]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_log_recover.c
xfs: separate dquot on disk format definitions out of xfs_quota.h
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
6ca1c906 20#include "xfs_format.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
ee1a47ab 32#include "xfs_btree.h"
1da177e4 33#include "xfs_dinode.h"
1da177e4 34#include "xfs_inode.h"
a844f451 35#include "xfs_inode_item.h"
a844f451 36#include "xfs_alloc.h"
1da177e4
LT
37#include "xfs_ialloc.h"
38#include "xfs_log_priv.h"
39#include "xfs_buf_item.h"
1da177e4
LT
40#include "xfs_log_recover.h"
41#include "xfs_extfree_item.h"
42#include "xfs_trans_priv.h"
1da177e4 43#include "xfs_quota.h"
43355099 44#include "xfs_utils.h"
0e446be4 45#include "xfs_cksum.h"
0b1b213f 46#include "xfs_trace.h"
33479e05 47#include "xfs_icache.h"
28c8e41a 48#include "xfs_icreate_item.h"
d75afeb3
DC
49
50/* Need all the magic numbers and buffer ops structures from these headers */
f948dd76 51#include "xfs_symlink.h"
d75afeb3
DC
52#include "xfs_da_btree.h"
53#include "xfs_dir2_format.h"
54#include "xfs_dir2_priv.h"
55#include "xfs_attr_leaf.h"
56#include "xfs_attr_remote.h"
1da177e4 57
fc06c6d0
DC
58#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
59
9a8d2fdb
MT
60STATIC int
61xlog_find_zeroed(
62 struct xlog *,
63 xfs_daddr_t *);
64STATIC int
65xlog_clear_stale_blocks(
66 struct xlog *,
67 xfs_lsn_t);
1da177e4 68#if defined(DEBUG)
9a8d2fdb
MT
69STATIC void
70xlog_recover_check_summary(
71 struct xlog *);
1da177e4
LT
72#else
73#define xlog_recover_check_summary(log)
1da177e4
LT
74#endif
75
d5689eaa
CH
76/*
77 * This structure is used during recovery to record the buf log items which
78 * have been canceled and should not be replayed.
79 */
80struct xfs_buf_cancel {
81 xfs_daddr_t bc_blkno;
82 uint bc_len;
83 int bc_refcount;
84 struct list_head bc_list;
85};
86
1da177e4
LT
87/*
88 * Sector aligned buffer routines for buffer create/read/write/access
89 */
90
ff30a622
AE
91/*
92 * Verify the given count of basic blocks is valid number of blocks
93 * to specify for an operation involving the given XFS log buffer.
94 * Returns nonzero if the count is valid, 0 otherwise.
95 */
96
97static inline int
98xlog_buf_bbcount_valid(
9a8d2fdb 99 struct xlog *log,
ff30a622
AE
100 int bbcount)
101{
102 return bbcount > 0 && bbcount <= log->l_logBBsize;
103}
104
36adecff
AE
105/*
106 * Allocate a buffer to hold log data. The buffer needs to be able
107 * to map to a range of nbblks basic blocks at any valid (basic
108 * block) offset within the log.
109 */
5d77c0dc 110STATIC xfs_buf_t *
1da177e4 111xlog_get_bp(
9a8d2fdb 112 struct xlog *log,
3228149c 113 int nbblks)
1da177e4 114{
c8da0faf
CH
115 struct xfs_buf *bp;
116
ff30a622 117 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 118 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
119 nbblks);
120 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
121 return NULL;
122 }
1da177e4 123
36adecff
AE
124 /*
125 * We do log I/O in units of log sectors (a power-of-2
126 * multiple of the basic block size), so we round up the
25985edc 127 * requested size to accommodate the basic blocks required
36adecff
AE
128 * for complete log sectors.
129 *
130 * In addition, the buffer may be used for a non-sector-
131 * aligned block offset, in which case an I/O of the
132 * requested size could extend beyond the end of the
133 * buffer. If the requested size is only 1 basic block it
134 * will never straddle a sector boundary, so this won't be
135 * an issue. Nor will this be a problem if the log I/O is
136 * done in basic blocks (sector size 1). But otherwise we
137 * extend the buffer by one extra log sector to ensure
25985edc 138 * there's space to accommodate this possibility.
36adecff 139 */
69ce58f0
AE
140 if (nbblks > 1 && log->l_sectBBsize > 1)
141 nbblks += log->l_sectBBsize;
142 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 143
e70b73f8 144 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
145 if (bp)
146 xfs_buf_unlock(bp);
147 return bp;
1da177e4
LT
148}
149
5d77c0dc 150STATIC void
1da177e4
LT
151xlog_put_bp(
152 xfs_buf_t *bp)
153{
154 xfs_buf_free(bp);
155}
156
48389ef1
AE
157/*
158 * Return the address of the start of the given block number's data
159 * in a log buffer. The buffer covers a log sector-aligned region.
160 */
076e6acb
CH
161STATIC xfs_caddr_t
162xlog_align(
9a8d2fdb 163 struct xlog *log,
076e6acb
CH
164 xfs_daddr_t blk_no,
165 int nbblks,
9a8d2fdb 166 struct xfs_buf *bp)
076e6acb 167{
fdc07f44 168 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 169
4e94b71b 170 ASSERT(offset + nbblks <= bp->b_length);
62926044 171 return bp->b_addr + BBTOB(offset);
076e6acb
CH
172}
173
1da177e4
LT
174
175/*
176 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
177 */
076e6acb
CH
178STATIC int
179xlog_bread_noalign(
9a8d2fdb 180 struct xlog *log,
1da177e4
LT
181 xfs_daddr_t blk_no,
182 int nbblks,
9a8d2fdb 183 struct xfs_buf *bp)
1da177e4
LT
184{
185 int error;
186
ff30a622 187 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 188 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
189 nbblks);
190 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
191 return EFSCORRUPTED;
192 }
193
69ce58f0
AE
194 blk_no = round_down(blk_no, log->l_sectBBsize);
195 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
196
197 ASSERT(nbblks > 0);
4e94b71b 198 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
199
200 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
201 XFS_BUF_READ(bp);
aa0e8833 202 bp->b_io_length = nbblks;
0e95f19a 203 bp->b_error = 0;
1da177e4
LT
204
205 xfsbdstrat(log->l_mp, bp);
1a1a3e97 206 error = xfs_buf_iowait(bp);
d64e31a2 207 if (error)
901796af 208 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
209 return error;
210}
211
076e6acb
CH
212STATIC int
213xlog_bread(
9a8d2fdb 214 struct xlog *log,
076e6acb
CH
215 xfs_daddr_t blk_no,
216 int nbblks,
9a8d2fdb 217 struct xfs_buf *bp,
076e6acb
CH
218 xfs_caddr_t *offset)
219{
220 int error;
221
222 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
223 if (error)
224 return error;
225
226 *offset = xlog_align(log, blk_no, nbblks, bp);
227 return 0;
228}
229
44396476
DC
230/*
231 * Read at an offset into the buffer. Returns with the buffer in it's original
232 * state regardless of the result of the read.
233 */
234STATIC int
235xlog_bread_offset(
9a8d2fdb 236 struct xlog *log,
44396476
DC
237 xfs_daddr_t blk_no, /* block to read from */
238 int nbblks, /* blocks to read */
9a8d2fdb 239 struct xfs_buf *bp,
44396476
DC
240 xfs_caddr_t offset)
241{
62926044 242 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 243 int orig_len = BBTOB(bp->b_length);
44396476
DC
244 int error, error2;
245
02fe03d9 246 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
247 if (error)
248 return error;
249
250 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
251
252 /* must reset buffer pointer even on error */
02fe03d9 253 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
254 if (error)
255 return error;
256 return error2;
257}
258
1da177e4
LT
259/*
260 * Write out the buffer at the given block for the given number of blocks.
261 * The buffer is kept locked across the write and is returned locked.
262 * This can only be used for synchronous log writes.
263 */
ba0f32d4 264STATIC int
1da177e4 265xlog_bwrite(
9a8d2fdb 266 struct xlog *log,
1da177e4
LT
267 xfs_daddr_t blk_no,
268 int nbblks,
9a8d2fdb 269 struct xfs_buf *bp)
1da177e4
LT
270{
271 int error;
272
ff30a622 273 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 274 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
275 nbblks);
276 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
277 return EFSCORRUPTED;
278 }
279
69ce58f0
AE
280 blk_no = round_down(blk_no, log->l_sectBBsize);
281 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
282
283 ASSERT(nbblks > 0);
4e94b71b 284 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
285
286 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
287 XFS_BUF_ZEROFLAGS(bp);
72790aa1 288 xfs_buf_hold(bp);
0c842ad4 289 xfs_buf_lock(bp);
aa0e8833 290 bp->b_io_length = nbblks;
0e95f19a 291 bp->b_error = 0;
1da177e4 292
c2b006c1 293 error = xfs_bwrite(bp);
901796af
CH
294 if (error)
295 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 296 xfs_buf_relse(bp);
1da177e4
LT
297 return error;
298}
299
1da177e4
LT
300#ifdef DEBUG
301/*
302 * dump debug superblock and log record information
303 */
304STATIC void
305xlog_header_check_dump(
306 xfs_mount_t *mp,
307 xlog_rec_header_t *head)
308{
a0fa2b67 309 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
03daa57c 310 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
a0fa2b67 311 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
03daa57c 312 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
313}
314#else
315#define xlog_header_check_dump(mp, head)
316#endif
317
318/*
319 * check log record header for recovery
320 */
321STATIC int
322xlog_header_check_recover(
323 xfs_mount_t *mp,
324 xlog_rec_header_t *head)
325{
69ef921b 326 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
327
328 /*
329 * IRIX doesn't write the h_fmt field and leaves it zeroed
330 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
331 * a dirty log created in IRIX.
332 */
69ef921b 333 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
334 xfs_warn(mp,
335 "dirty log written in incompatible format - can't recover");
1da177e4
LT
336 xlog_header_check_dump(mp, head);
337 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
338 XFS_ERRLEVEL_HIGH, mp);
339 return XFS_ERROR(EFSCORRUPTED);
340 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
341 xfs_warn(mp,
342 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
343 xlog_header_check_dump(mp, head);
344 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
345 XFS_ERRLEVEL_HIGH, mp);
346 return XFS_ERROR(EFSCORRUPTED);
347 }
348 return 0;
349}
350
351/*
352 * read the head block of the log and check the header
353 */
354STATIC int
355xlog_header_check_mount(
356 xfs_mount_t *mp,
357 xlog_rec_header_t *head)
358{
69ef921b 359 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
360
361 if (uuid_is_nil(&head->h_fs_uuid)) {
362 /*
363 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
364 * h_fs_uuid is nil, we assume this log was last mounted
365 * by IRIX and continue.
366 */
a0fa2b67 367 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 368 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 369 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
370 xlog_header_check_dump(mp, head);
371 XFS_ERROR_REPORT("xlog_header_check_mount",
372 XFS_ERRLEVEL_HIGH, mp);
373 return XFS_ERROR(EFSCORRUPTED);
374 }
375 return 0;
376}
377
378STATIC void
379xlog_recover_iodone(
380 struct xfs_buf *bp)
381{
5a52c2a5 382 if (bp->b_error) {
1da177e4
LT
383 /*
384 * We're not going to bother about retrying
385 * this during recovery. One strike!
386 */
901796af 387 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
388 xfs_force_shutdown(bp->b_target->bt_mount,
389 SHUTDOWN_META_IO_ERROR);
1da177e4 390 }
cb669ca5 391 bp->b_iodone = NULL;
1a1a3e97 392 xfs_buf_ioend(bp, 0);
1da177e4
LT
393}
394
395/*
396 * This routine finds (to an approximation) the first block in the physical
397 * log which contains the given cycle. It uses a binary search algorithm.
398 * Note that the algorithm can not be perfect because the disk will not
399 * necessarily be perfect.
400 */
a8272ce0 401STATIC int
1da177e4 402xlog_find_cycle_start(
9a8d2fdb
MT
403 struct xlog *log,
404 struct xfs_buf *bp,
1da177e4
LT
405 xfs_daddr_t first_blk,
406 xfs_daddr_t *last_blk,
407 uint cycle)
408{
409 xfs_caddr_t offset;
410 xfs_daddr_t mid_blk;
e3bb2e30 411 xfs_daddr_t end_blk;
1da177e4
LT
412 uint mid_cycle;
413 int error;
414
e3bb2e30
AE
415 end_blk = *last_blk;
416 mid_blk = BLK_AVG(first_blk, end_blk);
417 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
418 error = xlog_bread(log, mid_blk, 1, bp, &offset);
419 if (error)
1da177e4 420 return error;
03bea6fe 421 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
422 if (mid_cycle == cycle)
423 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
424 else
425 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
426 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 427 }
e3bb2e30
AE
428 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
429 (mid_blk == end_blk && mid_blk-1 == first_blk));
430
431 *last_blk = end_blk;
1da177e4
LT
432
433 return 0;
434}
435
436/*
3f943d85
AE
437 * Check that a range of blocks does not contain stop_on_cycle_no.
438 * Fill in *new_blk with the block offset where such a block is
439 * found, or with -1 (an invalid block number) if there is no such
440 * block in the range. The scan needs to occur from front to back
441 * and the pointer into the region must be updated since a later
442 * routine will need to perform another test.
1da177e4
LT
443 */
444STATIC int
445xlog_find_verify_cycle(
9a8d2fdb 446 struct xlog *log,
1da177e4
LT
447 xfs_daddr_t start_blk,
448 int nbblks,
449 uint stop_on_cycle_no,
450 xfs_daddr_t *new_blk)
451{
452 xfs_daddr_t i, j;
453 uint cycle;
454 xfs_buf_t *bp;
455 xfs_daddr_t bufblks;
456 xfs_caddr_t buf = NULL;
457 int error = 0;
458
6881a229
AE
459 /*
460 * Greedily allocate a buffer big enough to handle the full
461 * range of basic blocks we'll be examining. If that fails,
462 * try a smaller size. We need to be able to read at least
463 * a log sector, or we're out of luck.
464 */
1da177e4 465 bufblks = 1 << ffs(nbblks);
81158e0c
DC
466 while (bufblks > log->l_logBBsize)
467 bufblks >>= 1;
1da177e4 468 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 469 bufblks >>= 1;
69ce58f0 470 if (bufblks < log->l_sectBBsize)
1da177e4
LT
471 return ENOMEM;
472 }
473
474 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
475 int bcount;
476
477 bcount = min(bufblks, (start_blk + nbblks - i));
478
076e6acb
CH
479 error = xlog_bread(log, i, bcount, bp, &buf);
480 if (error)
1da177e4
LT
481 goto out;
482
1da177e4 483 for (j = 0; j < bcount; j++) {
03bea6fe 484 cycle = xlog_get_cycle(buf);
1da177e4
LT
485 if (cycle == stop_on_cycle_no) {
486 *new_blk = i+j;
487 goto out;
488 }
489
490 buf += BBSIZE;
491 }
492 }
493
494 *new_blk = -1;
495
496out:
497 xlog_put_bp(bp);
498 return error;
499}
500
501/*
502 * Potentially backup over partial log record write.
503 *
504 * In the typical case, last_blk is the number of the block directly after
505 * a good log record. Therefore, we subtract one to get the block number
506 * of the last block in the given buffer. extra_bblks contains the number
507 * of blocks we would have read on a previous read. This happens when the
508 * last log record is split over the end of the physical log.
509 *
510 * extra_bblks is the number of blocks potentially verified on a previous
511 * call to this routine.
512 */
513STATIC int
514xlog_find_verify_log_record(
9a8d2fdb 515 struct xlog *log,
1da177e4
LT
516 xfs_daddr_t start_blk,
517 xfs_daddr_t *last_blk,
518 int extra_bblks)
519{
520 xfs_daddr_t i;
521 xfs_buf_t *bp;
522 xfs_caddr_t offset = NULL;
523 xlog_rec_header_t *head = NULL;
524 int error = 0;
525 int smallmem = 0;
526 int num_blks = *last_blk - start_blk;
527 int xhdrs;
528
529 ASSERT(start_blk != 0 || *last_blk != start_blk);
530
531 if (!(bp = xlog_get_bp(log, num_blks))) {
532 if (!(bp = xlog_get_bp(log, 1)))
533 return ENOMEM;
534 smallmem = 1;
535 } else {
076e6acb
CH
536 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
537 if (error)
1da177e4 538 goto out;
1da177e4
LT
539 offset += ((num_blks - 1) << BBSHIFT);
540 }
541
542 for (i = (*last_blk) - 1; i >= 0; i--) {
543 if (i < start_blk) {
544 /* valid log record not found */
a0fa2b67
DC
545 xfs_warn(log->l_mp,
546 "Log inconsistent (didn't find previous header)");
1da177e4
LT
547 ASSERT(0);
548 error = XFS_ERROR(EIO);
549 goto out;
550 }
551
552 if (smallmem) {
076e6acb
CH
553 error = xlog_bread(log, i, 1, bp, &offset);
554 if (error)
1da177e4 555 goto out;
1da177e4
LT
556 }
557
558 head = (xlog_rec_header_t *)offset;
559
69ef921b 560 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
561 break;
562
563 if (!smallmem)
564 offset -= BBSIZE;
565 }
566
567 /*
568 * We hit the beginning of the physical log & still no header. Return
569 * to caller. If caller can handle a return of -1, then this routine
570 * will be called again for the end of the physical log.
571 */
572 if (i == -1) {
573 error = -1;
574 goto out;
575 }
576
577 /*
578 * We have the final block of the good log (the first block
579 * of the log record _before_ the head. So we check the uuid.
580 */
581 if ((error = xlog_header_check_mount(log->l_mp, head)))
582 goto out;
583
584 /*
585 * We may have found a log record header before we expected one.
586 * last_blk will be the 1st block # with a given cycle #. We may end
587 * up reading an entire log record. In this case, we don't want to
588 * reset last_blk. Only when last_blk points in the middle of a log
589 * record do we update last_blk.
590 */
62118709 591 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 592 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
593
594 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
595 if (h_size % XLOG_HEADER_CYCLE_SIZE)
596 xhdrs++;
597 } else {
598 xhdrs = 1;
599 }
600
b53e675d
CH
601 if (*last_blk - i + extra_bblks !=
602 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
603 *last_blk = i;
604
605out:
606 xlog_put_bp(bp);
607 return error;
608}
609
610/*
611 * Head is defined to be the point of the log where the next log write
612 * write could go. This means that incomplete LR writes at the end are
613 * eliminated when calculating the head. We aren't guaranteed that previous
614 * LR have complete transactions. We only know that a cycle number of
615 * current cycle number -1 won't be present in the log if we start writing
616 * from our current block number.
617 *
618 * last_blk contains the block number of the first block with a given
619 * cycle number.
620 *
621 * Return: zero if normal, non-zero if error.
622 */
ba0f32d4 623STATIC int
1da177e4 624xlog_find_head(
9a8d2fdb 625 struct xlog *log,
1da177e4
LT
626 xfs_daddr_t *return_head_blk)
627{
628 xfs_buf_t *bp;
629 xfs_caddr_t offset;
630 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
631 int num_scan_bblks;
632 uint first_half_cycle, last_half_cycle;
633 uint stop_on_cycle;
634 int error, log_bbnum = log->l_logBBsize;
635
636 /* Is the end of the log device zeroed? */
637 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
638 *return_head_blk = first_blk;
639
640 /* Is the whole lot zeroed? */
641 if (!first_blk) {
642 /* Linux XFS shouldn't generate totally zeroed logs -
643 * mkfs etc write a dummy unmount record to a fresh
644 * log so we can store the uuid in there
645 */
a0fa2b67 646 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
647 }
648
649 return 0;
650 } else if (error) {
a0fa2b67 651 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
652 return error;
653 }
654
655 first_blk = 0; /* get cycle # of 1st block */
656 bp = xlog_get_bp(log, 1);
657 if (!bp)
658 return ENOMEM;
076e6acb
CH
659
660 error = xlog_bread(log, 0, 1, bp, &offset);
661 if (error)
1da177e4 662 goto bp_err;
076e6acb 663
03bea6fe 664 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
665
666 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
667 error = xlog_bread(log, last_blk, 1, bp, &offset);
668 if (error)
1da177e4 669 goto bp_err;
076e6acb 670
03bea6fe 671 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
672 ASSERT(last_half_cycle != 0);
673
674 /*
675 * If the 1st half cycle number is equal to the last half cycle number,
676 * then the entire log is stamped with the same cycle number. In this
677 * case, head_blk can't be set to zero (which makes sense). The below
678 * math doesn't work out properly with head_blk equal to zero. Instead,
679 * we set it to log_bbnum which is an invalid block number, but this
680 * value makes the math correct. If head_blk doesn't changed through
681 * all the tests below, *head_blk is set to zero at the very end rather
682 * than log_bbnum. In a sense, log_bbnum and zero are the same block
683 * in a circular file.
684 */
685 if (first_half_cycle == last_half_cycle) {
686 /*
687 * In this case we believe that the entire log should have
688 * cycle number last_half_cycle. We need to scan backwards
689 * from the end verifying that there are no holes still
690 * containing last_half_cycle - 1. If we find such a hole,
691 * then the start of that hole will be the new head. The
692 * simple case looks like
693 * x | x ... | x - 1 | x
694 * Another case that fits this picture would be
695 * x | x + 1 | x ... | x
c41564b5 696 * In this case the head really is somewhere at the end of the
1da177e4
LT
697 * log, as one of the latest writes at the beginning was
698 * incomplete.
699 * One more case is
700 * x | x + 1 | x ... | x - 1 | x
701 * This is really the combination of the above two cases, and
702 * the head has to end up at the start of the x-1 hole at the
703 * end of the log.
704 *
705 * In the 256k log case, we will read from the beginning to the
706 * end of the log and search for cycle numbers equal to x-1.
707 * We don't worry about the x+1 blocks that we encounter,
708 * because we know that they cannot be the head since the log
709 * started with x.
710 */
711 head_blk = log_bbnum;
712 stop_on_cycle = last_half_cycle - 1;
713 } else {
714 /*
715 * In this case we want to find the first block with cycle
716 * number matching last_half_cycle. We expect the log to be
717 * some variation on
3f943d85 718 * x + 1 ... | x ... | x
1da177e4
LT
719 * The first block with cycle number x (last_half_cycle) will
720 * be where the new head belongs. First we do a binary search
721 * for the first occurrence of last_half_cycle. The binary
722 * search may not be totally accurate, so then we scan back
723 * from there looking for occurrences of last_half_cycle before
724 * us. If that backwards scan wraps around the beginning of
725 * the log, then we look for occurrences of last_half_cycle - 1
726 * at the end of the log. The cases we're looking for look
727 * like
3f943d85
AE
728 * v binary search stopped here
729 * x + 1 ... | x | x + 1 | x ... | x
730 * ^ but we want to locate this spot
1da177e4 731 * or
1da177e4 732 * <---------> less than scan distance
3f943d85
AE
733 * x + 1 ... | x ... | x - 1 | x
734 * ^ we want to locate this spot
1da177e4
LT
735 */
736 stop_on_cycle = last_half_cycle;
737 if ((error = xlog_find_cycle_start(log, bp, first_blk,
738 &head_blk, last_half_cycle)))
739 goto bp_err;
740 }
741
742 /*
743 * Now validate the answer. Scan back some number of maximum possible
744 * blocks and make sure each one has the expected cycle number. The
745 * maximum is determined by the total possible amount of buffering
746 * in the in-core log. The following number can be made tighter if
747 * we actually look at the block size of the filesystem.
748 */
749 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
750 if (head_blk >= num_scan_bblks) {
751 /*
752 * We are guaranteed that the entire check can be performed
753 * in one buffer.
754 */
755 start_blk = head_blk - num_scan_bblks;
756 if ((error = xlog_find_verify_cycle(log,
757 start_blk, num_scan_bblks,
758 stop_on_cycle, &new_blk)))
759 goto bp_err;
760 if (new_blk != -1)
761 head_blk = new_blk;
762 } else { /* need to read 2 parts of log */
763 /*
764 * We are going to scan backwards in the log in two parts.
765 * First we scan the physical end of the log. In this part
766 * of the log, we are looking for blocks with cycle number
767 * last_half_cycle - 1.
768 * If we find one, then we know that the log starts there, as
769 * we've found a hole that didn't get written in going around
770 * the end of the physical log. The simple case for this is
771 * x + 1 ... | x ... | x - 1 | x
772 * <---------> less than scan distance
773 * If all of the blocks at the end of the log have cycle number
774 * last_half_cycle, then we check the blocks at the start of
775 * the log looking for occurrences of last_half_cycle. If we
776 * find one, then our current estimate for the location of the
777 * first occurrence of last_half_cycle is wrong and we move
778 * back to the hole we've found. This case looks like
779 * x + 1 ... | x | x + 1 | x ...
780 * ^ binary search stopped here
781 * Another case we need to handle that only occurs in 256k
782 * logs is
783 * x + 1 ... | x ... | x+1 | x ...
784 * ^ binary search stops here
785 * In a 256k log, the scan at the end of the log will see the
786 * x + 1 blocks. We need to skip past those since that is
787 * certainly not the head of the log. By searching for
788 * last_half_cycle-1 we accomplish that.
789 */
1da177e4 790 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
791 (xfs_daddr_t) num_scan_bblks >= head_blk);
792 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
793 if ((error = xlog_find_verify_cycle(log, start_blk,
794 num_scan_bblks - (int)head_blk,
795 (stop_on_cycle - 1), &new_blk)))
796 goto bp_err;
797 if (new_blk != -1) {
798 head_blk = new_blk;
9db127ed 799 goto validate_head;
1da177e4
LT
800 }
801
802 /*
803 * Scan beginning of log now. The last part of the physical
804 * log is good. This scan needs to verify that it doesn't find
805 * the last_half_cycle.
806 */
807 start_blk = 0;
808 ASSERT(head_blk <= INT_MAX);
809 if ((error = xlog_find_verify_cycle(log,
810 start_blk, (int)head_blk,
811 stop_on_cycle, &new_blk)))
812 goto bp_err;
813 if (new_blk != -1)
814 head_blk = new_blk;
815 }
816
9db127ed 817validate_head:
1da177e4
LT
818 /*
819 * Now we need to make sure head_blk is not pointing to a block in
820 * the middle of a log record.
821 */
822 num_scan_bblks = XLOG_REC_SHIFT(log);
823 if (head_blk >= num_scan_bblks) {
824 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
825
826 /* start ptr at last block ptr before head_blk */
827 if ((error = xlog_find_verify_log_record(log, start_blk,
828 &head_blk, 0)) == -1) {
829 error = XFS_ERROR(EIO);
830 goto bp_err;
831 } else if (error)
832 goto bp_err;
833 } else {
834 start_blk = 0;
835 ASSERT(head_blk <= INT_MAX);
836 if ((error = xlog_find_verify_log_record(log, start_blk,
837 &head_blk, 0)) == -1) {
838 /* We hit the beginning of the log during our search */
3f943d85 839 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
840 new_blk = log_bbnum;
841 ASSERT(start_blk <= INT_MAX &&
842 (xfs_daddr_t) log_bbnum-start_blk >= 0);
843 ASSERT(head_blk <= INT_MAX);
844 if ((error = xlog_find_verify_log_record(log,
845 start_blk, &new_blk,
846 (int)head_blk)) == -1) {
847 error = XFS_ERROR(EIO);
848 goto bp_err;
849 } else if (error)
850 goto bp_err;
851 if (new_blk != log_bbnum)
852 head_blk = new_blk;
853 } else if (error)
854 goto bp_err;
855 }
856
857 xlog_put_bp(bp);
858 if (head_blk == log_bbnum)
859 *return_head_blk = 0;
860 else
861 *return_head_blk = head_blk;
862 /*
863 * When returning here, we have a good block number. Bad block
864 * means that during a previous crash, we didn't have a clean break
865 * from cycle number N to cycle number N-1. In this case, we need
866 * to find the first block with cycle number N-1.
867 */
868 return 0;
869
870 bp_err:
871 xlog_put_bp(bp);
872
873 if (error)
a0fa2b67 874 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
875 return error;
876}
877
878/*
879 * Find the sync block number or the tail of the log.
880 *
881 * This will be the block number of the last record to have its
882 * associated buffers synced to disk. Every log record header has
883 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
884 * to get a sync block number. The only concern is to figure out which
885 * log record header to believe.
886 *
887 * The following algorithm uses the log record header with the largest
888 * lsn. The entire log record does not need to be valid. We only care
889 * that the header is valid.
890 *
891 * We could speed up search by using current head_blk buffer, but it is not
892 * available.
893 */
5d77c0dc 894STATIC int
1da177e4 895xlog_find_tail(
9a8d2fdb 896 struct xlog *log,
1da177e4 897 xfs_daddr_t *head_blk,
65be6054 898 xfs_daddr_t *tail_blk)
1da177e4
LT
899{
900 xlog_rec_header_t *rhead;
901 xlog_op_header_t *op_head;
902 xfs_caddr_t offset = NULL;
903 xfs_buf_t *bp;
904 int error, i, found;
905 xfs_daddr_t umount_data_blk;
906 xfs_daddr_t after_umount_blk;
907 xfs_lsn_t tail_lsn;
908 int hblks;
909
910 found = 0;
911
912 /*
913 * Find previous log record
914 */
915 if ((error = xlog_find_head(log, head_blk)))
916 return error;
917
918 bp = xlog_get_bp(log, 1);
919 if (!bp)
920 return ENOMEM;
921 if (*head_blk == 0) { /* special case */
076e6acb
CH
922 error = xlog_bread(log, 0, 1, bp, &offset);
923 if (error)
9db127ed 924 goto done;
076e6acb 925
03bea6fe 926 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
927 *tail_blk = 0;
928 /* leave all other log inited values alone */
9db127ed 929 goto done;
1da177e4
LT
930 }
931 }
932
933 /*
934 * Search backwards looking for log record header block
935 */
936 ASSERT(*head_blk < INT_MAX);
937 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
938 error = xlog_bread(log, i, 1, bp, &offset);
939 if (error)
9db127ed 940 goto done;
076e6acb 941
69ef921b 942 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
943 found = 1;
944 break;
945 }
946 }
947 /*
948 * If we haven't found the log record header block, start looking
949 * again from the end of the physical log. XXXmiken: There should be
950 * a check here to make sure we didn't search more than N blocks in
951 * the previous code.
952 */
953 if (!found) {
954 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
955 error = xlog_bread(log, i, 1, bp, &offset);
956 if (error)
9db127ed 957 goto done;
076e6acb 958
69ef921b
CH
959 if (*(__be32 *)offset ==
960 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
961 found = 2;
962 break;
963 }
964 }
965 }
966 if (!found) {
a0fa2b67 967 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1da177e4
LT
968 ASSERT(0);
969 return XFS_ERROR(EIO);
970 }
971
972 /* find blk_no of tail of log */
973 rhead = (xlog_rec_header_t *)offset;
b53e675d 974 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
975
976 /*
977 * Reset log values according to the state of the log when we
978 * crashed. In the case where head_blk == 0, we bump curr_cycle
979 * one because the next write starts a new cycle rather than
980 * continuing the cycle of the last good log record. At this
981 * point we have guaranteed that all partial log records have been
982 * accounted for. Therefore, we know that the last good log record
983 * written was complete and ended exactly on the end boundary
984 * of the physical log.
985 */
986 log->l_prev_block = i;
987 log->l_curr_block = (int)*head_blk;
b53e675d 988 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
989 if (found == 2)
990 log->l_curr_cycle++;
1c3cb9ec 991 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 992 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 993 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 994 BBTOB(log->l_curr_block));
28496968 995 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 996 BBTOB(log->l_curr_block));
1da177e4
LT
997
998 /*
999 * Look for unmount record. If we find it, then we know there
1000 * was a clean unmount. Since 'i' could be the last block in
1001 * the physical log, we convert to a log block before comparing
1002 * to the head_blk.
1003 *
1004 * Save the current tail lsn to use to pass to
1005 * xlog_clear_stale_blocks() below. We won't want to clear the
1006 * unmount record if there is one, so we pass the lsn of the
1007 * unmount record rather than the block after it.
1008 */
62118709 1009 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1010 int h_size = be32_to_cpu(rhead->h_size);
1011 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1012
1013 if ((h_version & XLOG_VERSION_2) &&
1014 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1015 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1016 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1017 hblks++;
1018 } else {
1019 hblks = 1;
1020 }
1021 } else {
1022 hblks = 1;
1023 }
1024 after_umount_blk = (i + hblks + (int)
b53e675d 1025 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1026 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1027 if (*head_blk == after_umount_blk &&
b53e675d 1028 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1029 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1030 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1031 if (error)
9db127ed 1032 goto done;
076e6acb 1033
1da177e4
LT
1034 op_head = (xlog_op_header_t *)offset;
1035 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1036 /*
1037 * Set tail and last sync so that newly written
1038 * log records will point recovery to after the
1039 * current unmount record.
1040 */
1c3cb9ec
DC
1041 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1042 log->l_curr_cycle, after_umount_blk);
1043 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1044 log->l_curr_cycle, after_umount_blk);
1da177e4 1045 *tail_blk = after_umount_blk;
92821e2b
DC
1046
1047 /*
1048 * Note that the unmount was clean. If the unmount
1049 * was not clean, we need to know this to rebuild the
1050 * superblock counters from the perag headers if we
1051 * have a filesystem using non-persistent counters.
1052 */
1053 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1054 }
1055 }
1056
1057 /*
1058 * Make sure that there are no blocks in front of the head
1059 * with the same cycle number as the head. This can happen
1060 * because we allow multiple outstanding log writes concurrently,
1061 * and the later writes might make it out before earlier ones.
1062 *
1063 * We use the lsn from before modifying it so that we'll never
1064 * overwrite the unmount record after a clean unmount.
1065 *
1066 * Do this only if we are going to recover the filesystem
1067 *
1068 * NOTE: This used to say "if (!readonly)"
1069 * However on Linux, we can & do recover a read-only filesystem.
1070 * We only skip recovery if NORECOVERY is specified on mount,
1071 * in which case we would not be here.
1072 *
1073 * But... if the -device- itself is readonly, just skip this.
1074 * We can't recover this device anyway, so it won't matter.
1075 */
9db127ed 1076 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1077 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1078
9db127ed 1079done:
1da177e4
LT
1080 xlog_put_bp(bp);
1081
1082 if (error)
a0fa2b67 1083 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1084 return error;
1085}
1086
1087/*
1088 * Is the log zeroed at all?
1089 *
1090 * The last binary search should be changed to perform an X block read
1091 * once X becomes small enough. You can then search linearly through
1092 * the X blocks. This will cut down on the number of reads we need to do.
1093 *
1094 * If the log is partially zeroed, this routine will pass back the blkno
1095 * of the first block with cycle number 0. It won't have a complete LR
1096 * preceding it.
1097 *
1098 * Return:
1099 * 0 => the log is completely written to
1100 * -1 => use *blk_no as the first block of the log
1101 * >0 => error has occurred
1102 */
a8272ce0 1103STATIC int
1da177e4 1104xlog_find_zeroed(
9a8d2fdb 1105 struct xlog *log,
1da177e4
LT
1106 xfs_daddr_t *blk_no)
1107{
1108 xfs_buf_t *bp;
1109 xfs_caddr_t offset;
1110 uint first_cycle, last_cycle;
1111 xfs_daddr_t new_blk, last_blk, start_blk;
1112 xfs_daddr_t num_scan_bblks;
1113 int error, log_bbnum = log->l_logBBsize;
1114
6fdf8ccc
NS
1115 *blk_no = 0;
1116
1da177e4
LT
1117 /* check totally zeroed log */
1118 bp = xlog_get_bp(log, 1);
1119 if (!bp)
1120 return ENOMEM;
076e6acb
CH
1121 error = xlog_bread(log, 0, 1, bp, &offset);
1122 if (error)
1da177e4 1123 goto bp_err;
076e6acb 1124
03bea6fe 1125 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1126 if (first_cycle == 0) { /* completely zeroed log */
1127 *blk_no = 0;
1128 xlog_put_bp(bp);
1129 return -1;
1130 }
1131
1132 /* check partially zeroed log */
076e6acb
CH
1133 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1134 if (error)
1da177e4 1135 goto bp_err;
076e6acb 1136
03bea6fe 1137 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1138 if (last_cycle != 0) { /* log completely written to */
1139 xlog_put_bp(bp);
1140 return 0;
1141 } else if (first_cycle != 1) {
1142 /*
1143 * If the cycle of the last block is zero, the cycle of
1144 * the first block must be 1. If it's not, maybe we're
1145 * not looking at a log... Bail out.
1146 */
a0fa2b67
DC
1147 xfs_warn(log->l_mp,
1148 "Log inconsistent or not a log (last==0, first!=1)");
1da177e4
LT
1149 return XFS_ERROR(EINVAL);
1150 }
1151
1152 /* we have a partially zeroed log */
1153 last_blk = log_bbnum-1;
1154 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1155 goto bp_err;
1156
1157 /*
1158 * Validate the answer. Because there is no way to guarantee that
1159 * the entire log is made up of log records which are the same size,
1160 * we scan over the defined maximum blocks. At this point, the maximum
1161 * is not chosen to mean anything special. XXXmiken
1162 */
1163 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1164 ASSERT(num_scan_bblks <= INT_MAX);
1165
1166 if (last_blk < num_scan_bblks)
1167 num_scan_bblks = last_blk;
1168 start_blk = last_blk - num_scan_bblks;
1169
1170 /*
1171 * We search for any instances of cycle number 0 that occur before
1172 * our current estimate of the head. What we're trying to detect is
1173 * 1 ... | 0 | 1 | 0...
1174 * ^ binary search ends here
1175 */
1176 if ((error = xlog_find_verify_cycle(log, start_blk,
1177 (int)num_scan_bblks, 0, &new_blk)))
1178 goto bp_err;
1179 if (new_blk != -1)
1180 last_blk = new_blk;
1181
1182 /*
1183 * Potentially backup over partial log record write. We don't need
1184 * to search the end of the log because we know it is zero.
1185 */
1186 if ((error = xlog_find_verify_log_record(log, start_blk,
1187 &last_blk, 0)) == -1) {
1188 error = XFS_ERROR(EIO);
1189 goto bp_err;
1190 } else if (error)
1191 goto bp_err;
1192
1193 *blk_no = last_blk;
1194bp_err:
1195 xlog_put_bp(bp);
1196 if (error)
1197 return error;
1198 return -1;
1199}
1200
1201/*
1202 * These are simple subroutines used by xlog_clear_stale_blocks() below
1203 * to initialize a buffer full of empty log record headers and write
1204 * them into the log.
1205 */
1206STATIC void
1207xlog_add_record(
9a8d2fdb 1208 struct xlog *log,
1da177e4
LT
1209 xfs_caddr_t buf,
1210 int cycle,
1211 int block,
1212 int tail_cycle,
1213 int tail_block)
1214{
1215 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1216
1217 memset(buf, 0, BBSIZE);
b53e675d
CH
1218 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1219 recp->h_cycle = cpu_to_be32(cycle);
1220 recp->h_version = cpu_to_be32(
62118709 1221 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1222 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1223 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1224 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1225 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1226}
1227
1228STATIC int
1229xlog_write_log_records(
9a8d2fdb 1230 struct xlog *log,
1da177e4
LT
1231 int cycle,
1232 int start_block,
1233 int blocks,
1234 int tail_cycle,
1235 int tail_block)
1236{
1237 xfs_caddr_t offset;
1238 xfs_buf_t *bp;
1239 int balign, ealign;
69ce58f0 1240 int sectbb = log->l_sectBBsize;
1da177e4
LT
1241 int end_block = start_block + blocks;
1242 int bufblks;
1243 int error = 0;
1244 int i, j = 0;
1245
6881a229
AE
1246 /*
1247 * Greedily allocate a buffer big enough to handle the full
1248 * range of basic blocks to be written. If that fails, try
1249 * a smaller size. We need to be able to write at least a
1250 * log sector, or we're out of luck.
1251 */
1da177e4 1252 bufblks = 1 << ffs(blocks);
81158e0c
DC
1253 while (bufblks > log->l_logBBsize)
1254 bufblks >>= 1;
1da177e4
LT
1255 while (!(bp = xlog_get_bp(log, bufblks))) {
1256 bufblks >>= 1;
69ce58f0 1257 if (bufblks < sectbb)
1da177e4
LT
1258 return ENOMEM;
1259 }
1260
1261 /* We may need to do a read at the start to fill in part of
1262 * the buffer in the starting sector not covered by the first
1263 * write below.
1264 */
5c17f533 1265 balign = round_down(start_block, sectbb);
1da177e4 1266 if (balign != start_block) {
076e6acb
CH
1267 error = xlog_bread_noalign(log, start_block, 1, bp);
1268 if (error)
1269 goto out_put_bp;
1270
1da177e4
LT
1271 j = start_block - balign;
1272 }
1273
1274 for (i = start_block; i < end_block; i += bufblks) {
1275 int bcount, endcount;
1276
1277 bcount = min(bufblks, end_block - start_block);
1278 endcount = bcount - j;
1279
1280 /* We may need to do a read at the end to fill in part of
1281 * the buffer in the final sector not covered by the write.
1282 * If this is the same sector as the above read, skip it.
1283 */
5c17f533 1284 ealign = round_down(end_block, sectbb);
1da177e4 1285 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1286 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1287 error = xlog_bread_offset(log, ealign, sectbb,
1288 bp, offset);
076e6acb
CH
1289 if (error)
1290 break;
1291
1da177e4
LT
1292 }
1293
1294 offset = xlog_align(log, start_block, endcount, bp);
1295 for (; j < endcount; j++) {
1296 xlog_add_record(log, offset, cycle, i+j,
1297 tail_cycle, tail_block);
1298 offset += BBSIZE;
1299 }
1300 error = xlog_bwrite(log, start_block, endcount, bp);
1301 if (error)
1302 break;
1303 start_block += endcount;
1304 j = 0;
1305 }
076e6acb
CH
1306
1307 out_put_bp:
1da177e4
LT
1308 xlog_put_bp(bp);
1309 return error;
1310}
1311
1312/*
1313 * This routine is called to blow away any incomplete log writes out
1314 * in front of the log head. We do this so that we won't become confused
1315 * if we come up, write only a little bit more, and then crash again.
1316 * If we leave the partial log records out there, this situation could
1317 * cause us to think those partial writes are valid blocks since they
1318 * have the current cycle number. We get rid of them by overwriting them
1319 * with empty log records with the old cycle number rather than the
1320 * current one.
1321 *
1322 * The tail lsn is passed in rather than taken from
1323 * the log so that we will not write over the unmount record after a
1324 * clean unmount in a 512 block log. Doing so would leave the log without
1325 * any valid log records in it until a new one was written. If we crashed
1326 * during that time we would not be able to recover.
1327 */
1328STATIC int
1329xlog_clear_stale_blocks(
9a8d2fdb 1330 struct xlog *log,
1da177e4
LT
1331 xfs_lsn_t tail_lsn)
1332{
1333 int tail_cycle, head_cycle;
1334 int tail_block, head_block;
1335 int tail_distance, max_distance;
1336 int distance;
1337 int error;
1338
1339 tail_cycle = CYCLE_LSN(tail_lsn);
1340 tail_block = BLOCK_LSN(tail_lsn);
1341 head_cycle = log->l_curr_cycle;
1342 head_block = log->l_curr_block;
1343
1344 /*
1345 * Figure out the distance between the new head of the log
1346 * and the tail. We want to write over any blocks beyond the
1347 * head that we may have written just before the crash, but
1348 * we don't want to overwrite the tail of the log.
1349 */
1350 if (head_cycle == tail_cycle) {
1351 /*
1352 * The tail is behind the head in the physical log,
1353 * so the distance from the head to the tail is the
1354 * distance from the head to the end of the log plus
1355 * the distance from the beginning of the log to the
1356 * tail.
1357 */
1358 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1359 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1360 XFS_ERRLEVEL_LOW, log->l_mp);
1361 return XFS_ERROR(EFSCORRUPTED);
1362 }
1363 tail_distance = tail_block + (log->l_logBBsize - head_block);
1364 } else {
1365 /*
1366 * The head is behind the tail in the physical log,
1367 * so the distance from the head to the tail is just
1368 * the tail block minus the head block.
1369 */
1370 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1371 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1372 XFS_ERRLEVEL_LOW, log->l_mp);
1373 return XFS_ERROR(EFSCORRUPTED);
1374 }
1375 tail_distance = tail_block - head_block;
1376 }
1377
1378 /*
1379 * If the head is right up against the tail, we can't clear
1380 * anything.
1381 */
1382 if (tail_distance <= 0) {
1383 ASSERT(tail_distance == 0);
1384 return 0;
1385 }
1386
1387 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1388 /*
1389 * Take the smaller of the maximum amount of outstanding I/O
1390 * we could have and the distance to the tail to clear out.
1391 * We take the smaller so that we don't overwrite the tail and
1392 * we don't waste all day writing from the head to the tail
1393 * for no reason.
1394 */
1395 max_distance = MIN(max_distance, tail_distance);
1396
1397 if ((head_block + max_distance) <= log->l_logBBsize) {
1398 /*
1399 * We can stomp all the blocks we need to without
1400 * wrapping around the end of the log. Just do it
1401 * in a single write. Use the cycle number of the
1402 * current cycle minus one so that the log will look like:
1403 * n ... | n - 1 ...
1404 */
1405 error = xlog_write_log_records(log, (head_cycle - 1),
1406 head_block, max_distance, tail_cycle,
1407 tail_block);
1408 if (error)
1409 return error;
1410 } else {
1411 /*
1412 * We need to wrap around the end of the physical log in
1413 * order to clear all the blocks. Do it in two separate
1414 * I/Os. The first write should be from the head to the
1415 * end of the physical log, and it should use the current
1416 * cycle number minus one just like above.
1417 */
1418 distance = log->l_logBBsize - head_block;
1419 error = xlog_write_log_records(log, (head_cycle - 1),
1420 head_block, distance, tail_cycle,
1421 tail_block);
1422
1423 if (error)
1424 return error;
1425
1426 /*
1427 * Now write the blocks at the start of the physical log.
1428 * This writes the remainder of the blocks we want to clear.
1429 * It uses the current cycle number since we're now on the
1430 * same cycle as the head so that we get:
1431 * n ... n ... | n - 1 ...
1432 * ^^^^^ blocks we're writing
1433 */
1434 distance = max_distance - (log->l_logBBsize - head_block);
1435 error = xlog_write_log_records(log, head_cycle, 0, distance,
1436 tail_cycle, tail_block);
1437 if (error)
1438 return error;
1439 }
1440
1441 return 0;
1442}
1443
1444/******************************************************************************
1445 *
1446 * Log recover routines
1447 *
1448 ******************************************************************************
1449 */
1450
1451STATIC xlog_recover_t *
1452xlog_recover_find_tid(
f0a76953 1453 struct hlist_head *head,
1da177e4
LT
1454 xlog_tid_t tid)
1455{
f0a76953 1456 xlog_recover_t *trans;
1da177e4 1457
b67bfe0d 1458 hlist_for_each_entry(trans, head, r_list) {
f0a76953
DC
1459 if (trans->r_log_tid == tid)
1460 return trans;
1da177e4 1461 }
f0a76953 1462 return NULL;
1da177e4
LT
1463}
1464
1465STATIC void
f0a76953
DC
1466xlog_recover_new_tid(
1467 struct hlist_head *head,
1468 xlog_tid_t tid,
1469 xfs_lsn_t lsn)
1da177e4 1470{
f0a76953
DC
1471 xlog_recover_t *trans;
1472
1473 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1474 trans->r_log_tid = tid;
1475 trans->r_lsn = lsn;
1476 INIT_LIST_HEAD(&trans->r_itemq);
1477
1478 INIT_HLIST_NODE(&trans->r_list);
1479 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1480}
1481
1482STATIC void
1483xlog_recover_add_item(
f0a76953 1484 struct list_head *head)
1da177e4
LT
1485{
1486 xlog_recover_item_t *item;
1487
1488 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1489 INIT_LIST_HEAD(&item->ri_list);
1490 list_add_tail(&item->ri_list, head);
1da177e4
LT
1491}
1492
1493STATIC int
1494xlog_recover_add_to_cont_trans(
ad223e60
MT
1495 struct xlog *log,
1496 struct xlog_recover *trans,
1da177e4
LT
1497 xfs_caddr_t dp,
1498 int len)
1499{
1500 xlog_recover_item_t *item;
1501 xfs_caddr_t ptr, old_ptr;
1502 int old_len;
1503
f0a76953 1504 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1505 /* finish copying rest of trans header */
1506 xlog_recover_add_item(&trans->r_itemq);
1507 ptr = (xfs_caddr_t) &trans->r_theader +
1508 sizeof(xfs_trans_header_t) - len;
1509 memcpy(ptr, dp, len); /* d, s, l */
1510 return 0;
1511 }
f0a76953
DC
1512 /* take the tail entry */
1513 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1514
1515 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1516 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1517
45053603 1518 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1519 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1520 item->ri_buf[item->ri_cnt-1].i_len += len;
1521 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1522 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1523 return 0;
1524}
1525
1526/*
1527 * The next region to add is the start of a new region. It could be
1528 * a whole region or it could be the first part of a new region. Because
1529 * of this, the assumption here is that the type and size fields of all
1530 * format structures fit into the first 32 bits of the structure.
1531 *
1532 * This works because all regions must be 32 bit aligned. Therefore, we
1533 * either have both fields or we have neither field. In the case we have
1534 * neither field, the data part of the region is zero length. We only have
1535 * a log_op_header and can throw away the header since a new one will appear
1536 * later. If we have at least 4 bytes, then we can determine how many regions
1537 * will appear in the current log item.
1538 */
1539STATIC int
1540xlog_recover_add_to_trans(
ad223e60
MT
1541 struct xlog *log,
1542 struct xlog_recover *trans,
1da177e4
LT
1543 xfs_caddr_t dp,
1544 int len)
1545{
1546 xfs_inode_log_format_t *in_f; /* any will do */
1547 xlog_recover_item_t *item;
1548 xfs_caddr_t ptr;
1549
1550 if (!len)
1551 return 0;
f0a76953 1552 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1553 /* we need to catch log corruptions here */
1554 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1555 xfs_warn(log->l_mp, "%s: bad header magic number",
1556 __func__);
5a792c45
DC
1557 ASSERT(0);
1558 return XFS_ERROR(EIO);
1559 }
1da177e4
LT
1560 if (len == sizeof(xfs_trans_header_t))
1561 xlog_recover_add_item(&trans->r_itemq);
1562 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1563 return 0;
1564 }
1565
1566 ptr = kmem_alloc(len, KM_SLEEP);
1567 memcpy(ptr, dp, len);
1568 in_f = (xfs_inode_log_format_t *)ptr;
1569
f0a76953
DC
1570 /* take the tail entry */
1571 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1572 if (item->ri_total != 0 &&
1573 item->ri_total == item->ri_cnt) {
1574 /* tail item is in use, get a new one */
1da177e4 1575 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1576 item = list_entry(trans->r_itemq.prev,
1577 xlog_recover_item_t, ri_list);
1da177e4 1578 }
1da177e4
LT
1579
1580 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1581 if (in_f->ilf_size == 0 ||
1582 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1583 xfs_warn(log->l_mp,
1584 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1585 in_f->ilf_size);
1586 ASSERT(0);
1587 return XFS_ERROR(EIO);
1588 }
1589
1590 item->ri_total = in_f->ilf_size;
1591 item->ri_buf =
1592 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1593 KM_SLEEP);
1da177e4
LT
1594 }
1595 ASSERT(item->ri_total > item->ri_cnt);
1596 /* Description region is ri_buf[0] */
1597 item->ri_buf[item->ri_cnt].i_addr = ptr;
1598 item->ri_buf[item->ri_cnt].i_len = len;
1599 item->ri_cnt++;
9abbc539 1600 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1601 return 0;
1602}
1603
f0a76953 1604/*
a775ad77
DC
1605 * Sort the log items in the transaction.
1606 *
1607 * The ordering constraints are defined by the inode allocation and unlink
1608 * behaviour. The rules are:
1609 *
1610 * 1. Every item is only logged once in a given transaction. Hence it
1611 * represents the last logged state of the item. Hence ordering is
1612 * dependent on the order in which operations need to be performed so
1613 * required initial conditions are always met.
1614 *
1615 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1616 * there's nothing to replay from them so we can simply cull them
1617 * from the transaction. However, we can't do that until after we've
1618 * replayed all the other items because they may be dependent on the
1619 * cancelled buffer and replaying the cancelled buffer can remove it
1620 * form the cancelled buffer table. Hence they have tobe done last.
1621 *
1622 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1623 * read the buffer and replay changes into it. For filesystems using the
1624 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1625 * treated the same as inode allocation buffers as they create and
1626 * initialise the buffers directly.
a775ad77
DC
1627 *
1628 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1629 * This ensures that inodes are completely flushed to the inode buffer
1630 * in a "free" state before we remove the unlinked inode list pointer.
1631 *
1632 * Hence the ordering needs to be inode allocation buffers first, inode items
1633 * second, inode unlink buffers third and cancelled buffers last.
1634 *
1635 * But there's a problem with that - we can't tell an inode allocation buffer
1636 * apart from a regular buffer, so we can't separate them. We can, however,
1637 * tell an inode unlink buffer from the others, and so we can separate them out
1638 * from all the other buffers and move them to last.
1639 *
1640 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1641 * - buffer_list for all buffers except cancelled/inode unlink buffers
1642 * - item_list for all non-buffer items
1643 * - inode_buffer_list for inode unlink buffers
1644 * - cancel_list for the cancelled buffers
1645 *
1646 * Note that we add objects to the tail of the lists so that first-to-last
1647 * ordering is preserved within the lists. Adding objects to the head of the
1648 * list means when we traverse from the head we walk them in last-to-first
1649 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1650 * but for all other items there may be specific ordering that we need to
1651 * preserve.
f0a76953 1652 */
1da177e4
LT
1653STATIC int
1654xlog_recover_reorder_trans(
ad223e60
MT
1655 struct xlog *log,
1656 struct xlog_recover *trans,
9abbc539 1657 int pass)
1da177e4 1658{
f0a76953
DC
1659 xlog_recover_item_t *item, *n;
1660 LIST_HEAD(sort_list);
a775ad77
DC
1661 LIST_HEAD(cancel_list);
1662 LIST_HEAD(buffer_list);
1663 LIST_HEAD(inode_buffer_list);
1664 LIST_HEAD(inode_list);
f0a76953
DC
1665
1666 list_splice_init(&trans->r_itemq, &sort_list);
1667 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1668 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1669
f0a76953 1670 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1671 case XFS_LI_ICREATE:
1672 list_move_tail(&item->ri_list, &buffer_list);
1673 break;
1da177e4 1674 case XFS_LI_BUF:
a775ad77 1675 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1676 trace_xfs_log_recover_item_reorder_head(log,
1677 trans, item, pass);
a775ad77 1678 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1679 break;
1680 }
a775ad77
DC
1681 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1682 list_move(&item->ri_list, &inode_buffer_list);
1683 break;
1684 }
1685 list_move_tail(&item->ri_list, &buffer_list);
1686 break;
1da177e4 1687 case XFS_LI_INODE:
1da177e4
LT
1688 case XFS_LI_DQUOT:
1689 case XFS_LI_QUOTAOFF:
1690 case XFS_LI_EFD:
1691 case XFS_LI_EFI:
9abbc539
DC
1692 trace_xfs_log_recover_item_reorder_tail(log,
1693 trans, item, pass);
a775ad77 1694 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1695 break;
1696 default:
a0fa2b67
DC
1697 xfs_warn(log->l_mp,
1698 "%s: unrecognized type of log operation",
1699 __func__);
1da177e4
LT
1700 ASSERT(0);
1701 return XFS_ERROR(EIO);
1702 }
f0a76953
DC
1703 }
1704 ASSERT(list_empty(&sort_list));
a775ad77
DC
1705 if (!list_empty(&buffer_list))
1706 list_splice(&buffer_list, &trans->r_itemq);
1707 if (!list_empty(&inode_list))
1708 list_splice_tail(&inode_list, &trans->r_itemq);
1709 if (!list_empty(&inode_buffer_list))
1710 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1711 if (!list_empty(&cancel_list))
1712 list_splice_tail(&cancel_list, &trans->r_itemq);
1da177e4
LT
1713 return 0;
1714}
1715
1716/*
1717 * Build up the table of buf cancel records so that we don't replay
1718 * cancelled data in the second pass. For buffer records that are
1719 * not cancel records, there is nothing to do here so we just return.
1720 *
1721 * If we get a cancel record which is already in the table, this indicates
1722 * that the buffer was cancelled multiple times. In order to ensure
1723 * that during pass 2 we keep the record in the table until we reach its
1724 * last occurrence in the log, we keep a reference count in the cancel
1725 * record in the table to tell us how many times we expect to see this
1726 * record during the second pass.
1727 */
c9f71f5f
CH
1728STATIC int
1729xlog_recover_buffer_pass1(
ad223e60
MT
1730 struct xlog *log,
1731 struct xlog_recover_item *item)
1da177e4 1732{
c9f71f5f 1733 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1734 struct list_head *bucket;
1735 struct xfs_buf_cancel *bcp;
1da177e4
LT
1736
1737 /*
1738 * If this isn't a cancel buffer item, then just return.
1739 */
e2714bf8 1740 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1741 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1742 return 0;
9abbc539 1743 }
1da177e4
LT
1744
1745 /*
d5689eaa
CH
1746 * Insert an xfs_buf_cancel record into the hash table of them.
1747 * If there is already an identical record, bump its reference count.
1da177e4 1748 */
d5689eaa
CH
1749 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1750 list_for_each_entry(bcp, bucket, bc_list) {
1751 if (bcp->bc_blkno == buf_f->blf_blkno &&
1752 bcp->bc_len == buf_f->blf_len) {
1753 bcp->bc_refcount++;
9abbc539 1754 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1755 return 0;
1da177e4 1756 }
d5689eaa
CH
1757 }
1758
1759 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1760 bcp->bc_blkno = buf_f->blf_blkno;
1761 bcp->bc_len = buf_f->blf_len;
1da177e4 1762 bcp->bc_refcount = 1;
d5689eaa
CH
1763 list_add_tail(&bcp->bc_list, bucket);
1764
9abbc539 1765 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1766 return 0;
1da177e4
LT
1767}
1768
1769/*
1770 * Check to see whether the buffer being recovered has a corresponding
1771 * entry in the buffer cancel record table. If it does then return 1
1772 * so that it will be cancelled, otherwise return 0. If the buffer is
c1155410 1773 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1da177e4
LT
1774 * the refcount on the entry in the table and remove it from the table
1775 * if this is the last reference.
1776 *
1777 * We remove the cancel record from the table when we encounter its
1778 * last occurrence in the log so that if the same buffer is re-used
1779 * again after its last cancellation we actually replay the changes
1780 * made at that point.
1781 */
1782STATIC int
1783xlog_check_buffer_cancelled(
ad223e60 1784 struct xlog *log,
1da177e4
LT
1785 xfs_daddr_t blkno,
1786 uint len,
1787 ushort flags)
1788{
d5689eaa
CH
1789 struct list_head *bucket;
1790 struct xfs_buf_cancel *bcp;
1da177e4
LT
1791
1792 if (log->l_buf_cancel_table == NULL) {
1793 /*
1794 * There is nothing in the table built in pass one,
1795 * so this buffer must not be cancelled.
1796 */
c1155410 1797 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1798 return 0;
1799 }
1800
1da177e4 1801 /*
d5689eaa 1802 * Search for an entry in the cancel table that matches our buffer.
1da177e4 1803 */
d5689eaa
CH
1804 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1805 list_for_each_entry(bcp, bucket, bc_list) {
1806 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1807 goto found;
1da177e4 1808 }
d5689eaa 1809
1da177e4 1810 /*
d5689eaa
CH
1811 * We didn't find a corresponding entry in the table, so return 0 so
1812 * that the buffer is NOT cancelled.
1da177e4 1813 */
c1155410 1814 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4 1815 return 0;
d5689eaa
CH
1816
1817found:
1818 /*
1819 * We've go a match, so return 1 so that the recovery of this buffer
1820 * is cancelled. If this buffer is actually a buffer cancel log
1821 * item, then decrement the refcount on the one in the table and
1822 * remove it if this is the last reference.
1823 */
1824 if (flags & XFS_BLF_CANCEL) {
1825 if (--bcp->bc_refcount == 0) {
1826 list_del(&bcp->bc_list);
1827 kmem_free(bcp);
1828 }
1829 }
1830 return 1;
1da177e4
LT
1831}
1832
1da177e4 1833/*
e2714bf8
CH
1834 * Perform recovery for a buffer full of inodes. In these buffers, the only
1835 * data which should be recovered is that which corresponds to the
1836 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1837 * data for the inodes is always logged through the inodes themselves rather
1838 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1839 *
e2714bf8
CH
1840 * The only time when buffers full of inodes are fully recovered is when the
1841 * buffer is full of newly allocated inodes. In this case the buffer will
1842 * not be marked as an inode buffer and so will be sent to
1843 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1844 */
1845STATIC int
1846xlog_recover_do_inode_buffer(
e2714bf8 1847 struct xfs_mount *mp,
1da177e4 1848 xlog_recover_item_t *item,
e2714bf8 1849 struct xfs_buf *bp,
1da177e4
LT
1850 xfs_buf_log_format_t *buf_f)
1851{
1852 int i;
e2714bf8
CH
1853 int item_index = 0;
1854 int bit = 0;
1855 int nbits = 0;
1856 int reg_buf_offset = 0;
1857 int reg_buf_bytes = 0;
1da177e4
LT
1858 int next_unlinked_offset;
1859 int inodes_per_buf;
1860 xfs_agino_t *logged_nextp;
1861 xfs_agino_t *buffer_nextp;
1da177e4 1862
9abbc539 1863 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
1864
1865 /*
1866 * Post recovery validation only works properly on CRC enabled
1867 * filesystems.
1868 */
1869 if (xfs_sb_version_hascrc(&mp->m_sb))
1870 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1871
aa0e8833 1872 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1873 for (i = 0; i < inodes_per_buf; i++) {
1874 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1875 offsetof(xfs_dinode_t, di_next_unlinked);
1876
1877 while (next_unlinked_offset >=
1878 (reg_buf_offset + reg_buf_bytes)) {
1879 /*
1880 * The next di_next_unlinked field is beyond
1881 * the current logged region. Find the next
1882 * logged region that contains or is beyond
1883 * the current di_next_unlinked field.
1884 */
1885 bit += nbits;
e2714bf8
CH
1886 bit = xfs_next_bit(buf_f->blf_data_map,
1887 buf_f->blf_map_size, bit);
1da177e4
LT
1888
1889 /*
1890 * If there are no more logged regions in the
1891 * buffer, then we're done.
1892 */
e2714bf8 1893 if (bit == -1)
1da177e4 1894 return 0;
1da177e4 1895
e2714bf8
CH
1896 nbits = xfs_contig_bits(buf_f->blf_data_map,
1897 buf_f->blf_map_size, bit);
1da177e4 1898 ASSERT(nbits > 0);
c1155410
DC
1899 reg_buf_offset = bit << XFS_BLF_SHIFT;
1900 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1901 item_index++;
1902 }
1903
1904 /*
1905 * If the current logged region starts after the current
1906 * di_next_unlinked field, then move on to the next
1907 * di_next_unlinked field.
1908 */
e2714bf8 1909 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1910 continue;
1da177e4
LT
1911
1912 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1913 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1914 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1915 BBTOB(bp->b_io_length));
1da177e4
LT
1916
1917 /*
1918 * The current logged region contains a copy of the
1919 * current di_next_unlinked field. Extract its value
1920 * and copy it to the buffer copy.
1921 */
4e0d5f92
CH
1922 logged_nextp = item->ri_buf[item_index].i_addr +
1923 next_unlinked_offset - reg_buf_offset;
1da177e4 1924 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1925 xfs_alert(mp,
1926 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1927 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1928 item, bp);
1929 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1930 XFS_ERRLEVEL_LOW, mp);
1931 return XFS_ERROR(EFSCORRUPTED);
1932 }
1933
1934 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1935 next_unlinked_offset);
87c199c2 1936 *buffer_nextp = *logged_nextp;
0a32c26e
DC
1937
1938 /*
1939 * If necessary, recalculate the CRC in the on-disk inode. We
1940 * have to leave the inode in a consistent state for whoever
1941 * reads it next....
1942 */
1943 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1944 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1945
1da177e4
LT
1946 }
1947
1948 return 0;
1949}
1950
1951/*
d75afeb3
DC
1952 * Validate the recovered buffer is of the correct type and attach the
1953 * appropriate buffer operations to them for writeback. Magic numbers are in a
1954 * few places:
1955 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1956 * the first 32 bits of the buffer (most blocks),
1957 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 1958 */
d75afeb3
DC
1959static void
1960xlog_recovery_validate_buf_type(
9abbc539 1961 struct xfs_mount *mp,
e2714bf8 1962 struct xfs_buf *bp,
1da177e4
LT
1963 xfs_buf_log_format_t *buf_f)
1964{
d75afeb3
DC
1965 struct xfs_da_blkinfo *info = bp->b_addr;
1966 __uint32_t magic32;
1967 __uint16_t magic16;
1968 __uint16_t magicda;
1969
1970 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1971 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1972 magicda = be16_to_cpu(info->magic);
61fe135c
DC
1973 switch (xfs_blft_from_flags(buf_f)) {
1974 case XFS_BLFT_BTREE_BUF:
d75afeb3 1975 switch (magic32) {
ee1a47ab
CH
1976 case XFS_ABTB_CRC_MAGIC:
1977 case XFS_ABTC_CRC_MAGIC:
1978 case XFS_ABTB_MAGIC:
1979 case XFS_ABTC_MAGIC:
1980 bp->b_ops = &xfs_allocbt_buf_ops;
1981 break;
1982 case XFS_IBT_CRC_MAGIC:
1983 case XFS_IBT_MAGIC:
1984 bp->b_ops = &xfs_inobt_buf_ops;
1985 break;
1986 case XFS_BMAP_CRC_MAGIC:
1987 case XFS_BMAP_MAGIC:
1988 bp->b_ops = &xfs_bmbt_buf_ops;
1989 break;
1990 default:
1991 xfs_warn(mp, "Bad btree block magic!");
1992 ASSERT(0);
1993 break;
1994 }
1995 break;
61fe135c 1996 case XFS_BLFT_AGF_BUF:
d75afeb3 1997 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
1998 xfs_warn(mp, "Bad AGF block magic!");
1999 ASSERT(0);
2000 break;
2001 }
2002 bp->b_ops = &xfs_agf_buf_ops;
2003 break;
61fe135c 2004 case XFS_BLFT_AGFL_BUF:
77c95bba
CH
2005 if (!xfs_sb_version_hascrc(&mp->m_sb))
2006 break;
d75afeb3 2007 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2008 xfs_warn(mp, "Bad AGFL block magic!");
2009 ASSERT(0);
2010 break;
2011 }
2012 bp->b_ops = &xfs_agfl_buf_ops;
2013 break;
61fe135c 2014 case XFS_BLFT_AGI_BUF:
d75afeb3 2015 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2016 xfs_warn(mp, "Bad AGI block magic!");
2017 ASSERT(0);
2018 break;
2019 }
2020 bp->b_ops = &xfs_agi_buf_ops;
2021 break;
61fe135c
DC
2022 case XFS_BLFT_UDQUOT_BUF:
2023 case XFS_BLFT_PDQUOT_BUF:
2024 case XFS_BLFT_GDQUOT_BUF:
123887e8 2025#ifdef CONFIG_XFS_QUOTA
d75afeb3 2026 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2027 xfs_warn(mp, "Bad DQUOT block magic!");
2028 ASSERT(0);
2029 break;
2030 }
2031 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2032#else
2033 xfs_alert(mp,
2034 "Trying to recover dquots without QUOTA support built in!");
2035 ASSERT(0);
2036#endif
3fe58f30 2037 break;
61fe135c 2038 case XFS_BLFT_DINO_BUF:
93848a99
CH
2039 /*
2040 * we get here with inode allocation buffers, not buffers that
2041 * track unlinked list changes.
2042 */
d75afeb3 2043 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2044 xfs_warn(mp, "Bad INODE block magic!");
2045 ASSERT(0);
2046 break;
2047 }
2048 bp->b_ops = &xfs_inode_buf_ops;
2049 break;
61fe135c 2050 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2051 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2052 xfs_warn(mp, "Bad symlink block magic!");
2053 ASSERT(0);
2054 break;
2055 }
2056 bp->b_ops = &xfs_symlink_buf_ops;
2057 break;
61fe135c 2058 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2059 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2060 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2061 xfs_warn(mp, "Bad dir block magic!");
2062 ASSERT(0);
2063 break;
2064 }
2065 bp->b_ops = &xfs_dir3_block_buf_ops;
2066 break;
61fe135c 2067 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2068 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2069 magic32 != XFS_DIR3_DATA_MAGIC) {
2070 xfs_warn(mp, "Bad dir data magic!");
2071 ASSERT(0);
2072 break;
2073 }
2074 bp->b_ops = &xfs_dir3_data_buf_ops;
2075 break;
61fe135c 2076 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2077 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2078 magic32 != XFS_DIR3_FREE_MAGIC) {
2079 xfs_warn(mp, "Bad dir3 free magic!");
2080 ASSERT(0);
2081 break;
2082 }
2083 bp->b_ops = &xfs_dir3_free_buf_ops;
2084 break;
61fe135c 2085 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2086 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2087 magicda != XFS_DIR3_LEAF1_MAGIC) {
2088 xfs_warn(mp, "Bad dir leaf1 magic!");
2089 ASSERT(0);
2090 break;
2091 }
2092 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2093 break;
61fe135c 2094 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2095 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2096 magicda != XFS_DIR3_LEAFN_MAGIC) {
2097 xfs_warn(mp, "Bad dir leafn magic!");
2098 ASSERT(0);
2099 break;
2100 }
2101 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2102 break;
61fe135c 2103 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2104 if (magicda != XFS_DA_NODE_MAGIC &&
2105 magicda != XFS_DA3_NODE_MAGIC) {
2106 xfs_warn(mp, "Bad da node magic!");
2107 ASSERT(0);
2108 break;
2109 }
2110 bp->b_ops = &xfs_da3_node_buf_ops;
2111 break;
61fe135c 2112 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2113 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2114 magicda != XFS_ATTR3_LEAF_MAGIC) {
2115 xfs_warn(mp, "Bad attr leaf magic!");
2116 ASSERT(0);
2117 break;
2118 }
2119 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2120 break;
61fe135c 2121 case XFS_BLFT_ATTR_RMT_BUF:
d75afeb3
DC
2122 if (!xfs_sb_version_hascrc(&mp->m_sb))
2123 break;
cab09a81 2124 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2125 xfs_warn(mp, "Bad attr remote magic!");
2126 ASSERT(0);
2127 break;
2128 }
2129 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2130 break;
04a1e6c5
DC
2131 case XFS_BLFT_SB_BUF:
2132 if (magic32 != XFS_SB_MAGIC) {
2133 xfs_warn(mp, "Bad SB block magic!");
2134 ASSERT(0);
2135 break;
2136 }
2137 bp->b_ops = &xfs_sb_buf_ops;
2138 break;
ee1a47ab 2139 default:
61fe135c
DC
2140 xfs_warn(mp, "Unknown buffer type %d!",
2141 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2142 break;
2143 }
1da177e4
LT
2144}
2145
d75afeb3
DC
2146/*
2147 * Perform a 'normal' buffer recovery. Each logged region of the
2148 * buffer should be copied over the corresponding region in the
2149 * given buffer. The bitmap in the buf log format structure indicates
2150 * where to place the logged data.
2151 */
2152STATIC void
2153xlog_recover_do_reg_buffer(
2154 struct xfs_mount *mp,
2155 xlog_recover_item_t *item,
2156 struct xfs_buf *bp,
2157 xfs_buf_log_format_t *buf_f)
2158{
2159 int i;
2160 int bit;
2161 int nbits;
2162 int error;
2163
2164 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2165
2166 bit = 0;
2167 i = 1; /* 0 is the buf format structure */
2168 while (1) {
2169 bit = xfs_next_bit(buf_f->blf_data_map,
2170 buf_f->blf_map_size, bit);
2171 if (bit == -1)
2172 break;
2173 nbits = xfs_contig_bits(buf_f->blf_data_map,
2174 buf_f->blf_map_size, bit);
2175 ASSERT(nbits > 0);
2176 ASSERT(item->ri_buf[i].i_addr != NULL);
2177 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2178 ASSERT(BBTOB(bp->b_io_length) >=
2179 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2180
709da6a6
DC
2181 /*
2182 * The dirty regions logged in the buffer, even though
2183 * contiguous, may span multiple chunks. This is because the
2184 * dirty region may span a physical page boundary in a buffer
2185 * and hence be split into two separate vectors for writing into
2186 * the log. Hence we need to trim nbits back to the length of
2187 * the current region being copied out of the log.
2188 */
2189 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2190 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2191
d75afeb3
DC
2192 /*
2193 * Do a sanity check if this is a dquot buffer. Just checking
2194 * the first dquot in the buffer should do. XXXThis is
2195 * probably a good thing to do for other buf types also.
2196 */
2197 error = 0;
2198 if (buf_f->blf_flags &
2199 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2200 if (item->ri_buf[i].i_addr == NULL) {
2201 xfs_alert(mp,
2202 "XFS: NULL dquot in %s.", __func__);
2203 goto next;
2204 }
2205 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2206 xfs_alert(mp,
2207 "XFS: dquot too small (%d) in %s.",
2208 item->ri_buf[i].i_len, __func__);
2209 goto next;
2210 }
2211 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2212 -1, 0, XFS_QMOPT_DOWARN,
2213 "dquot_buf_recover");
2214 if (error)
2215 goto next;
2216 }
2217
2218 memcpy(xfs_buf_offset(bp,
2219 (uint)bit << XFS_BLF_SHIFT), /* dest */
2220 item->ri_buf[i].i_addr, /* source */
2221 nbits<<XFS_BLF_SHIFT); /* length */
2222 next:
2223 i++;
2224 bit += nbits;
2225 }
2226
2227 /* Shouldn't be any more regions */
2228 ASSERT(i == item->ri_total);
2229
9222a9cf
DC
2230 /*
2231 * We can only do post recovery validation on items on CRC enabled
2232 * fielsystems as we need to know when the buffer was written to be able
2233 * to determine if we should have replayed the item. If we replay old
2234 * metadata over a newer buffer, then it will enter a temporarily
2235 * inconsistent state resulting in verification failures. Hence for now
2236 * just avoid the verification stage for non-crc filesystems
2237 */
2238 if (xfs_sb_version_hascrc(&mp->m_sb))
2239 xlog_recovery_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2240}
2241
1da177e4
LT
2242/*
2243 * Do some primitive error checking on ondisk dquot data structures.
2244 */
2245int
2246xfs_qm_dqcheck(
a0fa2b67 2247 struct xfs_mount *mp,
1da177e4
LT
2248 xfs_disk_dquot_t *ddq,
2249 xfs_dqid_t id,
2250 uint type, /* used only when IO_dorepair is true */
2251 uint flags,
2252 char *str)
2253{
2254 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2255 int errs = 0;
2256
2257 /*
2258 * We can encounter an uninitialized dquot buffer for 2 reasons:
2259 * 1. If we crash while deleting the quotainode(s), and those blks got
2260 * used for user data. This is because we take the path of regular
2261 * file deletion; however, the size field of quotainodes is never
2262 * updated, so all the tricks that we play in itruncate_finish
2263 * don't quite matter.
2264 *
2265 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2266 * But the allocation will be replayed so we'll end up with an
2267 * uninitialized quota block.
2268 *
2269 * This is all fine; things are still consistent, and we haven't lost
2270 * any quota information. Just don't complain about bad dquot blks.
2271 */
69ef921b 2272 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 2273 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2274 xfs_alert(mp,
1da177e4 2275 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2276 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2277 errs++;
2278 }
1149d96a 2279 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 2280 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2281 xfs_alert(mp,
1da177e4 2282 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2283 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2284 errs++;
2285 }
2286
1149d96a
CH
2287 if (ddq->d_flags != XFS_DQ_USER &&
2288 ddq->d_flags != XFS_DQ_PROJ &&
2289 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 2290 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2291 xfs_alert(mp,
1da177e4 2292 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2293 str, id, ddq->d_flags);
1da177e4
LT
2294 errs++;
2295 }
2296
1149d96a 2297 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 2298 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2299 xfs_alert(mp,
1da177e4
LT
2300 "%s : ondisk-dquot 0x%p, ID mismatch: "
2301 "0x%x expected, found id 0x%x",
1149d96a 2302 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2303 errs++;
2304 }
2305
2306 if (!errs && ddq->d_id) {
1149d96a 2307 if (ddq->d_blk_softlimit &&
d0a3fe67 2308 be64_to_cpu(ddq->d_bcount) >
1149d96a 2309 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2310 if (!ddq->d_btimer) {
2311 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2312 xfs_alert(mp,
2313 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 2314 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2315 errs++;
2316 }
2317 }
1149d96a 2318 if (ddq->d_ino_softlimit &&
d0a3fe67 2319 be64_to_cpu(ddq->d_icount) >
1149d96a 2320 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2321 if (!ddq->d_itimer) {
2322 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2323 xfs_alert(mp,
2324 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2325 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2326 errs++;
2327 }
2328 }
1149d96a 2329 if (ddq->d_rtb_softlimit &&
d0a3fe67 2330 be64_to_cpu(ddq->d_rtbcount) >
1149d96a 2331 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2332 if (!ddq->d_rtbtimer) {
2333 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2334 xfs_alert(mp,
2335 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2336 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2337 errs++;
2338 }
2339 }
2340 }
2341
2342 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2343 return errs;
2344
2345 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2346 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2347
2348 /*
2349 * Typically, a repair is only requested by quotacheck.
2350 */
2351 ASSERT(id != -1);
2352 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2353 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2354
2355 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2356 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2357 d->dd_diskdq.d_flags = type;
2358 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4 2359
6fcdc59d
DC
2360 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2361 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2362 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2363 XFS_DQUOT_CRC_OFF);
2364 }
2365
1da177e4
LT
2366 return errs;
2367}
2368
2369/*
2370 * Perform a dquot buffer recovery.
2371 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2372 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2373 * Else, treat it as a regular buffer and do recovery.
2374 */
2375STATIC void
2376xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2377 struct xfs_mount *mp,
2378 struct xlog *log,
2379 struct xlog_recover_item *item,
2380 struct xfs_buf *bp,
2381 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2382{
2383 uint type;
2384
9abbc539
DC
2385 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2386
1da177e4
LT
2387 /*
2388 * Filesystems are required to send in quota flags at mount time.
2389 */
2390 if (mp->m_qflags == 0) {
2391 return;
2392 }
2393
2394 type = 0;
c1155410 2395 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2396 type |= XFS_DQ_USER;
c1155410 2397 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2398 type |= XFS_DQ_PROJ;
c1155410 2399 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2400 type |= XFS_DQ_GROUP;
2401 /*
2402 * This type of quotas was turned off, so ignore this buffer
2403 */
2404 if (log->l_quotaoffs_flag & type)
2405 return;
2406
9abbc539 2407 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2408}
2409
2410/*
2411 * This routine replays a modification made to a buffer at runtime.
2412 * There are actually two types of buffer, regular and inode, which
2413 * are handled differently. Inode buffers are handled differently
2414 * in that we only recover a specific set of data from them, namely
2415 * the inode di_next_unlinked fields. This is because all other inode
2416 * data is actually logged via inode records and any data we replay
2417 * here which overlaps that may be stale.
2418 *
2419 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2420 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2421 * of the buffer in the log should not be replayed at recovery time.
2422 * This is so that if the blocks covered by the buffer are reused for
2423 * file data before we crash we don't end up replaying old, freed
2424 * meta-data into a user's file.
2425 *
2426 * To handle the cancellation of buffer log items, we make two passes
2427 * over the log during recovery. During the first we build a table of
2428 * those buffers which have been cancelled, and during the second we
2429 * only replay those buffers which do not have corresponding cancel
2430 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2431 * for more details on the implementation of the table of cancel records.
2432 */
2433STATIC int
c9f71f5f 2434xlog_recover_buffer_pass2(
9a8d2fdb
MT
2435 struct xlog *log,
2436 struct list_head *buffer_list,
2437 struct xlog_recover_item *item)
1da177e4 2438{
4e0d5f92 2439 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2440 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2441 xfs_buf_t *bp;
2442 int error;
6ad112bf 2443 uint buf_flags;
1da177e4 2444
c9f71f5f
CH
2445 /*
2446 * In this pass we only want to recover all the buffers which have
2447 * not been cancelled and are not cancellation buffers themselves.
2448 */
2449 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2450 buf_f->blf_len, buf_f->blf_flags)) {
2451 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2452 return 0;
1da177e4 2453 }
c9f71f5f 2454
9abbc539 2455 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2456
a8acad70 2457 buf_flags = 0;
611c9946
DC
2458 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2459 buf_flags |= XBF_UNMAPPED;
6ad112bf 2460
e2714bf8 2461 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2462 buf_flags, NULL);
ac4d6888
CS
2463 if (!bp)
2464 return XFS_ERROR(ENOMEM);
e5702805 2465 error = bp->b_error;
5a52c2a5 2466 if (error) {
901796af 2467 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
1da177e4
LT
2468 xfs_buf_relse(bp);
2469 return error;
2470 }
2471
e2714bf8 2472 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2473 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2474 } else if (buf_f->blf_flags &
c1155410 2475 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2476 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2477 } else {
9abbc539 2478 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2479 }
2480 if (error)
2481 return XFS_ERROR(error);
2482
2483 /*
2484 * Perform delayed write on the buffer. Asynchronous writes will be
2485 * slower when taking into account all the buffers to be flushed.
2486 *
2487 * Also make sure that only inode buffers with good sizes stay in
2488 * the buffer cache. The kernel moves inodes in buffers of 1 block
2489 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2490 * buffers in the log can be a different size if the log was generated
2491 * by an older kernel using unclustered inode buffers or a newer kernel
2492 * running with a different inode cluster size. Regardless, if the
2493 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2494 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2495 * the buffer out of the buffer cache so that the buffer won't
2496 * overlap with future reads of those inodes.
2497 */
2498 if (XFS_DINODE_MAGIC ==
b53e675d 2499 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2500 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
1da177e4 2501 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
c867cb61 2502 xfs_buf_stale(bp);
c2b006c1 2503 error = xfs_bwrite(bp);
1da177e4 2504 } else {
ebad861b 2505 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2506 bp->b_iodone = xlog_recover_iodone;
43ff2122 2507 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2508 }
2509
c2b006c1
CH
2510 xfs_buf_relse(bp);
2511 return error;
1da177e4
LT
2512}
2513
2514STATIC int
c9f71f5f 2515xlog_recover_inode_pass2(
9a8d2fdb
MT
2516 struct xlog *log,
2517 struct list_head *buffer_list,
2518 struct xlog_recover_item *item)
1da177e4
LT
2519{
2520 xfs_inode_log_format_t *in_f;
c9f71f5f 2521 xfs_mount_t *mp = log->l_mp;
1da177e4 2522 xfs_buf_t *bp;
1da177e4 2523 xfs_dinode_t *dip;
1da177e4
LT
2524 int len;
2525 xfs_caddr_t src;
2526 xfs_caddr_t dest;
2527 int error;
2528 int attr_index;
2529 uint fields;
347d1c01 2530 xfs_icdinode_t *dicp;
93848a99 2531 uint isize;
6d192a9b 2532 int need_free = 0;
1da177e4 2533
6d192a9b 2534 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2535 in_f = item->ri_buf[0].i_addr;
6d192a9b 2536 } else {
4e0d5f92 2537 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2538 need_free = 1;
2539 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2540 if (error)
2541 goto error;
2542 }
1da177e4
LT
2543
2544 /*
2545 * Inode buffers can be freed, look out for it,
2546 * and do not replay the inode.
2547 */
a1941895
CH
2548 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2549 in_f->ilf_len, 0)) {
6d192a9b 2550 error = 0;
9abbc539 2551 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2552 goto error;
2553 }
9abbc539 2554 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2555
c3f8fc73 2556 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2557 &xfs_inode_buf_ops);
ac4d6888
CS
2558 if (!bp) {
2559 error = ENOMEM;
2560 goto error;
2561 }
e5702805 2562 error = bp->b_error;
5a52c2a5 2563 if (error) {
901796af 2564 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
1da177e4 2565 xfs_buf_relse(bp);
6d192a9b 2566 goto error;
1da177e4 2567 }
1da177e4 2568 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2569 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2570
2571 /*
2572 * Make sure the place we're flushing out to really looks
2573 * like an inode!
2574 */
69ef921b 2575 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
1da177e4 2576 xfs_buf_relse(bp);
a0fa2b67
DC
2577 xfs_alert(mp,
2578 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2579 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2580 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2581 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2582 error = EFSCORRUPTED;
2583 goto error;
1da177e4 2584 }
4e0d5f92 2585 dicp = item->ri_buf[1].i_addr;
1da177e4
LT
2586 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2587 xfs_buf_relse(bp);
a0fa2b67
DC
2588 xfs_alert(mp,
2589 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2590 __func__, item, in_f->ilf_ino);
c9f71f5f 2591 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2592 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2593 error = EFSCORRUPTED;
2594 goto error;
1da177e4
LT
2595 }
2596
e60896d8
DC
2597 /*
2598 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2599 * are transactional and if ordering is necessary we can determine that
2600 * more accurately by the LSN field in the V3 inode core. Don't trust
2601 * the inode versions we might be changing them here - use the
2602 * superblock flag to determine whether we need to look at di_flushiter
2603 * to skip replay when the on disk inode is newer than the log one
2604 */
2605 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2606 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2607 /*
2608 * Deal with the wrap case, DI_MAX_FLUSH is less
2609 * than smaller numbers
2610 */
81591fe2 2611 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2612 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2613 /* do nothing */
2614 } else {
2615 xfs_buf_relse(bp);
9abbc539 2616 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2617 error = 0;
2618 goto error;
1da177e4
LT
2619 }
2620 }
e60896d8 2621
1da177e4
LT
2622 /* Take the opportunity to reset the flush iteration count */
2623 dicp->di_flushiter = 0;
2624
abbede1b 2625 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2626 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2627 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2628 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4
LT
2629 XFS_ERRLEVEL_LOW, mp, dicp);
2630 xfs_buf_relse(bp);
a0fa2b67
DC
2631 xfs_alert(mp,
2632 "%s: Bad regular inode log record, rec ptr 0x%p, "
2633 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2634 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2635 error = EFSCORRUPTED;
2636 goto error;
1da177e4 2637 }
abbede1b 2638 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2639 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2640 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2641 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2642 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4
LT
2643 XFS_ERRLEVEL_LOW, mp, dicp);
2644 xfs_buf_relse(bp);
a0fa2b67
DC
2645 xfs_alert(mp,
2646 "%s: Bad dir inode log record, rec ptr 0x%p, "
2647 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2648 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2649 error = EFSCORRUPTED;
2650 goto error;
1da177e4
LT
2651 }
2652 }
2653 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2654 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4
LT
2655 XFS_ERRLEVEL_LOW, mp, dicp);
2656 xfs_buf_relse(bp);
a0fa2b67
DC
2657 xfs_alert(mp,
2658 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2659 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2660 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2661 dicp->di_nextents + dicp->di_anextents,
2662 dicp->di_nblocks);
6d192a9b
TS
2663 error = EFSCORRUPTED;
2664 goto error;
1da177e4
LT
2665 }
2666 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2667 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4
LT
2668 XFS_ERRLEVEL_LOW, mp, dicp);
2669 xfs_buf_relse(bp);
a0fa2b67
DC
2670 xfs_alert(mp,
2671 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2672 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2673 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b
TS
2674 error = EFSCORRUPTED;
2675 goto error;
1da177e4 2676 }
93848a99
CH
2677 isize = xfs_icdinode_size(dicp->di_version);
2678 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2679 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4
LT
2680 XFS_ERRLEVEL_LOW, mp, dicp);
2681 xfs_buf_relse(bp);
a0fa2b67
DC
2682 xfs_alert(mp,
2683 "%s: Bad inode log record length %d, rec ptr 0x%p",
2684 __func__, item->ri_buf[1].i_len, item);
6d192a9b
TS
2685 error = EFSCORRUPTED;
2686 goto error;
1da177e4
LT
2687 }
2688
2689 /* The core is in in-core format */
93848a99 2690 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2691
2692 /* the rest is in on-disk format */
93848a99
CH
2693 if (item->ri_buf[1].i_len > isize) {
2694 memcpy((char *)dip + isize,
2695 item->ri_buf[1].i_addr + isize,
2696 item->ri_buf[1].i_len - isize);
1da177e4
LT
2697 }
2698
2699 fields = in_f->ilf_fields;
2700 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2701 case XFS_ILOG_DEV:
81591fe2 2702 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2703 break;
2704 case XFS_ILOG_UUID:
81591fe2
CH
2705 memcpy(XFS_DFORK_DPTR(dip),
2706 &in_f->ilf_u.ilfu_uuid,
2707 sizeof(uuid_t));
1da177e4
LT
2708 break;
2709 }
2710
2711 if (in_f->ilf_size == 2)
2712 goto write_inode_buffer;
2713 len = item->ri_buf[2].i_len;
2714 src = item->ri_buf[2].i_addr;
2715 ASSERT(in_f->ilf_size <= 4);
2716 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2717 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2718 (len == in_f->ilf_dsize));
2719
2720 switch (fields & XFS_ILOG_DFORK) {
2721 case XFS_ILOG_DDATA:
2722 case XFS_ILOG_DEXT:
81591fe2 2723 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2724 break;
2725
2726 case XFS_ILOG_DBROOT:
7cc95a82 2727 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2728 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2729 XFS_DFORK_DSIZE(dip, mp));
2730 break;
2731
2732 default:
2733 /*
2734 * There are no data fork flags set.
2735 */
2736 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2737 break;
2738 }
2739
2740 /*
2741 * If we logged any attribute data, recover it. There may or
2742 * may not have been any other non-core data logged in this
2743 * transaction.
2744 */
2745 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2746 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2747 attr_index = 3;
2748 } else {
2749 attr_index = 2;
2750 }
2751 len = item->ri_buf[attr_index].i_len;
2752 src = item->ri_buf[attr_index].i_addr;
2753 ASSERT(len == in_f->ilf_asize);
2754
2755 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2756 case XFS_ILOG_ADATA:
2757 case XFS_ILOG_AEXT:
2758 dest = XFS_DFORK_APTR(dip);
2759 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2760 memcpy(dest, src, len);
2761 break;
2762
2763 case XFS_ILOG_ABROOT:
2764 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2765 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2766 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2767 XFS_DFORK_ASIZE(dip, mp));
2768 break;
2769
2770 default:
a0fa2b67 2771 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4
LT
2772 ASSERT(0);
2773 xfs_buf_relse(bp);
6d192a9b
TS
2774 error = EIO;
2775 goto error;
1da177e4
LT
2776 }
2777 }
2778
2779write_inode_buffer:
93848a99
CH
2780 /* re-generate the checksum. */
2781 xfs_dinode_calc_crc(log->l_mp, dip);
2782
ebad861b 2783 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2784 bp->b_iodone = xlog_recover_iodone;
43ff2122 2785 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2786 xfs_buf_relse(bp);
6d192a9b
TS
2787error:
2788 if (need_free)
f0e2d93c 2789 kmem_free(in_f);
6d192a9b 2790 return XFS_ERROR(error);
1da177e4
LT
2791}
2792
2793/*
9a8d2fdb 2794 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2795 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2796 * of that type.
2797 */
2798STATIC int
c9f71f5f 2799xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2800 struct xlog *log,
2801 struct xlog_recover_item *item)
1da177e4 2802{
c9f71f5f 2803 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2804 ASSERT(qoff_f);
2805
2806 /*
2807 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2808 * group/project quotaoff or both.
1da177e4
LT
2809 */
2810 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2811 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2812 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2813 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2814 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2815 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2816
2817 return (0);
2818}
2819
2820/*
2821 * Recover a dquot record
2822 */
2823STATIC int
c9f71f5f 2824xlog_recover_dquot_pass2(
9a8d2fdb
MT
2825 struct xlog *log,
2826 struct list_head *buffer_list,
2827 struct xlog_recover_item *item)
1da177e4 2828{
c9f71f5f 2829 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2830 xfs_buf_t *bp;
2831 struct xfs_disk_dquot *ddq, *recddq;
2832 int error;
2833 xfs_dq_logformat_t *dq_f;
2834 uint type;
2835
1da177e4
LT
2836
2837 /*
2838 * Filesystems are required to send in quota flags at mount time.
2839 */
2840 if (mp->m_qflags == 0)
2841 return (0);
2842
4e0d5f92
CH
2843 recddq = item->ri_buf[1].i_addr;
2844 if (recddq == NULL) {
a0fa2b67 2845 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
2846 return XFS_ERROR(EIO);
2847 }
8ec6dba2 2848 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2849 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
2850 item->ri_buf[1].i_len, __func__);
2851 return XFS_ERROR(EIO);
2852 }
2853
1da177e4
LT
2854 /*
2855 * This type of quotas was turned off, so ignore this record.
2856 */
b53e675d 2857 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2858 ASSERT(type);
2859 if (log->l_quotaoffs_flag & type)
2860 return (0);
2861
2862 /*
2863 * At this point we know that quota was _not_ turned off.
2864 * Since the mount flags are not indicating to us otherwise, this
2865 * must mean that quota is on, and the dquot needs to be replayed.
2866 * Remember that we may not have fully recovered the superblock yet,
2867 * so we can't do the usual trick of looking at the SB quota bits.
2868 *
2869 * The other possibility, of course, is that the quota subsystem was
2870 * removed since the last mount - ENOSYS.
2871 */
4e0d5f92 2872 dq_f = item->ri_buf[0].i_addr;
1da177e4 2873 ASSERT(dq_f);
a0fa2b67
DC
2874 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2875 "xlog_recover_dquot_pass2 (log copy)");
2876 if (error)
1da177e4 2877 return XFS_ERROR(EIO);
1da177e4
LT
2878 ASSERT(dq_f->qlf_len == 1);
2879
7ca790a5 2880 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73
DC
2881 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2882 NULL);
7ca790a5 2883 if (error)
1da177e4 2884 return error;
7ca790a5 2885
1da177e4
LT
2886 ASSERT(bp);
2887 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2888
2889 /*
2890 * At least the magic num portion should be on disk because this
2891 * was among a chunk of dquots created earlier, and we did some
2892 * minimal initialization then.
2893 */
a0fa2b67
DC
2894 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2895 "xlog_recover_dquot_pass2");
2896 if (error) {
1da177e4
LT
2897 xfs_buf_relse(bp);
2898 return XFS_ERROR(EIO);
2899 }
2900
2901 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
2902 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2903 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
2904 XFS_DQUOT_CRC_OFF);
2905 }
1da177e4
LT
2906
2907 ASSERT(dq_f->qlf_size == 2);
ebad861b 2908 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2909 bp->b_iodone = xlog_recover_iodone;
43ff2122 2910 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2911 xfs_buf_relse(bp);
1da177e4
LT
2912
2913 return (0);
2914}
2915
2916/*
2917 * This routine is called to create an in-core extent free intent
2918 * item from the efi format structure which was logged on disk.
2919 * It allocates an in-core efi, copies the extents from the format
2920 * structure into it, and adds the efi to the AIL with the given
2921 * LSN.
2922 */
6d192a9b 2923STATIC int
c9f71f5f 2924xlog_recover_efi_pass2(
9a8d2fdb
MT
2925 struct xlog *log,
2926 struct xlog_recover_item *item,
2927 xfs_lsn_t lsn)
1da177e4 2928{
6d192a9b 2929 int error;
c9f71f5f 2930 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2931 xfs_efi_log_item_t *efip;
2932 xfs_efi_log_format_t *efi_formatp;
1da177e4 2933
4e0d5f92 2934 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2935
1da177e4 2936 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2937 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2938 &(efip->efi_format)))) {
2939 xfs_efi_item_free(efip);
2940 return error;
2941 }
b199c8a4 2942 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2943
a9c21c1b 2944 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2945 /*
783a2f65 2946 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2947 */
e6059949 2948 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2949 return 0;
1da177e4
LT
2950}
2951
2952
2953/*
2954 * This routine is called when an efd format structure is found in
2955 * a committed transaction in the log. It's purpose is to cancel
2956 * the corresponding efi if it was still in the log. To do this
2957 * it searches the AIL for the efi with an id equal to that in the
2958 * efd format structure. If we find it, we remove the efi from the
2959 * AIL and free it.
2960 */
c9f71f5f
CH
2961STATIC int
2962xlog_recover_efd_pass2(
9a8d2fdb
MT
2963 struct xlog *log,
2964 struct xlog_recover_item *item)
1da177e4 2965{
1da177e4
LT
2966 xfs_efd_log_format_t *efd_formatp;
2967 xfs_efi_log_item_t *efip = NULL;
2968 xfs_log_item_t *lip;
1da177e4 2969 __uint64_t efi_id;
27d8d5fe 2970 struct xfs_ail_cursor cur;
783a2f65 2971 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2972
4e0d5f92 2973 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2974 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2975 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2976 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2977 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2978 efi_id = efd_formatp->efd_efi_id;
2979
2980 /*
2981 * Search for the efi with the id in the efd format structure
2982 * in the AIL.
2983 */
a9c21c1b
DC
2984 spin_lock(&ailp->xa_lock);
2985 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2986 while (lip != NULL) {
2987 if (lip->li_type == XFS_LI_EFI) {
2988 efip = (xfs_efi_log_item_t *)lip;
2989 if (efip->efi_format.efi_id == efi_id) {
2990 /*
783a2f65 2991 * xfs_trans_ail_delete() drops the
1da177e4
LT
2992 * AIL lock.
2993 */
04913fdd
DC
2994 xfs_trans_ail_delete(ailp, lip,
2995 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 2996 xfs_efi_item_free(efip);
a9c21c1b 2997 spin_lock(&ailp->xa_lock);
27d8d5fe 2998 break;
1da177e4
LT
2999 }
3000 }
a9c21c1b 3001 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3002 }
a9c21c1b
DC
3003 xfs_trans_ail_cursor_done(ailp, &cur);
3004 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3005
3006 return 0;
1da177e4
LT
3007}
3008
28c8e41a
DC
3009/*
3010 * This routine is called when an inode create format structure is found in a
3011 * committed transaction in the log. It's purpose is to initialise the inodes
3012 * being allocated on disk. This requires us to get inode cluster buffers that
3013 * match the range to be intialised, stamped with inode templates and written
3014 * by delayed write so that subsequent modifications will hit the cached buffer
3015 * and only need writing out at the end of recovery.
3016 */
3017STATIC int
3018xlog_recover_do_icreate_pass2(
3019 struct xlog *log,
3020 struct list_head *buffer_list,
3021 xlog_recover_item_t *item)
3022{
3023 struct xfs_mount *mp = log->l_mp;
3024 struct xfs_icreate_log *icl;
3025 xfs_agnumber_t agno;
3026 xfs_agblock_t agbno;
3027 unsigned int count;
3028 unsigned int isize;
3029 xfs_agblock_t length;
3030
3031 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3032 if (icl->icl_type != XFS_LI_ICREATE) {
3033 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3034 return EINVAL;
3035 }
3036
3037 if (icl->icl_size != 1) {
3038 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3039 return EINVAL;
3040 }
3041
3042 agno = be32_to_cpu(icl->icl_ag);
3043 if (agno >= mp->m_sb.sb_agcount) {
3044 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3045 return EINVAL;
3046 }
3047 agbno = be32_to_cpu(icl->icl_agbno);
3048 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3049 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3050 return EINVAL;
3051 }
3052 isize = be32_to_cpu(icl->icl_isize);
3053 if (isize != mp->m_sb.sb_inodesize) {
3054 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3055 return EINVAL;
3056 }
3057 count = be32_to_cpu(icl->icl_count);
3058 if (!count) {
3059 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3060 return EINVAL;
3061 }
3062 length = be32_to_cpu(icl->icl_length);
3063 if (!length || length >= mp->m_sb.sb_agblocks) {
3064 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3065 return EINVAL;
3066 }
3067
3068 /* existing allocation is fixed value */
3069 ASSERT(count == XFS_IALLOC_INODES(mp));
3070 ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3071 if (count != XFS_IALLOC_INODES(mp) ||
3072 length != XFS_IALLOC_BLOCKS(mp)) {
3073 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3074 return EINVAL;
3075 }
3076
3077 /*
3078 * Inode buffers can be freed. Do not replay the inode initialisation as
3079 * we could be overwriting something written after this inode buffer was
3080 * cancelled.
3081 *
3082 * XXX: we need to iterate all buffers and only init those that are not
3083 * cancelled. I think that a more fine grained factoring of
3084 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3085 * done easily.
3086 */
3087 if (xlog_check_buffer_cancelled(log,
3088 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3089 return 0;
3090
3091 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3092 be32_to_cpu(icl->icl_gen));
3093 return 0;
3094}
3095
1da177e4
LT
3096/*
3097 * Free up any resources allocated by the transaction
3098 *
3099 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3100 */
3101STATIC void
3102xlog_recover_free_trans(
d0450948 3103 struct xlog_recover *trans)
1da177e4 3104{
f0a76953 3105 xlog_recover_item_t *item, *n;
1da177e4
LT
3106 int i;
3107
f0a76953
DC
3108 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3109 /* Free the regions in the item. */
3110 list_del(&item->ri_list);
3111 for (i = 0; i < item->ri_cnt; i++)
3112 kmem_free(item->ri_buf[i].i_addr);
1da177e4 3113 /* Free the item itself */
f0a76953
DC
3114 kmem_free(item->ri_buf);
3115 kmem_free(item);
3116 }
1da177e4 3117 /* Free the transaction recover structure */
f0e2d93c 3118 kmem_free(trans);
1da177e4
LT
3119}
3120
d0450948 3121STATIC int
c9f71f5f 3122xlog_recover_commit_pass1(
ad223e60
MT
3123 struct xlog *log,
3124 struct xlog_recover *trans,
3125 struct xlog_recover_item *item)
d0450948 3126{
c9f71f5f 3127 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3128
3129 switch (ITEM_TYPE(item)) {
3130 case XFS_LI_BUF:
c9f71f5f
CH
3131 return xlog_recover_buffer_pass1(log, item);
3132 case XFS_LI_QUOTAOFF:
3133 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3134 case XFS_LI_INODE:
d0450948 3135 case XFS_LI_EFI:
d0450948 3136 case XFS_LI_EFD:
c9f71f5f 3137 case XFS_LI_DQUOT:
28c8e41a 3138 case XFS_LI_ICREATE:
c9f71f5f 3139 /* nothing to do in pass 1 */
d0450948 3140 return 0;
c9f71f5f 3141 default:
a0fa2b67
DC
3142 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3143 __func__, ITEM_TYPE(item));
c9f71f5f
CH
3144 ASSERT(0);
3145 return XFS_ERROR(EIO);
3146 }
3147}
3148
3149STATIC int
3150xlog_recover_commit_pass2(
ad223e60
MT
3151 struct xlog *log,
3152 struct xlog_recover *trans,
3153 struct list_head *buffer_list,
3154 struct xlog_recover_item *item)
c9f71f5f
CH
3155{
3156 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3157
3158 switch (ITEM_TYPE(item)) {
3159 case XFS_LI_BUF:
43ff2122 3160 return xlog_recover_buffer_pass2(log, buffer_list, item);
c9f71f5f 3161 case XFS_LI_INODE:
43ff2122 3162 return xlog_recover_inode_pass2(log, buffer_list, item);
c9f71f5f
CH
3163 case XFS_LI_EFI:
3164 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3165 case XFS_LI_EFD:
3166 return xlog_recover_efd_pass2(log, item);
d0450948 3167 case XFS_LI_DQUOT:
43ff2122 3168 return xlog_recover_dquot_pass2(log, buffer_list, item);
28c8e41a
DC
3169 case XFS_LI_ICREATE:
3170 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3171 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3172 /* nothing to do in pass2 */
3173 return 0;
d0450948 3174 default:
a0fa2b67
DC
3175 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3176 __func__, ITEM_TYPE(item));
d0450948
CH
3177 ASSERT(0);
3178 return XFS_ERROR(EIO);
3179 }
3180}
3181
3182/*
3183 * Perform the transaction.
3184 *
3185 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3186 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3187 */
1da177e4
LT
3188STATIC int
3189xlog_recover_commit_trans(
ad223e60 3190 struct xlog *log,
d0450948 3191 struct xlog_recover *trans,
1da177e4
LT
3192 int pass)
3193{
43ff2122 3194 int error = 0, error2;
d0450948 3195 xlog_recover_item_t *item;
43ff2122 3196 LIST_HEAD (buffer_list);
1da177e4 3197
f0a76953 3198 hlist_del(&trans->r_list);
d0450948
CH
3199
3200 error = xlog_recover_reorder_trans(log, trans, pass);
3201 if (error)
1da177e4 3202 return error;
d0450948
CH
3203
3204 list_for_each_entry(item, &trans->r_itemq, ri_list) {
43ff2122
CH
3205 switch (pass) {
3206 case XLOG_RECOVER_PASS1:
c9f71f5f 3207 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3208 break;
3209 case XLOG_RECOVER_PASS2:
3210 error = xlog_recover_commit_pass2(log, trans,
3211 &buffer_list, item);
3212 break;
3213 default:
3214 ASSERT(0);
3215 }
3216
d0450948 3217 if (error)
43ff2122 3218 goto out;
d0450948
CH
3219 }
3220
3221 xlog_recover_free_trans(trans);
43ff2122
CH
3222
3223out:
3224 error2 = xfs_buf_delwri_submit(&buffer_list);
3225 return error ? error : error2;
1da177e4
LT
3226}
3227
3228STATIC int
3229xlog_recover_unmount_trans(
ad223e60
MT
3230 struct xlog *log,
3231 struct xlog_recover *trans)
1da177e4
LT
3232{
3233 /* Do nothing now */
a0fa2b67 3234 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
3235 return 0;
3236}
3237
3238/*
3239 * There are two valid states of the r_state field. 0 indicates that the
3240 * transaction structure is in a normal state. We have either seen the
3241 * start of the transaction or the last operation we added was not a partial
3242 * operation. If the last operation we added to the transaction was a
3243 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3244 *
3245 * NOTE: skip LRs with 0 data length.
3246 */
3247STATIC int
3248xlog_recover_process_data(
9a8d2fdb 3249 struct xlog *log,
f0a76953 3250 struct hlist_head rhash[],
9a8d2fdb 3251 struct xlog_rec_header *rhead,
1da177e4
LT
3252 xfs_caddr_t dp,
3253 int pass)
3254{
3255 xfs_caddr_t lp;
3256 int num_logops;
3257 xlog_op_header_t *ohead;
3258 xlog_recover_t *trans;
3259 xlog_tid_t tid;
3260 int error;
3261 unsigned long hash;
3262 uint flags;
3263
b53e675d
CH
3264 lp = dp + be32_to_cpu(rhead->h_len);
3265 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3266
3267 /* check the log format matches our own - else we can't recover */
3268 if (xlog_header_check_recover(log->l_mp, rhead))
3269 return (XFS_ERROR(EIO));
3270
3271 while ((dp < lp) && num_logops) {
3272 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3273 ohead = (xlog_op_header_t *)dp;
3274 dp += sizeof(xlog_op_header_t);
3275 if (ohead->oh_clientid != XFS_TRANSACTION &&
3276 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
3277 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3278 __func__, ohead->oh_clientid);
1da177e4
LT
3279 ASSERT(0);
3280 return (XFS_ERROR(EIO));
3281 }
67fcb7bf 3282 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 3283 hash = XLOG_RHASH(tid);
f0a76953 3284 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
3285 if (trans == NULL) { /* not found; add new tid */
3286 if (ohead->oh_flags & XLOG_START_TRANS)
3287 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 3288 be64_to_cpu(rhead->h_lsn));
1da177e4 3289 } else {
9742bb93 3290 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
3291 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3292 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
3293 WARN_ON(1);
3294 return (XFS_ERROR(EIO));
3295 }
1da177e4
LT
3296 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3297 if (flags & XLOG_WAS_CONT_TRANS)
3298 flags &= ~XLOG_CONTINUE_TRANS;
3299 switch (flags) {
3300 case XLOG_COMMIT_TRANS:
3301 error = xlog_recover_commit_trans(log,
f0a76953 3302 trans, pass);
1da177e4
LT
3303 break;
3304 case XLOG_UNMOUNT_TRANS:
a0fa2b67 3305 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
3306 break;
3307 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
3308 error = xlog_recover_add_to_cont_trans(log,
3309 trans, dp,
3310 be32_to_cpu(ohead->oh_len));
1da177e4
LT
3311 break;
3312 case XLOG_START_TRANS:
a0fa2b67
DC
3313 xfs_warn(log->l_mp, "%s: bad transaction",
3314 __func__);
1da177e4
LT
3315 ASSERT(0);
3316 error = XFS_ERROR(EIO);
3317 break;
3318 case 0:
3319 case XLOG_CONTINUE_TRANS:
9abbc539 3320 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 3321 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
3322 break;
3323 default:
a0fa2b67
DC
3324 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3325 __func__, flags);
1da177e4
LT
3326 ASSERT(0);
3327 error = XFS_ERROR(EIO);
3328 break;
3329 }
3330 if (error)
3331 return error;
3332 }
67fcb7bf 3333 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3334 num_logops--;
3335 }
3336 return 0;
3337}
3338
3339/*
3340 * Process an extent free intent item that was recovered from
3341 * the log. We need to free the extents that it describes.
3342 */
3c1e2bbe 3343STATIC int
1da177e4
LT
3344xlog_recover_process_efi(
3345 xfs_mount_t *mp,
3346 xfs_efi_log_item_t *efip)
3347{
3348 xfs_efd_log_item_t *efdp;
3349 xfs_trans_t *tp;
3350 int i;
3c1e2bbe 3351 int error = 0;
1da177e4
LT
3352 xfs_extent_t *extp;
3353 xfs_fsblock_t startblock_fsb;
3354
b199c8a4 3355 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3356
3357 /*
3358 * First check the validity of the extents described by the
3359 * EFI. If any are bad, then assume that all are bad and
3360 * just toss the EFI.
3361 */
3362 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3363 extp = &(efip->efi_format.efi_extents[i]);
3364 startblock_fsb = XFS_BB_TO_FSB(mp,
3365 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3366 if ((startblock_fsb == 0) ||
3367 (extp->ext_len == 0) ||
3368 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3369 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3370 /*
3371 * This will pull the EFI from the AIL and
3372 * free the memory associated with it.
3373 */
666d644c 3374 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 3375 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3376 return XFS_ERROR(EIO);
1da177e4
LT
3377 }
3378 }
3379
3380 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 3381 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
3382 if (error)
3383 goto abort_error;
1da177e4
LT
3384 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3385
3386 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3387 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3388 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3389 if (error)
3390 goto abort_error;
1da177e4
LT
3391 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3392 extp->ext_len);
3393 }
3394
b199c8a4 3395 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 3396 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3397 return error;
fc6149d8
DC
3398
3399abort_error:
3400 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3401 return error;
1da177e4
LT
3402}
3403
1da177e4
LT
3404/*
3405 * When this is called, all of the EFIs which did not have
3406 * corresponding EFDs should be in the AIL. What we do now
3407 * is free the extents associated with each one.
3408 *
3409 * Since we process the EFIs in normal transactions, they
3410 * will be removed at some point after the commit. This prevents
3411 * us from just walking down the list processing each one.
3412 * We'll use a flag in the EFI to skip those that we've already
3413 * processed and use the AIL iteration mechanism's generation
3414 * count to try to speed this up at least a bit.
3415 *
3416 * When we start, we know that the EFIs are the only things in
3417 * the AIL. As we process them, however, other items are added
3418 * to the AIL. Since everything added to the AIL must come after
3419 * everything already in the AIL, we stop processing as soon as
3420 * we see something other than an EFI in the AIL.
3421 */
3c1e2bbe 3422STATIC int
1da177e4 3423xlog_recover_process_efis(
9a8d2fdb 3424 struct xlog *log)
1da177e4
LT
3425{
3426 xfs_log_item_t *lip;
3427 xfs_efi_log_item_t *efip;
3c1e2bbe 3428 int error = 0;
27d8d5fe 3429 struct xfs_ail_cursor cur;
a9c21c1b 3430 struct xfs_ail *ailp;
1da177e4 3431
a9c21c1b
DC
3432 ailp = log->l_ailp;
3433 spin_lock(&ailp->xa_lock);
3434 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3435 while (lip != NULL) {
3436 /*
3437 * We're done when we see something other than an EFI.
27d8d5fe 3438 * There should be no EFIs left in the AIL now.
1da177e4
LT
3439 */
3440 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3441#ifdef DEBUG
a9c21c1b 3442 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3443 ASSERT(lip->li_type != XFS_LI_EFI);
3444#endif
1da177e4
LT
3445 break;
3446 }
3447
3448 /*
3449 * Skip EFIs that we've already processed.
3450 */
3451 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3452 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3453 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3454 continue;
3455 }
3456
a9c21c1b
DC
3457 spin_unlock(&ailp->xa_lock);
3458 error = xlog_recover_process_efi(log->l_mp, efip);
3459 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3460 if (error)
3461 goto out;
a9c21c1b 3462 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3463 }
27d8d5fe 3464out:
a9c21c1b
DC
3465 xfs_trans_ail_cursor_done(ailp, &cur);
3466 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3467 return error;
1da177e4
LT
3468}
3469
3470/*
3471 * This routine performs a transaction to null out a bad inode pointer
3472 * in an agi unlinked inode hash bucket.
3473 */
3474STATIC void
3475xlog_recover_clear_agi_bucket(
3476 xfs_mount_t *mp,
3477 xfs_agnumber_t agno,
3478 int bucket)
3479{
3480 xfs_trans_t *tp;
3481 xfs_agi_t *agi;
3482 xfs_buf_t *agibp;
3483 int offset;
3484 int error;
3485
3486 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3487 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3488 0, 0, 0);
e5720eec
DC
3489 if (error)
3490 goto out_abort;
1da177e4 3491
5e1be0fb
CH
3492 error = xfs_read_agi(mp, tp, agno, &agibp);
3493 if (error)
e5720eec 3494 goto out_abort;
1da177e4 3495
5e1be0fb 3496 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3497 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3498 offset = offsetof(xfs_agi_t, agi_unlinked) +
3499 (sizeof(xfs_agino_t) * bucket);
3500 xfs_trans_log_buf(tp, agibp, offset,
3501 (offset + sizeof(xfs_agino_t) - 1));
3502
e5720eec
DC
3503 error = xfs_trans_commit(tp, 0);
3504 if (error)
3505 goto out_error;
3506 return;
3507
3508out_abort:
3509 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3510out_error:
a0fa2b67 3511 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3512 return;
1da177e4
LT
3513}
3514
23fac50f
CH
3515STATIC xfs_agino_t
3516xlog_recover_process_one_iunlink(
3517 struct xfs_mount *mp,
3518 xfs_agnumber_t agno,
3519 xfs_agino_t agino,
3520 int bucket)
3521{
3522 struct xfs_buf *ibp;
3523 struct xfs_dinode *dip;
3524 struct xfs_inode *ip;
3525 xfs_ino_t ino;
3526 int error;
3527
3528 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3529 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3530 if (error)
3531 goto fail;
3532
3533 /*
3534 * Get the on disk inode to find the next inode in the bucket.
3535 */
475ee413 3536 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3537 if (error)
0e446673 3538 goto fail_iput;
23fac50f 3539
23fac50f 3540 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3541 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3542
3543 /* setup for the next pass */
3544 agino = be32_to_cpu(dip->di_next_unlinked);
3545 xfs_buf_relse(ibp);
3546
3547 /*
3548 * Prevent any DMAPI event from being sent when the reference on
3549 * the inode is dropped.
3550 */
3551 ip->i_d.di_dmevmask = 0;
3552
0e446673 3553 IRELE(ip);
23fac50f
CH
3554 return agino;
3555
0e446673
CH
3556 fail_iput:
3557 IRELE(ip);
23fac50f
CH
3558 fail:
3559 /*
3560 * We can't read in the inode this bucket points to, or this inode
3561 * is messed up. Just ditch this bucket of inodes. We will lose
3562 * some inodes and space, but at least we won't hang.
3563 *
3564 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3565 * clear the inode pointer in the bucket.
3566 */
3567 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3568 return NULLAGINO;
3569}
3570
1da177e4
LT
3571/*
3572 * xlog_iunlink_recover
3573 *
3574 * This is called during recovery to process any inodes which
3575 * we unlinked but not freed when the system crashed. These
3576 * inodes will be on the lists in the AGI blocks. What we do
3577 * here is scan all the AGIs and fully truncate and free any
3578 * inodes found on the lists. Each inode is removed from the
3579 * lists when it has been fully truncated and is freed. The
3580 * freeing of the inode and its removal from the list must be
3581 * atomic.
3582 */
d96f8f89 3583STATIC void
1da177e4 3584xlog_recover_process_iunlinks(
9a8d2fdb 3585 struct xlog *log)
1da177e4
LT
3586{
3587 xfs_mount_t *mp;
3588 xfs_agnumber_t agno;
3589 xfs_agi_t *agi;
3590 xfs_buf_t *agibp;
1da177e4 3591 xfs_agino_t agino;
1da177e4
LT
3592 int bucket;
3593 int error;
3594 uint mp_dmevmask;
3595
3596 mp = log->l_mp;
3597
3598 /*
3599 * Prevent any DMAPI event from being sent while in this function.
3600 */
3601 mp_dmevmask = mp->m_dmevmask;
3602 mp->m_dmevmask = 0;
3603
3604 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3605 /*
3606 * Find the agi for this ag.
3607 */
5e1be0fb
CH
3608 error = xfs_read_agi(mp, NULL, agno, &agibp);
3609 if (error) {
3610 /*
3611 * AGI is b0rked. Don't process it.
3612 *
3613 * We should probably mark the filesystem as corrupt
3614 * after we've recovered all the ag's we can....
3615 */
3616 continue;
1da177e4 3617 }
d97d32ed
JK
3618 /*
3619 * Unlock the buffer so that it can be acquired in the normal
3620 * course of the transaction to truncate and free each inode.
3621 * Because we are not racing with anyone else here for the AGI
3622 * buffer, we don't even need to hold it locked to read the
3623 * initial unlinked bucket entries out of the buffer. We keep
3624 * buffer reference though, so that it stays pinned in memory
3625 * while we need the buffer.
3626 */
1da177e4 3627 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3628 xfs_buf_unlock(agibp);
1da177e4
LT
3629
3630 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3631 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3632 while (agino != NULLAGINO) {
23fac50f
CH
3633 agino = xlog_recover_process_one_iunlink(mp,
3634 agno, agino, bucket);
1da177e4
LT
3635 }
3636 }
d97d32ed 3637 xfs_buf_rele(agibp);
1da177e4
LT
3638 }
3639
3640 mp->m_dmevmask = mp_dmevmask;
3641}
3642
1da177e4 3643/*
0e446be4
CH
3644 * Upack the log buffer data and crc check it. If the check fails, issue a
3645 * warning if and only if the CRC in the header is non-zero. This makes the
3646 * check an advisory warning, and the zero CRC check will prevent failure
3647 * warnings from being emitted when upgrading the kernel from one that does not
3648 * add CRCs by default.
3649 *
3650 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3651 * corruption failure
1da177e4 3652 */
0e446be4
CH
3653STATIC int
3654xlog_unpack_data_crc(
3655 struct xlog_rec_header *rhead,
3656 xfs_caddr_t dp,
3657 struct xlog *log)
1da177e4 3658{
f9668a09 3659 __le32 crc;
0e446be4
CH
3660
3661 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3662 if (crc != rhead->h_crc) {
3663 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3664 xfs_alert(log->l_mp,
3665 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
f9668a09
DC
3666 le32_to_cpu(rhead->h_crc),
3667 le32_to_cpu(crc));
0e446be4 3668 xfs_hex_dump(dp, 32);
1da177e4
LT
3669 }
3670
0e446be4
CH
3671 /*
3672 * If we've detected a log record corruption, then we can't
3673 * recover past this point. Abort recovery if we are enforcing
3674 * CRC protection by punting an error back up the stack.
3675 */
3676 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3677 return EFSCORRUPTED;
1da177e4 3678 }
0e446be4
CH
3679
3680 return 0;
1da177e4
LT
3681}
3682
0e446be4 3683STATIC int
1da177e4 3684xlog_unpack_data(
9a8d2fdb 3685 struct xlog_rec_header *rhead,
1da177e4 3686 xfs_caddr_t dp,
9a8d2fdb 3687 struct xlog *log)
1da177e4
LT
3688{
3689 int i, j, k;
0e446be4
CH
3690 int error;
3691
3692 error = xlog_unpack_data_crc(rhead, dp, log);
3693 if (error)
3694 return error;
1da177e4 3695
b53e675d 3696 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3697 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3698 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3699 dp += BBSIZE;
3700 }
3701
62118709 3702 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3703 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3704 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3705 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3706 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3707 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3708 dp += BBSIZE;
3709 }
3710 }
0e446be4
CH
3711
3712 return 0;
1da177e4
LT
3713}
3714
3715STATIC int
3716xlog_valid_rec_header(
9a8d2fdb
MT
3717 struct xlog *log,
3718 struct xlog_rec_header *rhead,
1da177e4
LT
3719 xfs_daddr_t blkno)
3720{
3721 int hlen;
3722
69ef921b 3723 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
3724 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3725 XFS_ERRLEVEL_LOW, log->l_mp);
3726 return XFS_ERROR(EFSCORRUPTED);
3727 }
3728 if (unlikely(
3729 (!rhead->h_version ||
b53e675d 3730 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 3731 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 3732 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3733 return XFS_ERROR(EIO);
3734 }
3735
3736 /* LR body must have data or it wouldn't have been written */
b53e675d 3737 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3738 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3739 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3740 XFS_ERRLEVEL_LOW, log->l_mp);
3741 return XFS_ERROR(EFSCORRUPTED);
3742 }
3743 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3744 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3745 XFS_ERRLEVEL_LOW, log->l_mp);
3746 return XFS_ERROR(EFSCORRUPTED);
3747 }
3748 return 0;
3749}
3750
3751/*
3752 * Read the log from tail to head and process the log records found.
3753 * Handle the two cases where the tail and head are in the same cycle
3754 * and where the active portion of the log wraps around the end of
3755 * the physical log separately. The pass parameter is passed through
3756 * to the routines called to process the data and is not looked at
3757 * here.
3758 */
3759STATIC int
3760xlog_do_recovery_pass(
9a8d2fdb 3761 struct xlog *log,
1da177e4
LT
3762 xfs_daddr_t head_blk,
3763 xfs_daddr_t tail_blk,
3764 int pass)
3765{
3766 xlog_rec_header_t *rhead;
3767 xfs_daddr_t blk_no;
fc5bc4c8 3768 xfs_caddr_t offset;
1da177e4
LT
3769 xfs_buf_t *hbp, *dbp;
3770 int error = 0, h_size;
3771 int bblks, split_bblks;
3772 int hblks, split_hblks, wrapped_hblks;
f0a76953 3773 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3774
3775 ASSERT(head_blk != tail_blk);
3776
3777 /*
3778 * Read the header of the tail block and get the iclog buffer size from
3779 * h_size. Use this to tell how many sectors make up the log header.
3780 */
62118709 3781 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3782 /*
3783 * When using variable length iclogs, read first sector of
3784 * iclog header and extract the header size from it. Get a
3785 * new hbp that is the correct size.
3786 */
3787 hbp = xlog_get_bp(log, 1);
3788 if (!hbp)
3789 return ENOMEM;
076e6acb
CH
3790
3791 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3792 if (error)
1da177e4 3793 goto bread_err1;
076e6acb 3794
1da177e4
LT
3795 rhead = (xlog_rec_header_t *)offset;
3796 error = xlog_valid_rec_header(log, rhead, tail_blk);
3797 if (error)
3798 goto bread_err1;
b53e675d
CH
3799 h_size = be32_to_cpu(rhead->h_size);
3800 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3801 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3802 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3803 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3804 hblks++;
3805 xlog_put_bp(hbp);
3806 hbp = xlog_get_bp(log, hblks);
3807 } else {
3808 hblks = 1;
3809 }
3810 } else {
69ce58f0 3811 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
3812 hblks = 1;
3813 hbp = xlog_get_bp(log, 1);
3814 h_size = XLOG_BIG_RECORD_BSIZE;
3815 }
3816
3817 if (!hbp)
3818 return ENOMEM;
3819 dbp = xlog_get_bp(log, BTOBB(h_size));
3820 if (!dbp) {
3821 xlog_put_bp(hbp);
3822 return ENOMEM;
3823 }
3824
3825 memset(rhash, 0, sizeof(rhash));
3826 if (tail_blk <= head_blk) {
3827 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3828 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3829 if (error)
1da177e4 3830 goto bread_err2;
076e6acb 3831
1da177e4
LT
3832 rhead = (xlog_rec_header_t *)offset;
3833 error = xlog_valid_rec_header(log, rhead, blk_no);
3834 if (error)
3835 goto bread_err2;
3836
3837 /* blocks in data section */
b53e675d 3838 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3839 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3840 &offset);
1da177e4
LT
3841 if (error)
3842 goto bread_err2;
076e6acb 3843
0e446be4
CH
3844 error = xlog_unpack_data(rhead, offset, log);
3845 if (error)
3846 goto bread_err2;
3847
3848 error = xlog_recover_process_data(log,
3849 rhash, rhead, offset, pass);
3850 if (error)
1da177e4
LT
3851 goto bread_err2;
3852 blk_no += bblks + hblks;
3853 }
3854 } else {
3855 /*
3856 * Perform recovery around the end of the physical log.
3857 * When the head is not on the same cycle number as the tail,
3858 * we can't do a sequential recovery as above.
3859 */
3860 blk_no = tail_blk;
3861 while (blk_no < log->l_logBBsize) {
3862 /*
3863 * Check for header wrapping around physical end-of-log
3864 */
62926044 3865 offset = hbp->b_addr;
1da177e4
LT
3866 split_hblks = 0;
3867 wrapped_hblks = 0;
3868 if (blk_no + hblks <= log->l_logBBsize) {
3869 /* Read header in one read */
076e6acb
CH
3870 error = xlog_bread(log, blk_no, hblks, hbp,
3871 &offset);
1da177e4
LT
3872 if (error)
3873 goto bread_err2;
1da177e4
LT
3874 } else {
3875 /* This LR is split across physical log end */
3876 if (blk_no != log->l_logBBsize) {
3877 /* some data before physical log end */
3878 ASSERT(blk_no <= INT_MAX);
3879 split_hblks = log->l_logBBsize - (int)blk_no;
3880 ASSERT(split_hblks > 0);
076e6acb
CH
3881 error = xlog_bread(log, blk_no,
3882 split_hblks, hbp,
3883 &offset);
3884 if (error)
1da177e4 3885 goto bread_err2;
1da177e4 3886 }
076e6acb 3887
1da177e4
LT
3888 /*
3889 * Note: this black magic still works with
3890 * large sector sizes (non-512) only because:
3891 * - we increased the buffer size originally
3892 * by 1 sector giving us enough extra space
3893 * for the second read;
3894 * - the log start is guaranteed to be sector
3895 * aligned;
3896 * - we read the log end (LR header start)
3897 * _first_, then the log start (LR header end)
3898 * - order is important.
3899 */
234f56ac 3900 wrapped_hblks = hblks - split_hblks;
44396476
DC
3901 error = xlog_bread_offset(log, 0,
3902 wrapped_hblks, hbp,
3903 offset + BBTOB(split_hblks));
1da177e4
LT
3904 if (error)
3905 goto bread_err2;
1da177e4
LT
3906 }
3907 rhead = (xlog_rec_header_t *)offset;
3908 error = xlog_valid_rec_header(log, rhead,
3909 split_hblks ? blk_no : 0);
3910 if (error)
3911 goto bread_err2;
3912
b53e675d 3913 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3914 blk_no += hblks;
3915
3916 /* Read in data for log record */
3917 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3918 error = xlog_bread(log, blk_no, bblks, dbp,
3919 &offset);
1da177e4
LT
3920 if (error)
3921 goto bread_err2;
1da177e4
LT
3922 } else {
3923 /* This log record is split across the
3924 * physical end of log */
62926044 3925 offset = dbp->b_addr;
1da177e4
LT
3926 split_bblks = 0;
3927 if (blk_no != log->l_logBBsize) {
3928 /* some data is before the physical
3929 * end of log */
3930 ASSERT(!wrapped_hblks);
3931 ASSERT(blk_no <= INT_MAX);
3932 split_bblks =
3933 log->l_logBBsize - (int)blk_no;
3934 ASSERT(split_bblks > 0);
076e6acb
CH
3935 error = xlog_bread(log, blk_no,
3936 split_bblks, dbp,
3937 &offset);
3938 if (error)
1da177e4 3939 goto bread_err2;
1da177e4 3940 }
076e6acb 3941
1da177e4
LT
3942 /*
3943 * Note: this black magic still works with
3944 * large sector sizes (non-512) only because:
3945 * - we increased the buffer size originally
3946 * by 1 sector giving us enough extra space
3947 * for the second read;
3948 * - the log start is guaranteed to be sector
3949 * aligned;
3950 * - we read the log end (LR header start)
3951 * _first_, then the log start (LR header end)
3952 * - order is important.
3953 */
44396476 3954 error = xlog_bread_offset(log, 0,
009507b0 3955 bblks - split_bblks, dbp,
44396476 3956 offset + BBTOB(split_bblks));
076e6acb
CH
3957 if (error)
3958 goto bread_err2;
1da177e4 3959 }
0e446be4
CH
3960
3961 error = xlog_unpack_data(rhead, offset, log);
3962 if (error)
3963 goto bread_err2;
3964
3965 error = xlog_recover_process_data(log, rhash,
3966 rhead, offset, pass);
3967 if (error)
1da177e4
LT
3968 goto bread_err2;
3969 blk_no += bblks;
3970 }
3971
3972 ASSERT(blk_no >= log->l_logBBsize);
3973 blk_no -= log->l_logBBsize;
3974
3975 /* read first part of physical log */
3976 while (blk_no < head_blk) {
076e6acb
CH
3977 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3978 if (error)
1da177e4 3979 goto bread_err2;
076e6acb 3980
1da177e4
LT
3981 rhead = (xlog_rec_header_t *)offset;
3982 error = xlog_valid_rec_header(log, rhead, blk_no);
3983 if (error)
3984 goto bread_err2;
076e6acb 3985
b53e675d 3986 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3987 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3988 &offset);
3989 if (error)
1da177e4 3990 goto bread_err2;
076e6acb 3991
0e446be4
CH
3992 error = xlog_unpack_data(rhead, offset, log);
3993 if (error)
3994 goto bread_err2;
3995
3996 error = xlog_recover_process_data(log, rhash,
3997 rhead, offset, pass);
3998 if (error)
1da177e4
LT
3999 goto bread_err2;
4000 blk_no += bblks + hblks;
4001 }
4002 }
4003
4004 bread_err2:
4005 xlog_put_bp(dbp);
4006 bread_err1:
4007 xlog_put_bp(hbp);
4008 return error;
4009}
4010
4011/*
4012 * Do the recovery of the log. We actually do this in two phases.
4013 * The two passes are necessary in order to implement the function
4014 * of cancelling a record written into the log. The first pass
4015 * determines those things which have been cancelled, and the
4016 * second pass replays log items normally except for those which
4017 * have been cancelled. The handling of the replay and cancellations
4018 * takes place in the log item type specific routines.
4019 *
4020 * The table of items which have cancel records in the log is allocated
4021 * and freed at this level, since only here do we know when all of
4022 * the log recovery has been completed.
4023 */
4024STATIC int
4025xlog_do_log_recovery(
9a8d2fdb 4026 struct xlog *log,
1da177e4
LT
4027 xfs_daddr_t head_blk,
4028 xfs_daddr_t tail_blk)
4029{
d5689eaa 4030 int error, i;
1da177e4
LT
4031
4032 ASSERT(head_blk != tail_blk);
4033
4034 /*
4035 * First do a pass to find all of the cancelled buf log items.
4036 * Store them in the buf_cancel_table for use in the second pass.
4037 */
d5689eaa
CH
4038 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4039 sizeof(struct list_head),
1da177e4 4040 KM_SLEEP);
d5689eaa
CH
4041 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4042 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4043
1da177e4
LT
4044 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4045 XLOG_RECOVER_PASS1);
4046 if (error != 0) {
f0e2d93c 4047 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4048 log->l_buf_cancel_table = NULL;
4049 return error;
4050 }
4051 /*
4052 * Then do a second pass to actually recover the items in the log.
4053 * When it is complete free the table of buf cancel items.
4054 */
4055 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4056 XLOG_RECOVER_PASS2);
4057#ifdef DEBUG
6d192a9b 4058 if (!error) {
1da177e4
LT
4059 int i;
4060
4061 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4062 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4063 }
4064#endif /* DEBUG */
4065
f0e2d93c 4066 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4067 log->l_buf_cancel_table = NULL;
4068
4069 return error;
4070}
4071
4072/*
4073 * Do the actual recovery
4074 */
4075STATIC int
4076xlog_do_recover(
9a8d2fdb 4077 struct xlog *log,
1da177e4
LT
4078 xfs_daddr_t head_blk,
4079 xfs_daddr_t tail_blk)
4080{
4081 int error;
4082 xfs_buf_t *bp;
4083 xfs_sb_t *sbp;
4084
4085 /*
4086 * First replay the images in the log.
4087 */
4088 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4089 if (error)
1da177e4 4090 return error;
1da177e4
LT
4091
4092 /*
4093 * If IO errors happened during recovery, bail out.
4094 */
4095 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4096 return (EIO);
4097 }
4098
4099 /*
4100 * We now update the tail_lsn since much of the recovery has completed
4101 * and there may be space available to use. If there were no extent
4102 * or iunlinks, we can free up the entire log and set the tail_lsn to
4103 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4104 * lsn of the last known good LR on disk. If there are extent frees
4105 * or iunlinks they will have some entries in the AIL; so we look at
4106 * the AIL to determine how to set the tail_lsn.
4107 */
4108 xlog_assign_tail_lsn(log->l_mp);
4109
4110 /*
4111 * Now that we've finished replaying all buffer and inode
98021821 4112 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4113 */
4114 bp = xfs_getsb(log->l_mp, 0);
4115 XFS_BUF_UNDONE(bp);
bebf963f 4116 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4117 XFS_BUF_READ(bp);
bebf963f 4118 XFS_BUF_UNASYNC(bp);
1813dd64 4119 bp->b_ops = &xfs_sb_buf_ops;
1da177e4 4120 xfsbdstrat(log->l_mp, bp);
1a1a3e97 4121 error = xfs_buf_iowait(bp);
d64e31a2 4122 if (error) {
901796af 4123 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
4124 ASSERT(0);
4125 xfs_buf_relse(bp);
4126 return error;
4127 }
4128
4129 /* Convert superblock from on-disk format */
4130 sbp = &log->l_mp->m_sb;
98021821 4131 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4132 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4133 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
4134 xfs_buf_relse(bp);
4135
5478eead
LM
4136 /* We've re-read the superblock so re-initialize per-cpu counters */
4137 xfs_icsb_reinit_counters(log->l_mp);
4138
1da177e4
LT
4139 xlog_recover_check_summary(log);
4140
4141 /* Normal transactions can now occur */
4142 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4143 return 0;
4144}
4145
4146/*
4147 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4148 *
4149 * Return error or zero.
4150 */
4151int
4152xlog_recover(
9a8d2fdb 4153 struct xlog *log)
1da177e4
LT
4154{
4155 xfs_daddr_t head_blk, tail_blk;
4156 int error;
4157
4158 /* find the tail of the log */
65be6054 4159 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
4160 return error;
4161
4162 if (tail_blk != head_blk) {
4163 /* There used to be a comment here:
4164 *
4165 * disallow recovery on read-only mounts. note -- mount
4166 * checks for ENOSPC and turns it into an intelligent
4167 * error message.
4168 * ...but this is no longer true. Now, unless you specify
4169 * NORECOVERY (in which case this function would never be
4170 * called), we just go ahead and recover. We do this all
4171 * under the vfs layer, so we can get away with it unless
4172 * the device itself is read-only, in which case we fail.
4173 */
3a02ee18 4174 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
4175 return error;
4176 }
4177
e721f504
DC
4178 /*
4179 * Version 5 superblock log feature mask validation. We know the
4180 * log is dirty so check if there are any unknown log features
4181 * in what we need to recover. If there are unknown features
4182 * (e.g. unsupported transactions, then simply reject the
4183 * attempt at recovery before touching anything.
4184 */
4185 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4186 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4187 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4188 xfs_warn(log->l_mp,
4189"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4190"The log can not be fully and/or safely recovered by this kernel.\n"
4191"Please recover the log on a kernel that supports the unknown features.",
4192 (log->l_mp->m_sb.sb_features_log_incompat &
4193 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4194 return EINVAL;
4195 }
4196
a0fa2b67
DC
4197 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4198 log->l_mp->m_logname ? log->l_mp->m_logname
4199 : "internal");
1da177e4
LT
4200
4201 error = xlog_do_recover(log, head_blk, tail_blk);
4202 log->l_flags |= XLOG_RECOVERY_NEEDED;
4203 }
4204 return error;
4205}
4206
4207/*
4208 * In the first part of recovery we replay inodes and buffers and build
4209 * up the list of extent free items which need to be processed. Here
4210 * we process the extent free items and clean up the on disk unlinked
4211 * inode lists. This is separated from the first part of recovery so
4212 * that the root and real-time bitmap inodes can be read in from disk in
4213 * between the two stages. This is necessary so that we can free space
4214 * in the real-time portion of the file system.
4215 */
4216int
4217xlog_recover_finish(
9a8d2fdb 4218 struct xlog *log)
1da177e4
LT
4219{
4220 /*
4221 * Now we're ready to do the transactions needed for the
4222 * rest of recovery. Start with completing all the extent
4223 * free intent records and then process the unlinked inode
4224 * lists. At this point, we essentially run in normal mode
4225 * except that we're still performing recovery actions
4226 * rather than accepting new requests.
4227 */
4228 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4229 int error;
4230 error = xlog_recover_process_efis(log);
4231 if (error) {
a0fa2b67 4232 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4233 return error;
4234 }
1da177e4
LT
4235 /*
4236 * Sync the log to get all the EFIs out of the AIL.
4237 * This isn't absolutely necessary, but it helps in
4238 * case the unlink transactions would have problems
4239 * pushing the EFIs out of the way.
4240 */
a14a348b 4241 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4242
4249023a 4243 xlog_recover_process_iunlinks(log);
1da177e4
LT
4244
4245 xlog_recover_check_summary(log);
4246
a0fa2b67
DC
4247 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4248 log->l_mp->m_logname ? log->l_mp->m_logname
4249 : "internal");
1da177e4
LT
4250 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4251 } else {
a0fa2b67 4252 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4253 }
4254 return 0;
4255}
4256
4257
4258#if defined(DEBUG)
4259/*
4260 * Read all of the agf and agi counters and check that they
4261 * are consistent with the superblock counters.
4262 */
4263void
4264xlog_recover_check_summary(
9a8d2fdb 4265 struct xlog *log)
1da177e4
LT
4266{
4267 xfs_mount_t *mp;
4268 xfs_agf_t *agfp;
1da177e4
LT
4269 xfs_buf_t *agfbp;
4270 xfs_buf_t *agibp;
1da177e4
LT
4271 xfs_agnumber_t agno;
4272 __uint64_t freeblks;
4273 __uint64_t itotal;
4274 __uint64_t ifree;
5e1be0fb 4275 int error;
1da177e4
LT
4276
4277 mp = log->l_mp;
4278
4279 freeblks = 0LL;
4280 itotal = 0LL;
4281 ifree = 0LL;
4282 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
CH
4283 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4284 if (error) {
a0fa2b67
DC
4285 xfs_alert(mp, "%s agf read failed agno %d error %d",
4286 __func__, agno, error);
4805621a
CH
4287 } else {
4288 agfp = XFS_BUF_TO_AGF(agfbp);
4289 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4290 be32_to_cpu(agfp->agf_flcount);
4291 xfs_buf_relse(agfbp);
1da177e4 4292 }
1da177e4 4293
5e1be0fb 4294 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4295 if (error) {
4296 xfs_alert(mp, "%s agi read failed agno %d error %d",
4297 __func__, agno, error);
4298 } else {
5e1be0fb 4299 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4300
5e1be0fb
CH
4301 itotal += be32_to_cpu(agi->agi_count);
4302 ifree += be32_to_cpu(agi->agi_freecount);
4303 xfs_buf_relse(agibp);
4304 }
1da177e4 4305 }
1da177e4
LT
4306}
4307#endif /* DEBUG */