ophdr->oh_clientid) {
2183 case XFS_TRANSACTION:
2184 case XFS_VOLUME:
2185 case XFS_LOG:
2186 break;
2187 default:
a0fa2b67 2188 xfs_warn(log->l_mp,
c9690043 2189 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
b5203cd0
DC
2190 ophdr->oh_clientid, ticket);
2191 return NULL;
2192 }
2193
2194 return ophdr;
2195}
2196
2197/*
2198 * Set up the parameters of the region copy into the log. This has
2199 * to handle region write split across multiple log buffers - this
2200 * state is kept external to this function so that this code can
ac0e300f 2201 * be written in an obvious, self documenting manner.
b5203cd0
DC
2202 */
2203static int
2204xlog_write_setup_copy(
2205 struct xlog_ticket *ticket,
2206 struct xlog_op_header *ophdr,
2207 int space_available,
2208 int space_required,
2209 int *copy_off,
2210 int *copy_len,
2211 int *last_was_partial_copy,
2212 int *bytes_consumed)
2213{
2214 int still_to_copy;
2215
2216 still_to_copy = space_required - *bytes_consumed;
2217 *copy_off = *bytes_consumed;
2218
2219 if (still_to_copy <= space_available) {
2220 /* write of region completes here */
2221 *copy_len = still_to_copy;
2222 ophdr->oh_len = cpu_to_be32(*copy_len);
2223 if (*last_was_partial_copy)
2224 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2225 *last_was_partial_copy = 0;
2226 *bytes_consumed = 0;
2227 return 0;
2228 }
2229
2230 /* partial write of region, needs extra log op header reservation */
2231 *copy_len = space_available;
2232 ophdr->oh_len = cpu_to_be32(*copy_len);
2233 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2234 if (*last_was_partial_copy)
2235 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2236 *bytes_consumed += *copy_len;
2237 (*last_was_partial_copy)++;
2238
2239 /* account for new log op header */
2240 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2241 ticket->t_res_num_ophdrs++;
2242
2243 return sizeof(struct xlog_op_header);
2244}
2245
2246static int
2247xlog_write_copy_finish(
ad223e60 2248 struct xlog *log,
b5203cd0
DC
2249 struct xlog_in_core *iclog,
2250 uint flags,
2251 int *record_cnt,
2252 int *data_cnt,
2253 int *partial_copy,
2254 int *partial_copy_len,
2255 int log_offset,
2256 struct xlog_in_core **commit_iclog)
2257{
2258 if (*partial_copy) {
2259 /*
2260 * This iclog has already been marked WANT_SYNC by
2261 * xlog_state_get_iclog_space.
2262 */
390aab0a 2263 spin_lock(&log->l_icloglock);
b5203cd0 2264 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
390aab0a 2265 spin_unlock(&log->l_icloglock);
b5203cd0
DC
2266 *record_cnt = 0;
2267 *data_cnt = 0;
2268 return xlog_state_release_iclog(log, iclog);
2269 }
2270
2271 *partial_copy = 0;
2272 *partial_copy_len = 0;
2273
2274 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2275 /* no more space in this iclog - push it. */
390aab0a 2276 spin_lock(&log->l_icloglock);
b5203cd0
DC
2277 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2278 *record_cnt = 0;
2279 *data_cnt = 0;
2280
b5203cd0
DC
2281 xlog_state_want_sync(log, iclog);
2282 spin_unlock(&log->l_icloglock);
2283
2284 if (!commit_iclog)
2285 return xlog_state_release_iclog(log, iclog);
2286 ASSERT(flags & XLOG_COMMIT_TRANS);
2287 *commit_iclog = iclog;
2288 }
2289
2290 return 0;
2291}
2292
1da177e4
LT
2293/*
2294 * Write some region out to in-core log
2295 *
2296 * This will be called when writing externally provided regions or when
2297 * writing out a commit record for a given transaction.
2298 *
2299 * General algorithm:
2300 * 1. Find total length of this write. This may include adding to the
2301 * lengths passed in.
2302 * 2. Check whether we violate the tickets reservation.
2303 * 3. While writing to this iclog
2304 * A. Reserve as much space in this iclog as can get
2305 * B. If this is first write, save away start lsn
2306 * C. While writing this region:
2307 * 1. If first write of transaction, write start record
2308 * 2. Write log operation header (header per region)
2309 * 3. Find out if we can fit entire region into this iclog
2310 * 4. Potentially, verify destination memcpy ptr
2311 * 5. Memcpy (partial) region
2312 * 6. If partial copy, release iclog; otherwise, continue
2313 * copying more regions into current iclog
2314 * 4. Mark want sync bit (in simulation mode)
2315 * 5. Release iclog for potential flush to on-disk log.
2316 *
2317 * ERRORS:
2318 * 1. Panic if reservation is overrun. This should never happen since
2319 * reservation amounts are generated internal to the filesystem.
2320 * NOTES:
2321 * 1. Tickets are single threaded data structures.
2322 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2323 * syncing routine. When a single log_write region needs to span
2324 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2325 * on all log operation writes which don't contain the end of the
2326 * region. The XLOG_END_TRANS bit is used for the in-core log
2327 * operation which contains the end of the continued log_write region.
2328 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2329 * we don't really know exactly how much space will be used. As a result,
2330 * we don't update ic_offset until the end when we know exactly how many
2331 * bytes have been written out.
2332 */
71e330b5 2333int
35a8a72f 2334xlog_write(
ad223e60 2335 struct xlog *log,
55b66332 2336 struct xfs_log_vec *log_vector,
35a8a72f
CH
2337 struct xlog_ticket *ticket,
2338 xfs_lsn_t *start_lsn,
2339 struct xlog_in_core **commit_iclog,
2340 uint flags)
1da177e4 2341{
99428ad0 2342 struct xlog_in_core *iclog = NULL;
55b66332
DC
2343 struct xfs_log_iovec *vecp;
2344 struct xfs_log_vec *lv;
99428ad0
CH
2345 int len;
2346 int index;
2347 int partial_copy = 0;
2348 int partial_copy_len = 0;
2349 int contwr = 0;
2350 int record_cnt = 0;
2351 int data_cnt = 0;
2352 int error;
2353
2354 *start_lsn = 0;
2355
55b66332 2356 len = xlog_write_calc_vec_length(ticket, log_vector);
71e330b5 2357
93b8a585
CH
2358 /*
2359 * Region headers and bytes are already accounted for.
2360 * We only need to take into account start records and
2361 * split regions in this function.
2362 */
2363 if (ticket->t_flags & XLOG_TIC_INITED)
2364 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2365
2366 /*
2367 * Commit record headers need to be accounted for. These
2368 * come in as separate writes so are easy to detect.
2369 */
2370 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2371 ticket->t_curr_res -= sizeof(xlog_op_header_t);
71e330b5 2372
7d2d5653
BF
2373 if (ticket->t_curr_res < 0) {
2374 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2375 "ctx ticket reservation ran out. Need to up reservation");
55b66332 2376 xlog_print_tic_res(log->l_mp, ticket);
7d2d5653
BF
2377 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2378 }
1da177e4 2379
55b66332
DC
2380 index = 0;
2381 lv = log_vector;
2382 vecp = lv->lv_iovecp;
fd63875c 2383 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
e6b1f273 2384 void *ptr;
99428ad0 2385 int log_offset;
1da177e4 2386
99428ad0
CH
2387 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2388 &contwr, &log_offset);
2389 if (error)
2390 return error;
1da177e4 2391
99428ad0 2392 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2393 ptr = iclog->ic_datap + log_offset;
1da177e4 2394
99428ad0
CH
2395 /* start_lsn is the first lsn written to. That's all we need. */
2396 if (!*start_lsn)
2397 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
b5203cd0 2398
99428ad0
CH
2399 /*
2400 * This loop writes out as many regions as can fit in the amount
2401 * of space which was allocated by xlog_state_get_iclog_space().
2402 */
fd63875c
DC
2403 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2404 struct xfs_log_iovec *reg;
99428ad0
CH
2405 struct xlog_op_header *ophdr;
2406 int start_rec_copy;
2407 int copy_len;
2408 int copy_off;
fd63875c
DC
2409 bool ordered = false;
2410
2411 /* ordered log vectors have no regions to write */
2412 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2413 ASSERT(lv->lv_niovecs == 0);
2414 ordered = true;
2415 goto next_lv;
2416 }
99428ad0 2417
fd63875c 2418 reg = &vecp[index];
c8ce540d
DW
2419 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2420 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
99428ad0
CH
2421
2422 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2423 if (start_rec_copy) {
2424 record_cnt++;
e6b1f273 2425 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2426 start_rec_copy);
2427 }
b5203cd0 2428
99428ad0
CH
2429 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2430 if (!ophdr)
2451337d 2431 return -EIO;
99428ad0 2432
e6b1f273 2433 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2434 sizeof(struct xlog_op_header));
2435
2436 len += xlog_write_setup_copy(ticket, ophdr,
2437 iclog->ic_size-log_offset,
55b66332 2438 reg->i_len,
99428ad0
CH
2439 &copy_off, &copy_len,
2440 &partial_copy,
2441 &partial_copy_len);
2442 xlog_verify_dest_ptr(log, ptr);
2443
91f9f5fe
ES
2444 /*
2445 * Copy region.
2446 *
2447 * Unmount records just log an opheader, so can have
2448 * empty payloads with no data region to copy. Hence we
2449 * only copy the payload if the vector says it has data
2450 * to copy.
2451 */
99428ad0 2452 ASSERT(copy_len >= 0);
91f9f5fe
ES
2453 if (copy_len > 0) {
2454 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2455 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2456 copy_len);
2457 }
99428ad0
CH
2458 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2459 record_cnt++;
2460 data_cnt += contwr ? copy_len : 0;
2461
2462 error = xlog_write_copy_finish(log, iclog, flags,
2463 &record_cnt, &data_cnt,
2464 &partial_copy,
2465 &partial_copy_len,
2466 log_offset,
2467 commit_iclog);
2468 if (error)
2469 return error;
2470
2471 /*
2472 * if we had a partial copy, we need to get more iclog
2473 * space but we don't want to increment the region
2474 * index because there is still more is this region to
2475 * write.
2476 *
2477 * If we completed writing this region, and we flushed
2478 * the iclog (indicated by resetting of the record
2479 * count), then we also need to get more log space. If
2480 * this was the last record, though, we are done and
2481 * can just return.
2482 */
2483 if (partial_copy)
2484 break;
2485
55b66332 2486 if (++index == lv->lv_niovecs) {
fd63875c 2487next_lv:
55b66332
DC
2488 lv = lv->lv_next;
2489 index = 0;
2490 if (lv)
2491 vecp = lv->lv_iovecp;
2492 }
749f24f3 2493 if (record_cnt == 0 && !ordered) {
55b66332 2494 if (!lv)
99428ad0
CH
2495 return 0;
2496 break;
2497 }
2498 }
2499 }
2500
2501 ASSERT(len == 0);
2502
390aab0a 2503 spin_lock(&log->l_icloglock);
99428ad0 2504 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
390aab0a 2505 spin_unlock(&log->l_icloglock);
99428ad0
CH
2506 if (!commit_iclog)
2507 return xlog_state_release_iclog(log, iclog);
1da177e4 2508
1da177e4
LT
2509 ASSERT(flags & XLOG_COMMIT_TRANS);
2510 *commit_iclog = iclog;
2511 return 0;
99428ad0 2512}
1da177e4
LT
2513
2514
2515/*****************************************************************************
2516 *
2517 * State Machine functions
2518 *
2519 *****************************************************************************
2520 */
2521
0383f543
DC
2522/*
2523 * An iclog has just finished IO completion processing, so we need to update
2524 * the iclog state and propagate that up into the overall log state. Hence we
2525 * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2526 * starting from the head, and then wake up any threads that are waiting for the
2527 * iclog to be marked clean.
2528 *
2529 * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2530 * doesn't become ACTIVE beyond one that is SYNCING. This is also required to
2531 * maintain the notion that we use a ordered wait queue to hold off would be
2532 * writers to the log when every iclog is trying to sync to disk.
1da177e4 2533 *
0383f543
DC
2534 * Caller must hold the icloglock before calling us.
2535 *
2536 * State Change: !IOERROR -> DIRTY -> ACTIVE
1da177e4 2537 */
ba0f32d4 2538STATIC void
0383f543
DC
2539xlog_state_clean_iclog(
2540 struct xlog *log,
2541 struct xlog_in_core *dirty_iclog)
1da177e4 2542{
0383f543
DC
2543 struct xlog_in_core *iclog;
2544 int changed = 0;
2545
2546 /* Prepare the completed iclog. */
2547 if (!(dirty_iclog->ic_state & XLOG_STATE_IOERROR))
2548 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
1da177e4 2549
0383f543 2550 /* Walk all the iclogs to update the ordered active state. */
1da177e4
LT
2551 iclog = log->l_iclog;
2552 do {
2553 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2554 iclog->ic_state = XLOG_STATE_ACTIVE;
2555 iclog->ic_offset = 0;
89ae379d 2556 ASSERT(list_empty_careful(&iclog->ic_callbacks));
1da177e4
LT
2557 /*
2558 * If the number of ops in this iclog indicate it just
2559 * contains the dummy transaction, we can
2560 * change state into IDLE (the second time around).
2561 * Otherwise we should change the state into
2562 * NEED a dummy.
2563 * We don't need to cover the dummy.
2564 */
2565 if (!changed &&
b53e675d
CH
2566 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2567 XLOG_COVER_OPS)) {
1da177e4
LT
2568 changed = 1;
2569 } else {
2570 /*
2571 * We have two dirty iclogs so start over
2572 * This could also be num of ops indicates
2573 * this is not the dummy going out.
2574 */
2575 changed = 2;
2576 }
2577 iclog->ic_header.h_num_logops = 0;
2578 memset(iclog->ic_header.h_cycle_data, 0,
2579 sizeof(iclog->ic_header.h_cycle_data));
2580 iclog->ic_header.h_lsn = 0;
2581 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2582 /* do nothing */;
2583 else
2584 break; /* stop cleaning */
2585 iclog = iclog->ic_next;
2586 } while (iclog != log->l_iclog);
2587
0383f543
DC
2588
2589 /*
2590 * Wake up threads waiting in xfs_log_force() for the dirty iclog
2591 * to be cleaned.
2592 */
2593 wake_up_all(&dirty_iclog->ic_force_wait);
2594
1da177e4
LT
2595 /*
2596 * Change state for the dummy log recording.
2597 * We usually go to NEED. But we go to NEED2 if the changed indicates
2598 * we are done writing the dummy record.
2599 * If we are done with the second dummy recored (DONE2), then
2600 * we go to IDLE.
2601 */
2602 if (changed) {
2603 switch (log->l_covered_state) {
2604 case XLOG_STATE_COVER_IDLE:
2605 case XLOG_STATE_COVER_NEED:
2606 case XLOG_STATE_COVER_NEED2:
2607 log->l_covered_state = XLOG_STATE_COVER_NEED;
2608 break;
2609
2610 case XLOG_STATE_COVER_DONE:
2611 if (changed == 1)
2612 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2613 else
2614 log->l_covered_state = XLOG_STATE_COVER_NEED;
2615 break;
2616
2617 case XLOG_STATE_COVER_DONE2:
2618 if (changed == 1)
2619 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2620 else
2621 log->l_covered_state = XLOG_STATE_COVER_NEED;
2622 break;
2623
2624 default:
2625 ASSERT(0);
2626 }
2627 }
0383f543 2628}
1da177e4
LT
2629
2630STATIC xfs_lsn_t
2631xlog_get_lowest_lsn(
9bff3132 2632 struct xlog *log)
1da177e4 2633{
9bff3132
CH
2634 struct xlog_in_core *iclog = log->l_iclog;
2635 xfs_lsn_t lowest_lsn = 0, lsn;
1da177e4 2636
1da177e4 2637 do {
9bff3132
CH
2638 if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2639 continue;
2640
2641 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2642 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
1da177e4 2643 lowest_lsn = lsn;
9bff3132
CH
2644 } while ((iclog = iclog->ic_next) != log->l_iclog);
2645
014c2544 2646 return lowest_lsn;
1da177e4
LT
2647}
2648
14e15f1b
DC
2649/*
2650 * Completion of a iclog IO does not imply that a transaction has completed, as
2651 * transactions can be large enough to span many iclogs. We cannot change the
2652 * tail of the log half way through a transaction as this may be the only
2653 * transaction in the log and moving the tail to point to the middle of it
2654 * will prevent recovery from finding the start of the transaction. Hence we
2655 * should only update the last_sync_lsn if this iclog contains transaction
2656 * completion callbacks on it.
2657 *
2658 * We have to do this before we drop the icloglock to ensure we are the only one
2659 * that can update it.
2660 *
2661 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2662 * the reservation grant head pushing. This is due to the fact that the push
2663 * target is bound by the current last_sync_lsn value. Hence if we have a large
2664 * amount of log space bound up in this committing transaction then the
2665 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2666 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2667 * should push the AIL to ensure the push target (and hence the grant head) is
2668 * no longer bound by the old log head location and can move forwards and make
2669 * progress again.
2670 */
2671static void
2672xlog_state_set_callback(
2673 struct xlog *log,
2674 struct xlog_in_core *iclog,
2675 xfs_lsn_t header_lsn)
2676{
2677 iclog->ic_state = XLOG_STATE_CALLBACK;
2678
2679 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2680 header_lsn) <= 0);
2681
2682 if (list_empty_careful(&iclog->ic_callbacks))
2683 return;
2684
2685 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2686 xlog_grant_push_ail(log, 0);
2687}
2688
5e96fa8d
DC
2689/*
2690 * Return true if we need to stop processing, false to continue to the next
2691 * iclog. The caller will need to run callbacks if the iclog is returned in the
2692 * XLOG_STATE_CALLBACK state.
2693 */
2694static bool
2695xlog_state_iodone_process_iclog(
2696 struct xlog *log,
2697 struct xlog_in_core *iclog,
2698 struct xlog_in_core *completed_iclog,
2699 bool *ioerror)
2700{
2701 xfs_lsn_t lowest_lsn;
14e15f1b 2702 xfs_lsn_t header_lsn;
5e96fa8d
DC
2703
2704 /* Skip all iclogs in the ACTIVE & DIRTY states */
2705 if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2706 return false;
2707
2708 /*
2709 * Between marking a filesystem SHUTDOWN and stopping the log, we do
2710 * flush all iclogs to disk (if there wasn't a log I/O error). So, we do
2711 * want things to go smoothly in case of just a SHUTDOWN w/o a
2712 * LOG_IO_ERROR.
2713 */
2714 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2715 *ioerror = true;
2716 return false;
2717 }
2718
2719 /*
2720 * Can only perform callbacks in order. Since this iclog is not in the
2721 * DONE_SYNC/ DO_CALLBACK state, we skip the rest and just try to clean
2722 * up. If we set our iclog to DO_CALLBACK, we will not process it when
2723 * we retry since a previous iclog is in the CALLBACK and the state
2724 * cannot change since we are holding the l_icloglock.
2725 */
2726 if (!(iclog->ic_state &
2727 (XLOG_STATE_DONE_SYNC | XLOG_STATE_DO_CALLBACK))) {
2728 if (completed_iclog &&
2729 (completed_iclog->ic_state == XLOG_STATE_DONE_SYNC)) {
2730 completed_iclog->ic_state = XLOG_STATE_DO_CALLBACK;
2731 }
2732 return true;
2733 }
2734
2735 /*
2736 * We now have an iclog that is in either the DO_CALLBACK or DONE_SYNC
2737 * states. The other states (WANT_SYNC, SYNCING, or CALLBACK were caught
2738 * by the above if and are going to clean (i.e. we aren't doing their
2739 * callbacks) see the above if.
2740 *
2741 * We will do one more check here to see if we have chased our tail
14e15f1b
DC
2742 * around. If this is not the lowest lsn iclog, then we will leave it
2743 * for another completion to process.
5e96fa8d 2744 */
14e15f1b 2745 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
5e96fa8d 2746 lowest_lsn = xlog_get_lowest_lsn(log);
14e15f1b
DC
2747 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2748 return false;
5e96fa8d 2749
14e15f1b 2750 xlog_state_set_callback(log, iclog, header_lsn);
5e96fa8d
DC
2751 return false;
2752
2753}
2754
6546818c
DC
2755/*
2756 * Keep processing entries in the iclog callback list until we come around and
2757 * it is empty. We need to atomically see that the list is empty and change the
2758 * state to DIRTY so that we don't miss any more callbacks being added.
2759 *
2760 * This function is called with the icloglock held and returns with it held. We
2761 * drop it while running callbacks, however, as holding it over thousands of
2762 * callbacks is unnecessary and causes excessive contention if we do.
2763 */
2764static void
2765xlog_state_do_iclog_callbacks(
2766 struct xlog *log,
2767 struct xlog_in_core *iclog,
2768 bool aborted)
2769{
2770 spin_unlock(&log->l_icloglock);
2771 spin_lock(&iclog->ic_callback_lock);
2772 while (!list_empty(&iclog->ic_callbacks)) {
2773 LIST_HEAD(tmp);
2774
2775 list_splice_init(&iclog->ic_callbacks, &tmp);
2776
2777 spin_unlock(&iclog->ic_callback_lock);
2778 xlog_cil_process_committed(&tmp, aborted);
2779 spin_lock(&iclog->ic_callback_lock);
2780 }
2781
2782 /*
2783 * Pick up the icloglock while still holding the callback lock so we
2784 * serialise against anyone trying to add more callbacks to this iclog
2785 * now we've finished processing.
2786 */
2787 spin_lock(&log->l_icloglock);
2788 spin_unlock(&iclog->ic_callback_lock);
2789}
2790
6769aa2a
DC
2791#ifdef DEBUG
2792/*
2793 * Make one last gasp attempt to see if iclogs are being left in limbo. If the
2794 * above loop finds an iclog earlier than the current iclog and in one of the
2795 * syncing states, the current iclog is put into DO_CALLBACK and the callbacks
2796 * are deferred to the completion of the earlier iclog. Walk the iclogs in order
2797 * and make sure that no iclog is in DO_CALLBACK unless an earlier iclog is in
2798 * one of the syncing states.
2799 *
2800 * Note that SYNCING|IOERROR is a valid state so we cannot just check for
2801 * ic_state == SYNCING.
2802 */
2803static void
2804xlog_state_callback_check_state(
2805 struct xlog *log)
2806{
2807 struct xlog_in_core *first_iclog = log->l_iclog;
2808 struct xlog_in_core *iclog = first_iclog;
2809
2810 do {
2811 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2812 /*
2813 * Terminate the loop if iclogs are found in states
2814 * which will cause other threads to clean up iclogs.
2815 *
2816 * SYNCING - i/o completion will go through logs
2817 * DONE_SYNC - interrupt thread should be waiting for
2818 * l_icloglock
2819 * IOERROR - give up hope all ye who enter here
2820 */
2821 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2822 iclog->ic_state & XLOG_STATE_SYNCING ||
2823 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2824 iclog->ic_state == XLOG_STATE_IOERROR )
2825 break;
2826 iclog = iclog->ic_next;
2827 } while (first_iclog != iclog);
2828}
2829#else
2830#define xlog_state_callback_check_state(l) ((void)0)
2831#endif
2832
1da177e4
LT
2833STATIC void
2834xlog_state_do_callback(
9a8d2fdb 2835 struct xlog *log,
d15cbf2f 2836 bool aborted,
9a8d2fdb 2837 struct xlog_in_core *ciclog)
1da177e4 2838{
5e96fa8d
DC
2839 struct xlog_in_core *iclog;
2840 struct xlog_in_core *first_iclog;
2841 bool did_callbacks = false;
2842 bool cycled_icloglock;
2843 bool ioerror;
2844 int flushcnt = 0;
2845 int repeats = 0;
1da177e4 2846
b22cd72c 2847 spin_lock(&log->l_icloglock);
1da177e4
LT
2848 do {
2849 /*
2850 * Scan all iclogs starting with the one pointed to by the
2851 * log. Reset this starting point each time the log is
2852 * unlocked (during callbacks).
2853 *
2854 * Keep looping through iclogs until one full pass is made
2855 * without running any callbacks.
2856 */
2857 first_iclog = log->l_iclog;
2858 iclog = log->l_iclog;
6546818c 2859 cycled_icloglock = false;
5e96fa8d 2860 ioerror = false;
1da177e4
LT
2861 repeats++;
2862
2863 do {
5e96fa8d
DC
2864 if (xlog_state_iodone_process_iclog(log, iclog,
2865 ciclog, &ioerror))
2866 break;
1da177e4 2867
5e96fa8d
DC
2868 if (!(iclog->ic_state &
2869 (XLOG_STATE_CALLBACK | XLOG_STATE_IOERROR))) {
1da177e4
LT
2870 iclog = iclog->ic_next;
2871 continue;
2872 }
2873
114d23aa 2874 /*
6546818c
DC
2875 * Running callbacks will drop the icloglock which means
2876 * we'll have to run at least one more complete loop.
114d23aa 2877 */
6546818c
DC
2878 cycled_icloglock = true;
2879 xlog_state_do_iclog_callbacks(log, iclog, aborted);
1da177e4 2880
0383f543 2881 xlog_state_clean_iclog(log, iclog);
1da177e4
LT
2882 iclog = iclog->ic_next;
2883 } while (first_iclog != iclog);
a3c6685e 2884
6546818c
DC
2885 did_callbacks |= cycled_icloglock;
2886
a3c6685e
NS
2887 if (repeats > 5000) {
2888 flushcnt += repeats;
2889 repeats = 0;
a0fa2b67 2890 xfs_warn(log->l_mp,
a3c6685e 2891 "%s: possible infinite loop (%d iterations)",
34a622b2 2892 __func__, flushcnt);
1da177e4 2893 }
5e96fa8d 2894 } while (!ioerror && cycled_icloglock);
1da177e4 2895
6546818c 2896 if (did_callbacks)
6769aa2a 2897 xlog_state_callback_check_state(log);
1da177e4 2898
d748c623 2899 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
eb40a875 2900 wake_up_all(&log->l_flush_wait);
cdea5459
RR
2901
2902 spin_unlock(&log->l_icloglock);
d748c623 2903}
1da177e4
LT
2904
2905
2906/*
2907 * Finish transitioning this iclog to the dirty state.
2908 *
2909 * Make sure that we completely execute this routine only when this is
2910 * the last call to the iclog. There is a good chance that iclog flushes,
2911 * when we reach the end of the physical log, get turned into 2 separate
2912 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2913 * routine. By using the reference count bwritecnt, we guarantee that only
2914 * the second completion goes through.
2915 *
2916 * Callbacks could take time, so they are done outside the scope of the
12017faf 2917 * global state machine log lock.
1da177e4 2918 */
a8272ce0 2919STATIC void
1da177e4 2920xlog_state_done_syncing(
d15cbf2f
CH
2921 struct xlog_in_core *iclog,
2922 bool aborted)
1da177e4 2923{
d15cbf2f 2924 struct xlog *log = iclog->ic_log;
1da177e4 2925
b22cd72c 2926 spin_lock(&log->l_icloglock);
1da177e4
LT
2927
2928 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2929 iclog->ic_state == XLOG_STATE_IOERROR);
155cc6b7 2930 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1da177e4
LT
2931
2932 /*
2933 * If we got an error, either on the first buffer, or in the case of
2934 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2935 * and none should ever be attempted to be written to disk
2936 * again.
2937 */
79b54d9b 2938 if (iclog->ic_state != XLOG_STATE_IOERROR)
1da177e4 2939 iclog->ic_state = XLOG_STATE_DONE_SYNC;
1da177e4
LT
2940
2941 /*
2942 * Someone could be sleeping prior to writing out the next
2943 * iclog buffer, we wake them all, one will get to do the
2944 * I/O, the others get to wait for the result.
2945 */
eb40a875 2946 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2947 spin_unlock(&log->l_icloglock);
1da177e4
LT
2948 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2949} /* xlog_state_done_syncing */
2950
2951
2952/*
2953 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2954 * sleep. We wait on the flush queue on the head iclog as that should be
2955 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2956 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2957 *
2958 * The in-core logs are used in a circular fashion. They are not used
2959 * out-of-order even when an iclog past the head is free.
2960 *
2961 * return:
2962 * * log_offset where xlog_write() can start writing into the in-core
2963 * log's data space.
2964 * * in-core log pointer to which xlog_write() should write.
2965 * * boolean indicating this is a continued write to an in-core log.
2966 * If this is the last write, then the in-core log's offset field
2967 * needs to be incremented, depending on the amount of data which
2968 * is copied.
2969 */
a8272ce0 2970STATIC int
9a8d2fdb
MT
2971xlog_state_get_iclog_space(
2972 struct xlog *log,
2973 int len,
2974 struct xlog_in_core **iclogp,
2975 struct xlog_ticket *ticket,
2976 int *continued_write,
2977 int *logoffsetp)
1da177e4 2978{
1da177e4
LT
2979 int log_offset;
2980 xlog_rec_header_t *head;
2981 xlog_in_core_t *iclog;
2982 int error;
2983
2984restart:
b22cd72c 2985 spin_lock(&log->l_icloglock);
1da177e4 2986 if (XLOG_FORCED_SHUTDOWN(log)) {
b22cd72c 2987 spin_unlock(&log->l_icloglock);
2451337d 2988 return -EIO;
1da177e4
LT
2989 }
2990
2991 iclog = log->l_iclog;
d748c623 2992 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
ff6d6af2 2993 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
d748c623
MW
2994
2995 /* Wait for log writes to have flushed */
eb40a875 2996 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
2997 goto restart;
2998 }
d748c623 2999
1da177e4
LT
3000 head = &iclog->ic_header;
3001
155cc6b7 3002 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
3003 log_offset = iclog->ic_offset;
3004
3005 /* On the 1st write to an iclog, figure out lsn. This works
3006 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3007 * committing to. If the offset is set, that's how many blocks
3008 * must be written.
3009 */
3010 if (log_offset == 0) {
3011 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 3012 xlog_tic_add_region(ticket,
7e9c6396
TS
3013 log->l_iclog_hsize,
3014 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
3015 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3016 head->h_lsn = cpu_to_be64(
03bea6fe 3017 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
3018 ASSERT(log->l_curr_block >= 0);
3019 }
3020
3021 /* If there is enough room to write everything, then do it. Otherwise,
3022 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3023 * bit is on, so this will get flushed out. Don't update ic_offset
3024 * until you know exactly how many bytes get copied. Therefore, wait
3025 * until later to update ic_offset.
3026 *
3027 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3028 * can fit into remaining data section.
3029 */
3030 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3031 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3032
49641f1a
DC
3033 /*
3034 * If I'm the only one writing to this iclog, sync it to disk.
3035 * We need to do an atomic compare and decrement here to avoid
3036 * racing with concurrent atomic_dec_and_lock() calls in
3037 * xlog_state_release_iclog() when there is more than one
3038 * reference to the iclog.
3039 */
3040 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3041 /* we are the only one */
b22cd72c 3042 spin_unlock(&log->l_icloglock);
49641f1a
DC
3043 error = xlog_state_release_iclog(log, iclog);
3044 if (error)
014c2544 3045 return error;
1da177e4 3046 } else {
b22cd72c 3047 spin_unlock(&log->l_icloglock);
1da177e4
LT
3048 }
3049 goto restart;
3050 }
3051
3052 /* Do we have enough room to write the full amount in the remainder
3053 * of this iclog? Or must we continue a write on the next iclog and
3054 * mark this iclog as completely taken? In the case where we switch
3055 * iclogs (to mark it taken), this particular iclog will release/sync
3056 * to disk in xlog_write().
3057 */
3058 if (len <= iclog->ic_size - iclog->ic_offset) {
3059 *continued_write = 0;
3060 iclog->ic_offset += len;
3061 } else {
3062 *continued_write = 1;
3063 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3064 }
3065 *iclogp = iclog;
3066
3067 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 3068 spin_unlock(&log->l_icloglock);
1da177e4
LT
3069
3070 *logoffsetp = log_offset;
3071 return 0;
3072} /* xlog_state_get_iclog_space */
3073
1da177e4
LT
3074/* The first cnt-1 times through here we don't need to
3075 * move the grant write head because the permanent
3076 * reservation has reserved cnt times the unit amount.
3077 * Release part of current permanent unit reservation and
3078 * reset current reservation to be one units worth. Also
3079 * move grant reservation head forward.
3080 */
3081STATIC void
9a8d2fdb
MT
3082xlog_regrant_reserve_log_space(
3083 struct xlog *log,
3084 struct xlog_ticket *ticket)
1da177e4 3085{
0b1b213f
CH
3086 trace_xfs_log_regrant_reserve_enter(log, ticket);
3087
1da177e4
LT
3088 if (ticket->t_cnt > 0)
3089 ticket->t_cnt--;
3090
28496968 3091 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 3092 ticket->t_curr_res);
28496968 3093 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 3094 ticket->t_curr_res);
1da177e4 3095 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3096 xlog_tic_reset_res(ticket);
0b1b213f
CH
3097
3098 trace_xfs_log_regrant_reserve_sub(log, ticket);
3099
1da177e4 3100 /* just return if we still have some of the pre-reserved space */
d0eb2f38 3101 if (ticket->t_cnt > 0)
1da177e4 3102 return;
1da177e4 3103
28496968 3104 xlog_grant_add_space(log, &log->l_reserve_head.grant,
a69ed03c 3105 ticket->t_unit_res);
0b1b213f
CH
3106
3107 trace_xfs_log_regrant_reserve_exit(log, ticket);
3108
1da177e4 3109 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3110 xlog_tic_reset_res(ticket);
1da177e4
LT
3111} /* xlog_regrant_reserve_log_space */
3112
3113
3114/*
3115 * Give back the space left from a reservation.
3116 *
3117 * All the information we need to make a correct determination of space left
3118 * is present. For non-permanent reservations, things are quite easy. The
3119 * count should have been decremented to zero. We only need to deal with the
3120 * space remaining in the current reservation part of the ticket. If the
3121 * ticket contains a permanent reservation, there may be left over space which
3122 * needs to be released. A count of N means that N-1 refills of the current
3123 * reservation can be done before we need to ask for more space. The first
3124 * one goes to fill up the first current reservation. Once we run out of
3125 * space, the count will stay at zero and the only space remaining will be
3126 * in the current reservation field.
3127 */
3128STATIC void
9a8d2fdb
MT
3129xlog_ungrant_log_space(
3130 struct xlog *log,
3131 struct xlog_ticket *ticket)
1da177e4 3132{
663e496a
DC
3133 int bytes;
3134
1da177e4
LT
3135 if (ticket->t_cnt > 0)
3136 ticket->t_cnt--;
3137
0b1b213f 3138 trace_xfs_log_ungrant_enter(log, ticket);
0b1b213f 3139 trace_xfs_log_ungrant_sub(log, ticket);
1da177e4 3140
663e496a
DC
3141 /*
3142 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
3143 * up more space based on the remaining count.
3144 */
663e496a 3145 bytes = ticket->t_curr_res;
1da177e4
LT
3146 if (ticket->t_cnt > 0) {
3147 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 3148 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
3149 }
3150
28496968
CH
3151 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3152 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 3153
0b1b213f
CH
3154 trace_xfs_log_ungrant_exit(log, ticket);
3155
cfb7cdca 3156 xfs_log_space_wake(log->l_mp);
09a423a3 3157}
1da177e4 3158
1da177e4
LT
3159/*
3160 * Flush iclog to disk if this is the last reference to the given iclog and
3161 * the WANT_SYNC bit is set.
3162 *
3163 * When this function is entered, the iclog is not necessarily in the
3164 * WANT_SYNC state. It may be sitting around waiting to get filled.
3165 *
3166 *
3167 */
a8272ce0 3168STATIC int
b589334c 3169xlog_state_release_iclog(
9a8d2fdb
MT
3170 struct xlog *log,
3171 struct xlog_in_core *iclog)
1da177e4 3172{
1da177e4
LT
3173 int sync = 0; /* do we sync? */
3174
155cc6b7 3175 if (iclog->ic_state & XLOG_STATE_IOERROR)
2451337d 3176 return -EIO;
155cc6b7
DC
3177
3178 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3179 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3180 return 0;
3181
1da177e4 3182 if (iclog->ic_state & XLOG_STATE_IOERROR) {
b22cd72c 3183 spin_unlock(&log->l_icloglock);
2451337d 3184 return -EIO;
1da177e4 3185 }
1da177e4
LT
3186 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3187 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3188
155cc6b7 3189 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
b589334c 3190 /* update tail before writing to iclog */
1c3cb9ec 3191 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
1da177e4
LT
3192 sync++;
3193 iclog->ic_state = XLOG_STATE_SYNCING;
1c3cb9ec
DC
3194 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3195 xlog_verify_tail_lsn(log, iclog, tail_lsn);
1da177e4
LT
3196 /* cycle incremented when incrementing curr_block */
3197 }
b22cd72c 3198 spin_unlock(&log->l_icloglock);
1da177e4
LT
3199
3200 /*
3201 * We let the log lock go, so it's possible that we hit a log I/O
c41564b5 3202 * error or some other SHUTDOWN condition that marks the iclog
1da177e4
LT
3203 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3204 * this iclog has consistent data, so we ignore IOERROR
3205 * flags after this point.
3206 */
b589334c 3207 if (sync)
94860a30 3208 xlog_sync(log, iclog);
014c2544 3209 return 0;
1da177e4
LT
3210} /* xlog_state_release_iclog */
3211
3212
3213/*
3214 * This routine will mark the current iclog in the ring as WANT_SYNC
3215 * and move the current iclog pointer to the next iclog in the ring.
3216 * When this routine is called from xlog_state_get_iclog_space(), the
3217 * exact size of the iclog has not yet been determined. All we know is
3218 * that every data block. We have run out of space in this log record.
3219 */
3220STATIC void
9a8d2fdb
MT
3221xlog_state_switch_iclogs(
3222 struct xlog *log,
3223 struct xlog_in_core *iclog,
3224 int eventual_size)
1da177e4
LT
3225{
3226 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3227 if (!eventual_size)
3228 eventual_size = iclog->ic_offset;
3229 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 3230 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
3231 log->l_prev_block = log->l_curr_block;
3232 log->l_prev_cycle = log->l_curr_cycle;
3233
3234 /* roll log?: ic_offset changed later */
3235 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3236
3237 /* Round up to next log-sunit */
62118709 3238 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1da177e4 3239 log->l_mp->m_sb.sb_logsunit > 1) {
c8ce540d 3240 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
1da177e4
LT
3241 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3242 }
3243
3244 if (log->l_curr_block >= log->l_logBBsize) {
a45086e2
BF
3245 /*
3246 * Rewind the current block before the cycle is bumped to make
3247 * sure that the combined LSN never transiently moves forward
3248 * when the log wraps to the next cycle. This is to support the
3249 * unlocked sample of these fields from xlog_valid_lsn(). Most
3250 * other cases should acquire l_icloglock.
3251 */
3252 log->l_curr_block -= log->l_logBBsize;
3253 ASSERT(log->l_curr_block >= 0);
3254 smp_wmb();
1da177e4
LT
3255 log->l_curr_cycle++;
3256 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3257 log->l_curr_cycle++;
1da177e4
LT
3258 }
3259 ASSERT(iclog == log->l_iclog);
3260 log->l_iclog = iclog->ic_next;
3261} /* xlog_state_switch_iclogs */
3262
1da177e4
LT
3263/*
3264 * Write out all data in the in-core log as of this exact moment in time.
3265 *
3266 * Data may be written to the in-core log during this call. However,
3267 * we don't guarantee this data will be written out. A change from past
3268 * implementation means this routine will *not* write out zero length LRs.
3269 *
3270 * Basically, we try and perform an intelligent scan of the in-core logs.
3271 * If we determine there is no flushable data, we just return. There is no
3272 * flushable data if:
3273 *
3274 * 1. the current iclog is active and has no data; the previous iclog
3275 * is in the active or dirty state.
3276 * 2. the current iclog is drity, and the previous iclog is in the
3277 * active or dirty state.
3278 *
12017faf 3279 * We may sleep if:
1da177e4
LT
3280 *
3281 * 1. the current iclog is not in the active nor dirty state.
3282 * 2. the current iclog dirty, and the previous iclog is not in the
3283 * active nor dirty state.
3284 * 3. the current iclog is active, and there is another thread writing
3285 * to this particular iclog.
3286 * 4. a) the current iclog is active and has no other writers
3287 * b) when we return from flushing out this iclog, it is still
3288 * not in the active nor dirty state.
3289 */
a14a348b 3290int
60e5bb78 3291xfs_log_force(
a14a348b 3292 struct xfs_mount *mp,
60e5bb78 3293 uint flags)
1da177e4 3294{
ad223e60 3295 struct xlog *log = mp->m_log;
a14a348b
CH
3296 struct xlog_in_core *iclog;
3297 xfs_lsn_t lsn;
3298
ff6d6af2 3299 XFS_STATS_INC(mp, xs_log_force);
60e5bb78 3300 trace_xfs_log_force(mp, 0, _RET_IP_);
1da177e4 3301
93b8a585 3302 xlog_cil_force(log);
71e330b5 3303
b22cd72c 3304 spin_lock(&log->l_icloglock);
1da177e4 3305 iclog = log->l_iclog;
e6b96570
CH
3306 if (iclog->ic_state & XLOG_STATE_IOERROR)
3307 goto out_error;
1da177e4 3308
e6b96570
CH
3309 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3310 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3311 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
1da177e4 3312 /*
e6b96570
CH
3313 * If the head is dirty or (active and empty), then we need to
3314 * look at the previous iclog.
3315 *
3316 * If the previous iclog is active or dirty we are done. There
3317 * is nothing to sync out. Otherwise, we attach ourselves to the
1da177e4
LT
3318 * previous iclog and go to sleep.
3319 */
e6b96570
CH
3320 iclog = iclog->ic_prev;
3321 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3322 iclog->ic_state == XLOG_STATE_DIRTY)
3323 goto out_unlock;
3324 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3325 if (atomic_read(&iclog->ic_refcnt) == 0) {
3326 /*
3327 * We are the only one with access to this iclog.
3328 *
3329 * Flush it out now. There should be a roundoff of zero
3330 * to show that someone has already taken care of the
3331 * roundoff from the previous sync.
3332 */
3333 atomic_inc(&iclog->ic_refcnt);
3334 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3335 xlog_state_switch_iclogs(log, iclog, 0);
3336 spin_unlock(&log->l_icloglock);
a14a348b 3337
e6b96570
CH
3338 if (xlog_state_release_iclog(log, iclog))
3339 return -EIO;
1da177e4 3340
e6b96570
CH
3341 spin_lock(&log->l_icloglock);
3342 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3343 iclog->ic_state == XLOG_STATE_DIRTY)
3344 goto out_unlock;
3345 } else {
3346 /*
3347 * Someone else is writing to this iclog.
3348 *
3349 * Use its call to flush out the data. However, the
3350 * other thread may not force out this LR, so we mark
3351 * it WANT_SYNC.
3352 */
3353 xlog_state_switch_iclogs(log, iclog, 0);
1da177e4 3354 }
e6b96570 3355 } else {
1da177e4 3356 /*
e6b96570
CH
3357 * If the head iclog is not active nor dirty, we just attach
3358 * ourselves to the head and go to sleep if necessary.
1da177e4 3359 */
e6b96570 3360 ;
1da177e4 3361 }
e6b96570
CH
3362
3363 if (!(flags & XFS_LOG_SYNC))
3364 goto out_unlock;
3365
3366 if (iclog->ic_state & XLOG_STATE_IOERROR)
3367 goto out_error;
3368 XFS_STATS_INC(mp, xs_log_force_sleep);
3369 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3370 if (iclog->ic_state & XLOG_STATE_IOERROR)
3371 return -EIO;
1da177e4 3372 return 0;
e6b96570
CH
3373
3374out_unlock:
3375 spin_unlock(&log->l_icloglock);
3376 return 0;
3377out_error:
3378 spin_unlock(&log->l_icloglock);
3379 return -EIO;
a14a348b 3380}
1da177e4 3381
3e4da466
CH
3382static int
3383__xfs_log_force_lsn(
a14a348b
CH
3384 struct xfs_mount *mp,
3385 xfs_lsn_t lsn,
3386 uint flags,
3e4da466
CH
3387 int *log_flushed,
3388 bool already_slept)
1da177e4 3389{
ad223e60 3390 struct xlog *log = mp->m_log;
a14a348b 3391 struct xlog_in_core *iclog;
71e330b5 3392
a14a348b
CH
3393 spin_lock(&log->l_icloglock);
3394 iclog = log->l_iclog;
93806299
CH
3395 if (iclog->ic_state & XLOG_STATE_IOERROR)
3396 goto out_error;
1da177e4 3397
93806299
CH
3398 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3399 iclog = iclog->ic_next;
3400 if (iclog == log->l_iclog)
3401 goto out_unlock;
3402 }
a14a348b 3403
93806299
CH
3404 if (iclog->ic_state == XLOG_STATE_DIRTY)
3405 goto out_unlock;
a14a348b 3406
93806299
CH
3407 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3408 /*
3409 * We sleep here if we haven't already slept (e.g. this is the
3410 * first time we've looked at the correct iclog buf) and the
3411 * buffer before us is going to be sync'ed. The reason for this
3412 * is that if we are doing sync transactions here, by waiting
3413 * for the previous I/O to complete, we can allow a few more
3414 * transactions into this iclog before we close it down.
3415 *
3416 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3417 * refcnt so we can release the log (which drops the ref count).
3418 * The state switch keeps new transaction commits from using
3419 * this buffer. When the current commits finish writing into
3420 * the buffer, the refcount will drop to zero and the buffer
3421 * will go out then.
3422 */
3423 if (!already_slept &&
3424 (iclog->ic_prev->ic_state &
3425 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3426 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
a14a348b 3427
93806299 3428 XFS_STATS_INC(mp, xs_log_force_sleep);
a14a348b 3429
93806299
CH
3430 xlog_wait(&iclog->ic_prev->ic_write_wait,
3431 &log->l_icloglock);
3e4da466 3432 return -EAGAIN;
1da177e4 3433 }
93806299
CH
3434 atomic_inc(&iclog->ic_refcnt);
3435 xlog_state_switch_iclogs(log, iclog, 0);
3436 spin_unlock(&log->l_icloglock);
3437 if (xlog_state_release_iclog(log, iclog))
3438 return -EIO;
3439 if (log_flushed)
3440 *log_flushed = 1;
3441 spin_lock(&log->l_icloglock);
3442 }
1da177e4 3443
93806299
CH
3444 if (!(flags & XFS_LOG_SYNC) ||
3445 (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3446 goto out_unlock;
1da177e4 3447
93806299
CH
3448 if (iclog->ic_state & XLOG_STATE_IOERROR)
3449 goto out_error;
3450
3451 XFS_STATS_INC(mp, xs_log_force_sleep);
3452 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3453 if (iclog->ic_state & XLOG_STATE_IOERROR)
3454 return -EIO;
3455 return 0;
1da177e4 3456
93806299 3457out_unlock:
a14a348b
CH
3458 spin_unlock(&log->l_icloglock);
3459 return 0;
93806299
CH
3460out_error:
3461 spin_unlock(&log->l_icloglock);
3462 return -EIO;
a14a348b
CH
3463}
3464
3e4da466
CH
3465/*
3466 * Force the in-core log to disk for a specific LSN.
3467 *
3468 * Find in-core log with lsn.
3469 * If it is in the DIRTY state, just return.
3470 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3471 * state and go to sleep or return.
3472 * If it is in any other state, go to sleep or return.
3473 *
3474 * Synchronous forces are implemented with a wait queue. All callers trying
3475 * to force a given lsn to disk must wait on the queue attached to the
3476 * specific in-core log. When given in-core log finally completes its write
3477 * to disk, that thread will wake up all threads waiting on the queue.
3478 */
3479int
3480xfs_log_force_lsn(
3481 struct xfs_mount *mp,
3482 xfs_lsn_t lsn,
3483 uint flags,
3484 int *log_flushed)
3485{
3486 int ret;
3487 ASSERT(lsn != 0);
3488
3489 XFS_STATS_INC(mp, xs_log_force);
3490 trace_xfs_log_force(mp, lsn, _RET_IP_);
3491
3492 lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3493 if (lsn == NULLCOMMITLSN)
3494 return 0;
3495
3496 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3497 if (ret == -EAGAIN)
3498 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3499 return ret;
3500}
3501
1da177e4
LT
3502/*
3503 * Called when we want to mark the current iclog as being ready to sync to
3504 * disk.
3505 */
a8272ce0 3506STATIC void
9a8d2fdb
MT
3507xlog_state_want_sync(
3508 struct xlog *log,
3509 struct xlog_in_core *iclog)
1da177e4 3510{
a8914f3a 3511 assert_spin_locked(&log->l_icloglock);
1da177e4
LT
3512
3513 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3514 xlog_state_switch_iclogs(log, iclog, 0);
3515 } else {
3516 ASSERT(iclog->ic_state &
3517 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3518 }
39e2defe 3519}
1da177e4
LT
3520
3521
3522/*****************************************************************************
3523 *
3524 * TICKET functions
3525 *
3526 *****************************************************************************
3527 */
3528
3529/*
9da096fd 3530 * Free a used ticket when its refcount falls to zero.
1da177e4 3531 */
cc09c0dc
DC
3532void
3533xfs_log_ticket_put(
3534 xlog_ticket_t *ticket)
1da177e4 3535{
cc09c0dc 3536 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3537 if (atomic_dec_and_test(&ticket->t_ref))
cc09c0dc 3538 kmem_zone_free(xfs_log_ticket_zone, ticket);
cc09c0dc 3539}
1da177e4 3540
cc09c0dc
DC
3541xlog_ticket_t *
3542xfs_log_ticket_get(
3543 xlog_ticket_t *ticket)
3544{
3545 ASSERT(atomic_read(&ticket->t_ref) > 0);
3546 atomic_inc(&ticket->t_ref);
3547 return ticket;
3548}
1da177e4
LT
3549
3550/*
e773fc93
JL
3551 * Figure out the total log space unit (in bytes) that would be
3552 * required for a log ticket.
1da177e4 3553 */
e773fc93
JL
3554int
3555xfs_log_calc_unit_res(
3556 struct xfs_mount *mp,
3557 int unit_bytes)
1da177e4 3558{
e773fc93
JL
3559 struct xlog *log = mp->m_log;
3560 int iclog_space;
3561 uint num_headers;
1da177e4
LT
3562
3563 /*
3564 * Permanent reservations have up to 'cnt'-1 active log operations
3565 * in the log. A unit in this case is the amount of space for one
3566 * of these log operations. Normal reservations have a cnt of 1
3567 * and their unit amount is the total amount of space required.
3568 *
3569 * The following lines of code account for non-transaction data
32fb9b57
TS
3570 * which occupy space in the on-disk log.
3571 *
3572 * Normal form of a transaction is:
3573 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3574 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3575 *
3576 * We need to account for all the leadup data and trailer data
3577 * around the transaction data.
3578 * And then we need to account for the worst case in terms of using
3579 * more space.
3580 * The worst case will happen if:
3581 * - the placement of the transaction happens to be such that the
3582 * roundoff is at its maximum
3583 * - the transaction data is synced before the commit record is synced
3584 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3585 * Therefore the commit record is in its own Log Record.
3586 * This can happen as the commit record is called with its
3587 * own region to xlog_write().
3588 * This then means that in the worst case, roundoff can happen for
3589 * the commit-rec as well.
3590 * The commit-rec is smaller than padding in this scenario and so it is
3591 * not added separately.
1da177e4
LT
3592 */
3593
32fb9b57
TS
3594 /* for trans header */
3595 unit_bytes += sizeof(xlog_op_header_t);
3596 unit_bytes += sizeof(xfs_trans_header_t);
3597
1da177e4 3598 /* for start-rec */
32fb9b57
TS
3599 unit_bytes += sizeof(xlog_op_header_t);
3600
9b9fc2b7
DC
3601 /*
3602 * for LR headers - the space for data in an iclog is the size minus
3603 * the space used for the headers. If we use the iclog size, then we
3604 * undercalculate the number of headers required.
3605 *
3606 * Furthermore - the addition of op headers for split-recs might
3607 * increase the space required enough to require more log and op
3608 * headers, so take that into account too.
3609 *
3610 * IMPORTANT: This reservation makes the assumption that if this
3611 * transaction is the first in an iclog and hence has the LR headers
3612 * accounted to it, then the remaining space in the iclog is
3613 * exclusively for this transaction. i.e. if the transaction is larger
3614 * than the iclog, it will be the only thing in that iclog.
3615 * Fundamentally, this means we must pass the entire log vector to
3616 * xlog_write to guarantee this.
3617 */
3618 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3619 num_headers = howmany(unit_bytes, iclog_space);
3620
3621 /* for split-recs - ophdrs added when data split over LRs */
3622 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3623
3624 /* add extra header reservations if we overrun */
3625 while (!num_headers ||
3626 howmany(unit_bytes, iclog_space) > num_headers) {
3627 unit_bytes += sizeof(xlog_op_header_t);
3628 num_headers++;
3629 }
32fb9b57 3630 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3631
32fb9b57
TS
3632 /* for commit-rec LR header - note: padding will subsume the ophdr */
3633 unit_bytes += log->l_iclog_hsize;
3634
32fb9b57 3635 /* for roundoff padding for transaction data and one for commit record */
e773fc93 3636 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
1da177e4 3637 /* log su roundoff */
e773fc93 3638 unit_bytes += 2 * mp->m_sb.sb_logsunit;
1da177e4
LT
3639 } else {
3640 /* BB roundoff */
e773fc93 3641 unit_bytes += 2 * BBSIZE;
1da177e4
LT
3642 }
3643
e773fc93
JL
3644 return unit_bytes;
3645}
3646
3647/*
3648 * Allocate and initialise a new log ticket.
3649 */
3650struct xlog_ticket *
3651xlog_ticket_alloc(
3652 struct xlog *log,
3653 int unit_bytes,
3654 int cnt,
3655 char client,
3656 bool permanent,
3657 xfs_km_flags_t alloc_flags)
3658{
3659 struct xlog_ticket *tic;
3660 int unit_res;
3661
3662 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3663 if (!tic)
3664 return NULL;
3665
3666 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3667
cc09c0dc 3668 atomic_set(&tic->t_ref, 1);
14a7235f 3669 tic->t_task = current;
10547941 3670 INIT_LIST_HEAD(&tic->t_queue);
e773fc93
JL
3671 tic->t_unit_res = unit_res;
3672 tic->t_curr_res = unit_res;
1da177e4
LT
3673 tic->t_cnt = cnt;
3674 tic->t_ocnt = cnt;
ecb3403d 3675 tic->t_tid = prandom_u32();
1da177e4
LT
3676 tic->t_clientid = client;
3677 tic->t_flags = XLOG_TIC_INITED;
9006fb91 3678 if (permanent)
1da177e4 3679 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3680
0adba536 3681 xlog_tic_reset_res(tic);
7e9c6396 3682
1da177e4 3683 return tic;
cc09c0dc 3684}
1da177e4
LT
3685
3686
3687/******************************************************************************
3688 *
3689 * Log debug routines
3690 *
3691 ******************************************************************************
3692 */
cfcbbbd0 3693#if defined(DEBUG)
1da177e4
LT
3694/*
3695 * Make sure that the destination ptr is within the valid data region of
3696 * one of the iclogs. This uses backup pointers stored in a different
3697 * part of the log in case we trash the log structure.
3698 */
181fdfe6 3699STATIC void
e6b1f273 3700xlog_verify_dest_ptr(
ad223e60 3701 struct xlog *log,
5809d5e0 3702 void *ptr)
1da177e4
LT
3703{
3704 int i;
3705 int good_ptr = 0;
3706
e6b1f273
CH
3707 for (i = 0; i < log->l_iclog_bufs; i++) {
3708 if (ptr >= log->l_iclog_bak[i] &&
3709 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3710 good_ptr++;
3711 }
e6b1f273
CH
3712
3713 if (!good_ptr)
a0fa2b67 3714 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3715}
1da177e4 3716
da8a1a4a
DC
3717/*
3718 * Check to make sure the grant write head didn't just over lap the tail. If
3719 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3720 * the cycles differ by exactly one and check the byte count.
3721 *
3722 * This check is run unlocked, so can give false positives. Rather than assert
3723 * on failures, use a warn-once flag and a panic tag to allow the admin to
3724 * determine if they want to panic the machine when such an error occurs. For
3725 * debug kernels this will have the same effect as using an assert but, unlinke
3726 * an assert, it can be turned off at runtime.
3727 */
3f336c6f
DC
3728STATIC void
3729xlog_verify_grant_tail(
ad223e60 3730 struct xlog *log)
3f336c6f 3731{
1c3cb9ec 3732 int tail_cycle, tail_blocks;
a69ed03c 3733 int cycle, space;
3f336c6f 3734
28496968 3735 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3736 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3737 if (tail_cycle != cycle) {
da8a1a4a
DC
3738 if (cycle - 1 != tail_cycle &&
3739 !(log->l_flags & XLOG_TAIL_WARN)) {
3740 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3741 "%s: cycle - 1 != tail_cycle", __func__);
3742 log->l_flags |= XLOG_TAIL_WARN;
3743 }
3744
3745 if (space > BBTOB(tail_blocks) &&
3746 !(log->l_flags & XLOG_TAIL_WARN)) {
3747 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3748 "%s: space > BBTOB(tail_blocks)", __func__);
3749 log->l_flags |= XLOG_TAIL_WARN;
3750 }
3f336c6f
DC
3751 }
3752}
3753
1da177e4
LT
3754/* check if it will fit */
3755STATIC void
9a8d2fdb
MT
3756xlog_verify_tail_lsn(
3757 struct xlog *log,
3758 struct xlog_in_core *iclog,
3759 xfs_lsn_t tail_lsn)
1da177e4
LT
3760{
3761 int blocks;
3762
3763 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3764 blocks =
3765 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3766 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3767 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3768 } else {
3769 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3770
3771 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3772 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3773
3774 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3775 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3776 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3777 }
3778} /* xlog_verify_tail_lsn */
3779
3780/*
3781 * Perform a number of checks on the iclog before writing to disk.
3782 *
3783 * 1. Make sure the iclogs are still circular
3784 * 2. Make sure we have a good magic number
3785 * 3. Make sure we don't have magic numbers in the data
3786 * 4. Check fields of each log operation header for:
3787 * A. Valid client identifier
3788 * B. tid ptr value falls in valid ptr space (user space code)
3789 * C. Length in log record header is correct according to the
3790 * individual operation headers within record.
3791 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3792 * log, check the preceding blocks of the physical log to make sure all
3793 * the cycle numbers agree with the current cycle number.
3794 */
3795STATIC void
9a8d2fdb
MT
3796xlog_verify_iclog(
3797 struct xlog *log,
3798 struct xlog_in_core *iclog,
abca1f33 3799 int count)
1da177e4
LT
3800{
3801 xlog_op_header_t *ophead;
3802 xlog_in_core_t *icptr;
3803 xlog_in_core_2_t *xhdr;
5809d5e0 3804 void *base_ptr, *ptr, *p;
db9d67d6 3805 ptrdiff_t field_offset;
c8ce540d 3806 uint8_t clientid;
1da177e4
LT
3807 int len, i, j, k, op_len;
3808 int idx;
1da177e4
LT
3809
3810 /* check validity of iclog pointers */
b22cd72c 3811 spin_lock(&log->l_icloglock);
1da177e4 3812 icptr = log->l_iclog;
643f7c4e
GB
3813 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3814 ASSERT(icptr);
3815
1da177e4 3816 if (icptr != log->l_iclog)
a0fa2b67 3817 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3818 spin_unlock(&log->l_icloglock);
1da177e4
LT
3819
3820 /* check log magic numbers */
69ef921b 3821 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3822 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3823
5809d5e0
CH
3824 base_ptr = ptr = &iclog->ic_header;
3825 p = &iclog->ic_header;
3826 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
69ef921b 3827 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3828 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3829 __func__);
1da177e4
LT
3830 }
3831
3832 /* check fields */
b53e675d 3833 len = be32_to_cpu(iclog->ic_header.h_num_logops);
5809d5e0
CH
3834 base_ptr = ptr = iclog->ic_datap;
3835 ophead = ptr;
b28708d6 3836 xhdr = iclog->ic_data;
1da177e4 3837 for (i = 0; i < len; i++) {
5809d5e0 3838 ophead = ptr;
1da177e4
LT
3839
3840 /* clientid is only 1 byte */
5809d5e0
CH
3841 p = &ophead->oh_clientid;
3842 field_offset = p - base_ptr;
abca1f33 3843 if (field_offset & 0x1ff) {
1da177e4
LT
3844 clientid = ophead->oh_clientid;
3845 } else {
b2a922cd 3846 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
1da177e4
LT
3847 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3848 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3849 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3850 clientid = xlog_get_client_id(
3851 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3852 } else {
03bea6fe
CH
3853 clientid = xlog_get_client_id(
3854 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3855 }
3856 }
3857 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67 3858 xfs_warn(log->l_mp,
c9690043 3859 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
a0fa2b67
DC
3860 __func__, clientid, ophead,
3861 (unsigned long)field_offset);
1da177e4
LT
3862
3863 /* check length */
5809d5e0
CH
3864 p = &ophead->oh_len;
3865 field_offset = p - base_ptr;
abca1f33 3866 if (field_offset & 0x1ff) {
67fcb7bf 3867 op_len = be32_to_cpu(ophead->oh_len);
1da177e4 3868 } else {
db9d67d6
CH
3869 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3870 (uintptr_t)iclog->ic_datap);
1da177e4
LT
3871 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3872 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3873 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3874 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3875 } else {
b53e675d 3876 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3877 }
3878 }
3879 ptr += sizeof(xlog_op_header_t) + op_len;
3880 }
3881} /* xlog_verify_iclog */
cfcbbbd0 3882#endif
1da177e4
LT
3883
3884/*
b22cd72c 3885 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
1da177e4
LT
3886 */
3887STATIC int
3888xlog_state_ioerror(
9a8d2fdb 3889 struct xlog *log)
1da177e4
LT
3890{
3891 xlog_in_core_t *iclog, *ic;
3892
3893 iclog = log->l_iclog;
3894 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3895 /*
3896 * Mark all the incore logs IOERROR.
3897 * From now on, no log flushes will result.
3898 */
3899 ic = iclog;
3900 do {
3901 ic->ic_state = XLOG_STATE_IOERROR;
3902 ic = ic->ic_next;
3903 } while (ic != iclog);
014c2544 3904 return 0;
1da177e4
LT
3905 }
3906 /*
3907 * Return non-zero, if state transition has already happened.
3908 */
014c2544 3909 return 1;
1da177e4
LT
3910}
3911
3912/*
3913 * This is called from xfs_force_shutdown, when we're forcibly
3914 * shutting down the filesystem, typically because of an IO error.
3915 * Our main objectives here are to make sure that:
a870fe6d
DC
3916 * a. if !logerror, flush the logs to disk. Anything modified
3917 * after this is ignored.
3918 * b. the filesystem gets marked 'SHUTDOWN' for all interested
1da177e4 3919 * parties to find out, 'atomically'.
a870fe6d 3920 * c. those who're sleeping on log reservations, pinned objects and
1da177e4 3921 * other resources get woken up, and be told the bad news.
a870fe6d 3922 * d. nothing new gets queued up after (b) and (c) are done.
9da1ab18 3923 *
a870fe6d
DC
3924 * Note: for the !logerror case we need to flush the regions held in memory out
3925 * to disk first. This needs to be done before the log is marked as shutdown,
3926 * otherwise the iclog writes will fail.
1da177e4
LT
3927 */
3928int
3929xfs_log_force_umount(
3930 struct xfs_mount *mp,
3931 int logerror)
3932{
9a8d2fdb 3933 struct xlog *log;
1da177e4 3934 int retval;
1da177e4
LT
3935
3936 log = mp->m_log;
3937
3938 /*
3939 * If this happens during log recovery, don't worry about
3940 * locking; the log isn't open for business yet.
3941 */
3942 if (!log ||
3943 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3944 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3945 if (mp->m_sb_bp)
b0388bf1 3946 mp->m_sb_bp->b_flags |= XBF_DONE;
014c2544 3947 return 0;
1da177e4
LT
3948 }
3949
3950 /*
3951 * Somebody could've already done the hard work for us.
3952 * No need to get locks for this.
3953 */
3954 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3955 ASSERT(XLOG_FORCED_SHUTDOWN(log));
014c2544 3956 return 1;
1da177e4 3957 }
9da1ab18
DC
3958
3959 /*
a870fe6d
DC
3960 * Flush all the completed transactions to disk before marking the log
3961 * being shut down. We need to do it in this order to ensure that
3962 * completed operations are safely on disk before we shut down, and that
3963 * we don't have to issue any buffer IO after the shutdown flags are set
3964 * to guarantee this.
9da1ab18 3965 */
93b8a585 3966 if (!logerror)
60e5bb78 3967 xfs_log_force(mp, XFS_LOG_SYNC);
9da1ab18 3968
1da177e4 3969 /*
3f16b985
DC
3970 * mark the filesystem and the as in a shutdown state and wake
3971 * everybody up to tell them the bad news.
1da177e4 3972 */
b22cd72c 3973 spin_lock(&log->l_icloglock);
1da177e4 3974 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
bac8dca9 3975 if (mp->m_sb_bp)
b0388bf1 3976 mp->m_sb_bp->b_flags |= XBF_DONE;
bac8dca9 3977
1da177e4 3978 /*
a870fe6d
DC
3979 * Mark the log and the iclogs with IO error flags to prevent any
3980 * further log IO from being issued or completed.
1da177e4
LT
3981 */
3982 log->l_flags |= XLOG_IO_ERROR;
a870fe6d 3983 retval = xlog_state_ioerror(log);
b22cd72c 3984 spin_unlock(&log->l_icloglock);
1da177e4
LT
3985
3986 /*
10547941
DC
3987 * We don't want anybody waiting for log reservations after this. That
3988 * means we have to wake up everybody queued up on reserveq as well as
3989 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3990 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 3991 * action is protected by the grant locks.
1da177e4 3992 */
a79bf2d7
CH
3993 xlog_grant_head_wake_all(&log->l_reserve_head);
3994 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 3995
1da177e4 3996 /*
ac983517
DC
3997 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3998 * as if the log writes were completed. The abort handling in the log
3999 * item committed callback functions will do this again under lock to
4000 * avoid races.
1da177e4 4001 */
cdea5459 4002 spin_lock(&log->l_cilp->xc_push_lock);
ac983517 4003 wake_up_all(&log->l_cilp->xc_commit_wait);
cdea5459 4004 spin_unlock(&log->l_cilp->xc_push_lock);
d15cbf2f 4005 xlog_state_do_callback(log, true, NULL);
1da177e4
LT
4006
4007#ifdef XFSERRORDEBUG
4008 {
4009 xlog_in_core_t *iclog;
4010
b22cd72c 4011 spin_lock(&log->l_icloglock);
1da177e4
LT
4012 iclog = log->l_iclog;
4013 do {
4014 ASSERT(iclog->ic_callback == 0);
4015 iclog = iclog->ic_next;
4016 } while (iclog != log->l_iclog);
b22cd72c 4017 spin_unlock(&log->l_icloglock);
1da177e4
LT
4018 }
4019#endif
4020 /* return non-zero if log IOERROR transition had already happened */
014c2544 4021 return retval;
1da177e4
LT
4022}
4023
ba0f32d4 4024STATIC int
9a8d2fdb
MT
4025xlog_iclogs_empty(
4026 struct xlog *log)
1da177e4
LT
4027{
4028 xlog_in_core_t *iclog;
4029
4030 iclog = log->l_iclog;
4031 do {
4032 /* endianness does not matter here, zero is zero in
4033 * any language.
4034 */
4035 if (iclog->ic_header.h_num_logops)
014c2544 4036 return 0;
1da177e4
LT
4037 iclog = iclog->ic_next;
4038 } while (iclog != log->l_iclog);
014c2544 4039 return 1;
1da177e4 4040}
f661f1e0 4041
a45086e2
BF
4042/*
4043 * Verify that an LSN stamped into a piece of metadata is valid. This is
4044 * intended for use in read verifiers on v5 superblocks.
4045 */
4046bool
4047xfs_log_check_lsn(
4048 struct xfs_mount *mp,
4049 xfs_lsn_t lsn)
4050{
4051 struct xlog *log = mp->m_log;
4052 bool valid;
4053
4054 /*
4055 * norecovery mode skips mount-time log processing and unconditionally
4056 * resets the in-core LSN. We can't validate in this mode, but
4057 * modifications are not allowed anyways so just return true.
4058 */
4059 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4060 return true;
4061
4062 /*
4063 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4064 * handled by recovery and thus safe to ignore here.
4065 */
4066 if (lsn == NULLCOMMITLSN)
4067 return true;
4068
4069 valid = xlog_valid_lsn(mp->m_log, lsn);
4070
4071 /* warn the user about what's gone wrong before verifier failure */
4072 if (!valid) {
4073 spin_lock(&log->l_icloglock);
4074 xfs_warn(mp,
4075"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4076"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4077 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4078 log->l_curr_cycle, log->l_curr_block);
4079 spin_unlock(&log->l_icloglock);
4080 }
4081
4082 return valid;
4083}
0c60d3aa
DW
4084
4085bool
4086xfs_log_in_recovery(
4087 struct xfs_mount *mp)
4088{
4089 struct xlog *log = mp->m_log;
4090
4091 return log->l_flags & XLOG_ACTIVE_RECOVERY;
4092}