]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_log_recover.c
libxfs: move source files
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
a844f451 25#include "xfs_inum.h"
a844f451
NS
26#include "xfs_sb.h"
27#include "xfs_ag.h"
1da177e4 28#include "xfs_mount.h"
57062787 29#include "xfs_da_format.h"
1da177e4 30#include "xfs_inode.h"
239880ef 31#include "xfs_trans.h"
239880ef 32#include "xfs_log.h"
1da177e4 33#include "xfs_log_priv.h"
1da177e4 34#include "xfs_log_recover.h"
a4fbe6ab 35#include "xfs_inode_item.h"
1da177e4
LT
36#include "xfs_extfree_item.h"
37#include "xfs_trans_priv.h"
a4fbe6ab
DC
38#include "xfs_alloc.h"
39#include "xfs_ialloc.h"
1da177e4 40#include "xfs_quota.h"
0e446be4 41#include "xfs_cksum.h"
0b1b213f 42#include "xfs_trace.h"
33479e05 43#include "xfs_icache.h"
a4fbe6ab
DC
44#include "xfs_bmap_btree.h"
45#include "xfs_dinode.h"
46#include "xfs_error.h"
2b9ab5ab 47#include "xfs_dir2.h"
1da177e4 48
fc06c6d0
DC
49#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
50
9a8d2fdb
MT
51STATIC int
52xlog_find_zeroed(
53 struct xlog *,
54 xfs_daddr_t *);
55STATIC int
56xlog_clear_stale_blocks(
57 struct xlog *,
58 xfs_lsn_t);
1da177e4 59#if defined(DEBUG)
9a8d2fdb
MT
60STATIC void
61xlog_recover_check_summary(
62 struct xlog *);
1da177e4
LT
63#else
64#define xlog_recover_check_summary(log)
1da177e4
LT
65#endif
66
d5689eaa
CH
67/*
68 * This structure is used during recovery to record the buf log items which
69 * have been canceled and should not be replayed.
70 */
71struct xfs_buf_cancel {
72 xfs_daddr_t bc_blkno;
73 uint bc_len;
74 int bc_refcount;
75 struct list_head bc_list;
76};
77
1da177e4
LT
78/*
79 * Sector aligned buffer routines for buffer create/read/write/access
80 */
81
ff30a622
AE
82/*
83 * Verify the given count of basic blocks is valid number of blocks
84 * to specify for an operation involving the given XFS log buffer.
85 * Returns nonzero if the count is valid, 0 otherwise.
86 */
87
88static inline int
89xlog_buf_bbcount_valid(
9a8d2fdb 90 struct xlog *log,
ff30a622
AE
91 int bbcount)
92{
93 return bbcount > 0 && bbcount <= log->l_logBBsize;
94}
95
36adecff
AE
96/*
97 * Allocate a buffer to hold log data. The buffer needs to be able
98 * to map to a range of nbblks basic blocks at any valid (basic
99 * block) offset within the log.
100 */
5d77c0dc 101STATIC xfs_buf_t *
1da177e4 102xlog_get_bp(
9a8d2fdb 103 struct xlog *log,
3228149c 104 int nbblks)
1da177e4 105{
c8da0faf
CH
106 struct xfs_buf *bp;
107
ff30a622 108 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 109 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
110 nbblks);
111 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
112 return NULL;
113 }
1da177e4 114
36adecff
AE
115 /*
116 * We do log I/O in units of log sectors (a power-of-2
117 * multiple of the basic block size), so we round up the
25985edc 118 * requested size to accommodate the basic blocks required
36adecff
AE
119 * for complete log sectors.
120 *
121 * In addition, the buffer may be used for a non-sector-
122 * aligned block offset, in which case an I/O of the
123 * requested size could extend beyond the end of the
124 * buffer. If the requested size is only 1 basic block it
125 * will never straddle a sector boundary, so this won't be
126 * an issue. Nor will this be a problem if the log I/O is
127 * done in basic blocks (sector size 1). But otherwise we
128 * extend the buffer by one extra log sector to ensure
25985edc 129 * there's space to accommodate this possibility.
36adecff 130 */
69ce58f0
AE
131 if (nbblks > 1 && log->l_sectBBsize > 1)
132 nbblks += log->l_sectBBsize;
133 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 134
e70b73f8 135 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
136 if (bp)
137 xfs_buf_unlock(bp);
138 return bp;
1da177e4
LT
139}
140
5d77c0dc 141STATIC void
1da177e4
LT
142xlog_put_bp(
143 xfs_buf_t *bp)
144{
145 xfs_buf_free(bp);
146}
147
48389ef1
AE
148/*
149 * Return the address of the start of the given block number's data
150 * in a log buffer. The buffer covers a log sector-aligned region.
151 */
076e6acb
CH
152STATIC xfs_caddr_t
153xlog_align(
9a8d2fdb 154 struct xlog *log,
076e6acb
CH
155 xfs_daddr_t blk_no,
156 int nbblks,
9a8d2fdb 157 struct xfs_buf *bp)
076e6acb 158{
fdc07f44 159 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 160
4e94b71b 161 ASSERT(offset + nbblks <= bp->b_length);
62926044 162 return bp->b_addr + BBTOB(offset);
076e6acb
CH
163}
164
1da177e4
LT
165
166/*
167 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
168 */
076e6acb
CH
169STATIC int
170xlog_bread_noalign(
9a8d2fdb 171 struct xlog *log,
1da177e4
LT
172 xfs_daddr_t blk_no,
173 int nbblks,
9a8d2fdb 174 struct xfs_buf *bp)
1da177e4
LT
175{
176 int error;
177
ff30a622 178 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 179 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
180 nbblks);
181 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
182 return EFSCORRUPTED;
183 }
184
69ce58f0
AE
185 blk_no = round_down(blk_no, log->l_sectBBsize);
186 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
187
188 ASSERT(nbblks > 0);
4e94b71b 189 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
190
191 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
192 XFS_BUF_READ(bp);
aa0e8833 193 bp->b_io_length = nbblks;
0e95f19a 194 bp->b_error = 0;
1da177e4 195
83a0adc3 196 if (XFS_FORCED_SHUTDOWN(log->l_mp))
b474c7ae 197 return EIO;
83a0adc3
CH
198
199 xfs_buf_iorequest(bp);
1a1a3e97 200 error = xfs_buf_iowait(bp);
d64e31a2 201 if (error)
901796af 202 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
203 return error;
204}
205
076e6acb
CH
206STATIC int
207xlog_bread(
9a8d2fdb 208 struct xlog *log,
076e6acb
CH
209 xfs_daddr_t blk_no,
210 int nbblks,
9a8d2fdb 211 struct xfs_buf *bp,
076e6acb
CH
212 xfs_caddr_t *offset)
213{
214 int error;
215
216 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
217 if (error)
218 return error;
219
220 *offset = xlog_align(log, blk_no, nbblks, bp);
221 return 0;
222}
223
44396476
DC
224/*
225 * Read at an offset into the buffer. Returns with the buffer in it's original
226 * state regardless of the result of the read.
227 */
228STATIC int
229xlog_bread_offset(
9a8d2fdb 230 struct xlog *log,
44396476
DC
231 xfs_daddr_t blk_no, /* block to read from */
232 int nbblks, /* blocks to read */
9a8d2fdb 233 struct xfs_buf *bp,
44396476
DC
234 xfs_caddr_t offset)
235{
62926044 236 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 237 int orig_len = BBTOB(bp->b_length);
44396476
DC
238 int error, error2;
239
02fe03d9 240 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
241 if (error)
242 return error;
243
244 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
245
246 /* must reset buffer pointer even on error */
02fe03d9 247 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
248 if (error)
249 return error;
250 return error2;
251}
252
1da177e4
LT
253/*
254 * Write out the buffer at the given block for the given number of blocks.
255 * The buffer is kept locked across the write and is returned locked.
256 * This can only be used for synchronous log writes.
257 */
ba0f32d4 258STATIC int
1da177e4 259xlog_bwrite(
9a8d2fdb 260 struct xlog *log,
1da177e4
LT
261 xfs_daddr_t blk_no,
262 int nbblks,
9a8d2fdb 263 struct xfs_buf *bp)
1da177e4
LT
264{
265 int error;
266
ff30a622 267 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 268 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
269 nbblks);
270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
271 return EFSCORRUPTED;
272 }
273
69ce58f0
AE
274 blk_no = round_down(blk_no, log->l_sectBBsize);
275 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
276
277 ASSERT(nbblks > 0);
4e94b71b 278 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
279
280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
281 XFS_BUF_ZEROFLAGS(bp);
72790aa1 282 xfs_buf_hold(bp);
0c842ad4 283 xfs_buf_lock(bp);
aa0e8833 284 bp->b_io_length = nbblks;
0e95f19a 285 bp->b_error = 0;
1da177e4 286
c2b006c1 287 error = xfs_bwrite(bp);
901796af
CH
288 if (error)
289 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 290 xfs_buf_relse(bp);
1da177e4
LT
291 return error;
292}
293
1da177e4
LT
294#ifdef DEBUG
295/*
296 * dump debug superblock and log record information
297 */
298STATIC void
299xlog_header_check_dump(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302{
08e96e1a 303 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 304 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 305 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 306 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
307}
308#else
309#define xlog_header_check_dump(mp, head)
310#endif
311
312/*
313 * check log record header for recovery
314 */
315STATIC int
316xlog_header_check_recover(
317 xfs_mount_t *mp,
318 xlog_rec_header_t *head)
319{
69ef921b 320 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
321
322 /*
323 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 * a dirty log created in IRIX.
326 */
69ef921b 327 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
328 xfs_warn(mp,
329 "dirty log written in incompatible format - can't recover");
1da177e4
LT
330 xlog_header_check_dump(mp, head);
331 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 XFS_ERRLEVEL_HIGH, mp);
b474c7ae 333 return EFSCORRUPTED;
1da177e4 334 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
335 xfs_warn(mp,
336 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
337 xlog_header_check_dump(mp, head);
338 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 XFS_ERRLEVEL_HIGH, mp);
b474c7ae 340 return EFSCORRUPTED;
1da177e4
LT
341 }
342 return 0;
343}
344
345/*
346 * read the head block of the log and check the header
347 */
348STATIC int
349xlog_header_check_mount(
350 xfs_mount_t *mp,
351 xlog_rec_header_t *head)
352{
69ef921b 353 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
354
355 if (uuid_is_nil(&head->h_fs_uuid)) {
356 /*
357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 * h_fs_uuid is nil, we assume this log was last mounted
359 * by IRIX and continue.
360 */
a0fa2b67 361 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 362 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 363 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
364 xlog_header_check_dump(mp, head);
365 XFS_ERROR_REPORT("xlog_header_check_mount",
366 XFS_ERRLEVEL_HIGH, mp);
b474c7ae 367 return EFSCORRUPTED;
1da177e4
LT
368 }
369 return 0;
370}
371
372STATIC void
373xlog_recover_iodone(
374 struct xfs_buf *bp)
375{
5a52c2a5 376 if (bp->b_error) {
1da177e4
LT
377 /*
378 * We're not going to bother about retrying
379 * this during recovery. One strike!
380 */
901796af 381 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
382 xfs_force_shutdown(bp->b_target->bt_mount,
383 SHUTDOWN_META_IO_ERROR);
1da177e4 384 }
cb669ca5 385 bp->b_iodone = NULL;
1a1a3e97 386 xfs_buf_ioend(bp, 0);
1da177e4
LT
387}
388
389/*
390 * This routine finds (to an approximation) the first block in the physical
391 * log which contains the given cycle. It uses a binary search algorithm.
392 * Note that the algorithm can not be perfect because the disk will not
393 * necessarily be perfect.
394 */
a8272ce0 395STATIC int
1da177e4 396xlog_find_cycle_start(
9a8d2fdb
MT
397 struct xlog *log,
398 struct xfs_buf *bp,
1da177e4
LT
399 xfs_daddr_t first_blk,
400 xfs_daddr_t *last_blk,
401 uint cycle)
402{
403 xfs_caddr_t offset;
404 xfs_daddr_t mid_blk;
e3bb2e30 405 xfs_daddr_t end_blk;
1da177e4
LT
406 uint mid_cycle;
407 int error;
408
e3bb2e30
AE
409 end_blk = *last_blk;
410 mid_blk = BLK_AVG(first_blk, end_blk);
411 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
412 error = xlog_bread(log, mid_blk, 1, bp, &offset);
413 if (error)
1da177e4 414 return error;
03bea6fe 415 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
416 if (mid_cycle == cycle)
417 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
418 else
419 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
420 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 421 }
e3bb2e30
AE
422 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
423 (mid_blk == end_blk && mid_blk-1 == first_blk));
424
425 *last_blk = end_blk;
1da177e4
LT
426
427 return 0;
428}
429
430/*
3f943d85
AE
431 * Check that a range of blocks does not contain stop_on_cycle_no.
432 * Fill in *new_blk with the block offset where such a block is
433 * found, or with -1 (an invalid block number) if there is no such
434 * block in the range. The scan needs to occur from front to back
435 * and the pointer into the region must be updated since a later
436 * routine will need to perform another test.
1da177e4
LT
437 */
438STATIC int
439xlog_find_verify_cycle(
9a8d2fdb 440 struct xlog *log,
1da177e4
LT
441 xfs_daddr_t start_blk,
442 int nbblks,
443 uint stop_on_cycle_no,
444 xfs_daddr_t *new_blk)
445{
446 xfs_daddr_t i, j;
447 uint cycle;
448 xfs_buf_t *bp;
449 xfs_daddr_t bufblks;
450 xfs_caddr_t buf = NULL;
451 int error = 0;
452
6881a229
AE
453 /*
454 * Greedily allocate a buffer big enough to handle the full
455 * range of basic blocks we'll be examining. If that fails,
456 * try a smaller size. We need to be able to read at least
457 * a log sector, or we're out of luck.
458 */
1da177e4 459 bufblks = 1 << ffs(nbblks);
81158e0c
DC
460 while (bufblks > log->l_logBBsize)
461 bufblks >>= 1;
1da177e4 462 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 463 bufblks >>= 1;
69ce58f0 464 if (bufblks < log->l_sectBBsize)
1da177e4
LT
465 return ENOMEM;
466 }
467
468 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
469 int bcount;
470
471 bcount = min(bufblks, (start_blk + nbblks - i));
472
076e6acb
CH
473 error = xlog_bread(log, i, bcount, bp, &buf);
474 if (error)
1da177e4
LT
475 goto out;
476
1da177e4 477 for (j = 0; j < bcount; j++) {
03bea6fe 478 cycle = xlog_get_cycle(buf);
1da177e4
LT
479 if (cycle == stop_on_cycle_no) {
480 *new_blk = i+j;
481 goto out;
482 }
483
484 buf += BBSIZE;
485 }
486 }
487
488 *new_blk = -1;
489
490out:
491 xlog_put_bp(bp);
492 return error;
493}
494
495/*
496 * Potentially backup over partial log record write.
497 *
498 * In the typical case, last_blk is the number of the block directly after
499 * a good log record. Therefore, we subtract one to get the block number
500 * of the last block in the given buffer. extra_bblks contains the number
501 * of blocks we would have read on a previous read. This happens when the
502 * last log record is split over the end of the physical log.
503 *
504 * extra_bblks is the number of blocks potentially verified on a previous
505 * call to this routine.
506 */
507STATIC int
508xlog_find_verify_log_record(
9a8d2fdb 509 struct xlog *log,
1da177e4
LT
510 xfs_daddr_t start_blk,
511 xfs_daddr_t *last_blk,
512 int extra_bblks)
513{
514 xfs_daddr_t i;
515 xfs_buf_t *bp;
516 xfs_caddr_t offset = NULL;
517 xlog_rec_header_t *head = NULL;
518 int error = 0;
519 int smallmem = 0;
520 int num_blks = *last_blk - start_blk;
521 int xhdrs;
522
523 ASSERT(start_blk != 0 || *last_blk != start_blk);
524
525 if (!(bp = xlog_get_bp(log, num_blks))) {
526 if (!(bp = xlog_get_bp(log, 1)))
527 return ENOMEM;
528 smallmem = 1;
529 } else {
076e6acb
CH
530 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
531 if (error)
1da177e4 532 goto out;
1da177e4
LT
533 offset += ((num_blks - 1) << BBSHIFT);
534 }
535
536 for (i = (*last_blk) - 1; i >= 0; i--) {
537 if (i < start_blk) {
538 /* valid log record not found */
a0fa2b67
DC
539 xfs_warn(log->l_mp,
540 "Log inconsistent (didn't find previous header)");
1da177e4 541 ASSERT(0);
b474c7ae 542 error = EIO;
1da177e4
LT
543 goto out;
544 }
545
546 if (smallmem) {
076e6acb
CH
547 error = xlog_bread(log, i, 1, bp, &offset);
548 if (error)
1da177e4 549 goto out;
1da177e4
LT
550 }
551
552 head = (xlog_rec_header_t *)offset;
553
69ef921b 554 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
555 break;
556
557 if (!smallmem)
558 offset -= BBSIZE;
559 }
560
561 /*
562 * We hit the beginning of the physical log & still no header. Return
563 * to caller. If caller can handle a return of -1, then this routine
564 * will be called again for the end of the physical log.
565 */
566 if (i == -1) {
567 error = -1;
568 goto out;
569 }
570
571 /*
572 * We have the final block of the good log (the first block
573 * of the log record _before_ the head. So we check the uuid.
574 */
575 if ((error = xlog_header_check_mount(log->l_mp, head)))
576 goto out;
577
578 /*
579 * We may have found a log record header before we expected one.
580 * last_blk will be the 1st block # with a given cycle #. We may end
581 * up reading an entire log record. In this case, we don't want to
582 * reset last_blk. Only when last_blk points in the middle of a log
583 * record do we update last_blk.
584 */
62118709 585 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 586 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
587
588 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
589 if (h_size % XLOG_HEADER_CYCLE_SIZE)
590 xhdrs++;
591 } else {
592 xhdrs = 1;
593 }
594
b53e675d
CH
595 if (*last_blk - i + extra_bblks !=
596 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
597 *last_blk = i;
598
599out:
600 xlog_put_bp(bp);
601 return error;
602}
603
604/*
605 * Head is defined to be the point of the log where the next log write
0a94da24 606 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
607 * eliminated when calculating the head. We aren't guaranteed that previous
608 * LR have complete transactions. We only know that a cycle number of
609 * current cycle number -1 won't be present in the log if we start writing
610 * from our current block number.
611 *
612 * last_blk contains the block number of the first block with a given
613 * cycle number.
614 *
615 * Return: zero if normal, non-zero if error.
616 */
ba0f32d4 617STATIC int
1da177e4 618xlog_find_head(
9a8d2fdb 619 struct xlog *log,
1da177e4
LT
620 xfs_daddr_t *return_head_blk)
621{
622 xfs_buf_t *bp;
623 xfs_caddr_t offset;
624 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
625 int num_scan_bblks;
626 uint first_half_cycle, last_half_cycle;
627 uint stop_on_cycle;
628 int error, log_bbnum = log->l_logBBsize;
629
630 /* Is the end of the log device zeroed? */
631 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
632 *return_head_blk = first_blk;
633
634 /* Is the whole lot zeroed? */
635 if (!first_blk) {
636 /* Linux XFS shouldn't generate totally zeroed logs -
637 * mkfs etc write a dummy unmount record to a fresh
638 * log so we can store the uuid in there
639 */
a0fa2b67 640 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
641 }
642
643 return 0;
644 } else if (error) {
a0fa2b67 645 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
646 return error;
647 }
648
649 first_blk = 0; /* get cycle # of 1st block */
650 bp = xlog_get_bp(log, 1);
651 if (!bp)
652 return ENOMEM;
076e6acb
CH
653
654 error = xlog_bread(log, 0, 1, bp, &offset);
655 if (error)
1da177e4 656 goto bp_err;
076e6acb 657
03bea6fe 658 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
659
660 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
661 error = xlog_bread(log, last_blk, 1, bp, &offset);
662 if (error)
1da177e4 663 goto bp_err;
076e6acb 664
03bea6fe 665 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
666 ASSERT(last_half_cycle != 0);
667
668 /*
669 * If the 1st half cycle number is equal to the last half cycle number,
670 * then the entire log is stamped with the same cycle number. In this
671 * case, head_blk can't be set to zero (which makes sense). The below
672 * math doesn't work out properly with head_blk equal to zero. Instead,
673 * we set it to log_bbnum which is an invalid block number, but this
674 * value makes the math correct. If head_blk doesn't changed through
675 * all the tests below, *head_blk is set to zero at the very end rather
676 * than log_bbnum. In a sense, log_bbnum and zero are the same block
677 * in a circular file.
678 */
679 if (first_half_cycle == last_half_cycle) {
680 /*
681 * In this case we believe that the entire log should have
682 * cycle number last_half_cycle. We need to scan backwards
683 * from the end verifying that there are no holes still
684 * containing last_half_cycle - 1. If we find such a hole,
685 * then the start of that hole will be the new head. The
686 * simple case looks like
687 * x | x ... | x - 1 | x
688 * Another case that fits this picture would be
689 * x | x + 1 | x ... | x
c41564b5 690 * In this case the head really is somewhere at the end of the
1da177e4
LT
691 * log, as one of the latest writes at the beginning was
692 * incomplete.
693 * One more case is
694 * x | x + 1 | x ... | x - 1 | x
695 * This is really the combination of the above two cases, and
696 * the head has to end up at the start of the x-1 hole at the
697 * end of the log.
698 *
699 * In the 256k log case, we will read from the beginning to the
700 * end of the log and search for cycle numbers equal to x-1.
701 * We don't worry about the x+1 blocks that we encounter,
702 * because we know that they cannot be the head since the log
703 * started with x.
704 */
705 head_blk = log_bbnum;
706 stop_on_cycle = last_half_cycle - 1;
707 } else {
708 /*
709 * In this case we want to find the first block with cycle
710 * number matching last_half_cycle. We expect the log to be
711 * some variation on
3f943d85 712 * x + 1 ... | x ... | x
1da177e4
LT
713 * The first block with cycle number x (last_half_cycle) will
714 * be where the new head belongs. First we do a binary search
715 * for the first occurrence of last_half_cycle. The binary
716 * search may not be totally accurate, so then we scan back
717 * from there looking for occurrences of last_half_cycle before
718 * us. If that backwards scan wraps around the beginning of
719 * the log, then we look for occurrences of last_half_cycle - 1
720 * at the end of the log. The cases we're looking for look
721 * like
3f943d85
AE
722 * v binary search stopped here
723 * x + 1 ... | x | x + 1 | x ... | x
724 * ^ but we want to locate this spot
1da177e4 725 * or
1da177e4 726 * <---------> less than scan distance
3f943d85
AE
727 * x + 1 ... | x ... | x - 1 | x
728 * ^ we want to locate this spot
1da177e4
LT
729 */
730 stop_on_cycle = last_half_cycle;
731 if ((error = xlog_find_cycle_start(log, bp, first_blk,
732 &head_blk, last_half_cycle)))
733 goto bp_err;
734 }
735
736 /*
737 * Now validate the answer. Scan back some number of maximum possible
738 * blocks and make sure each one has the expected cycle number. The
739 * maximum is determined by the total possible amount of buffering
740 * in the in-core log. The following number can be made tighter if
741 * we actually look at the block size of the filesystem.
742 */
743 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
744 if (head_blk >= num_scan_bblks) {
745 /*
746 * We are guaranteed that the entire check can be performed
747 * in one buffer.
748 */
749 start_blk = head_blk - num_scan_bblks;
750 if ((error = xlog_find_verify_cycle(log,
751 start_blk, num_scan_bblks,
752 stop_on_cycle, &new_blk)))
753 goto bp_err;
754 if (new_blk != -1)
755 head_blk = new_blk;
756 } else { /* need to read 2 parts of log */
757 /*
758 * We are going to scan backwards in the log in two parts.
759 * First we scan the physical end of the log. In this part
760 * of the log, we are looking for blocks with cycle number
761 * last_half_cycle - 1.
762 * If we find one, then we know that the log starts there, as
763 * we've found a hole that didn't get written in going around
764 * the end of the physical log. The simple case for this is
765 * x + 1 ... | x ... | x - 1 | x
766 * <---------> less than scan distance
767 * If all of the blocks at the end of the log have cycle number
768 * last_half_cycle, then we check the blocks at the start of
769 * the log looking for occurrences of last_half_cycle. If we
770 * find one, then our current estimate for the location of the
771 * first occurrence of last_half_cycle is wrong and we move
772 * back to the hole we've found. This case looks like
773 * x + 1 ... | x | x + 1 | x ...
774 * ^ binary search stopped here
775 * Another case we need to handle that only occurs in 256k
776 * logs is
777 * x + 1 ... | x ... | x+1 | x ...
778 * ^ binary search stops here
779 * In a 256k log, the scan at the end of the log will see the
780 * x + 1 blocks. We need to skip past those since that is
781 * certainly not the head of the log. By searching for
782 * last_half_cycle-1 we accomplish that.
783 */
1da177e4 784 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
785 (xfs_daddr_t) num_scan_bblks >= head_blk);
786 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
787 if ((error = xlog_find_verify_cycle(log, start_blk,
788 num_scan_bblks - (int)head_blk,
789 (stop_on_cycle - 1), &new_blk)))
790 goto bp_err;
791 if (new_blk != -1) {
792 head_blk = new_blk;
9db127ed 793 goto validate_head;
1da177e4
LT
794 }
795
796 /*
797 * Scan beginning of log now. The last part of the physical
798 * log is good. This scan needs to verify that it doesn't find
799 * the last_half_cycle.
800 */
801 start_blk = 0;
802 ASSERT(head_blk <= INT_MAX);
803 if ((error = xlog_find_verify_cycle(log,
804 start_blk, (int)head_blk,
805 stop_on_cycle, &new_blk)))
806 goto bp_err;
807 if (new_blk != -1)
808 head_blk = new_blk;
809 }
810
9db127ed 811validate_head:
1da177e4
LT
812 /*
813 * Now we need to make sure head_blk is not pointing to a block in
814 * the middle of a log record.
815 */
816 num_scan_bblks = XLOG_REC_SHIFT(log);
817 if (head_blk >= num_scan_bblks) {
818 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
819
820 /* start ptr at last block ptr before head_blk */
821 if ((error = xlog_find_verify_log_record(log, start_blk,
822 &head_blk, 0)) == -1) {
b474c7ae 823 error = EIO;
1da177e4
LT
824 goto bp_err;
825 } else if (error)
826 goto bp_err;
827 } else {
828 start_blk = 0;
829 ASSERT(head_blk <= INT_MAX);
830 if ((error = xlog_find_verify_log_record(log, start_blk,
831 &head_blk, 0)) == -1) {
832 /* We hit the beginning of the log during our search */
3f943d85 833 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
834 new_blk = log_bbnum;
835 ASSERT(start_blk <= INT_MAX &&
836 (xfs_daddr_t) log_bbnum-start_blk >= 0);
837 ASSERT(head_blk <= INT_MAX);
838 if ((error = xlog_find_verify_log_record(log,
839 start_blk, &new_blk,
840 (int)head_blk)) == -1) {
b474c7ae 841 error = EIO;
1da177e4
LT
842 goto bp_err;
843 } else if (error)
844 goto bp_err;
845 if (new_blk != log_bbnum)
846 head_blk = new_blk;
847 } else if (error)
848 goto bp_err;
849 }
850
851 xlog_put_bp(bp);
852 if (head_blk == log_bbnum)
853 *return_head_blk = 0;
854 else
855 *return_head_blk = head_blk;
856 /*
857 * When returning here, we have a good block number. Bad block
858 * means that during a previous crash, we didn't have a clean break
859 * from cycle number N to cycle number N-1. In this case, we need
860 * to find the first block with cycle number N-1.
861 */
862 return 0;
863
864 bp_err:
865 xlog_put_bp(bp);
866
867 if (error)
a0fa2b67 868 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
869 return error;
870}
871
872/*
873 * Find the sync block number or the tail of the log.
874 *
875 * This will be the block number of the last record to have its
876 * associated buffers synced to disk. Every log record header has
877 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
878 * to get a sync block number. The only concern is to figure out which
879 * log record header to believe.
880 *
881 * The following algorithm uses the log record header with the largest
882 * lsn. The entire log record does not need to be valid. We only care
883 * that the header is valid.
884 *
885 * We could speed up search by using current head_blk buffer, but it is not
886 * available.
887 */
5d77c0dc 888STATIC int
1da177e4 889xlog_find_tail(
9a8d2fdb 890 struct xlog *log,
1da177e4 891 xfs_daddr_t *head_blk,
65be6054 892 xfs_daddr_t *tail_blk)
1da177e4
LT
893{
894 xlog_rec_header_t *rhead;
895 xlog_op_header_t *op_head;
896 xfs_caddr_t offset = NULL;
897 xfs_buf_t *bp;
898 int error, i, found;
899 xfs_daddr_t umount_data_blk;
900 xfs_daddr_t after_umount_blk;
901 xfs_lsn_t tail_lsn;
902 int hblks;
903
904 found = 0;
905
906 /*
907 * Find previous log record
908 */
909 if ((error = xlog_find_head(log, head_blk)))
910 return error;
911
912 bp = xlog_get_bp(log, 1);
913 if (!bp)
914 return ENOMEM;
915 if (*head_blk == 0) { /* special case */
076e6acb
CH
916 error = xlog_bread(log, 0, 1, bp, &offset);
917 if (error)
9db127ed 918 goto done;
076e6acb 919
03bea6fe 920 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
921 *tail_blk = 0;
922 /* leave all other log inited values alone */
9db127ed 923 goto done;
1da177e4
LT
924 }
925 }
926
927 /*
928 * Search backwards looking for log record header block
929 */
930 ASSERT(*head_blk < INT_MAX);
931 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
932 error = xlog_bread(log, i, 1, bp, &offset);
933 if (error)
9db127ed 934 goto done;
076e6acb 935
69ef921b 936 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
937 found = 1;
938 break;
939 }
940 }
941 /*
942 * If we haven't found the log record header block, start looking
943 * again from the end of the physical log. XXXmiken: There should be
944 * a check here to make sure we didn't search more than N blocks in
945 * the previous code.
946 */
947 if (!found) {
948 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
949 error = xlog_bread(log, i, 1, bp, &offset);
950 if (error)
9db127ed 951 goto done;
076e6acb 952
69ef921b
CH
953 if (*(__be32 *)offset ==
954 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
955 found = 2;
956 break;
957 }
958 }
959 }
960 if (!found) {
a0fa2b67 961 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
050a1952 962 xlog_put_bp(bp);
1da177e4 963 ASSERT(0);
b474c7ae 964 return EIO;
1da177e4
LT
965 }
966
967 /* find blk_no of tail of log */
968 rhead = (xlog_rec_header_t *)offset;
b53e675d 969 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
970
971 /*
972 * Reset log values according to the state of the log when we
973 * crashed. In the case where head_blk == 0, we bump curr_cycle
974 * one because the next write starts a new cycle rather than
975 * continuing the cycle of the last good log record. At this
976 * point we have guaranteed that all partial log records have been
977 * accounted for. Therefore, we know that the last good log record
978 * written was complete and ended exactly on the end boundary
979 * of the physical log.
980 */
981 log->l_prev_block = i;
982 log->l_curr_block = (int)*head_blk;
b53e675d 983 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
984 if (found == 2)
985 log->l_curr_cycle++;
1c3cb9ec 986 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 987 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 988 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 989 BBTOB(log->l_curr_block));
28496968 990 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 991 BBTOB(log->l_curr_block));
1da177e4
LT
992
993 /*
994 * Look for unmount record. If we find it, then we know there
995 * was a clean unmount. Since 'i' could be the last block in
996 * the physical log, we convert to a log block before comparing
997 * to the head_blk.
998 *
999 * Save the current tail lsn to use to pass to
1000 * xlog_clear_stale_blocks() below. We won't want to clear the
1001 * unmount record if there is one, so we pass the lsn of the
1002 * unmount record rather than the block after it.
1003 */
62118709 1004 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1005 int h_size = be32_to_cpu(rhead->h_size);
1006 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1007
1008 if ((h_version & XLOG_VERSION_2) &&
1009 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1010 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1011 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1012 hblks++;
1013 } else {
1014 hblks = 1;
1015 }
1016 } else {
1017 hblks = 1;
1018 }
1019 after_umount_blk = (i + hblks + (int)
b53e675d 1020 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1021 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1022 if (*head_blk == after_umount_blk &&
b53e675d 1023 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1024 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1025 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1026 if (error)
9db127ed 1027 goto done;
076e6acb 1028
1da177e4
LT
1029 op_head = (xlog_op_header_t *)offset;
1030 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1031 /*
1032 * Set tail and last sync so that newly written
1033 * log records will point recovery to after the
1034 * current unmount record.
1035 */
1c3cb9ec
DC
1036 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1037 log->l_curr_cycle, after_umount_blk);
1038 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1039 log->l_curr_cycle, after_umount_blk);
1da177e4 1040 *tail_blk = after_umount_blk;
92821e2b
DC
1041
1042 /*
1043 * Note that the unmount was clean. If the unmount
1044 * was not clean, we need to know this to rebuild the
1045 * superblock counters from the perag headers if we
1046 * have a filesystem using non-persistent counters.
1047 */
1048 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1049 }
1050 }
1051
1052 /*
1053 * Make sure that there are no blocks in front of the head
1054 * with the same cycle number as the head. This can happen
1055 * because we allow multiple outstanding log writes concurrently,
1056 * and the later writes might make it out before earlier ones.
1057 *
1058 * We use the lsn from before modifying it so that we'll never
1059 * overwrite the unmount record after a clean unmount.
1060 *
1061 * Do this only if we are going to recover the filesystem
1062 *
1063 * NOTE: This used to say "if (!readonly)"
1064 * However on Linux, we can & do recover a read-only filesystem.
1065 * We only skip recovery if NORECOVERY is specified on mount,
1066 * in which case we would not be here.
1067 *
1068 * But... if the -device- itself is readonly, just skip this.
1069 * We can't recover this device anyway, so it won't matter.
1070 */
9db127ed 1071 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1072 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1073
9db127ed 1074done:
1da177e4
LT
1075 xlog_put_bp(bp);
1076
1077 if (error)
a0fa2b67 1078 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1079 return error;
1080}
1081
1082/*
1083 * Is the log zeroed at all?
1084 *
1085 * The last binary search should be changed to perform an X block read
1086 * once X becomes small enough. You can then search linearly through
1087 * the X blocks. This will cut down on the number of reads we need to do.
1088 *
1089 * If the log is partially zeroed, this routine will pass back the blkno
1090 * of the first block with cycle number 0. It won't have a complete LR
1091 * preceding it.
1092 *
1093 * Return:
1094 * 0 => the log is completely written to
1095 * -1 => use *blk_no as the first block of the log
1096 * >0 => error has occurred
1097 */
a8272ce0 1098STATIC int
1da177e4 1099xlog_find_zeroed(
9a8d2fdb 1100 struct xlog *log,
1da177e4
LT
1101 xfs_daddr_t *blk_no)
1102{
1103 xfs_buf_t *bp;
1104 xfs_caddr_t offset;
1105 uint first_cycle, last_cycle;
1106 xfs_daddr_t new_blk, last_blk, start_blk;
1107 xfs_daddr_t num_scan_bblks;
1108 int error, log_bbnum = log->l_logBBsize;
1109
6fdf8ccc
NS
1110 *blk_no = 0;
1111
1da177e4
LT
1112 /* check totally zeroed log */
1113 bp = xlog_get_bp(log, 1);
1114 if (!bp)
1115 return ENOMEM;
076e6acb
CH
1116 error = xlog_bread(log, 0, 1, bp, &offset);
1117 if (error)
1da177e4 1118 goto bp_err;
076e6acb 1119
03bea6fe 1120 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1121 if (first_cycle == 0) { /* completely zeroed log */
1122 *blk_no = 0;
1123 xlog_put_bp(bp);
1124 return -1;
1125 }
1126
1127 /* check partially zeroed log */
076e6acb
CH
1128 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1129 if (error)
1da177e4 1130 goto bp_err;
076e6acb 1131
03bea6fe 1132 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1133 if (last_cycle != 0) { /* log completely written to */
1134 xlog_put_bp(bp);
1135 return 0;
1136 } else if (first_cycle != 1) {
1137 /*
1138 * If the cycle of the last block is zero, the cycle of
1139 * the first block must be 1. If it's not, maybe we're
1140 * not looking at a log... Bail out.
1141 */
a0fa2b67
DC
1142 xfs_warn(log->l_mp,
1143 "Log inconsistent or not a log (last==0, first!=1)");
b474c7ae 1144 error = EINVAL;
5d0a6549 1145 goto bp_err;
1da177e4
LT
1146 }
1147
1148 /* we have a partially zeroed log */
1149 last_blk = log_bbnum-1;
1150 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1151 goto bp_err;
1152
1153 /*
1154 * Validate the answer. Because there is no way to guarantee that
1155 * the entire log is made up of log records which are the same size,
1156 * we scan over the defined maximum blocks. At this point, the maximum
1157 * is not chosen to mean anything special. XXXmiken
1158 */
1159 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1160 ASSERT(num_scan_bblks <= INT_MAX);
1161
1162 if (last_blk < num_scan_bblks)
1163 num_scan_bblks = last_blk;
1164 start_blk = last_blk - num_scan_bblks;
1165
1166 /*
1167 * We search for any instances of cycle number 0 that occur before
1168 * our current estimate of the head. What we're trying to detect is
1169 * 1 ... | 0 | 1 | 0...
1170 * ^ binary search ends here
1171 */
1172 if ((error = xlog_find_verify_cycle(log, start_blk,
1173 (int)num_scan_bblks, 0, &new_blk)))
1174 goto bp_err;
1175 if (new_blk != -1)
1176 last_blk = new_blk;
1177
1178 /*
1179 * Potentially backup over partial log record write. We don't need
1180 * to search the end of the log because we know it is zero.
1181 */
1182 if ((error = xlog_find_verify_log_record(log, start_blk,
1183 &last_blk, 0)) == -1) {
b474c7ae 1184 error = EIO;
1da177e4
LT
1185 goto bp_err;
1186 } else if (error)
1187 goto bp_err;
1188
1189 *blk_no = last_blk;
1190bp_err:
1191 xlog_put_bp(bp);
1192 if (error)
1193 return error;
1194 return -1;
1195}
1196
1197/*
1198 * These are simple subroutines used by xlog_clear_stale_blocks() below
1199 * to initialize a buffer full of empty log record headers and write
1200 * them into the log.
1201 */
1202STATIC void
1203xlog_add_record(
9a8d2fdb 1204 struct xlog *log,
1da177e4
LT
1205 xfs_caddr_t buf,
1206 int cycle,
1207 int block,
1208 int tail_cycle,
1209 int tail_block)
1210{
1211 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1212
1213 memset(buf, 0, BBSIZE);
b53e675d
CH
1214 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1215 recp->h_cycle = cpu_to_be32(cycle);
1216 recp->h_version = cpu_to_be32(
62118709 1217 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1218 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1219 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1220 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1221 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1222}
1223
1224STATIC int
1225xlog_write_log_records(
9a8d2fdb 1226 struct xlog *log,
1da177e4
LT
1227 int cycle,
1228 int start_block,
1229 int blocks,
1230 int tail_cycle,
1231 int tail_block)
1232{
1233 xfs_caddr_t offset;
1234 xfs_buf_t *bp;
1235 int balign, ealign;
69ce58f0 1236 int sectbb = log->l_sectBBsize;
1da177e4
LT
1237 int end_block = start_block + blocks;
1238 int bufblks;
1239 int error = 0;
1240 int i, j = 0;
1241
6881a229
AE
1242 /*
1243 * Greedily allocate a buffer big enough to handle the full
1244 * range of basic blocks to be written. If that fails, try
1245 * a smaller size. We need to be able to write at least a
1246 * log sector, or we're out of luck.
1247 */
1da177e4 1248 bufblks = 1 << ffs(blocks);
81158e0c
DC
1249 while (bufblks > log->l_logBBsize)
1250 bufblks >>= 1;
1da177e4
LT
1251 while (!(bp = xlog_get_bp(log, bufblks))) {
1252 bufblks >>= 1;
69ce58f0 1253 if (bufblks < sectbb)
1da177e4
LT
1254 return ENOMEM;
1255 }
1256
1257 /* We may need to do a read at the start to fill in part of
1258 * the buffer in the starting sector not covered by the first
1259 * write below.
1260 */
5c17f533 1261 balign = round_down(start_block, sectbb);
1da177e4 1262 if (balign != start_block) {
076e6acb
CH
1263 error = xlog_bread_noalign(log, start_block, 1, bp);
1264 if (error)
1265 goto out_put_bp;
1266
1da177e4
LT
1267 j = start_block - balign;
1268 }
1269
1270 for (i = start_block; i < end_block; i += bufblks) {
1271 int bcount, endcount;
1272
1273 bcount = min(bufblks, end_block - start_block);
1274 endcount = bcount - j;
1275
1276 /* We may need to do a read at the end to fill in part of
1277 * the buffer in the final sector not covered by the write.
1278 * If this is the same sector as the above read, skip it.
1279 */
5c17f533 1280 ealign = round_down(end_block, sectbb);
1da177e4 1281 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1282 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1283 error = xlog_bread_offset(log, ealign, sectbb,
1284 bp, offset);
076e6acb
CH
1285 if (error)
1286 break;
1287
1da177e4
LT
1288 }
1289
1290 offset = xlog_align(log, start_block, endcount, bp);
1291 for (; j < endcount; j++) {
1292 xlog_add_record(log, offset, cycle, i+j,
1293 tail_cycle, tail_block);
1294 offset += BBSIZE;
1295 }
1296 error = xlog_bwrite(log, start_block, endcount, bp);
1297 if (error)
1298 break;
1299 start_block += endcount;
1300 j = 0;
1301 }
076e6acb
CH
1302
1303 out_put_bp:
1da177e4
LT
1304 xlog_put_bp(bp);
1305 return error;
1306}
1307
1308/*
1309 * This routine is called to blow away any incomplete log writes out
1310 * in front of the log head. We do this so that we won't become confused
1311 * if we come up, write only a little bit more, and then crash again.
1312 * If we leave the partial log records out there, this situation could
1313 * cause us to think those partial writes are valid blocks since they
1314 * have the current cycle number. We get rid of them by overwriting them
1315 * with empty log records with the old cycle number rather than the
1316 * current one.
1317 *
1318 * The tail lsn is passed in rather than taken from
1319 * the log so that we will not write over the unmount record after a
1320 * clean unmount in a 512 block log. Doing so would leave the log without
1321 * any valid log records in it until a new one was written. If we crashed
1322 * during that time we would not be able to recover.
1323 */
1324STATIC int
1325xlog_clear_stale_blocks(
9a8d2fdb 1326 struct xlog *log,
1da177e4
LT
1327 xfs_lsn_t tail_lsn)
1328{
1329 int tail_cycle, head_cycle;
1330 int tail_block, head_block;
1331 int tail_distance, max_distance;
1332 int distance;
1333 int error;
1334
1335 tail_cycle = CYCLE_LSN(tail_lsn);
1336 tail_block = BLOCK_LSN(tail_lsn);
1337 head_cycle = log->l_curr_cycle;
1338 head_block = log->l_curr_block;
1339
1340 /*
1341 * Figure out the distance between the new head of the log
1342 * and the tail. We want to write over any blocks beyond the
1343 * head that we may have written just before the crash, but
1344 * we don't want to overwrite the tail of the log.
1345 */
1346 if (head_cycle == tail_cycle) {
1347 /*
1348 * The tail is behind the head in the physical log,
1349 * so the distance from the head to the tail is the
1350 * distance from the head to the end of the log plus
1351 * the distance from the beginning of the log to the
1352 * tail.
1353 */
1354 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1355 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1356 XFS_ERRLEVEL_LOW, log->l_mp);
b474c7ae 1357 return EFSCORRUPTED;
1da177e4
LT
1358 }
1359 tail_distance = tail_block + (log->l_logBBsize - head_block);
1360 } else {
1361 /*
1362 * The head is behind the tail in the physical log,
1363 * so the distance from the head to the tail is just
1364 * the tail block minus the head block.
1365 */
1366 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1367 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1368 XFS_ERRLEVEL_LOW, log->l_mp);
b474c7ae 1369 return EFSCORRUPTED;
1da177e4
LT
1370 }
1371 tail_distance = tail_block - head_block;
1372 }
1373
1374 /*
1375 * If the head is right up against the tail, we can't clear
1376 * anything.
1377 */
1378 if (tail_distance <= 0) {
1379 ASSERT(tail_distance == 0);
1380 return 0;
1381 }
1382
1383 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1384 /*
1385 * Take the smaller of the maximum amount of outstanding I/O
1386 * we could have and the distance to the tail to clear out.
1387 * We take the smaller so that we don't overwrite the tail and
1388 * we don't waste all day writing from the head to the tail
1389 * for no reason.
1390 */
1391 max_distance = MIN(max_distance, tail_distance);
1392
1393 if ((head_block + max_distance) <= log->l_logBBsize) {
1394 /*
1395 * We can stomp all the blocks we need to without
1396 * wrapping around the end of the log. Just do it
1397 * in a single write. Use the cycle number of the
1398 * current cycle minus one so that the log will look like:
1399 * n ... | n - 1 ...
1400 */
1401 error = xlog_write_log_records(log, (head_cycle - 1),
1402 head_block, max_distance, tail_cycle,
1403 tail_block);
1404 if (error)
1405 return error;
1406 } else {
1407 /*
1408 * We need to wrap around the end of the physical log in
1409 * order to clear all the blocks. Do it in two separate
1410 * I/Os. The first write should be from the head to the
1411 * end of the physical log, and it should use the current
1412 * cycle number minus one just like above.
1413 */
1414 distance = log->l_logBBsize - head_block;
1415 error = xlog_write_log_records(log, (head_cycle - 1),
1416 head_block, distance, tail_cycle,
1417 tail_block);
1418
1419 if (error)
1420 return error;
1421
1422 /*
1423 * Now write the blocks at the start of the physical log.
1424 * This writes the remainder of the blocks we want to clear.
1425 * It uses the current cycle number since we're now on the
1426 * same cycle as the head so that we get:
1427 * n ... n ... | n - 1 ...
1428 * ^^^^^ blocks we're writing
1429 */
1430 distance = max_distance - (log->l_logBBsize - head_block);
1431 error = xlog_write_log_records(log, head_cycle, 0, distance,
1432 tail_cycle, tail_block);
1433 if (error)
1434 return error;
1435 }
1436
1437 return 0;
1438}
1439
1440/******************************************************************************
1441 *
1442 * Log recover routines
1443 *
1444 ******************************************************************************
1445 */
1446
1447STATIC xlog_recover_t *
1448xlog_recover_find_tid(
f0a76953 1449 struct hlist_head *head,
1da177e4
LT
1450 xlog_tid_t tid)
1451{
f0a76953 1452 xlog_recover_t *trans;
1da177e4 1453
b67bfe0d 1454 hlist_for_each_entry(trans, head, r_list) {
f0a76953
DC
1455 if (trans->r_log_tid == tid)
1456 return trans;
1da177e4 1457 }
f0a76953 1458 return NULL;
1da177e4
LT
1459}
1460
1461STATIC void
f0a76953
DC
1462xlog_recover_new_tid(
1463 struct hlist_head *head,
1464 xlog_tid_t tid,
1465 xfs_lsn_t lsn)
1da177e4 1466{
f0a76953
DC
1467 xlog_recover_t *trans;
1468
1469 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1470 trans->r_log_tid = tid;
1471 trans->r_lsn = lsn;
1472 INIT_LIST_HEAD(&trans->r_itemq);
1473
1474 INIT_HLIST_NODE(&trans->r_list);
1475 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1476}
1477
1478STATIC void
1479xlog_recover_add_item(
f0a76953 1480 struct list_head *head)
1da177e4
LT
1481{
1482 xlog_recover_item_t *item;
1483
1484 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1485 INIT_LIST_HEAD(&item->ri_list);
1486 list_add_tail(&item->ri_list, head);
1da177e4
LT
1487}
1488
1489STATIC int
1490xlog_recover_add_to_cont_trans(
ad223e60
MT
1491 struct xlog *log,
1492 struct xlog_recover *trans,
1da177e4
LT
1493 xfs_caddr_t dp,
1494 int len)
1495{
1496 xlog_recover_item_t *item;
1497 xfs_caddr_t ptr, old_ptr;
1498 int old_len;
1499
f0a76953 1500 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1501 /* finish copying rest of trans header */
1502 xlog_recover_add_item(&trans->r_itemq);
1503 ptr = (xfs_caddr_t) &trans->r_theader +
1504 sizeof(xfs_trans_header_t) - len;
1505 memcpy(ptr, dp, len); /* d, s, l */
1506 return 0;
1507 }
f0a76953
DC
1508 /* take the tail entry */
1509 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1510
1511 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1512 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1513
45053603 1514 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1515 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1516 item->ri_buf[item->ri_cnt-1].i_len += len;
1517 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1518 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1519 return 0;
1520}
1521
1522/*
1523 * The next region to add is the start of a new region. It could be
1524 * a whole region or it could be the first part of a new region. Because
1525 * of this, the assumption here is that the type and size fields of all
1526 * format structures fit into the first 32 bits of the structure.
1527 *
1528 * This works because all regions must be 32 bit aligned. Therefore, we
1529 * either have both fields or we have neither field. In the case we have
1530 * neither field, the data part of the region is zero length. We only have
1531 * a log_op_header and can throw away the header since a new one will appear
1532 * later. If we have at least 4 bytes, then we can determine how many regions
1533 * will appear in the current log item.
1534 */
1535STATIC int
1536xlog_recover_add_to_trans(
ad223e60
MT
1537 struct xlog *log,
1538 struct xlog_recover *trans,
1da177e4
LT
1539 xfs_caddr_t dp,
1540 int len)
1541{
1542 xfs_inode_log_format_t *in_f; /* any will do */
1543 xlog_recover_item_t *item;
1544 xfs_caddr_t ptr;
1545
1546 if (!len)
1547 return 0;
f0a76953 1548 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1549 /* we need to catch log corruptions here */
1550 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1551 xfs_warn(log->l_mp, "%s: bad header magic number",
1552 __func__);
5a792c45 1553 ASSERT(0);
b474c7ae 1554 return EIO;
5a792c45 1555 }
1da177e4
LT
1556 if (len == sizeof(xfs_trans_header_t))
1557 xlog_recover_add_item(&trans->r_itemq);
1558 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1559 return 0;
1560 }
1561
1562 ptr = kmem_alloc(len, KM_SLEEP);
1563 memcpy(ptr, dp, len);
1564 in_f = (xfs_inode_log_format_t *)ptr;
1565
f0a76953
DC
1566 /* take the tail entry */
1567 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1568 if (item->ri_total != 0 &&
1569 item->ri_total == item->ri_cnt) {
1570 /* tail item is in use, get a new one */
1da177e4 1571 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1572 item = list_entry(trans->r_itemq.prev,
1573 xlog_recover_item_t, ri_list);
1da177e4 1574 }
1da177e4
LT
1575
1576 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1577 if (in_f->ilf_size == 0 ||
1578 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1579 xfs_warn(log->l_mp,
1580 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1581 in_f->ilf_size);
1582 ASSERT(0);
aaaae980 1583 kmem_free(ptr);
b474c7ae 1584 return EIO;
e8fa6b48
CH
1585 }
1586
1587 item->ri_total = in_f->ilf_size;
1588 item->ri_buf =
1589 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590 KM_SLEEP);
1da177e4
LT
1591 }
1592 ASSERT(item->ri_total > item->ri_cnt);
1593 /* Description region is ri_buf[0] */
1594 item->ri_buf[item->ri_cnt].i_addr = ptr;
1595 item->ri_buf[item->ri_cnt].i_len = len;
1596 item->ri_cnt++;
9abbc539 1597 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1598 return 0;
1599}
1600
f0a76953 1601/*
a775ad77
DC
1602 * Sort the log items in the transaction.
1603 *
1604 * The ordering constraints are defined by the inode allocation and unlink
1605 * behaviour. The rules are:
1606 *
1607 * 1. Every item is only logged once in a given transaction. Hence it
1608 * represents the last logged state of the item. Hence ordering is
1609 * dependent on the order in which operations need to be performed so
1610 * required initial conditions are always met.
1611 *
1612 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1613 * there's nothing to replay from them so we can simply cull them
1614 * from the transaction. However, we can't do that until after we've
1615 * replayed all the other items because they may be dependent on the
1616 * cancelled buffer and replaying the cancelled buffer can remove it
1617 * form the cancelled buffer table. Hence they have tobe done last.
1618 *
1619 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1620 * read the buffer and replay changes into it. For filesystems using the
1621 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1622 * treated the same as inode allocation buffers as they create and
1623 * initialise the buffers directly.
a775ad77
DC
1624 *
1625 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1626 * This ensures that inodes are completely flushed to the inode buffer
1627 * in a "free" state before we remove the unlinked inode list pointer.
1628 *
1629 * Hence the ordering needs to be inode allocation buffers first, inode items
1630 * second, inode unlink buffers third and cancelled buffers last.
1631 *
1632 * But there's a problem with that - we can't tell an inode allocation buffer
1633 * apart from a regular buffer, so we can't separate them. We can, however,
1634 * tell an inode unlink buffer from the others, and so we can separate them out
1635 * from all the other buffers and move them to last.
1636 *
1637 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1638 * - buffer_list for all buffers except cancelled/inode unlink buffers
1639 * - item_list for all non-buffer items
1640 * - inode_buffer_list for inode unlink buffers
1641 * - cancel_list for the cancelled buffers
1642 *
1643 * Note that we add objects to the tail of the lists so that first-to-last
1644 * ordering is preserved within the lists. Adding objects to the head of the
1645 * list means when we traverse from the head we walk them in last-to-first
1646 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1647 * but for all other items there may be specific ordering that we need to
1648 * preserve.
f0a76953 1649 */
1da177e4
LT
1650STATIC int
1651xlog_recover_reorder_trans(
ad223e60
MT
1652 struct xlog *log,
1653 struct xlog_recover *trans,
9abbc539 1654 int pass)
1da177e4 1655{
f0a76953 1656 xlog_recover_item_t *item, *n;
2a84108f 1657 int error = 0;
f0a76953 1658 LIST_HEAD(sort_list);
a775ad77
DC
1659 LIST_HEAD(cancel_list);
1660 LIST_HEAD(buffer_list);
1661 LIST_HEAD(inode_buffer_list);
1662 LIST_HEAD(inode_list);
f0a76953
DC
1663
1664 list_splice_init(&trans->r_itemq, &sort_list);
1665 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1666 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1667
f0a76953 1668 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1669 case XFS_LI_ICREATE:
1670 list_move_tail(&item->ri_list, &buffer_list);
1671 break;
1da177e4 1672 case XFS_LI_BUF:
a775ad77 1673 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1674 trace_xfs_log_recover_item_reorder_head(log,
1675 trans, item, pass);
a775ad77 1676 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1677 break;
1678 }
a775ad77
DC
1679 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1680 list_move(&item->ri_list, &inode_buffer_list);
1681 break;
1682 }
1683 list_move_tail(&item->ri_list, &buffer_list);
1684 break;
1da177e4 1685 case XFS_LI_INODE:
1da177e4
LT
1686 case XFS_LI_DQUOT:
1687 case XFS_LI_QUOTAOFF:
1688 case XFS_LI_EFD:
1689 case XFS_LI_EFI:
9abbc539
DC
1690 trace_xfs_log_recover_item_reorder_tail(log,
1691 trans, item, pass);
a775ad77 1692 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1693 break;
1694 default:
a0fa2b67
DC
1695 xfs_warn(log->l_mp,
1696 "%s: unrecognized type of log operation",
1697 __func__);
1da177e4 1698 ASSERT(0);
2a84108f
MT
1699 /*
1700 * return the remaining items back to the transaction
1701 * item list so they can be freed in caller.
1702 */
1703 if (!list_empty(&sort_list))
1704 list_splice_init(&sort_list, &trans->r_itemq);
b474c7ae 1705 error = EIO;
2a84108f 1706 goto out;
1da177e4 1707 }
f0a76953 1708 }
2a84108f 1709out:
f0a76953 1710 ASSERT(list_empty(&sort_list));
a775ad77
DC
1711 if (!list_empty(&buffer_list))
1712 list_splice(&buffer_list, &trans->r_itemq);
1713 if (!list_empty(&inode_list))
1714 list_splice_tail(&inode_list, &trans->r_itemq);
1715 if (!list_empty(&inode_buffer_list))
1716 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1717 if (!list_empty(&cancel_list))
1718 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 1719 return error;
1da177e4
LT
1720}
1721
1722/*
1723 * Build up the table of buf cancel records so that we don't replay
1724 * cancelled data in the second pass. For buffer records that are
1725 * not cancel records, there is nothing to do here so we just return.
1726 *
1727 * If we get a cancel record which is already in the table, this indicates
1728 * that the buffer was cancelled multiple times. In order to ensure
1729 * that during pass 2 we keep the record in the table until we reach its
1730 * last occurrence in the log, we keep a reference count in the cancel
1731 * record in the table to tell us how many times we expect to see this
1732 * record during the second pass.
1733 */
c9f71f5f
CH
1734STATIC int
1735xlog_recover_buffer_pass1(
ad223e60
MT
1736 struct xlog *log,
1737 struct xlog_recover_item *item)
1da177e4 1738{
c9f71f5f 1739 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1740 struct list_head *bucket;
1741 struct xfs_buf_cancel *bcp;
1da177e4
LT
1742
1743 /*
1744 * If this isn't a cancel buffer item, then just return.
1745 */
e2714bf8 1746 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1747 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1748 return 0;
9abbc539 1749 }
1da177e4
LT
1750
1751 /*
d5689eaa
CH
1752 * Insert an xfs_buf_cancel record into the hash table of them.
1753 * If there is already an identical record, bump its reference count.
1da177e4 1754 */
d5689eaa
CH
1755 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1756 list_for_each_entry(bcp, bucket, bc_list) {
1757 if (bcp->bc_blkno == buf_f->blf_blkno &&
1758 bcp->bc_len == buf_f->blf_len) {
1759 bcp->bc_refcount++;
9abbc539 1760 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1761 return 0;
1da177e4 1762 }
d5689eaa
CH
1763 }
1764
1765 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1766 bcp->bc_blkno = buf_f->blf_blkno;
1767 bcp->bc_len = buf_f->blf_len;
1da177e4 1768 bcp->bc_refcount = 1;
d5689eaa
CH
1769 list_add_tail(&bcp->bc_list, bucket);
1770
9abbc539 1771 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1772 return 0;
1da177e4
LT
1773}
1774
1775/*
1776 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
1777 * entry in the buffer cancel record table. If it is, return the cancel
1778 * buffer structure to the caller.
1da177e4 1779 */
84a5b730
DC
1780STATIC struct xfs_buf_cancel *
1781xlog_peek_buffer_cancelled(
ad223e60 1782 struct xlog *log,
1da177e4
LT
1783 xfs_daddr_t blkno,
1784 uint len,
1785 ushort flags)
1786{
d5689eaa
CH
1787 struct list_head *bucket;
1788 struct xfs_buf_cancel *bcp;
1da177e4 1789
84a5b730
DC
1790 if (!log->l_buf_cancel_table) {
1791 /* empty table means no cancelled buffers in the log */
c1155410 1792 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 1793 return NULL;
1da177e4
LT
1794 }
1795
d5689eaa
CH
1796 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1797 list_for_each_entry(bcp, bucket, bc_list) {
1798 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 1799 return bcp;
1da177e4 1800 }
d5689eaa 1801
1da177e4 1802 /*
d5689eaa
CH
1803 * We didn't find a corresponding entry in the table, so return 0 so
1804 * that the buffer is NOT cancelled.
1da177e4 1805 */
c1155410 1806 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
1807 return NULL;
1808}
1809
1810/*
1811 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1812 * otherwise return 0. If the buffer is actually a buffer cancel item
1813 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1814 * table and remove it from the table if this is the last reference.
1815 *
1816 * We remove the cancel record from the table when we encounter its last
1817 * occurrence in the log so that if the same buffer is re-used again after its
1818 * last cancellation we actually replay the changes made at that point.
1819 */
1820STATIC int
1821xlog_check_buffer_cancelled(
1822 struct xlog *log,
1823 xfs_daddr_t blkno,
1824 uint len,
1825 ushort flags)
1826{
1827 struct xfs_buf_cancel *bcp;
1828
1829 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1830 if (!bcp)
1831 return 0;
d5689eaa 1832
d5689eaa
CH
1833 /*
1834 * We've go a match, so return 1 so that the recovery of this buffer
1835 * is cancelled. If this buffer is actually a buffer cancel log
1836 * item, then decrement the refcount on the one in the table and
1837 * remove it if this is the last reference.
1838 */
1839 if (flags & XFS_BLF_CANCEL) {
1840 if (--bcp->bc_refcount == 0) {
1841 list_del(&bcp->bc_list);
1842 kmem_free(bcp);
1843 }
1844 }
1845 return 1;
1da177e4
LT
1846}
1847
1da177e4 1848/*
e2714bf8
CH
1849 * Perform recovery for a buffer full of inodes. In these buffers, the only
1850 * data which should be recovered is that which corresponds to the
1851 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1852 * data for the inodes is always logged through the inodes themselves rather
1853 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1854 *
e2714bf8
CH
1855 * The only time when buffers full of inodes are fully recovered is when the
1856 * buffer is full of newly allocated inodes. In this case the buffer will
1857 * not be marked as an inode buffer and so will be sent to
1858 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1859 */
1860STATIC int
1861xlog_recover_do_inode_buffer(
e2714bf8 1862 struct xfs_mount *mp,
1da177e4 1863 xlog_recover_item_t *item,
e2714bf8 1864 struct xfs_buf *bp,
1da177e4
LT
1865 xfs_buf_log_format_t *buf_f)
1866{
1867 int i;
e2714bf8
CH
1868 int item_index = 0;
1869 int bit = 0;
1870 int nbits = 0;
1871 int reg_buf_offset = 0;
1872 int reg_buf_bytes = 0;
1da177e4
LT
1873 int next_unlinked_offset;
1874 int inodes_per_buf;
1875 xfs_agino_t *logged_nextp;
1876 xfs_agino_t *buffer_nextp;
1da177e4 1877
9abbc539 1878 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
1879
1880 /*
1881 * Post recovery validation only works properly on CRC enabled
1882 * filesystems.
1883 */
1884 if (xfs_sb_version_hascrc(&mp->m_sb))
1885 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1886
aa0e8833 1887 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1888 for (i = 0; i < inodes_per_buf; i++) {
1889 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1890 offsetof(xfs_dinode_t, di_next_unlinked);
1891
1892 while (next_unlinked_offset >=
1893 (reg_buf_offset + reg_buf_bytes)) {
1894 /*
1895 * The next di_next_unlinked field is beyond
1896 * the current logged region. Find the next
1897 * logged region that contains or is beyond
1898 * the current di_next_unlinked field.
1899 */
1900 bit += nbits;
e2714bf8
CH
1901 bit = xfs_next_bit(buf_f->blf_data_map,
1902 buf_f->blf_map_size, bit);
1da177e4
LT
1903
1904 /*
1905 * If there are no more logged regions in the
1906 * buffer, then we're done.
1907 */
e2714bf8 1908 if (bit == -1)
1da177e4 1909 return 0;
1da177e4 1910
e2714bf8
CH
1911 nbits = xfs_contig_bits(buf_f->blf_data_map,
1912 buf_f->blf_map_size, bit);
1da177e4 1913 ASSERT(nbits > 0);
c1155410
DC
1914 reg_buf_offset = bit << XFS_BLF_SHIFT;
1915 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1916 item_index++;
1917 }
1918
1919 /*
1920 * If the current logged region starts after the current
1921 * di_next_unlinked field, then move on to the next
1922 * di_next_unlinked field.
1923 */
e2714bf8 1924 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1925 continue;
1da177e4
LT
1926
1927 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1928 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1929 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1930 BBTOB(bp->b_io_length));
1da177e4
LT
1931
1932 /*
1933 * The current logged region contains a copy of the
1934 * current di_next_unlinked field. Extract its value
1935 * and copy it to the buffer copy.
1936 */
4e0d5f92
CH
1937 logged_nextp = item->ri_buf[item_index].i_addr +
1938 next_unlinked_offset - reg_buf_offset;
1da177e4 1939 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1940 xfs_alert(mp,
1941 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1942 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1943 item, bp);
1944 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1945 XFS_ERRLEVEL_LOW, mp);
b474c7ae 1946 return EFSCORRUPTED;
1da177e4
LT
1947 }
1948
1949 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1950 next_unlinked_offset);
87c199c2 1951 *buffer_nextp = *logged_nextp;
0a32c26e
DC
1952
1953 /*
1954 * If necessary, recalculate the CRC in the on-disk inode. We
1955 * have to leave the inode in a consistent state for whoever
1956 * reads it next....
1957 */
1958 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1959 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1960
1da177e4
LT
1961 }
1962
1963 return 0;
1964}
1965
50d5c8d8
DC
1966/*
1967 * V5 filesystems know the age of the buffer on disk being recovered. We can
1968 * have newer objects on disk than we are replaying, and so for these cases we
1969 * don't want to replay the current change as that will make the buffer contents
1970 * temporarily invalid on disk.
1971 *
1972 * The magic number might not match the buffer type we are going to recover
1973 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1974 * extract the LSN of the existing object in the buffer based on it's current
1975 * magic number. If we don't recognise the magic number in the buffer, then
1976 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1977 * so can recover the buffer.
566055d3
DC
1978 *
1979 * Note: we cannot rely solely on magic number matches to determine that the
1980 * buffer has a valid LSN - we also need to verify that it belongs to this
1981 * filesystem, so we need to extract the object's LSN and compare it to that
1982 * which we read from the superblock. If the UUIDs don't match, then we've got a
1983 * stale metadata block from an old filesystem instance that we need to recover
1984 * over the top of.
50d5c8d8
DC
1985 */
1986static xfs_lsn_t
1987xlog_recover_get_buf_lsn(
1988 struct xfs_mount *mp,
1989 struct xfs_buf *bp)
1990{
1991 __uint32_t magic32;
1992 __uint16_t magic16;
1993 __uint16_t magicda;
1994 void *blk = bp->b_addr;
566055d3
DC
1995 uuid_t *uuid;
1996 xfs_lsn_t lsn = -1;
50d5c8d8
DC
1997
1998 /* v4 filesystems always recover immediately */
1999 if (!xfs_sb_version_hascrc(&mp->m_sb))
2000 goto recover_immediately;
2001
2002 magic32 = be32_to_cpu(*(__be32 *)blk);
2003 switch (magic32) {
2004 case XFS_ABTB_CRC_MAGIC:
2005 case XFS_ABTC_CRC_MAGIC:
2006 case XFS_ABTB_MAGIC:
2007 case XFS_ABTC_MAGIC:
2008 case XFS_IBT_CRC_MAGIC:
566055d3
DC
2009 case XFS_IBT_MAGIC: {
2010 struct xfs_btree_block *btb = blk;
2011
2012 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2013 uuid = &btb->bb_u.s.bb_uuid;
2014 break;
2015 }
50d5c8d8 2016 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
2017 case XFS_BMAP_MAGIC: {
2018 struct xfs_btree_block *btb = blk;
2019
2020 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2021 uuid = &btb->bb_u.l.bb_uuid;
2022 break;
2023 }
50d5c8d8 2024 case XFS_AGF_MAGIC:
566055d3
DC
2025 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2026 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2027 break;
50d5c8d8 2028 case XFS_AGFL_MAGIC:
566055d3
DC
2029 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2030 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2031 break;
50d5c8d8 2032 case XFS_AGI_MAGIC:
566055d3
DC
2033 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2034 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2035 break;
50d5c8d8 2036 case XFS_SYMLINK_MAGIC:
566055d3
DC
2037 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2038 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2039 break;
50d5c8d8
DC
2040 case XFS_DIR3_BLOCK_MAGIC:
2041 case XFS_DIR3_DATA_MAGIC:
2042 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
2043 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2044 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2045 break;
50d5c8d8 2046 case XFS_ATTR3_RMT_MAGIC:
566055d3
DC
2047 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2048 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2049 break;
50d5c8d8 2050 case XFS_SB_MAGIC:
566055d3
DC
2051 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2052 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2053 break;
50d5c8d8
DC
2054 default:
2055 break;
2056 }
2057
566055d3
DC
2058 if (lsn != (xfs_lsn_t)-1) {
2059 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2060 goto recover_immediately;
2061 return lsn;
2062 }
2063
50d5c8d8
DC
2064 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2065 switch (magicda) {
2066 case XFS_DIR3_LEAF1_MAGIC:
2067 case XFS_DIR3_LEAFN_MAGIC:
2068 case XFS_DA3_NODE_MAGIC:
566055d3
DC
2069 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2070 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2071 break;
50d5c8d8
DC
2072 default:
2073 break;
2074 }
2075
566055d3
DC
2076 if (lsn != (xfs_lsn_t)-1) {
2077 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2078 goto recover_immediately;
2079 return lsn;
2080 }
2081
50d5c8d8
DC
2082 /*
2083 * We do individual object checks on dquot and inode buffers as they
2084 * have their own individual LSN records. Also, we could have a stale
2085 * buffer here, so we have to at least recognise these buffer types.
2086 *
2087 * A notd complexity here is inode unlinked list processing - it logs
2088 * the inode directly in the buffer, but we don't know which inodes have
2089 * been modified, and there is no global buffer LSN. Hence we need to
2090 * recover all inode buffer types immediately. This problem will be
2091 * fixed by logical logging of the unlinked list modifications.
2092 */
2093 magic16 = be16_to_cpu(*(__be16 *)blk);
2094 switch (magic16) {
2095 case XFS_DQUOT_MAGIC:
2096 case XFS_DINODE_MAGIC:
2097 goto recover_immediately;
2098 default:
2099 break;
2100 }
2101
2102 /* unknown buffer contents, recover immediately */
2103
2104recover_immediately:
2105 return (xfs_lsn_t)-1;
2106
2107}
2108
1da177e4 2109/*
d75afeb3
DC
2110 * Validate the recovered buffer is of the correct type and attach the
2111 * appropriate buffer operations to them for writeback. Magic numbers are in a
2112 * few places:
2113 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2114 * the first 32 bits of the buffer (most blocks),
2115 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2116 */
d75afeb3 2117static void
50d5c8d8 2118xlog_recover_validate_buf_type(
9abbc539 2119 struct xfs_mount *mp,
e2714bf8 2120 struct xfs_buf *bp,
1da177e4
LT
2121 xfs_buf_log_format_t *buf_f)
2122{
d75afeb3
DC
2123 struct xfs_da_blkinfo *info = bp->b_addr;
2124 __uint32_t magic32;
2125 __uint16_t magic16;
2126 __uint16_t magicda;
2127
2128 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2129 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2130 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2131 switch (xfs_blft_from_flags(buf_f)) {
2132 case XFS_BLFT_BTREE_BUF:
d75afeb3 2133 switch (magic32) {
ee1a47ab
CH
2134 case XFS_ABTB_CRC_MAGIC:
2135 case XFS_ABTC_CRC_MAGIC:
2136 case XFS_ABTB_MAGIC:
2137 case XFS_ABTC_MAGIC:
2138 bp->b_ops = &xfs_allocbt_buf_ops;
2139 break;
2140 case XFS_IBT_CRC_MAGIC:
aafc3c24 2141 case XFS_FIBT_CRC_MAGIC:
ee1a47ab 2142 case XFS_IBT_MAGIC:
aafc3c24 2143 case XFS_FIBT_MAGIC:
ee1a47ab
CH
2144 bp->b_ops = &xfs_inobt_buf_ops;
2145 break;
2146 case XFS_BMAP_CRC_MAGIC:
2147 case XFS_BMAP_MAGIC:
2148 bp->b_ops = &xfs_bmbt_buf_ops;
2149 break;
2150 default:
2151 xfs_warn(mp, "Bad btree block magic!");
2152 ASSERT(0);
2153 break;
2154 }
2155 break;
61fe135c 2156 case XFS_BLFT_AGF_BUF:
d75afeb3 2157 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
2158 xfs_warn(mp, "Bad AGF block magic!");
2159 ASSERT(0);
2160 break;
2161 }
2162 bp->b_ops = &xfs_agf_buf_ops;
2163 break;
61fe135c 2164 case XFS_BLFT_AGFL_BUF:
77c95bba
CH
2165 if (!xfs_sb_version_hascrc(&mp->m_sb))
2166 break;
d75afeb3 2167 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2168 xfs_warn(mp, "Bad AGFL block magic!");
2169 ASSERT(0);
2170 break;
2171 }
2172 bp->b_ops = &xfs_agfl_buf_ops;
2173 break;
61fe135c 2174 case XFS_BLFT_AGI_BUF:
d75afeb3 2175 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2176 xfs_warn(mp, "Bad AGI block magic!");
2177 ASSERT(0);
2178 break;
2179 }
2180 bp->b_ops = &xfs_agi_buf_ops;
2181 break;
61fe135c
DC
2182 case XFS_BLFT_UDQUOT_BUF:
2183 case XFS_BLFT_PDQUOT_BUF:
2184 case XFS_BLFT_GDQUOT_BUF:
123887e8 2185#ifdef CONFIG_XFS_QUOTA
d75afeb3 2186 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2187 xfs_warn(mp, "Bad DQUOT block magic!");
2188 ASSERT(0);
2189 break;
2190 }
2191 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2192#else
2193 xfs_alert(mp,
2194 "Trying to recover dquots without QUOTA support built in!");
2195 ASSERT(0);
2196#endif
3fe58f30 2197 break;
61fe135c 2198 case XFS_BLFT_DINO_BUF:
93848a99
CH
2199 /*
2200 * we get here with inode allocation buffers, not buffers that
2201 * track unlinked list changes.
2202 */
d75afeb3 2203 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2204 xfs_warn(mp, "Bad INODE block magic!");
2205 ASSERT(0);
2206 break;
2207 }
2208 bp->b_ops = &xfs_inode_buf_ops;
2209 break;
61fe135c 2210 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2211 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2212 xfs_warn(mp, "Bad symlink block magic!");
2213 ASSERT(0);
2214 break;
2215 }
2216 bp->b_ops = &xfs_symlink_buf_ops;
2217 break;
61fe135c 2218 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2219 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2220 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2221 xfs_warn(mp, "Bad dir block magic!");
2222 ASSERT(0);
2223 break;
2224 }
2225 bp->b_ops = &xfs_dir3_block_buf_ops;
2226 break;
61fe135c 2227 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2228 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2229 magic32 != XFS_DIR3_DATA_MAGIC) {
2230 xfs_warn(mp, "Bad dir data magic!");
2231 ASSERT(0);
2232 break;
2233 }
2234 bp->b_ops = &xfs_dir3_data_buf_ops;
2235 break;
61fe135c 2236 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2237 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2238 magic32 != XFS_DIR3_FREE_MAGIC) {
2239 xfs_warn(mp, "Bad dir3 free magic!");
2240 ASSERT(0);
2241 break;
2242 }
2243 bp->b_ops = &xfs_dir3_free_buf_ops;
2244 break;
61fe135c 2245 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2246 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2247 magicda != XFS_DIR3_LEAF1_MAGIC) {
2248 xfs_warn(mp, "Bad dir leaf1 magic!");
2249 ASSERT(0);
2250 break;
2251 }
2252 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2253 break;
61fe135c 2254 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2255 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2256 magicda != XFS_DIR3_LEAFN_MAGIC) {
2257 xfs_warn(mp, "Bad dir leafn magic!");
2258 ASSERT(0);
2259 break;
2260 }
2261 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2262 break;
61fe135c 2263 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2264 if (magicda != XFS_DA_NODE_MAGIC &&
2265 magicda != XFS_DA3_NODE_MAGIC) {
2266 xfs_warn(mp, "Bad da node magic!");
2267 ASSERT(0);
2268 break;
2269 }
2270 bp->b_ops = &xfs_da3_node_buf_ops;
2271 break;
61fe135c 2272 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2273 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2274 magicda != XFS_ATTR3_LEAF_MAGIC) {
2275 xfs_warn(mp, "Bad attr leaf magic!");
2276 ASSERT(0);
2277 break;
2278 }
2279 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2280 break;
61fe135c 2281 case XFS_BLFT_ATTR_RMT_BUF:
d75afeb3
DC
2282 if (!xfs_sb_version_hascrc(&mp->m_sb))
2283 break;
cab09a81 2284 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2285 xfs_warn(mp, "Bad attr remote magic!");
2286 ASSERT(0);
2287 break;
2288 }
2289 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2290 break;
04a1e6c5
DC
2291 case XFS_BLFT_SB_BUF:
2292 if (magic32 != XFS_SB_MAGIC) {
2293 xfs_warn(mp, "Bad SB block magic!");
2294 ASSERT(0);
2295 break;
2296 }
2297 bp->b_ops = &xfs_sb_buf_ops;
2298 break;
ee1a47ab 2299 default:
61fe135c
DC
2300 xfs_warn(mp, "Unknown buffer type %d!",
2301 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2302 break;
2303 }
1da177e4
LT
2304}
2305
d75afeb3
DC
2306/*
2307 * Perform a 'normal' buffer recovery. Each logged region of the
2308 * buffer should be copied over the corresponding region in the
2309 * given buffer. The bitmap in the buf log format structure indicates
2310 * where to place the logged data.
2311 */
2312STATIC void
2313xlog_recover_do_reg_buffer(
2314 struct xfs_mount *mp,
2315 xlog_recover_item_t *item,
2316 struct xfs_buf *bp,
2317 xfs_buf_log_format_t *buf_f)
2318{
2319 int i;
2320 int bit;
2321 int nbits;
2322 int error;
2323
2324 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2325
2326 bit = 0;
2327 i = 1; /* 0 is the buf format structure */
2328 while (1) {
2329 bit = xfs_next_bit(buf_f->blf_data_map,
2330 buf_f->blf_map_size, bit);
2331 if (bit == -1)
2332 break;
2333 nbits = xfs_contig_bits(buf_f->blf_data_map,
2334 buf_f->blf_map_size, bit);
2335 ASSERT(nbits > 0);
2336 ASSERT(item->ri_buf[i].i_addr != NULL);
2337 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2338 ASSERT(BBTOB(bp->b_io_length) >=
2339 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2340
709da6a6
DC
2341 /*
2342 * The dirty regions logged in the buffer, even though
2343 * contiguous, may span multiple chunks. This is because the
2344 * dirty region may span a physical page boundary in a buffer
2345 * and hence be split into two separate vectors for writing into
2346 * the log. Hence we need to trim nbits back to the length of
2347 * the current region being copied out of the log.
2348 */
2349 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2350 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2351
d75afeb3
DC
2352 /*
2353 * Do a sanity check if this is a dquot buffer. Just checking
2354 * the first dquot in the buffer should do. XXXThis is
2355 * probably a good thing to do for other buf types also.
2356 */
2357 error = 0;
2358 if (buf_f->blf_flags &
2359 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2360 if (item->ri_buf[i].i_addr == NULL) {
2361 xfs_alert(mp,
2362 "XFS: NULL dquot in %s.", __func__);
2363 goto next;
2364 }
2365 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2366 xfs_alert(mp,
2367 "XFS: dquot too small (%d) in %s.",
2368 item->ri_buf[i].i_len, __func__);
2369 goto next;
2370 }
9aede1d8 2371 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
d75afeb3
DC
2372 -1, 0, XFS_QMOPT_DOWARN,
2373 "dquot_buf_recover");
2374 if (error)
2375 goto next;
2376 }
2377
2378 memcpy(xfs_buf_offset(bp,
2379 (uint)bit << XFS_BLF_SHIFT), /* dest */
2380 item->ri_buf[i].i_addr, /* source */
2381 nbits<<XFS_BLF_SHIFT); /* length */
2382 next:
2383 i++;
2384 bit += nbits;
2385 }
2386
2387 /* Shouldn't be any more regions */
2388 ASSERT(i == item->ri_total);
2389
9222a9cf
DC
2390 /*
2391 * We can only do post recovery validation on items on CRC enabled
2392 * fielsystems as we need to know when the buffer was written to be able
2393 * to determine if we should have replayed the item. If we replay old
2394 * metadata over a newer buffer, then it will enter a temporarily
2395 * inconsistent state resulting in verification failures. Hence for now
2396 * just avoid the verification stage for non-crc filesystems
2397 */
2398 if (xfs_sb_version_hascrc(&mp->m_sb))
50d5c8d8 2399 xlog_recover_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2400}
2401
1da177e4
LT
2402/*
2403 * Perform a dquot buffer recovery.
8ba701ee 2404 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2405 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2406 * Else, treat it as a regular buffer and do recovery.
2407 */
2408STATIC void
2409xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2410 struct xfs_mount *mp,
2411 struct xlog *log,
2412 struct xlog_recover_item *item,
2413 struct xfs_buf *bp,
2414 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2415{
2416 uint type;
2417
9abbc539
DC
2418 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2419
1da177e4
LT
2420 /*
2421 * Filesystems are required to send in quota flags at mount time.
2422 */
2423 if (mp->m_qflags == 0) {
2424 return;
2425 }
2426
2427 type = 0;
c1155410 2428 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2429 type |= XFS_DQ_USER;
c1155410 2430 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2431 type |= XFS_DQ_PROJ;
c1155410 2432 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2433 type |= XFS_DQ_GROUP;
2434 /*
2435 * This type of quotas was turned off, so ignore this buffer
2436 */
2437 if (log->l_quotaoffs_flag & type)
2438 return;
2439
9abbc539 2440 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2441}
2442
2443/*
2444 * This routine replays a modification made to a buffer at runtime.
2445 * There are actually two types of buffer, regular and inode, which
2446 * are handled differently. Inode buffers are handled differently
2447 * in that we only recover a specific set of data from them, namely
2448 * the inode di_next_unlinked fields. This is because all other inode
2449 * data is actually logged via inode records and any data we replay
2450 * here which overlaps that may be stale.
2451 *
2452 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2453 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2454 * of the buffer in the log should not be replayed at recovery time.
2455 * This is so that if the blocks covered by the buffer are reused for
2456 * file data before we crash we don't end up replaying old, freed
2457 * meta-data into a user's file.
2458 *
2459 * To handle the cancellation of buffer log items, we make two passes
2460 * over the log during recovery. During the first we build a table of
2461 * those buffers which have been cancelled, and during the second we
2462 * only replay those buffers which do not have corresponding cancel
34be5ff3 2463 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2464 * for more details on the implementation of the table of cancel records.
2465 */
2466STATIC int
c9f71f5f 2467xlog_recover_buffer_pass2(
9a8d2fdb
MT
2468 struct xlog *log,
2469 struct list_head *buffer_list,
50d5c8d8
DC
2470 struct xlog_recover_item *item,
2471 xfs_lsn_t current_lsn)
1da177e4 2472{
4e0d5f92 2473 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2474 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2475 xfs_buf_t *bp;
2476 int error;
6ad112bf 2477 uint buf_flags;
50d5c8d8 2478 xfs_lsn_t lsn;
1da177e4 2479
c9f71f5f
CH
2480 /*
2481 * In this pass we only want to recover all the buffers which have
2482 * not been cancelled and are not cancellation buffers themselves.
2483 */
2484 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2485 buf_f->blf_len, buf_f->blf_flags)) {
2486 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2487 return 0;
1da177e4 2488 }
c9f71f5f 2489
9abbc539 2490 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2491
a8acad70 2492 buf_flags = 0;
611c9946
DC
2493 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2494 buf_flags |= XBF_UNMAPPED;
6ad112bf 2495
e2714bf8 2496 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2497 buf_flags, NULL);
ac4d6888 2498 if (!bp)
b474c7ae 2499 return ENOMEM;
e5702805 2500 error = bp->b_error;
5a52c2a5 2501 if (error) {
901796af 2502 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2503 goto out_release;
1da177e4
LT
2504 }
2505
50d5c8d8
DC
2506 /*
2507 * recover the buffer only if we get an LSN from it and it's less than
2508 * the lsn of the transaction we are replaying.
2509 */
2510 lsn = xlog_recover_get_buf_lsn(mp, bp);
2511 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2512 goto out_release;
2513
e2714bf8 2514 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2515 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2516 } else if (buf_f->blf_flags &
c1155410 2517 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2518 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2519 } else {
9abbc539 2520 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2521 }
2522 if (error)
50d5c8d8 2523 goto out_release;
1da177e4
LT
2524
2525 /*
2526 * Perform delayed write on the buffer. Asynchronous writes will be
2527 * slower when taking into account all the buffers to be flushed.
2528 *
2529 * Also make sure that only inode buffers with good sizes stay in
2530 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2531 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2532 * buffers in the log can be a different size if the log was generated
2533 * by an older kernel using unclustered inode buffers or a newer kernel
2534 * running with a different inode cluster size. Regardless, if the
0f49efd8
JL
2535 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2536 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2537 * the buffer out of the buffer cache so that the buffer won't
2538 * overlap with future reads of those inodes.
2539 */
2540 if (XFS_DINODE_MAGIC ==
b53e675d 2541 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2542 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
0f49efd8 2543 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2544 xfs_buf_stale(bp);
c2b006c1 2545 error = xfs_bwrite(bp);
1da177e4 2546 } else {
ebad861b 2547 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2548 bp->b_iodone = xlog_recover_iodone;
43ff2122 2549 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2550 }
2551
50d5c8d8 2552out_release:
c2b006c1
CH
2553 xfs_buf_relse(bp);
2554 return error;
1da177e4
LT
2555}
2556
638f4416
DC
2557/*
2558 * Inode fork owner changes
2559 *
2560 * If we have been told that we have to reparent the inode fork, it's because an
2561 * extent swap operation on a CRC enabled filesystem has been done and we are
2562 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2563 * owners of it.
2564 *
2565 * The complexity here is that we don't have an inode context to work with, so
2566 * after we've replayed the inode we need to instantiate one. This is where the
2567 * fun begins.
2568 *
2569 * We are in the middle of log recovery, so we can't run transactions. That
2570 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2571 * that will result in the corresponding iput() running the inode through
2572 * xfs_inactive(). If we've just replayed an inode core that changes the link
2573 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2574 * transactions (bad!).
2575 *
2576 * So, to avoid this, we instantiate an inode directly from the inode core we've
2577 * just recovered. We have the buffer still locked, and all we really need to
2578 * instantiate is the inode core and the forks being modified. We can do this
2579 * manually, then run the inode btree owner change, and then tear down the
2580 * xfs_inode without having to run any transactions at all.
2581 *
2582 * Also, because we don't have a transaction context available here but need to
2583 * gather all the buffers we modify for writeback so we pass the buffer_list
2584 * instead for the operation to use.
2585 */
2586
2587STATIC int
2588xfs_recover_inode_owner_change(
2589 struct xfs_mount *mp,
2590 struct xfs_dinode *dip,
2591 struct xfs_inode_log_format *in_f,
2592 struct list_head *buffer_list)
2593{
2594 struct xfs_inode *ip;
2595 int error;
2596
2597 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2598
2599 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2600 if (!ip)
2601 return ENOMEM;
2602
2603 /* instantiate the inode */
2604 xfs_dinode_from_disk(&ip->i_d, dip);
2605 ASSERT(ip->i_d.di_version >= 3);
2606
2607 error = xfs_iformat_fork(ip, dip);
2608 if (error)
2609 goto out_free_ip;
2610
2611
2612 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2613 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2614 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2615 ip->i_ino, buffer_list);
2616 if (error)
2617 goto out_free_ip;
2618 }
2619
2620 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2621 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2622 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2623 ip->i_ino, buffer_list);
2624 if (error)
2625 goto out_free_ip;
2626 }
2627
2628out_free_ip:
2629 xfs_inode_free(ip);
2630 return error;
2631}
2632
1da177e4 2633STATIC int
c9f71f5f 2634xlog_recover_inode_pass2(
9a8d2fdb
MT
2635 struct xlog *log,
2636 struct list_head *buffer_list,
50d5c8d8
DC
2637 struct xlog_recover_item *item,
2638 xfs_lsn_t current_lsn)
1da177e4
LT
2639{
2640 xfs_inode_log_format_t *in_f;
c9f71f5f 2641 xfs_mount_t *mp = log->l_mp;
1da177e4 2642 xfs_buf_t *bp;
1da177e4 2643 xfs_dinode_t *dip;
1da177e4
LT
2644 int len;
2645 xfs_caddr_t src;
2646 xfs_caddr_t dest;
2647 int error;
2648 int attr_index;
2649 uint fields;
347d1c01 2650 xfs_icdinode_t *dicp;
93848a99 2651 uint isize;
6d192a9b 2652 int need_free = 0;
1da177e4 2653
6d192a9b 2654 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2655 in_f = item->ri_buf[0].i_addr;
6d192a9b 2656 } else {
4e0d5f92 2657 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2658 need_free = 1;
2659 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2660 if (error)
2661 goto error;
2662 }
1da177e4
LT
2663
2664 /*
2665 * Inode buffers can be freed, look out for it,
2666 * and do not replay the inode.
2667 */
a1941895
CH
2668 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2669 in_f->ilf_len, 0)) {
6d192a9b 2670 error = 0;
9abbc539 2671 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2672 goto error;
2673 }
9abbc539 2674 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2675
c3f8fc73 2676 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2677 &xfs_inode_buf_ops);
ac4d6888
CS
2678 if (!bp) {
2679 error = ENOMEM;
2680 goto error;
2681 }
e5702805 2682 error = bp->b_error;
5a52c2a5 2683 if (error) {
901796af 2684 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 2685 goto out_release;
1da177e4 2686 }
1da177e4 2687 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2688 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2689
2690 /*
2691 * Make sure the place we're flushing out to really looks
2692 * like an inode!
2693 */
69ef921b 2694 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67
DC
2695 xfs_alert(mp,
2696 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2697 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2698 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2699 XFS_ERRLEVEL_LOW, mp);
6d192a9b 2700 error = EFSCORRUPTED;
638f4416 2701 goto out_release;
1da177e4 2702 }
4e0d5f92 2703 dicp = item->ri_buf[1].i_addr;
1da177e4 2704 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67
DC
2705 xfs_alert(mp,
2706 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2707 __func__, item, in_f->ilf_ino);
c9f71f5f 2708 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2709 XFS_ERRLEVEL_LOW, mp);
6d192a9b 2710 error = EFSCORRUPTED;
638f4416 2711 goto out_release;
1da177e4
LT
2712 }
2713
50d5c8d8
DC
2714 /*
2715 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
2716 * than the lsn of the transaction we are replaying. Note: we still
2717 * need to replay an owner change even though the inode is more recent
2718 * than the transaction as there is no guarantee that all the btree
2719 * blocks are more recent than this transaction, too.
50d5c8d8
DC
2720 */
2721 if (dip->di_version >= 3) {
2722 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2723
2724 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2725 trace_xfs_log_recover_inode_skip(log, in_f);
2726 error = 0;
638f4416 2727 goto out_owner_change;
50d5c8d8
DC
2728 }
2729 }
2730
e60896d8
DC
2731 /*
2732 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2733 * are transactional and if ordering is necessary we can determine that
2734 * more accurately by the LSN field in the V3 inode core. Don't trust
2735 * the inode versions we might be changing them here - use the
2736 * superblock flag to determine whether we need to look at di_flushiter
2737 * to skip replay when the on disk inode is newer than the log one
2738 */
2739 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2740 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2741 /*
2742 * Deal with the wrap case, DI_MAX_FLUSH is less
2743 * than smaller numbers
2744 */
81591fe2 2745 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2746 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2747 /* do nothing */
2748 } else {
9abbc539 2749 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 2750 error = 0;
638f4416 2751 goto out_release;
1da177e4
LT
2752 }
2753 }
e60896d8 2754
1da177e4
LT
2755 /* Take the opportunity to reset the flush iteration count */
2756 dicp->di_flushiter = 0;
2757
abbede1b 2758 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2759 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2760 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2761 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4 2762 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2763 xfs_alert(mp,
2764 "%s: Bad regular inode log record, rec ptr 0x%p, "
2765 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2766 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b 2767 error = EFSCORRUPTED;
638f4416 2768 goto out_release;
1da177e4 2769 }
abbede1b 2770 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2771 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2772 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2773 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2774 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4 2775 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2776 xfs_alert(mp,
2777 "%s: Bad dir inode log record, rec ptr 0x%p, "
2778 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2779 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b 2780 error = EFSCORRUPTED;
638f4416 2781 goto out_release;
1da177e4
LT
2782 }
2783 }
2784 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2785 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4 2786 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2787 xfs_alert(mp,
2788 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2789 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2790 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2791 dicp->di_nextents + dicp->di_anextents,
2792 dicp->di_nblocks);
6d192a9b 2793 error = EFSCORRUPTED;
638f4416 2794 goto out_release;
1da177e4
LT
2795 }
2796 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2797 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4 2798 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2799 xfs_alert(mp,
2800 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2801 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2802 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b 2803 error = EFSCORRUPTED;
638f4416 2804 goto out_release;
1da177e4 2805 }
93848a99
CH
2806 isize = xfs_icdinode_size(dicp->di_version);
2807 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2808 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4 2809 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2810 xfs_alert(mp,
2811 "%s: Bad inode log record length %d, rec ptr 0x%p",
2812 __func__, item->ri_buf[1].i_len, item);
6d192a9b 2813 error = EFSCORRUPTED;
638f4416 2814 goto out_release;
1da177e4
LT
2815 }
2816
2817 /* The core is in in-core format */
93848a99 2818 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2819
2820 /* the rest is in on-disk format */
93848a99
CH
2821 if (item->ri_buf[1].i_len > isize) {
2822 memcpy((char *)dip + isize,
2823 item->ri_buf[1].i_addr + isize,
2824 item->ri_buf[1].i_len - isize);
1da177e4
LT
2825 }
2826
2827 fields = in_f->ilf_fields;
2828 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2829 case XFS_ILOG_DEV:
81591fe2 2830 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2831 break;
2832 case XFS_ILOG_UUID:
81591fe2
CH
2833 memcpy(XFS_DFORK_DPTR(dip),
2834 &in_f->ilf_u.ilfu_uuid,
2835 sizeof(uuid_t));
1da177e4
LT
2836 break;
2837 }
2838
2839 if (in_f->ilf_size == 2)
638f4416 2840 goto out_owner_change;
1da177e4
LT
2841 len = item->ri_buf[2].i_len;
2842 src = item->ri_buf[2].i_addr;
2843 ASSERT(in_f->ilf_size <= 4);
2844 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2845 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2846 (len == in_f->ilf_dsize));
2847
2848 switch (fields & XFS_ILOG_DFORK) {
2849 case XFS_ILOG_DDATA:
2850 case XFS_ILOG_DEXT:
81591fe2 2851 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2852 break;
2853
2854 case XFS_ILOG_DBROOT:
7cc95a82 2855 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2856 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2857 XFS_DFORK_DSIZE(dip, mp));
2858 break;
2859
2860 default:
2861 /*
2862 * There are no data fork flags set.
2863 */
2864 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2865 break;
2866 }
2867
2868 /*
2869 * If we logged any attribute data, recover it. There may or
2870 * may not have been any other non-core data logged in this
2871 * transaction.
2872 */
2873 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2874 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2875 attr_index = 3;
2876 } else {
2877 attr_index = 2;
2878 }
2879 len = item->ri_buf[attr_index].i_len;
2880 src = item->ri_buf[attr_index].i_addr;
2881 ASSERT(len == in_f->ilf_asize);
2882
2883 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2884 case XFS_ILOG_ADATA:
2885 case XFS_ILOG_AEXT:
2886 dest = XFS_DFORK_APTR(dip);
2887 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2888 memcpy(dest, src, len);
2889 break;
2890
2891 case XFS_ILOG_ABROOT:
2892 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2893 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2894 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2895 XFS_DFORK_ASIZE(dip, mp));
2896 break;
2897
2898 default:
a0fa2b67 2899 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 2900 ASSERT(0);
6d192a9b 2901 error = EIO;
638f4416 2902 goto out_release;
1da177e4
LT
2903 }
2904 }
2905
638f4416
DC
2906out_owner_change:
2907 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
2908 error = xfs_recover_inode_owner_change(mp, dip, in_f,
2909 buffer_list);
93848a99
CH
2910 /* re-generate the checksum. */
2911 xfs_dinode_calc_crc(log->l_mp, dip);
2912
ebad861b 2913 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2914 bp->b_iodone = xlog_recover_iodone;
43ff2122 2915 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
2916
2917out_release:
61551f1e 2918 xfs_buf_relse(bp);
6d192a9b
TS
2919error:
2920 if (need_free)
f0e2d93c 2921 kmem_free(in_f);
b474c7ae 2922 return error;
1da177e4
LT
2923}
2924
2925/*
9a8d2fdb 2926 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2927 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2928 * of that type.
2929 */
2930STATIC int
c9f71f5f 2931xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2932 struct xlog *log,
2933 struct xlog_recover_item *item)
1da177e4 2934{
c9f71f5f 2935 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2936 ASSERT(qoff_f);
2937
2938 /*
2939 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2940 * group/project quotaoff or both.
1da177e4
LT
2941 */
2942 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2943 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2944 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2945 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2946 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2947 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2948
d99831ff 2949 return 0;
1da177e4
LT
2950}
2951
2952/*
2953 * Recover a dquot record
2954 */
2955STATIC int
c9f71f5f 2956xlog_recover_dquot_pass2(
9a8d2fdb
MT
2957 struct xlog *log,
2958 struct list_head *buffer_list,
50d5c8d8
DC
2959 struct xlog_recover_item *item,
2960 xfs_lsn_t current_lsn)
1da177e4 2961{
c9f71f5f 2962 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2963 xfs_buf_t *bp;
2964 struct xfs_disk_dquot *ddq, *recddq;
2965 int error;
2966 xfs_dq_logformat_t *dq_f;
2967 uint type;
2968
1da177e4
LT
2969
2970 /*
2971 * Filesystems are required to send in quota flags at mount time.
2972 */
2973 if (mp->m_qflags == 0)
d99831ff 2974 return 0;
1da177e4 2975
4e0d5f92
CH
2976 recddq = item->ri_buf[1].i_addr;
2977 if (recddq == NULL) {
a0fa2b67 2978 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
b474c7ae 2979 return EIO;
0c5e1ce8 2980 }
8ec6dba2 2981 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2982 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 2983 item->ri_buf[1].i_len, __func__);
b474c7ae 2984 return EIO;
0c5e1ce8
CH
2985 }
2986
1da177e4
LT
2987 /*
2988 * This type of quotas was turned off, so ignore this record.
2989 */
b53e675d 2990 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2991 ASSERT(type);
2992 if (log->l_quotaoffs_flag & type)
d99831ff 2993 return 0;
1da177e4
LT
2994
2995 /*
2996 * At this point we know that quota was _not_ turned off.
2997 * Since the mount flags are not indicating to us otherwise, this
2998 * must mean that quota is on, and the dquot needs to be replayed.
2999 * Remember that we may not have fully recovered the superblock yet,
3000 * so we can't do the usual trick of looking at the SB quota bits.
3001 *
3002 * The other possibility, of course, is that the quota subsystem was
3003 * removed since the last mount - ENOSYS.
3004 */
4e0d5f92 3005 dq_f = item->ri_buf[0].i_addr;
1da177e4 3006 ASSERT(dq_f);
9aede1d8 3007 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
a0fa2b67
DC
3008 "xlog_recover_dquot_pass2 (log copy)");
3009 if (error)
b474c7ae 3010 return EIO;
1da177e4
LT
3011 ASSERT(dq_f->qlf_len == 1);
3012
7ca790a5 3013 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73
DC
3014 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3015 NULL);
7ca790a5 3016 if (error)
1da177e4 3017 return error;
7ca790a5 3018
1da177e4
LT
3019 ASSERT(bp);
3020 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3021
3022 /*
3023 * At least the magic num portion should be on disk because this
3024 * was among a chunk of dquots created earlier, and we did some
3025 * minimal initialization then.
3026 */
9aede1d8 3027 error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
a0fa2b67
DC
3028 "xlog_recover_dquot_pass2");
3029 if (error) {
1da177e4 3030 xfs_buf_relse(bp);
b474c7ae 3031 return EIO;
1da177e4
LT
3032 }
3033
50d5c8d8
DC
3034 /*
3035 * If the dquot has an LSN in it, recover the dquot only if it's less
3036 * than the lsn of the transaction we are replaying.
3037 */
3038 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3039 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3040 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3041
3042 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3043 goto out_release;
3044 }
3045 }
3046
1da177e4 3047 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
3048 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3049 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3050 XFS_DQUOT_CRC_OFF);
3051 }
1da177e4
LT
3052
3053 ASSERT(dq_f->qlf_size == 2);
ebad861b 3054 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3055 bp->b_iodone = xlog_recover_iodone;
43ff2122 3056 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 3057
50d5c8d8
DC
3058out_release:
3059 xfs_buf_relse(bp);
3060 return 0;
1da177e4
LT
3061}
3062
3063/*
3064 * This routine is called to create an in-core extent free intent
3065 * item from the efi format structure which was logged on disk.
3066 * It allocates an in-core efi, copies the extents from the format
3067 * structure into it, and adds the efi to the AIL with the given
3068 * LSN.
3069 */
6d192a9b 3070STATIC int
c9f71f5f 3071xlog_recover_efi_pass2(
9a8d2fdb
MT
3072 struct xlog *log,
3073 struct xlog_recover_item *item,
3074 xfs_lsn_t lsn)
1da177e4 3075{
6d192a9b 3076 int error;
c9f71f5f 3077 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3078 xfs_efi_log_item_t *efip;
3079 xfs_efi_log_format_t *efi_formatp;
1da177e4 3080
4e0d5f92 3081 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3082
1da177e4 3083 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
3084 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3085 &(efip->efi_format)))) {
3086 xfs_efi_item_free(efip);
3087 return error;
3088 }
b199c8a4 3089 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3090
a9c21c1b 3091 spin_lock(&log->l_ailp->xa_lock);
1da177e4 3092 /*
783a2f65 3093 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 3094 */
e6059949 3095 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 3096 return 0;
1da177e4
LT
3097}
3098
3099
3100/*
3101 * This routine is called when an efd format structure is found in
3102 * a committed transaction in the log. It's purpose is to cancel
3103 * the corresponding efi if it was still in the log. To do this
3104 * it searches the AIL for the efi with an id equal to that in the
3105 * efd format structure. If we find it, we remove the efi from the
3106 * AIL and free it.
3107 */
c9f71f5f
CH
3108STATIC int
3109xlog_recover_efd_pass2(
9a8d2fdb
MT
3110 struct xlog *log,
3111 struct xlog_recover_item *item)
1da177e4 3112{
1da177e4
LT
3113 xfs_efd_log_format_t *efd_formatp;
3114 xfs_efi_log_item_t *efip = NULL;
3115 xfs_log_item_t *lip;
1da177e4 3116 __uint64_t efi_id;
27d8d5fe 3117 struct xfs_ail_cursor cur;
783a2f65 3118 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3119
4e0d5f92 3120 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3121 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3122 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3123 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3124 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3125 efi_id = efd_formatp->efd_efi_id;
3126
3127 /*
3128 * Search for the efi with the id in the efd format structure
3129 * in the AIL.
3130 */
a9c21c1b
DC
3131 spin_lock(&ailp->xa_lock);
3132 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3133 while (lip != NULL) {
3134 if (lip->li_type == XFS_LI_EFI) {
3135 efip = (xfs_efi_log_item_t *)lip;
3136 if (efip->efi_format.efi_id == efi_id) {
3137 /*
783a2f65 3138 * xfs_trans_ail_delete() drops the
1da177e4
LT
3139 * AIL lock.
3140 */
04913fdd
DC
3141 xfs_trans_ail_delete(ailp, lip,
3142 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 3143 xfs_efi_item_free(efip);
a9c21c1b 3144 spin_lock(&ailp->xa_lock);
27d8d5fe 3145 break;
1da177e4
LT
3146 }
3147 }
a9c21c1b 3148 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3149 }
e4a1e29c 3150 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3151 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3152
3153 return 0;
1da177e4
LT
3154}
3155
28c8e41a
DC
3156/*
3157 * This routine is called when an inode create format structure is found in a
3158 * committed transaction in the log. It's purpose is to initialise the inodes
3159 * being allocated on disk. This requires us to get inode cluster buffers that
3160 * match the range to be intialised, stamped with inode templates and written
3161 * by delayed write so that subsequent modifications will hit the cached buffer
3162 * and only need writing out at the end of recovery.
3163 */
3164STATIC int
3165xlog_recover_do_icreate_pass2(
3166 struct xlog *log,
3167 struct list_head *buffer_list,
3168 xlog_recover_item_t *item)
3169{
3170 struct xfs_mount *mp = log->l_mp;
3171 struct xfs_icreate_log *icl;
3172 xfs_agnumber_t agno;
3173 xfs_agblock_t agbno;
3174 unsigned int count;
3175 unsigned int isize;
3176 xfs_agblock_t length;
3177
3178 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3179 if (icl->icl_type != XFS_LI_ICREATE) {
3180 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3181 return EINVAL;
3182 }
3183
3184 if (icl->icl_size != 1) {
3185 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3186 return EINVAL;
3187 }
3188
3189 agno = be32_to_cpu(icl->icl_ag);
3190 if (agno >= mp->m_sb.sb_agcount) {
3191 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3192 return EINVAL;
3193 }
3194 agbno = be32_to_cpu(icl->icl_agbno);
3195 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3196 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3197 return EINVAL;
3198 }
3199 isize = be32_to_cpu(icl->icl_isize);
3200 if (isize != mp->m_sb.sb_inodesize) {
3201 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3202 return EINVAL;
3203 }
3204 count = be32_to_cpu(icl->icl_count);
3205 if (!count) {
3206 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3207 return EINVAL;
3208 }
3209 length = be32_to_cpu(icl->icl_length);
3210 if (!length || length >= mp->m_sb.sb_agblocks) {
3211 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3212 return EINVAL;
3213 }
3214
3215 /* existing allocation is fixed value */
71783438 3216 ASSERT(count == mp->m_ialloc_inos);
126cd105 3217 ASSERT(length == mp->m_ialloc_blks);
71783438 3218 if (count != mp->m_ialloc_inos ||
126cd105 3219 length != mp->m_ialloc_blks) {
28c8e41a
DC
3220 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3221 return EINVAL;
3222 }
3223
3224 /*
3225 * Inode buffers can be freed. Do not replay the inode initialisation as
3226 * we could be overwriting something written after this inode buffer was
3227 * cancelled.
3228 *
3229 * XXX: we need to iterate all buffers and only init those that are not
3230 * cancelled. I think that a more fine grained factoring of
3231 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3232 * done easily.
3233 */
3234 if (xlog_check_buffer_cancelled(log,
3235 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3236 return 0;
3237
3238 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3239 be32_to_cpu(icl->icl_gen));
3240 return 0;
3241}
3242
1da177e4
LT
3243/*
3244 * Free up any resources allocated by the transaction
3245 *
3246 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3247 */
3248STATIC void
3249xlog_recover_free_trans(
d0450948 3250 struct xlog_recover *trans)
1da177e4 3251{
f0a76953 3252 xlog_recover_item_t *item, *n;
1da177e4
LT
3253 int i;
3254
f0a76953
DC
3255 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3256 /* Free the regions in the item. */
3257 list_del(&item->ri_list);
3258 for (i = 0; i < item->ri_cnt; i++)
3259 kmem_free(item->ri_buf[i].i_addr);
1da177e4 3260 /* Free the item itself */
f0a76953
DC
3261 kmem_free(item->ri_buf);
3262 kmem_free(item);
3263 }
1da177e4 3264 /* Free the transaction recover structure */
f0e2d93c 3265 kmem_free(trans);
1da177e4
LT
3266}
3267
00574da1
ZYW
3268STATIC void
3269xlog_recover_buffer_ra_pass2(
3270 struct xlog *log,
3271 struct xlog_recover_item *item)
3272{
3273 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3274 struct xfs_mount *mp = log->l_mp;
3275
84a5b730 3276 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3277 buf_f->blf_len, buf_f->blf_flags)) {
3278 return;
3279 }
3280
3281 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3282 buf_f->blf_len, NULL);
3283}
3284
3285STATIC void
3286xlog_recover_inode_ra_pass2(
3287 struct xlog *log,
3288 struct xlog_recover_item *item)
3289{
3290 struct xfs_inode_log_format ilf_buf;
3291 struct xfs_inode_log_format *ilfp;
3292 struct xfs_mount *mp = log->l_mp;
3293 int error;
3294
3295 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3296 ilfp = item->ri_buf[0].i_addr;
3297 } else {
3298 ilfp = &ilf_buf;
3299 memset(ilfp, 0, sizeof(*ilfp));
3300 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3301 if (error)
3302 return;
3303 }
3304
84a5b730 3305 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3306 return;
3307
3308 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 3309 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
3310}
3311
3312STATIC void
3313xlog_recover_dquot_ra_pass2(
3314 struct xlog *log,
3315 struct xlog_recover_item *item)
3316{
3317 struct xfs_mount *mp = log->l_mp;
3318 struct xfs_disk_dquot *recddq;
3319 struct xfs_dq_logformat *dq_f;
3320 uint type;
3321
3322
3323 if (mp->m_qflags == 0)
3324 return;
3325
3326 recddq = item->ri_buf[1].i_addr;
3327 if (recddq == NULL)
3328 return;
3329 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3330 return;
3331
3332 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3333 ASSERT(type);
3334 if (log->l_quotaoffs_flag & type)
3335 return;
3336
3337 dq_f = item->ri_buf[0].i_addr;
3338 ASSERT(dq_f);
3339 ASSERT(dq_f->qlf_len == 1);
3340
3341 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
0f0d3345 3342 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
00574da1
ZYW
3343}
3344
3345STATIC void
3346xlog_recover_ra_pass2(
3347 struct xlog *log,
3348 struct xlog_recover_item *item)
3349{
3350 switch (ITEM_TYPE(item)) {
3351 case XFS_LI_BUF:
3352 xlog_recover_buffer_ra_pass2(log, item);
3353 break;
3354 case XFS_LI_INODE:
3355 xlog_recover_inode_ra_pass2(log, item);
3356 break;
3357 case XFS_LI_DQUOT:
3358 xlog_recover_dquot_ra_pass2(log, item);
3359 break;
3360 case XFS_LI_EFI:
3361 case XFS_LI_EFD:
3362 case XFS_LI_QUOTAOFF:
3363 default:
3364 break;
3365 }
3366}
3367
d0450948 3368STATIC int
c9f71f5f 3369xlog_recover_commit_pass1(
ad223e60
MT
3370 struct xlog *log,
3371 struct xlog_recover *trans,
3372 struct xlog_recover_item *item)
d0450948 3373{
c9f71f5f 3374 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3375
3376 switch (ITEM_TYPE(item)) {
3377 case XFS_LI_BUF:
c9f71f5f
CH
3378 return xlog_recover_buffer_pass1(log, item);
3379 case XFS_LI_QUOTAOFF:
3380 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3381 case XFS_LI_INODE:
d0450948 3382 case XFS_LI_EFI:
d0450948 3383 case XFS_LI_EFD:
c9f71f5f 3384 case XFS_LI_DQUOT:
28c8e41a 3385 case XFS_LI_ICREATE:
c9f71f5f 3386 /* nothing to do in pass 1 */
d0450948 3387 return 0;
c9f71f5f 3388 default:
a0fa2b67
DC
3389 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3390 __func__, ITEM_TYPE(item));
c9f71f5f 3391 ASSERT(0);
b474c7ae 3392 return EIO;
c9f71f5f
CH
3393 }
3394}
3395
3396STATIC int
3397xlog_recover_commit_pass2(
ad223e60
MT
3398 struct xlog *log,
3399 struct xlog_recover *trans,
3400 struct list_head *buffer_list,
3401 struct xlog_recover_item *item)
c9f71f5f
CH
3402{
3403 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3404
3405 switch (ITEM_TYPE(item)) {
3406 case XFS_LI_BUF:
50d5c8d8
DC
3407 return xlog_recover_buffer_pass2(log, buffer_list, item,
3408 trans->r_lsn);
c9f71f5f 3409 case XFS_LI_INODE:
50d5c8d8
DC
3410 return xlog_recover_inode_pass2(log, buffer_list, item,
3411 trans->r_lsn);
c9f71f5f
CH
3412 case XFS_LI_EFI:
3413 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3414 case XFS_LI_EFD:
3415 return xlog_recover_efd_pass2(log, item);
d0450948 3416 case XFS_LI_DQUOT:
50d5c8d8
DC
3417 return xlog_recover_dquot_pass2(log, buffer_list, item,
3418 trans->r_lsn);
28c8e41a
DC
3419 case XFS_LI_ICREATE:
3420 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3421 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3422 /* nothing to do in pass2 */
3423 return 0;
d0450948 3424 default:
a0fa2b67
DC
3425 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3426 __func__, ITEM_TYPE(item));
d0450948 3427 ASSERT(0);
b474c7ae 3428 return EIO;
d0450948
CH
3429 }
3430}
3431
00574da1
ZYW
3432STATIC int
3433xlog_recover_items_pass2(
3434 struct xlog *log,
3435 struct xlog_recover *trans,
3436 struct list_head *buffer_list,
3437 struct list_head *item_list)
3438{
3439 struct xlog_recover_item *item;
3440 int error = 0;
3441
3442 list_for_each_entry(item, item_list, ri_list) {
3443 error = xlog_recover_commit_pass2(log, trans,
3444 buffer_list, item);
3445 if (error)
3446 return error;
3447 }
3448
3449 return error;
3450}
3451
d0450948
CH
3452/*
3453 * Perform the transaction.
3454 *
3455 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3456 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3457 */
1da177e4
LT
3458STATIC int
3459xlog_recover_commit_trans(
ad223e60 3460 struct xlog *log,
d0450948 3461 struct xlog_recover *trans,
1da177e4
LT
3462 int pass)
3463{
00574da1
ZYW
3464 int error = 0;
3465 int error2;
3466 int items_queued = 0;
3467 struct xlog_recover_item *item;
3468 struct xlog_recover_item *next;
3469 LIST_HEAD (buffer_list);
3470 LIST_HEAD (ra_list);
3471 LIST_HEAD (done_list);
3472
3473 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 3474
f0a76953 3475 hlist_del(&trans->r_list);
d0450948
CH
3476
3477 error = xlog_recover_reorder_trans(log, trans, pass);
3478 if (error)
1da177e4 3479 return error;
d0450948 3480
00574da1 3481 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
3482 switch (pass) {
3483 case XLOG_RECOVER_PASS1:
c9f71f5f 3484 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3485 break;
3486 case XLOG_RECOVER_PASS2:
00574da1
ZYW
3487 xlog_recover_ra_pass2(log, item);
3488 list_move_tail(&item->ri_list, &ra_list);
3489 items_queued++;
3490 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3491 error = xlog_recover_items_pass2(log, trans,
3492 &buffer_list, &ra_list);
3493 list_splice_tail_init(&ra_list, &done_list);
3494 items_queued = 0;
3495 }
3496
43ff2122
CH
3497 break;
3498 default:
3499 ASSERT(0);
3500 }
3501
d0450948 3502 if (error)
43ff2122 3503 goto out;
d0450948
CH
3504 }
3505
00574da1
ZYW
3506out:
3507 if (!list_empty(&ra_list)) {
3508 if (!error)
3509 error = xlog_recover_items_pass2(log, trans,
3510 &buffer_list, &ra_list);
3511 list_splice_tail_init(&ra_list, &done_list);
3512 }
3513
3514 if (!list_empty(&done_list))
3515 list_splice_init(&done_list, &trans->r_itemq);
3516
d0450948 3517 xlog_recover_free_trans(trans);
43ff2122 3518
43ff2122
CH
3519 error2 = xfs_buf_delwri_submit(&buffer_list);
3520 return error ? error : error2;
1da177e4
LT
3521}
3522
3523STATIC int
3524xlog_recover_unmount_trans(
bbe4c668 3525 struct xlog *log)
1da177e4
LT
3526{
3527 /* Do nothing now */
a0fa2b67 3528 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
3529 return 0;
3530}
3531
3532/*
3533 * There are two valid states of the r_state field. 0 indicates that the
3534 * transaction structure is in a normal state. We have either seen the
3535 * start of the transaction or the last operation we added was not a partial
3536 * operation. If the last operation we added to the transaction was a
3537 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3538 *
3539 * NOTE: skip LRs with 0 data length.
3540 */
3541STATIC int
3542xlog_recover_process_data(
9a8d2fdb 3543 struct xlog *log,
f0a76953 3544 struct hlist_head rhash[],
9a8d2fdb 3545 struct xlog_rec_header *rhead,
1da177e4
LT
3546 xfs_caddr_t dp,
3547 int pass)
3548{
3549 xfs_caddr_t lp;
3550 int num_logops;
3551 xlog_op_header_t *ohead;
3552 xlog_recover_t *trans;
3553 xlog_tid_t tid;
3554 int error;
3555 unsigned long hash;
3556 uint flags;
3557
b53e675d
CH
3558 lp = dp + be32_to_cpu(rhead->h_len);
3559 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3560
3561 /* check the log format matches our own - else we can't recover */
3562 if (xlog_header_check_recover(log->l_mp, rhead))
b474c7ae 3563 return EIO;
1da177e4
LT
3564
3565 while ((dp < lp) && num_logops) {
3566 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3567 ohead = (xlog_op_header_t *)dp;
3568 dp += sizeof(xlog_op_header_t);
3569 if (ohead->oh_clientid != XFS_TRANSACTION &&
3570 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
3571 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3572 __func__, ohead->oh_clientid);
1da177e4 3573 ASSERT(0);
b474c7ae 3574 return EIO;
1da177e4 3575 }
67fcb7bf 3576 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 3577 hash = XLOG_RHASH(tid);
f0a76953 3578 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
3579 if (trans == NULL) { /* not found; add new tid */
3580 if (ohead->oh_flags & XLOG_START_TRANS)
3581 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 3582 be64_to_cpu(rhead->h_lsn));
1da177e4 3583 } else {
9742bb93 3584 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
3585 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3586 __func__, be32_to_cpu(ohead->oh_len));
9742bb93 3587 WARN_ON(1);
b474c7ae 3588 return EIO;
9742bb93 3589 }
1da177e4
LT
3590 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3591 if (flags & XLOG_WAS_CONT_TRANS)
3592 flags &= ~XLOG_CONTINUE_TRANS;
3593 switch (flags) {
3594 case XLOG_COMMIT_TRANS:
3595 error = xlog_recover_commit_trans(log,
f0a76953 3596 trans, pass);
1da177e4
LT
3597 break;
3598 case XLOG_UNMOUNT_TRANS:
bbe4c668 3599 error = xlog_recover_unmount_trans(log);
1da177e4
LT
3600 break;
3601 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
3602 error = xlog_recover_add_to_cont_trans(log,
3603 trans, dp,
3604 be32_to_cpu(ohead->oh_len));
1da177e4
LT
3605 break;
3606 case XLOG_START_TRANS:
a0fa2b67
DC
3607 xfs_warn(log->l_mp, "%s: bad transaction",
3608 __func__);
1da177e4 3609 ASSERT(0);
b474c7ae 3610 error = EIO;
1da177e4
LT
3611 break;
3612 case 0:
3613 case XLOG_CONTINUE_TRANS:
9abbc539 3614 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 3615 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
3616 break;
3617 default:
a0fa2b67
DC
3618 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3619 __func__, flags);
1da177e4 3620 ASSERT(0);
b474c7ae 3621 error = EIO;
1da177e4
LT
3622 break;
3623 }
2a84108f
MT
3624 if (error) {
3625 xlog_recover_free_trans(trans);
1da177e4 3626 return error;
2a84108f 3627 }
1da177e4 3628 }
67fcb7bf 3629 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3630 num_logops--;
3631 }
3632 return 0;
3633}
3634
3635/*
3636 * Process an extent free intent item that was recovered from
3637 * the log. We need to free the extents that it describes.
3638 */
3c1e2bbe 3639STATIC int
1da177e4
LT
3640xlog_recover_process_efi(
3641 xfs_mount_t *mp,
3642 xfs_efi_log_item_t *efip)
3643{
3644 xfs_efd_log_item_t *efdp;
3645 xfs_trans_t *tp;
3646 int i;
3c1e2bbe 3647 int error = 0;
1da177e4
LT
3648 xfs_extent_t *extp;
3649 xfs_fsblock_t startblock_fsb;
3650
b199c8a4 3651 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3652
3653 /*
3654 * First check the validity of the extents described by the
3655 * EFI. If any are bad, then assume that all are bad and
3656 * just toss the EFI.
3657 */
3658 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3659 extp = &(efip->efi_format.efi_extents[i]);
3660 startblock_fsb = XFS_BB_TO_FSB(mp,
3661 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3662 if ((startblock_fsb == 0) ||
3663 (extp->ext_len == 0) ||
3664 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3665 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3666 /*
3667 * This will pull the EFI from the AIL and
3668 * free the memory associated with it.
3669 */
666d644c 3670 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 3671 xfs_efi_release(efip, efip->efi_format.efi_nextents);
b474c7ae 3672 return EIO;
1da177e4
LT
3673 }
3674 }
3675
3676 tp = xfs_trans_alloc(mp, 0);
3d3c8b52 3677 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
fc6149d8
DC
3678 if (error)
3679 goto abort_error;
1da177e4
LT
3680 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3681
3682 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3683 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3684 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3685 if (error)
3686 goto abort_error;
1da177e4
LT
3687 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3688 extp->ext_len);
3689 }
3690
b199c8a4 3691 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 3692 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3693 return error;
fc6149d8
DC
3694
3695abort_error:
3696 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3697 return error;
1da177e4
LT
3698}
3699
1da177e4
LT
3700/*
3701 * When this is called, all of the EFIs which did not have
3702 * corresponding EFDs should be in the AIL. What we do now
3703 * is free the extents associated with each one.
3704 *
3705 * Since we process the EFIs in normal transactions, they
3706 * will be removed at some point after the commit. This prevents
3707 * us from just walking down the list processing each one.
3708 * We'll use a flag in the EFI to skip those that we've already
3709 * processed and use the AIL iteration mechanism's generation
3710 * count to try to speed this up at least a bit.
3711 *
3712 * When we start, we know that the EFIs are the only things in
3713 * the AIL. As we process them, however, other items are added
3714 * to the AIL. Since everything added to the AIL must come after
3715 * everything already in the AIL, we stop processing as soon as
3716 * we see something other than an EFI in the AIL.
3717 */
3c1e2bbe 3718STATIC int
1da177e4 3719xlog_recover_process_efis(
9a8d2fdb 3720 struct xlog *log)
1da177e4
LT
3721{
3722 xfs_log_item_t *lip;
3723 xfs_efi_log_item_t *efip;
3c1e2bbe 3724 int error = 0;
27d8d5fe 3725 struct xfs_ail_cursor cur;
a9c21c1b 3726 struct xfs_ail *ailp;
1da177e4 3727
a9c21c1b
DC
3728 ailp = log->l_ailp;
3729 spin_lock(&ailp->xa_lock);
3730 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3731 while (lip != NULL) {
3732 /*
3733 * We're done when we see something other than an EFI.
27d8d5fe 3734 * There should be no EFIs left in the AIL now.
1da177e4
LT
3735 */
3736 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3737#ifdef DEBUG
a9c21c1b 3738 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3739 ASSERT(lip->li_type != XFS_LI_EFI);
3740#endif
1da177e4
LT
3741 break;
3742 }
3743
3744 /*
3745 * Skip EFIs that we've already processed.
3746 */
3747 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3748 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3749 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3750 continue;
3751 }
3752
a9c21c1b
DC
3753 spin_unlock(&ailp->xa_lock);
3754 error = xlog_recover_process_efi(log->l_mp, efip);
3755 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3756 if (error)
3757 goto out;
a9c21c1b 3758 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3759 }
27d8d5fe 3760out:
e4a1e29c 3761 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3762 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3763 return error;
1da177e4
LT
3764}
3765
3766/*
3767 * This routine performs a transaction to null out a bad inode pointer
3768 * in an agi unlinked inode hash bucket.
3769 */
3770STATIC void
3771xlog_recover_clear_agi_bucket(
3772 xfs_mount_t *mp,
3773 xfs_agnumber_t agno,
3774 int bucket)
3775{
3776 xfs_trans_t *tp;
3777 xfs_agi_t *agi;
3778 xfs_buf_t *agibp;
3779 int offset;
3780 int error;
3781
3782 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3d3c8b52 3783 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
e5720eec
DC
3784 if (error)
3785 goto out_abort;
1da177e4 3786
5e1be0fb
CH
3787 error = xfs_read_agi(mp, tp, agno, &agibp);
3788 if (error)
e5720eec 3789 goto out_abort;
1da177e4 3790
5e1be0fb 3791 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3792 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3793 offset = offsetof(xfs_agi_t, agi_unlinked) +
3794 (sizeof(xfs_agino_t) * bucket);
3795 xfs_trans_log_buf(tp, agibp, offset,
3796 (offset + sizeof(xfs_agino_t) - 1));
3797
e5720eec
DC
3798 error = xfs_trans_commit(tp, 0);
3799 if (error)
3800 goto out_error;
3801 return;
3802
3803out_abort:
3804 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3805out_error:
a0fa2b67 3806 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3807 return;
1da177e4
LT
3808}
3809
23fac50f
CH
3810STATIC xfs_agino_t
3811xlog_recover_process_one_iunlink(
3812 struct xfs_mount *mp,
3813 xfs_agnumber_t agno,
3814 xfs_agino_t agino,
3815 int bucket)
3816{
3817 struct xfs_buf *ibp;
3818 struct xfs_dinode *dip;
3819 struct xfs_inode *ip;
3820 xfs_ino_t ino;
3821 int error;
3822
3823 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3824 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3825 if (error)
3826 goto fail;
3827
3828 /*
3829 * Get the on disk inode to find the next inode in the bucket.
3830 */
475ee413 3831 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3832 if (error)
0e446673 3833 goto fail_iput;
23fac50f 3834
23fac50f 3835 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3836 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3837
3838 /* setup for the next pass */
3839 agino = be32_to_cpu(dip->di_next_unlinked);
3840 xfs_buf_relse(ibp);
3841
3842 /*
3843 * Prevent any DMAPI event from being sent when the reference on
3844 * the inode is dropped.
3845 */
3846 ip->i_d.di_dmevmask = 0;
3847
0e446673 3848 IRELE(ip);
23fac50f
CH
3849 return agino;
3850
0e446673
CH
3851 fail_iput:
3852 IRELE(ip);
23fac50f
CH
3853 fail:
3854 /*
3855 * We can't read in the inode this bucket points to, or this inode
3856 * is messed up. Just ditch this bucket of inodes. We will lose
3857 * some inodes and space, but at least we won't hang.
3858 *
3859 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3860 * clear the inode pointer in the bucket.
3861 */
3862 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3863 return NULLAGINO;
3864}
3865
1da177e4
LT
3866/*
3867 * xlog_iunlink_recover
3868 *
3869 * This is called during recovery to process any inodes which
3870 * we unlinked but not freed when the system crashed. These
3871 * inodes will be on the lists in the AGI blocks. What we do
3872 * here is scan all the AGIs and fully truncate and free any
3873 * inodes found on the lists. Each inode is removed from the
3874 * lists when it has been fully truncated and is freed. The
3875 * freeing of the inode and its removal from the list must be
3876 * atomic.
3877 */
d96f8f89 3878STATIC void
1da177e4 3879xlog_recover_process_iunlinks(
9a8d2fdb 3880 struct xlog *log)
1da177e4
LT
3881{
3882 xfs_mount_t *mp;
3883 xfs_agnumber_t agno;
3884 xfs_agi_t *agi;
3885 xfs_buf_t *agibp;
1da177e4 3886 xfs_agino_t agino;
1da177e4
LT
3887 int bucket;
3888 int error;
3889 uint mp_dmevmask;
3890
3891 mp = log->l_mp;
3892
3893 /*
3894 * Prevent any DMAPI event from being sent while in this function.
3895 */
3896 mp_dmevmask = mp->m_dmevmask;
3897 mp->m_dmevmask = 0;
3898
3899 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3900 /*
3901 * Find the agi for this ag.
3902 */
5e1be0fb
CH
3903 error = xfs_read_agi(mp, NULL, agno, &agibp);
3904 if (error) {
3905 /*
3906 * AGI is b0rked. Don't process it.
3907 *
3908 * We should probably mark the filesystem as corrupt
3909 * after we've recovered all the ag's we can....
3910 */
3911 continue;
1da177e4 3912 }
d97d32ed
JK
3913 /*
3914 * Unlock the buffer so that it can be acquired in the normal
3915 * course of the transaction to truncate and free each inode.
3916 * Because we are not racing with anyone else here for the AGI
3917 * buffer, we don't even need to hold it locked to read the
3918 * initial unlinked bucket entries out of the buffer. We keep
3919 * buffer reference though, so that it stays pinned in memory
3920 * while we need the buffer.
3921 */
1da177e4 3922 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3923 xfs_buf_unlock(agibp);
1da177e4
LT
3924
3925 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3926 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3927 while (agino != NULLAGINO) {
23fac50f
CH
3928 agino = xlog_recover_process_one_iunlink(mp,
3929 agno, agino, bucket);
1da177e4
LT
3930 }
3931 }
d97d32ed 3932 xfs_buf_rele(agibp);
1da177e4
LT
3933 }
3934
3935 mp->m_dmevmask = mp_dmevmask;
3936}
3937
1da177e4 3938/*
0e446be4
CH
3939 * Upack the log buffer data and crc check it. If the check fails, issue a
3940 * warning if and only if the CRC in the header is non-zero. This makes the
3941 * check an advisory warning, and the zero CRC check will prevent failure
3942 * warnings from being emitted when upgrading the kernel from one that does not
3943 * add CRCs by default.
3944 *
3945 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3946 * corruption failure
1da177e4 3947 */
0e446be4
CH
3948STATIC int
3949xlog_unpack_data_crc(
3950 struct xlog_rec_header *rhead,
3951 xfs_caddr_t dp,
3952 struct xlog *log)
1da177e4 3953{
f9668a09 3954 __le32 crc;
0e446be4
CH
3955
3956 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3957 if (crc != rhead->h_crc) {
3958 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3959 xfs_alert(log->l_mp,
08e96e1a 3960 "log record CRC mismatch: found 0x%x, expected 0x%x.",
f9668a09
DC
3961 le32_to_cpu(rhead->h_crc),
3962 le32_to_cpu(crc));
0e446be4 3963 xfs_hex_dump(dp, 32);
1da177e4
LT
3964 }
3965
0e446be4
CH
3966 /*
3967 * If we've detected a log record corruption, then we can't
3968 * recover past this point. Abort recovery if we are enforcing
3969 * CRC protection by punting an error back up the stack.
3970 */
3971 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3972 return EFSCORRUPTED;
1da177e4 3973 }
0e446be4
CH
3974
3975 return 0;
1da177e4
LT
3976}
3977
0e446be4 3978STATIC int
1da177e4 3979xlog_unpack_data(
9a8d2fdb 3980 struct xlog_rec_header *rhead,
1da177e4 3981 xfs_caddr_t dp,
9a8d2fdb 3982 struct xlog *log)
1da177e4
LT
3983{
3984 int i, j, k;
0e446be4
CH
3985 int error;
3986
3987 error = xlog_unpack_data_crc(rhead, dp, log);
3988 if (error)
3989 return error;
1da177e4 3990
b53e675d 3991 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3992 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3993 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3994 dp += BBSIZE;
3995 }
3996
62118709 3997 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3998 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3999 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
4000 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4001 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 4002 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
4003 dp += BBSIZE;
4004 }
4005 }
0e446be4
CH
4006
4007 return 0;
1da177e4
LT
4008}
4009
4010STATIC int
4011xlog_valid_rec_header(
9a8d2fdb
MT
4012 struct xlog *log,
4013 struct xlog_rec_header *rhead,
1da177e4
LT
4014 xfs_daddr_t blkno)
4015{
4016 int hlen;
4017
69ef921b 4018 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
4019 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4020 XFS_ERRLEVEL_LOW, log->l_mp);
b474c7ae 4021 return EFSCORRUPTED;
1da177e4
LT
4022 }
4023 if (unlikely(
4024 (!rhead->h_version ||
b53e675d 4025 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 4026 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 4027 __func__, be32_to_cpu(rhead->h_version));
b474c7ae 4028 return EIO;
1da177e4
LT
4029 }
4030
4031 /* LR body must have data or it wouldn't have been written */
b53e675d 4032 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
4033 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4034 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4035 XFS_ERRLEVEL_LOW, log->l_mp);
b474c7ae 4036 return EFSCORRUPTED;
1da177e4
LT
4037 }
4038 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4039 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4040 XFS_ERRLEVEL_LOW, log->l_mp);
b474c7ae 4041 return EFSCORRUPTED;
1da177e4
LT
4042 }
4043 return 0;
4044}
4045
4046/*
4047 * Read the log from tail to head and process the log records found.
4048 * Handle the two cases where the tail and head are in the same cycle
4049 * and where the active portion of the log wraps around the end of
4050 * the physical log separately. The pass parameter is passed through
4051 * to the routines called to process the data and is not looked at
4052 * here.
4053 */
4054STATIC int
4055xlog_do_recovery_pass(
9a8d2fdb 4056 struct xlog *log,
1da177e4
LT
4057 xfs_daddr_t head_blk,
4058 xfs_daddr_t tail_blk,
4059 int pass)
4060{
4061 xlog_rec_header_t *rhead;
4062 xfs_daddr_t blk_no;
fc5bc4c8 4063 xfs_caddr_t offset;
1da177e4
LT
4064 xfs_buf_t *hbp, *dbp;
4065 int error = 0, h_size;
4066 int bblks, split_bblks;
4067 int hblks, split_hblks, wrapped_hblks;
f0a76953 4068 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
4069
4070 ASSERT(head_blk != tail_blk);
4071
4072 /*
4073 * Read the header of the tail block and get the iclog buffer size from
4074 * h_size. Use this to tell how many sectors make up the log header.
4075 */
62118709 4076 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
4077 /*
4078 * When using variable length iclogs, read first sector of
4079 * iclog header and extract the header size from it. Get a
4080 * new hbp that is the correct size.
4081 */
4082 hbp = xlog_get_bp(log, 1);
4083 if (!hbp)
4084 return ENOMEM;
076e6acb
CH
4085
4086 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4087 if (error)
1da177e4 4088 goto bread_err1;
076e6acb 4089
1da177e4
LT
4090 rhead = (xlog_rec_header_t *)offset;
4091 error = xlog_valid_rec_header(log, rhead, tail_blk);
4092 if (error)
4093 goto bread_err1;
b53e675d
CH
4094 h_size = be32_to_cpu(rhead->h_size);
4095 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
4096 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4097 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4098 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4099 hblks++;
4100 xlog_put_bp(hbp);
4101 hbp = xlog_get_bp(log, hblks);
4102 } else {
4103 hblks = 1;
4104 }
4105 } else {
69ce58f0 4106 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
4107 hblks = 1;
4108 hbp = xlog_get_bp(log, 1);
4109 h_size = XLOG_BIG_RECORD_BSIZE;
4110 }
4111
4112 if (!hbp)
4113 return ENOMEM;
4114 dbp = xlog_get_bp(log, BTOBB(h_size));
4115 if (!dbp) {
4116 xlog_put_bp(hbp);
4117 return ENOMEM;
4118 }
4119
4120 memset(rhash, 0, sizeof(rhash));
4121 if (tail_blk <= head_blk) {
4122 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
4123 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4124 if (error)
1da177e4 4125 goto bread_err2;
076e6acb 4126
1da177e4
LT
4127 rhead = (xlog_rec_header_t *)offset;
4128 error = xlog_valid_rec_header(log, rhead, blk_no);
4129 if (error)
4130 goto bread_err2;
4131
4132 /* blocks in data section */
b53e675d 4133 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
4134 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4135 &offset);
1da177e4
LT
4136 if (error)
4137 goto bread_err2;
076e6acb 4138
0e446be4
CH
4139 error = xlog_unpack_data(rhead, offset, log);
4140 if (error)
4141 goto bread_err2;
4142
4143 error = xlog_recover_process_data(log,
4144 rhash, rhead, offset, pass);
4145 if (error)
1da177e4
LT
4146 goto bread_err2;
4147 blk_no += bblks + hblks;
4148 }
4149 } else {
4150 /*
4151 * Perform recovery around the end of the physical log.
4152 * When the head is not on the same cycle number as the tail,
4153 * we can't do a sequential recovery as above.
4154 */
4155 blk_no = tail_blk;
4156 while (blk_no < log->l_logBBsize) {
4157 /*
4158 * Check for header wrapping around physical end-of-log
4159 */
62926044 4160 offset = hbp->b_addr;
1da177e4
LT
4161 split_hblks = 0;
4162 wrapped_hblks = 0;
4163 if (blk_no + hblks <= log->l_logBBsize) {
4164 /* Read header in one read */
076e6acb
CH
4165 error = xlog_bread(log, blk_no, hblks, hbp,
4166 &offset);
1da177e4
LT
4167 if (error)
4168 goto bread_err2;
1da177e4
LT
4169 } else {
4170 /* This LR is split across physical log end */
4171 if (blk_no != log->l_logBBsize) {
4172 /* some data before physical log end */
4173 ASSERT(blk_no <= INT_MAX);
4174 split_hblks = log->l_logBBsize - (int)blk_no;
4175 ASSERT(split_hblks > 0);
076e6acb
CH
4176 error = xlog_bread(log, blk_no,
4177 split_hblks, hbp,
4178 &offset);
4179 if (error)
1da177e4 4180 goto bread_err2;
1da177e4 4181 }
076e6acb 4182
1da177e4
LT
4183 /*
4184 * Note: this black magic still works with
4185 * large sector sizes (non-512) only because:
4186 * - we increased the buffer size originally
4187 * by 1 sector giving us enough extra space
4188 * for the second read;
4189 * - the log start is guaranteed to be sector
4190 * aligned;
4191 * - we read the log end (LR header start)
4192 * _first_, then the log start (LR header end)
4193 * - order is important.
4194 */
234f56ac 4195 wrapped_hblks = hblks - split_hblks;
44396476
DC
4196 error = xlog_bread_offset(log, 0,
4197 wrapped_hblks, hbp,
4198 offset + BBTOB(split_hblks));
1da177e4
LT
4199 if (error)
4200 goto bread_err2;
1da177e4
LT
4201 }
4202 rhead = (xlog_rec_header_t *)offset;
4203 error = xlog_valid_rec_header(log, rhead,
4204 split_hblks ? blk_no : 0);
4205 if (error)
4206 goto bread_err2;
4207
b53e675d 4208 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
4209 blk_no += hblks;
4210
4211 /* Read in data for log record */
4212 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
4213 error = xlog_bread(log, blk_no, bblks, dbp,
4214 &offset);
1da177e4
LT
4215 if (error)
4216 goto bread_err2;
1da177e4
LT
4217 } else {
4218 /* This log record is split across the
4219 * physical end of log */
62926044 4220 offset = dbp->b_addr;
1da177e4
LT
4221 split_bblks = 0;
4222 if (blk_no != log->l_logBBsize) {
4223 /* some data is before the physical
4224 * end of log */
4225 ASSERT(!wrapped_hblks);
4226 ASSERT(blk_no <= INT_MAX);
4227 split_bblks =
4228 log->l_logBBsize - (int)blk_no;
4229 ASSERT(split_bblks > 0);
076e6acb
CH
4230 error = xlog_bread(log, blk_no,
4231 split_bblks, dbp,
4232 &offset);
4233 if (error)
1da177e4 4234 goto bread_err2;
1da177e4 4235 }
076e6acb 4236
1da177e4
LT
4237 /*
4238 * Note: this black magic still works with
4239 * large sector sizes (non-512) only because:
4240 * - we increased the buffer size originally
4241 * by 1 sector giving us enough extra space
4242 * for the second read;
4243 * - the log start is guaranteed to be sector
4244 * aligned;
4245 * - we read the log end (LR header start)
4246 * _first_, then the log start (LR header end)
4247 * - order is important.
4248 */
44396476 4249 error = xlog_bread_offset(log, 0,
009507b0 4250 bblks - split_bblks, dbp,
44396476 4251 offset + BBTOB(split_bblks));
076e6acb
CH
4252 if (error)
4253 goto bread_err2;
1da177e4 4254 }
0e446be4
CH
4255
4256 error = xlog_unpack_data(rhead, offset, log);
4257 if (error)
4258 goto bread_err2;
4259
4260 error = xlog_recover_process_data(log, rhash,
4261 rhead, offset, pass);
4262 if (error)
1da177e4
LT
4263 goto bread_err2;
4264 blk_no += bblks;
4265 }
4266
4267 ASSERT(blk_no >= log->l_logBBsize);
4268 blk_no -= log->l_logBBsize;
4269
4270 /* read first part of physical log */
4271 while (blk_no < head_blk) {
076e6acb
CH
4272 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4273 if (error)
1da177e4 4274 goto bread_err2;
076e6acb 4275
1da177e4
LT
4276 rhead = (xlog_rec_header_t *)offset;
4277 error = xlog_valid_rec_header(log, rhead, blk_no);
4278 if (error)
4279 goto bread_err2;
076e6acb 4280
b53e675d 4281 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
4282 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4283 &offset);
4284 if (error)
1da177e4 4285 goto bread_err2;
076e6acb 4286
0e446be4
CH
4287 error = xlog_unpack_data(rhead, offset, log);
4288 if (error)
4289 goto bread_err2;
4290
4291 error = xlog_recover_process_data(log, rhash,
4292 rhead, offset, pass);
4293 if (error)
1da177e4
LT
4294 goto bread_err2;
4295 blk_no += bblks + hblks;
4296 }
4297 }
4298
4299 bread_err2:
4300 xlog_put_bp(dbp);
4301 bread_err1:
4302 xlog_put_bp(hbp);
4303 return error;
4304}
4305
4306/*
4307 * Do the recovery of the log. We actually do this in two phases.
4308 * The two passes are necessary in order to implement the function
4309 * of cancelling a record written into the log. The first pass
4310 * determines those things which have been cancelled, and the
4311 * second pass replays log items normally except for those which
4312 * have been cancelled. The handling of the replay and cancellations
4313 * takes place in the log item type specific routines.
4314 *
4315 * The table of items which have cancel records in the log is allocated
4316 * and freed at this level, since only here do we know when all of
4317 * the log recovery has been completed.
4318 */
4319STATIC int
4320xlog_do_log_recovery(
9a8d2fdb 4321 struct xlog *log,
1da177e4
LT
4322 xfs_daddr_t head_blk,
4323 xfs_daddr_t tail_blk)
4324{
d5689eaa 4325 int error, i;
1da177e4
LT
4326
4327 ASSERT(head_blk != tail_blk);
4328
4329 /*
4330 * First do a pass to find all of the cancelled buf log items.
4331 * Store them in the buf_cancel_table for use in the second pass.
4332 */
d5689eaa
CH
4333 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4334 sizeof(struct list_head),
1da177e4 4335 KM_SLEEP);
d5689eaa
CH
4336 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4337 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4338
1da177e4
LT
4339 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4340 XLOG_RECOVER_PASS1);
4341 if (error != 0) {
f0e2d93c 4342 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4343 log->l_buf_cancel_table = NULL;
4344 return error;
4345 }
4346 /*
4347 * Then do a second pass to actually recover the items in the log.
4348 * When it is complete free the table of buf cancel items.
4349 */
4350 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4351 XLOG_RECOVER_PASS2);
4352#ifdef DEBUG
6d192a9b 4353 if (!error) {
1da177e4
LT
4354 int i;
4355
4356 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4357 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4358 }
4359#endif /* DEBUG */
4360
f0e2d93c 4361 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4362 log->l_buf_cancel_table = NULL;
4363
4364 return error;
4365}
4366
4367/*
4368 * Do the actual recovery
4369 */
4370STATIC int
4371xlog_do_recover(
9a8d2fdb 4372 struct xlog *log,
1da177e4
LT
4373 xfs_daddr_t head_blk,
4374 xfs_daddr_t tail_blk)
4375{
4376 int error;
4377 xfs_buf_t *bp;
4378 xfs_sb_t *sbp;
4379
4380 /*
4381 * First replay the images in the log.
4382 */
4383 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4384 if (error)
1da177e4 4385 return error;
1da177e4
LT
4386
4387 /*
4388 * If IO errors happened during recovery, bail out.
4389 */
4390 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
d99831ff 4391 return EIO;
1da177e4
LT
4392 }
4393
4394 /*
4395 * We now update the tail_lsn since much of the recovery has completed
4396 * and there may be space available to use. If there were no extent
4397 * or iunlinks, we can free up the entire log and set the tail_lsn to
4398 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4399 * lsn of the last known good LR on disk. If there are extent frees
4400 * or iunlinks they will have some entries in the AIL; so we look at
4401 * the AIL to determine how to set the tail_lsn.
4402 */
4403 xlog_assign_tail_lsn(log->l_mp);
4404
4405 /*
4406 * Now that we've finished replaying all buffer and inode
98021821 4407 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4408 */
4409 bp = xfs_getsb(log->l_mp, 0);
4410 XFS_BUF_UNDONE(bp);
bebf963f 4411 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4412 XFS_BUF_READ(bp);
bebf963f 4413 XFS_BUF_UNASYNC(bp);
1813dd64 4414 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3
CH
4415
4416 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4417 xfs_buf_relse(bp);
b474c7ae 4418 return EIO;
83a0adc3
CH
4419 }
4420
4421 xfs_buf_iorequest(bp);
1a1a3e97 4422 error = xfs_buf_iowait(bp);
d64e31a2 4423 if (error) {
901796af 4424 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
4425 ASSERT(0);
4426 xfs_buf_relse(bp);
4427 return error;
4428 }
4429
4430 /* Convert superblock from on-disk format */
4431 sbp = &log->l_mp->m_sb;
98021821 4432 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4433 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4434 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
4435 xfs_buf_relse(bp);
4436
5478eead
LM
4437 /* We've re-read the superblock so re-initialize per-cpu counters */
4438 xfs_icsb_reinit_counters(log->l_mp);
4439
1da177e4
LT
4440 xlog_recover_check_summary(log);
4441
4442 /* Normal transactions can now occur */
4443 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4444 return 0;
4445}
4446
4447/*
4448 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4449 *
4450 * Return error or zero.
4451 */
4452int
4453xlog_recover(
9a8d2fdb 4454 struct xlog *log)
1da177e4
LT
4455{
4456 xfs_daddr_t head_blk, tail_blk;
4457 int error;
4458
4459 /* find the tail of the log */
65be6054 4460 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
4461 return error;
4462
4463 if (tail_blk != head_blk) {
4464 /* There used to be a comment here:
4465 *
4466 * disallow recovery on read-only mounts. note -- mount
4467 * checks for ENOSPC and turns it into an intelligent
4468 * error message.
4469 * ...but this is no longer true. Now, unless you specify
4470 * NORECOVERY (in which case this function would never be
4471 * called), we just go ahead and recover. We do this all
4472 * under the vfs layer, so we can get away with it unless
4473 * the device itself is read-only, in which case we fail.
4474 */
3a02ee18 4475 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
4476 return error;
4477 }
4478
e721f504
DC
4479 /*
4480 * Version 5 superblock log feature mask validation. We know the
4481 * log is dirty so check if there are any unknown log features
4482 * in what we need to recover. If there are unknown features
4483 * (e.g. unsupported transactions, then simply reject the
4484 * attempt at recovery before touching anything.
4485 */
4486 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4487 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4488 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4489 xfs_warn(log->l_mp,
4490"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4491"The log can not be fully and/or safely recovered by this kernel.\n"
4492"Please recover the log on a kernel that supports the unknown features.",
4493 (log->l_mp->m_sb.sb_features_log_incompat &
4494 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4495 return EINVAL;
4496 }
4497
a0fa2b67
DC
4498 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4499 log->l_mp->m_logname ? log->l_mp->m_logname
4500 : "internal");
1da177e4
LT
4501
4502 error = xlog_do_recover(log, head_blk, tail_blk);
4503 log->l_flags |= XLOG_RECOVERY_NEEDED;
4504 }
4505 return error;
4506}
4507
4508/*
4509 * In the first part of recovery we replay inodes and buffers and build
4510 * up the list of extent free items which need to be processed. Here
4511 * we process the extent free items and clean up the on disk unlinked
4512 * inode lists. This is separated from the first part of recovery so
4513 * that the root and real-time bitmap inodes can be read in from disk in
4514 * between the two stages. This is necessary so that we can free space
4515 * in the real-time portion of the file system.
4516 */
4517int
4518xlog_recover_finish(
9a8d2fdb 4519 struct xlog *log)
1da177e4
LT
4520{
4521 /*
4522 * Now we're ready to do the transactions needed for the
4523 * rest of recovery. Start with completing all the extent
4524 * free intent records and then process the unlinked inode
4525 * lists. At this point, we essentially run in normal mode
4526 * except that we're still performing recovery actions
4527 * rather than accepting new requests.
4528 */
4529 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4530 int error;
4531 error = xlog_recover_process_efis(log);
4532 if (error) {
a0fa2b67 4533 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4534 return error;
4535 }
1da177e4
LT
4536 /*
4537 * Sync the log to get all the EFIs out of the AIL.
4538 * This isn't absolutely necessary, but it helps in
4539 * case the unlink transactions would have problems
4540 * pushing the EFIs out of the way.
4541 */
a14a348b 4542 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4543
4249023a 4544 xlog_recover_process_iunlinks(log);
1da177e4
LT
4545
4546 xlog_recover_check_summary(log);
4547
a0fa2b67
DC
4548 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4549 log->l_mp->m_logname ? log->l_mp->m_logname
4550 : "internal");
1da177e4
LT
4551 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4552 } else {
a0fa2b67 4553 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4554 }
4555 return 0;
4556}
4557
4558
4559#if defined(DEBUG)
4560/*
4561 * Read all of the agf and agi counters and check that they
4562 * are consistent with the superblock counters.
4563 */
4564void
4565xlog_recover_check_summary(
9a8d2fdb 4566 struct xlog *log)
1da177e4
LT
4567{
4568 xfs_mount_t *mp;
4569 xfs_agf_t *agfp;
1da177e4
LT
4570 xfs_buf_t *agfbp;
4571 xfs_buf_t *agibp;
1da177e4
LT
4572 xfs_agnumber_t agno;
4573 __uint64_t freeblks;
4574 __uint64_t itotal;
4575 __uint64_t ifree;
5e1be0fb 4576 int error;
1da177e4
LT
4577
4578 mp = log->l_mp;
4579
4580 freeblks = 0LL;
4581 itotal = 0LL;
4582 ifree = 0LL;
4583 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
CH
4584 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4585 if (error) {
a0fa2b67
DC
4586 xfs_alert(mp, "%s agf read failed agno %d error %d",
4587 __func__, agno, error);
4805621a
CH
4588 } else {
4589 agfp = XFS_BUF_TO_AGF(agfbp);
4590 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4591 be32_to_cpu(agfp->agf_flcount);
4592 xfs_buf_relse(agfbp);
1da177e4 4593 }
1da177e4 4594
5e1be0fb 4595 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4596 if (error) {
4597 xfs_alert(mp, "%s agi read failed agno %d error %d",
4598 __func__, agno, error);
4599 } else {
5e1be0fb 4600 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4601
5e1be0fb
CH
4602 itotal += be32_to_cpu(agi->agi_count);
4603 ifree += be32_to_cpu(agi->agi_freecount);
4604 xfs_buf_relse(agibp);
4605 }
1da177e4 4606 }
1da177e4
LT
4607}
4608#endif /* DEBUG */