]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_log_cil.c
xfs: return log item size in IOP_SIZE
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_log_cil.c
CommitLineData
71e330b5
DC
1/*
2 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write the Free Software Foundation,
15 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
16 */
17
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
71e330b5 21#include "xfs_log.h"
71e330b5
DC
22#include "xfs_trans.h"
23#include "xfs_trans_priv.h"
24#include "xfs_log_priv.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
71e330b5
DC
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_alloc.h"
efc27b52 30#include "xfs_extent_busy.h"
e84661aa 31#include "xfs_discard.h"
71e330b5 32
71e330b5
DC
33/*
34 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
35 * recover, so we don't allow failure here. Also, we allocate in a context that
36 * we don't want to be issuing transactions from, so we need to tell the
37 * allocation code this as well.
38 *
39 * We don't reserve any space for the ticket - we are going to steal whatever
40 * space we require from transactions as they commit. To ensure we reserve all
41 * the space required, we need to set the current reservation of the ticket to
42 * zero so that we know to steal the initial transaction overhead from the
43 * first transaction commit.
44 */
45static struct xlog_ticket *
46xlog_cil_ticket_alloc(
f7bdf03a 47 struct xlog *log)
71e330b5
DC
48{
49 struct xlog_ticket *tic;
50
51 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0,
52 KM_SLEEP|KM_NOFS);
53 tic->t_trans_type = XFS_TRANS_CHECKPOINT;
54
55 /*
56 * set the current reservation to zero so we know to steal the basic
57 * transaction overhead reservation from the first transaction commit.
58 */
59 tic->t_curr_res = 0;
60 return tic;
61}
62
63/*
64 * After the first stage of log recovery is done, we know where the head and
65 * tail of the log are. We need this log initialisation done before we can
66 * initialise the first CIL checkpoint context.
67 *
68 * Here we allocate a log ticket to track space usage during a CIL push. This
69 * ticket is passed to xlog_write() directly so that we don't slowly leak log
70 * space by failing to account for space used by log headers and additional
71 * region headers for split regions.
72 */
73void
74xlog_cil_init_post_recovery(
f7bdf03a 75 struct xlog *log)
71e330b5 76{
71e330b5
DC
77 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
78 log->l_cilp->xc_ctx->sequence = 1;
79 log->l_cilp->xc_ctx->commit_lsn = xlog_assign_lsn(log->l_curr_cycle,
80 log->l_curr_block);
81}
82
71e330b5
DC
83/*
84 * Format log item into a flat buffers
85 *
86 * For delayed logging, we need to hold a formatted buffer containing all the
87 * changes on the log item. This enables us to relog the item in memory and
88 * write it out asynchronously without needing to relock the object that was
89 * modified at the time it gets written into the iclog.
90 *
91 * This function builds a vector for the changes in each log item in the
92 * transaction. It then works out the length of the buffer needed for each log
93 * item, allocates them and formats the vector for the item into the buffer.
94 * The buffer is then attached to the log item are then inserted into the
95 * Committed Item List for tracking until the next checkpoint is written out.
96 *
97 * We don't set up region headers during this process; we simply copy the
98 * regions into the flat buffer. We can do this because we still have to do a
99 * formatting step to write the regions into the iclog buffer. Writing the
100 * ophdrs during the iclog write means that we can support splitting large
101 * regions across iclog boundares without needing a change in the format of the
102 * item/region encapsulation.
103 *
104 * Hence what we need to do now is change the rewrite the vector array to point
105 * to the copied region inside the buffer we just allocated. This allows us to
106 * format the regions into the iclog as though they are being formatted
107 * directly out of the objects themselves.
108 */
0244b960
CH
109static struct xfs_log_vec *
110xlog_cil_prepare_log_vecs(
111 struct xfs_trans *tp)
71e330b5 112{
0244b960
CH
113 struct xfs_log_item_desc *lidp;
114 struct xfs_log_vec *lv = NULL;
115 struct xfs_log_vec *ret_lv = NULL;
71e330b5 116
0244b960
CH
117
118 /* Bail out if we didn't find a log item. */
119 if (list_empty(&tp->t_items)) {
120 ASSERT(0);
121 return NULL;
122 }
123
124 list_for_each_entry(lidp, &tp->t_items, lid_trans) {
166d1368 125 struct xfs_log_item *lip = lidp->lid_item;
0244b960 126 struct xfs_log_vec *new_lv;
71e330b5
DC
127 void *ptr;
128 int index;
129 int len = 0;
166d1368
DC
130 uint niovecs = 0;
131 uint nbytes = 0;
fd63875c 132 bool ordered = false;
71e330b5 133
0244b960
CH
134 /* Skip items which aren't dirty in this transaction. */
135 if (!(lidp->lid_flags & XFS_LID_DIRTY))
136 continue;
137
166d1368
DC
138 /* get number of vecs and size of data to be stored */
139 lip->li_ops->iop_size(lip, &niovecs, &nbytes);
140
0244b960 141 /* Skip items that do not have any vectors for writing */
b3934213 142 if (!niovecs)
0244b960
CH
143 continue;
144
fd63875c
DC
145 /*
146 * Ordered items need to be tracked but we do not wish to write
147 * them. We need a logvec to track the object, but we do not
148 * need an iovec or buffer to be allocated for copying data.
149 */
150 if (niovecs == XFS_LOG_VEC_ORDERED) {
151 ordered = true;
152 niovecs = 0;
153 }
154
0244b960 155 new_lv = kmem_zalloc(sizeof(*new_lv) +
b3934213 156 niovecs * sizeof(struct xfs_log_iovec),
ac14876c 157 KM_SLEEP|KM_NOFS);
0244b960 158
166d1368 159 new_lv->lv_item = lip;
fd63875c
DC
160 new_lv->lv_niovecs = niovecs;
161 if (ordered) {
162 /* track as an ordered logvec */
163 new_lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
164 goto next;
165 }
166
0244b960
CH
167 /* The allocated iovec region lies beyond the log vector. */
168 new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1];
0244b960 169
71e330b5 170 /* build the vector array and calculate it's length */
0244b960
CH
171 IOP_FORMAT(new_lv->lv_item, new_lv->lv_iovecp);
172 for (index = 0; index < new_lv->lv_niovecs; index++)
173 len += new_lv->lv_iovecp[index].i_len;
71e330b5 174
0244b960
CH
175 new_lv->lv_buf_len = len;
176 new_lv->lv_buf = kmem_alloc(new_lv->lv_buf_len,
177 KM_SLEEP|KM_NOFS);
178 ptr = new_lv->lv_buf;
71e330b5 179
0244b960
CH
180 for (index = 0; index < new_lv->lv_niovecs; index++) {
181 struct xfs_log_iovec *vec = &new_lv->lv_iovecp[index];
71e330b5
DC
182
183 memcpy(ptr, vec->i_addr, vec->i_len);
184 vec->i_addr = ptr;
185 ptr += vec->i_len;
186 }
0244b960
CH
187 ASSERT(ptr == new_lv->lv_buf + new_lv->lv_buf_len);
188
fd63875c 189next:
0244b960
CH
190 if (!ret_lv)
191 ret_lv = new_lv;
192 else
193 lv->lv_next = new_lv;
194 lv = new_lv;
3b93c7aa 195 }
0244b960
CH
196
197 return ret_lv;
3b93c7aa 198}
71e330b5 199
d1583a38
DC
200/*
201 * Prepare the log item for insertion into the CIL. Calculate the difference in
202 * log space and vectors it will consume, and if it is a new item pin it as
203 * well.
204 */
205STATIC void
206xfs_cil_prepare_item(
f7bdf03a 207 struct xlog *log,
d1583a38
DC
208 struct xfs_log_vec *lv,
209 int *len,
210 int *diff_iovecs)
211{
212 struct xfs_log_vec *old = lv->lv_item->li_lv;
213
214 if (old) {
215 /* existing lv on log item, space used is a delta */
fd63875c
DC
216 ASSERT((old->lv_buf && old->lv_buf_len && old->lv_niovecs) ||
217 old->lv_buf_len == XFS_LOG_VEC_ORDERED);
218
219 /*
220 * If the new item is ordered, keep the old one that is already
221 * tracking dirty or ordered regions
222 */
223 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
224 ASSERT(!lv->lv_buf);
225 kmem_free(lv);
226 return;
227 }
d1583a38
DC
228
229 *len += lv->lv_buf_len - old->lv_buf_len;
230 *diff_iovecs += lv->lv_niovecs - old->lv_niovecs;
231 kmem_free(old->lv_buf);
232 kmem_free(old);
233 } else {
234 /* new lv, must pin the log item */
235 ASSERT(!lv->lv_item->li_lv);
d1583a38 236
fd63875c
DC
237 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
238 *len += lv->lv_buf_len;
239 *diff_iovecs += lv->lv_niovecs;
240 }
d1583a38
DC
241 IOP_PIN(lv->lv_item);
242
243 }
244
245 /* attach new log vector to log item */
246 lv->lv_item->li_lv = lv;
247
248 /*
249 * If this is the first time the item is being committed to the
250 * CIL, store the sequence number on the log item so we can
251 * tell in future commits whether this is the first checkpoint
252 * the item is being committed into.
253 */
254 if (!lv->lv_item->li_seq)
255 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
256}
257
258/*
259 * Insert the log items into the CIL and calculate the difference in space
260 * consumed by the item. Add the space to the checkpoint ticket and calculate
261 * if the change requires additional log metadata. If it does, take that space
42b2aa86 262 * as well. Remove the amount of space we added to the checkpoint ticket from
d1583a38
DC
263 * the current transaction ticket so that the accounting works out correctly.
264 */
3b93c7aa
DC
265static void
266xlog_cil_insert_items(
f7bdf03a 267 struct xlog *log,
3b93c7aa 268 struct xfs_log_vec *log_vector,
d1583a38 269 struct xlog_ticket *ticket)
3b93c7aa 270{
d1583a38
DC
271 struct xfs_cil *cil = log->l_cilp;
272 struct xfs_cil_ctx *ctx = cil->xc_ctx;
273 struct xfs_log_vec *lv;
274 int len = 0;
275 int diff_iovecs = 0;
276 int iclog_space;
3b93c7aa
DC
277
278 ASSERT(log_vector);
d1583a38
DC
279
280 /*
281 * Do all the accounting aggregation and switching of log vectors
282 * around in a separate loop to the insertion of items into the CIL.
283 * Then we can do a separate loop to update the CIL within a single
284 * lock/unlock pair. This reduces the number of round trips on the CIL
285 * lock from O(nr_logvectors) to O(1) and greatly reduces the overall
286 * hold time for the transaction commit.
287 *
288 * If this is the first time the item is being placed into the CIL in
289 * this context, pin it so it can't be written to disk until the CIL is
290 * flushed to the iclog and the iclog written to disk.
291 *
292 * We can do this safely because the context can't checkpoint until we
293 * are done so it doesn't matter exactly how we update the CIL.
294 */
d1583a38 295 spin_lock(&cil->xc_cil_lock);
fd63875c
DC
296 for (lv = log_vector; lv; ) {
297 struct xfs_log_vec *next = lv->lv_next;
d1583a38 298
fd63875c
DC
299 ASSERT(lv->lv_item->li_lv || list_empty(&lv->lv_item->li_cil));
300 lv->lv_next = NULL;
301
302 /*
303 * xfs_cil_prepare_item() may free the lv, so move the item on
304 * the CIL first.
305 */
d1583a38 306 list_move_tail(&lv->lv_item->li_cil, &cil->xc_cil);
fd63875c
DC
307 xfs_cil_prepare_item(log, lv, &len, &diff_iovecs);
308 lv = next;
309 }
d1583a38 310
fd63875c
DC
311 /* account for space used by new iovec headers */
312 len += diff_iovecs * sizeof(xlog_op_header_t);
d1583a38
DC
313 ctx->nvecs += diff_iovecs;
314
315 /*
316 * Now transfer enough transaction reservation to the context ticket
317 * for the checkpoint. The context ticket is special - the unit
318 * reservation has to grow as well as the current reservation as we
319 * steal from tickets so we can correctly determine the space used
320 * during the transaction commit.
321 */
322 if (ctx->ticket->t_curr_res == 0) {
323 /* first commit in checkpoint, steal the header reservation */
324 ASSERT(ticket->t_curr_res >= ctx->ticket->t_unit_res + len);
325 ctx->ticket->t_curr_res = ctx->ticket->t_unit_res;
326 ticket->t_curr_res -= ctx->ticket->t_unit_res;
327 }
328
329 /* do we need space for more log record headers? */
330 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
331 if (len > 0 && (ctx->space_used / iclog_space !=
332 (ctx->space_used + len) / iclog_space)) {
333 int hdrs;
334
335 hdrs = (len + iclog_space - 1) / iclog_space;
336 /* need to take into account split region headers, too */
337 hdrs *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
338 ctx->ticket->t_unit_res += hdrs;
339 ctx->ticket->t_curr_res += hdrs;
340 ticket->t_curr_res -= hdrs;
341 ASSERT(ticket->t_curr_res >= len);
342 }
343 ticket->t_curr_res -= len;
344 ctx->space_used += len;
345
346 spin_unlock(&cil->xc_cil_lock);
71e330b5
DC
347}
348
349static void
350xlog_cil_free_logvec(
351 struct xfs_log_vec *log_vector)
352{
353 struct xfs_log_vec *lv;
354
355 for (lv = log_vector; lv; ) {
356 struct xfs_log_vec *next = lv->lv_next;
357 kmem_free(lv->lv_buf);
358 kmem_free(lv);
359 lv = next;
360 }
361}
362
71e330b5
DC
363/*
364 * Mark all items committed and clear busy extents. We free the log vector
365 * chains in a separate pass so that we unpin the log items as quickly as
366 * possible.
367 */
368static void
369xlog_cil_committed(
370 void *args,
371 int abort)
372{
373 struct xfs_cil_ctx *ctx = args;
e84661aa 374 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
71e330b5 375
0e57f6a3
DC
376 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
377 ctx->start_lsn, abort);
71e330b5 378
4ecbfe63
DC
379 xfs_extent_busy_sort(&ctx->busy_extents);
380 xfs_extent_busy_clear(mp, &ctx->busy_extents,
e84661aa 381 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
71e330b5
DC
382
383 spin_lock(&ctx->cil->xc_cil_lock);
384 list_del(&ctx->committing);
385 spin_unlock(&ctx->cil->xc_cil_lock);
386
387 xlog_cil_free_logvec(ctx->lv_chain);
e84661aa
CH
388
389 if (!list_empty(&ctx->busy_extents)) {
390 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
391
392 xfs_discard_extents(mp, &ctx->busy_extents);
4ecbfe63 393 xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
e84661aa
CH
394 }
395
71e330b5
DC
396 kmem_free(ctx);
397}
398
399/*
a44f13ed
DC
400 * Push the Committed Item List to the log. If @push_seq flag is zero, then it
401 * is a background flush and so we can chose to ignore it. Otherwise, if the
402 * current sequence is the same as @push_seq we need to do a flush. If
403 * @push_seq is less than the current sequence, then it has already been
404 * flushed and we don't need to do anything - the caller will wait for it to
405 * complete if necessary.
406 *
407 * @push_seq is a value rather than a flag because that allows us to do an
408 * unlocked check of the sequence number for a match. Hence we can allows log
409 * forces to run racily and not issue pushes for the same sequence twice. If we
410 * get a race between multiple pushes for the same sequence they will block on
411 * the first one and then abort, hence avoiding needless pushes.
71e330b5 412 */
a44f13ed 413STATIC int
71e330b5 414xlog_cil_push(
f7bdf03a 415 struct xlog *log)
71e330b5
DC
416{
417 struct xfs_cil *cil = log->l_cilp;
418 struct xfs_log_vec *lv;
419 struct xfs_cil_ctx *ctx;
420 struct xfs_cil_ctx *new_ctx;
421 struct xlog_in_core *commit_iclog;
422 struct xlog_ticket *tic;
71e330b5 423 int num_iovecs;
71e330b5
DC
424 int error = 0;
425 struct xfs_trans_header thdr;
426 struct xfs_log_iovec lhdr;
427 struct xfs_log_vec lvhdr = { NULL };
428 xfs_lsn_t commit_lsn;
4c2d542f 429 xfs_lsn_t push_seq;
71e330b5
DC
430
431 if (!cil)
432 return 0;
433
71e330b5
DC
434 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_SLEEP|KM_NOFS);
435 new_ctx->ticket = xlog_cil_ticket_alloc(log);
436
4c2d542f 437 down_write(&cil->xc_ctx_lock);
71e330b5
DC
438 ctx = cil->xc_ctx;
439
4c2d542f
DC
440 spin_lock(&cil->xc_cil_lock);
441 push_seq = cil->xc_push_seq;
442 ASSERT(push_seq <= ctx->sequence);
71e330b5 443
4c2d542f
DC
444 /*
445 * Check if we've anything to push. If there is nothing, then we don't
446 * move on to a new sequence number and so we have to be able to push
447 * this sequence again later.
448 */
449 if (list_empty(&cil->xc_cil)) {
450 cil->xc_push_seq = 0;
451 spin_unlock(&cil->xc_cil_lock);
a44f13ed 452 goto out_skip;
4c2d542f
DC
453 }
454 spin_unlock(&cil->xc_cil_lock);
455
a44f13ed
DC
456
457 /* check for a previously pushed seqeunce */
4c2d542f 458 if (push_seq < cil->xc_ctx->sequence)
df806158
DC
459 goto out_skip;
460
71e330b5
DC
461 /*
462 * pull all the log vectors off the items in the CIL, and
463 * remove the items from the CIL. We don't need the CIL lock
464 * here because it's only needed on the transaction commit
465 * side which is currently locked out by the flush lock.
466 */
467 lv = NULL;
71e330b5 468 num_iovecs = 0;
71e330b5
DC
469 while (!list_empty(&cil->xc_cil)) {
470 struct xfs_log_item *item;
71e330b5
DC
471
472 item = list_first_entry(&cil->xc_cil,
473 struct xfs_log_item, li_cil);
474 list_del_init(&item->li_cil);
475 if (!ctx->lv_chain)
476 ctx->lv_chain = item->li_lv;
477 else
478 lv->lv_next = item->li_lv;
479 lv = item->li_lv;
480 item->li_lv = NULL;
71e330b5 481 num_iovecs += lv->lv_niovecs;
71e330b5
DC
482 }
483
484 /*
485 * initialise the new context and attach it to the CIL. Then attach
486 * the current context to the CIL committing lsit so it can be found
487 * during log forces to extract the commit lsn of the sequence that
488 * needs to be forced.
489 */
490 INIT_LIST_HEAD(&new_ctx->committing);
491 INIT_LIST_HEAD(&new_ctx->busy_extents);
492 new_ctx->sequence = ctx->sequence + 1;
493 new_ctx->cil = cil;
494 cil->xc_ctx = new_ctx;
495
a44f13ed
DC
496 /*
497 * mirror the new sequence into the cil structure so that we can do
498 * unlocked checks against the current sequence in log forces without
499 * risking deferencing a freed context pointer.
500 */
501 cil->xc_current_sequence = new_ctx->sequence;
502
71e330b5
DC
503 /*
504 * The switch is now done, so we can drop the context lock and move out
505 * of a shared context. We can't just go straight to the commit record,
506 * though - we need to synchronise with previous and future commits so
507 * that the commit records are correctly ordered in the log to ensure
508 * that we process items during log IO completion in the correct order.
509 *
510 * For example, if we get an EFI in one checkpoint and the EFD in the
511 * next (e.g. due to log forces), we do not want the checkpoint with
512 * the EFD to be committed before the checkpoint with the EFI. Hence
513 * we must strictly order the commit records of the checkpoints so
514 * that: a) the checkpoint callbacks are attached to the iclogs in the
515 * correct order; and b) the checkpoints are replayed in correct order
516 * in log recovery.
517 *
518 * Hence we need to add this context to the committing context list so
519 * that higher sequences will wait for us to write out a commit record
520 * before they do.
521 */
522 spin_lock(&cil->xc_cil_lock);
523 list_add(&ctx->committing, &cil->xc_committing);
524 spin_unlock(&cil->xc_cil_lock);
525 up_write(&cil->xc_ctx_lock);
526
527 /*
528 * Build a checkpoint transaction header and write it to the log to
529 * begin the transaction. We need to account for the space used by the
530 * transaction header here as it is not accounted for in xlog_write().
531 *
532 * The LSN we need to pass to the log items on transaction commit is
533 * the LSN reported by the first log vector write. If we use the commit
534 * record lsn then we can move the tail beyond the grant write head.
535 */
536 tic = ctx->ticket;
537 thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
538 thdr.th_type = XFS_TRANS_CHECKPOINT;
539 thdr.th_tid = tic->t_tid;
540 thdr.th_num_items = num_iovecs;
4e0d5f92 541 lhdr.i_addr = &thdr;
71e330b5
DC
542 lhdr.i_len = sizeof(xfs_trans_header_t);
543 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
544 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
545
546 lvhdr.lv_niovecs = 1;
547 lvhdr.lv_iovecp = &lhdr;
548 lvhdr.lv_next = ctx->lv_chain;
549
550 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL, 0);
551 if (error)
7db37c5e 552 goto out_abort_free_ticket;
71e330b5
DC
553
554 /*
555 * now that we've written the checkpoint into the log, strictly
556 * order the commit records so replay will get them in the right order.
557 */
558restart:
559 spin_lock(&cil->xc_cil_lock);
560 list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
561 /*
562 * Higher sequences will wait for this one so skip them.
563 * Don't wait for own own sequence, either.
564 */
565 if (new_ctx->sequence >= ctx->sequence)
566 continue;
567 if (!new_ctx->commit_lsn) {
568 /*
569 * It is still being pushed! Wait for the push to
570 * complete, then start again from the beginning.
571 */
eb40a875 572 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
71e330b5
DC
573 goto restart;
574 }
575 }
576 spin_unlock(&cil->xc_cil_lock);
577
7db37c5e 578 /* xfs_log_done always frees the ticket on error. */
71e330b5 579 commit_lsn = xfs_log_done(log->l_mp, tic, &commit_iclog, 0);
7db37c5e 580 if (commit_lsn == -1)
71e330b5
DC
581 goto out_abort;
582
583 /* attach all the transactions w/ busy extents to iclog */
584 ctx->log_cb.cb_func = xlog_cil_committed;
585 ctx->log_cb.cb_arg = ctx;
586 error = xfs_log_notify(log->l_mp, commit_iclog, &ctx->log_cb);
587 if (error)
588 goto out_abort;
589
590 /*
591 * now the checkpoint commit is complete and we've attached the
592 * callbacks to the iclog we can assign the commit LSN to the context
593 * and wake up anyone who is waiting for the commit to complete.
594 */
595 spin_lock(&cil->xc_cil_lock);
596 ctx->commit_lsn = commit_lsn;
eb40a875 597 wake_up_all(&cil->xc_commit_wait);
71e330b5
DC
598 spin_unlock(&cil->xc_cil_lock);
599
600 /* release the hounds! */
601 return xfs_log_release_iclog(log->l_mp, commit_iclog);
602
603out_skip:
604 up_write(&cil->xc_ctx_lock);
605 xfs_log_ticket_put(new_ctx->ticket);
606 kmem_free(new_ctx);
607 return 0;
608
7db37c5e
DC
609out_abort_free_ticket:
610 xfs_log_ticket_put(tic);
71e330b5
DC
611out_abort:
612 xlog_cil_committed(ctx, XFS_LI_ABORTED);
613 return XFS_ERROR(EIO);
614}
615
4c2d542f
DC
616static void
617xlog_cil_push_work(
618 struct work_struct *work)
619{
620 struct xfs_cil *cil = container_of(work, struct xfs_cil,
621 xc_push_work);
622 xlog_cil_push(cil->xc_log);
623}
624
625/*
626 * We need to push CIL every so often so we don't cache more than we can fit in
627 * the log. The limit really is that a checkpoint can't be more than half the
628 * log (the current checkpoint is not allowed to overwrite the previous
629 * checkpoint), but commit latency and memory usage limit this to a smaller
630 * size.
631 */
632static void
633xlog_cil_push_background(
f7bdf03a 634 struct xlog *log)
4c2d542f
DC
635{
636 struct xfs_cil *cil = log->l_cilp;
637
638 /*
639 * The cil won't be empty because we are called while holding the
640 * context lock so whatever we added to the CIL will still be there
641 */
642 ASSERT(!list_empty(&cil->xc_cil));
643
644 /*
645 * don't do a background push if we haven't used up all the
646 * space available yet.
647 */
648 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log))
649 return;
650
651 spin_lock(&cil->xc_cil_lock);
652 if (cil->xc_push_seq < cil->xc_current_sequence) {
653 cil->xc_push_seq = cil->xc_current_sequence;
654 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
655 }
656 spin_unlock(&cil->xc_cil_lock);
657
658}
659
660static void
661xlog_cil_push_foreground(
f7bdf03a 662 struct xlog *log,
4c2d542f
DC
663 xfs_lsn_t push_seq)
664{
665 struct xfs_cil *cil = log->l_cilp;
666
667 if (!cil)
668 return;
669
670 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
671
672 /* start on any pending background push to minimise wait time on it */
673 flush_work(&cil->xc_push_work);
674
675 /*
676 * If the CIL is empty or we've already pushed the sequence then
677 * there's no work we need to do.
678 */
679 spin_lock(&cil->xc_cil_lock);
680 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
681 spin_unlock(&cil->xc_cil_lock);
682 return;
683 }
684
685 cil->xc_push_seq = push_seq;
686 spin_unlock(&cil->xc_cil_lock);
687
688 /* do the push now */
689 xlog_cil_push(log);
690}
691
a44f13ed
DC
692/*
693 * Commit a transaction with the given vector to the Committed Item List.
694 *
695 * To do this, we need to format the item, pin it in memory if required and
696 * account for the space used by the transaction. Once we have done that we
697 * need to release the unused reservation for the transaction, attach the
698 * transaction to the checkpoint context so we carry the busy extents through
699 * to checkpoint completion, and then unlock all the items in the transaction.
700 *
a44f13ed
DC
701 * Called with the context lock already held in read mode to lock out
702 * background commit, returns without it held once background commits are
703 * allowed again.
704 */
0244b960 705int
a44f13ed
DC
706xfs_log_commit_cil(
707 struct xfs_mount *mp,
708 struct xfs_trans *tp,
a44f13ed
DC
709 xfs_lsn_t *commit_lsn,
710 int flags)
711{
f7bdf03a 712 struct xlog *log = mp->m_log;
a44f13ed 713 int log_flags = 0;
0244b960 714 struct xfs_log_vec *log_vector;
a44f13ed
DC
715
716 if (flags & XFS_TRANS_RELEASE_LOG_RES)
717 log_flags = XFS_LOG_REL_PERM_RESERV;
718
3b93c7aa 719 /*
0244b960 720 * Do all the hard work of formatting items (including memory
3b93c7aa
DC
721 * allocation) outside the CIL context lock. This prevents stalling CIL
722 * pushes when we are low on memory and a transaction commit spends a
723 * lot of time in memory reclaim.
724 */
0244b960
CH
725 log_vector = xlog_cil_prepare_log_vecs(tp);
726 if (!log_vector)
727 return ENOMEM;
3b93c7aa 728
a44f13ed
DC
729 /* lock out background commit */
730 down_read(&log->l_cilp->xc_ctx_lock);
d1583a38
DC
731 if (commit_lsn)
732 *commit_lsn = log->l_cilp->xc_ctx->sequence;
733
fd63875c 734 /* xlog_cil_insert_items() destroys log_vector list */
d1583a38 735 xlog_cil_insert_items(log, log_vector, tp->t_ticket);
a44f13ed
DC
736
737 /* check we didn't blow the reservation */
738 if (tp->t_ticket->t_curr_res < 0)
739 xlog_print_tic_res(log->l_mp, tp->t_ticket);
740
741 /* attach the transaction to the CIL if it has any busy extents */
742 if (!list_empty(&tp->t_busy)) {
743 spin_lock(&log->l_cilp->xc_cil_lock);
744 list_splice_init(&tp->t_busy,
745 &log->l_cilp->xc_ctx->busy_extents);
746 spin_unlock(&log->l_cilp->xc_cil_lock);
747 }
748
749 tp->t_commit_lsn = *commit_lsn;
750 xfs_log_done(mp, tp->t_ticket, NULL, log_flags);
751 xfs_trans_unreserve_and_mod_sb(tp);
752
753 /*
754 * Once all the items of the transaction have been copied to the CIL,
755 * the items can be unlocked and freed.
756 *
757 * This needs to be done before we drop the CIL context lock because we
758 * have to update state in the log items and unlock them before they go
759 * to disk. If we don't, then the CIL checkpoint can race with us and
760 * we can run checkpoint completion before we've updated and unlocked
761 * the log items. This affects (at least) processing of stale buffers,
762 * inodes and EFIs.
763 */
764 xfs_trans_free_items(tp, *commit_lsn, 0);
765
4c2d542f 766 xlog_cil_push_background(log);
a44f13ed
DC
767
768 up_read(&log->l_cilp->xc_ctx_lock);
0244b960 769 return 0;
a44f13ed
DC
770}
771
71e330b5
DC
772/*
773 * Conditionally push the CIL based on the sequence passed in.
774 *
775 * We only need to push if we haven't already pushed the sequence
776 * number given. Hence the only time we will trigger a push here is
777 * if the push sequence is the same as the current context.
778 *
779 * We return the current commit lsn to allow the callers to determine if a
780 * iclog flush is necessary following this call.
71e330b5
DC
781 */
782xfs_lsn_t
a44f13ed 783xlog_cil_force_lsn(
f7bdf03a 784 struct xlog *log,
a44f13ed 785 xfs_lsn_t sequence)
71e330b5
DC
786{
787 struct xfs_cil *cil = log->l_cilp;
788 struct xfs_cil_ctx *ctx;
789 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
790
a44f13ed
DC
791 ASSERT(sequence <= cil->xc_current_sequence);
792
793 /*
794 * check to see if we need to force out the current context.
795 * xlog_cil_push() handles racing pushes for the same sequence,
796 * so no need to deal with it here.
797 */
4c2d542f 798 xlog_cil_push_foreground(log, sequence);
71e330b5
DC
799
800 /*
801 * See if we can find a previous sequence still committing.
71e330b5
DC
802 * We need to wait for all previous sequence commits to complete
803 * before allowing the force of push_seq to go ahead. Hence block
804 * on commits for those as well.
805 */
a44f13ed 806restart:
71e330b5 807 spin_lock(&cil->xc_cil_lock);
71e330b5 808 list_for_each_entry(ctx, &cil->xc_committing, committing) {
a44f13ed 809 if (ctx->sequence > sequence)
71e330b5
DC
810 continue;
811 if (!ctx->commit_lsn) {
812 /*
813 * It is still being pushed! Wait for the push to
814 * complete, then start again from the beginning.
815 */
eb40a875 816 xlog_wait(&cil->xc_commit_wait, &cil->xc_cil_lock);
71e330b5
DC
817 goto restart;
818 }
a44f13ed 819 if (ctx->sequence != sequence)
71e330b5
DC
820 continue;
821 /* found it! */
822 commit_lsn = ctx->commit_lsn;
823 }
824 spin_unlock(&cil->xc_cil_lock);
825 return commit_lsn;
826}
ccf7c23f
DC
827
828/*
829 * Check if the current log item was first committed in this sequence.
830 * We can't rely on just the log item being in the CIL, we have to check
831 * the recorded commit sequence number.
832 *
833 * Note: for this to be used in a non-racy manner, it has to be called with
834 * CIL flushing locked out. As a result, it should only be used during the
835 * transaction commit process when deciding what to format into the item.
836 */
837bool
838xfs_log_item_in_current_chkpt(
839 struct xfs_log_item *lip)
840{
841 struct xfs_cil_ctx *ctx;
842
ccf7c23f
DC
843 if (list_empty(&lip->li_cil))
844 return false;
845
846 ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
847
848 /*
849 * li_seq is written on the first commit of a log item to record the
850 * first checkpoint it is written to. Hence if it is different to the
851 * current sequence, we're in a new checkpoint.
852 */
853 if (XFS_LSN_CMP(lip->li_seq, ctx->sequence) != 0)
854 return false;
855 return true;
856}
4c2d542f
DC
857
858/*
859 * Perform initial CIL structure initialisation.
860 */
861int
862xlog_cil_init(
f7bdf03a 863 struct xlog *log)
4c2d542f
DC
864{
865 struct xfs_cil *cil;
866 struct xfs_cil_ctx *ctx;
867
868 cil = kmem_zalloc(sizeof(*cil), KM_SLEEP|KM_MAYFAIL);
869 if (!cil)
870 return ENOMEM;
871
872 ctx = kmem_zalloc(sizeof(*ctx), KM_SLEEP|KM_MAYFAIL);
873 if (!ctx) {
874 kmem_free(cil);
875 return ENOMEM;
876 }
877
878 INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
879 INIT_LIST_HEAD(&cil->xc_cil);
880 INIT_LIST_HEAD(&cil->xc_committing);
881 spin_lock_init(&cil->xc_cil_lock);
882 init_rwsem(&cil->xc_ctx_lock);
883 init_waitqueue_head(&cil->xc_commit_wait);
884
885 INIT_LIST_HEAD(&ctx->committing);
886 INIT_LIST_HEAD(&ctx->busy_extents);
887 ctx->sequence = 1;
888 ctx->cil = cil;
889 cil->xc_ctx = ctx;
890 cil->xc_current_sequence = ctx->sequence;
891
892 cil->xc_log = log;
893 log->l_cilp = cil;
894 return 0;
895}
896
897void
898xlog_cil_destroy(
f7bdf03a 899 struct xlog *log)
4c2d542f
DC
900{
901 if (log->l_cilp->xc_ctx) {
902 if (log->l_cilp->xc_ctx->ticket)
903 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
904 kmem_free(log->l_cilp->xc_ctx);
905 }
906
907 ASSERT(list_empty(&log->l_cilp->xc_cil));
908 kmem_free(log->l_cilp);
909}
910