]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_log_recover.c
[XFS] Finish removing the mount pointer from the AIL API
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_bmap_btree.h"
a844f451
NS
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
1da177e4 34#include "xfs_dir2_sf.h"
a844f451 35#include "xfs_attr_sf.h"
1da177e4 36#include "xfs_dinode.h"
1da177e4 37#include "xfs_inode.h"
a844f451
NS
38#include "xfs_inode_item.h"
39#include "xfs_imap.h"
40#include "xfs_alloc.h"
1da177e4
LT
41#include "xfs_ialloc.h"
42#include "xfs_log_priv.h"
43#include "xfs_buf_item.h"
1da177e4
LT
44#include "xfs_log_recover.h"
45#include "xfs_extfree_item.h"
46#include "xfs_trans_priv.h"
1da177e4
LT
47#include "xfs_quota.h"
48#include "xfs_rw.h"
43355099 49#include "xfs_utils.h"
1da177e4
LT
50
51STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
53STATIC void xlog_recover_insert_item_backq(xlog_recover_item_t **q,
54 xlog_recover_item_t *item);
55#if defined(DEBUG)
56STATIC void xlog_recover_check_summary(xlog_t *);
1da177e4
LT
57#else
58#define xlog_recover_check_summary(log)
1da177e4
LT
59#endif
60
61
62/*
63 * Sector aligned buffer routines for buffer create/read/write/access
64 */
65
66#define XLOG_SECTOR_ROUNDUP_BBCOUNT(log, bbs) \
67 ( ((log)->l_sectbb_mask && (bbs & (log)->l_sectbb_mask)) ? \
68 ((bbs + (log)->l_sectbb_mask + 1) & ~(log)->l_sectbb_mask) : (bbs) )
69#define XLOG_SECTOR_ROUNDDOWN_BLKNO(log, bno) ((bno) & ~(log)->l_sectbb_mask)
70
71xfs_buf_t *
72xlog_get_bp(
73 xlog_t *log,
74 int num_bblks)
75{
76 ASSERT(num_bblks > 0);
77
78 if (log->l_sectbb_log) {
79 if (num_bblks > 1)
80 num_bblks += XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
81 num_bblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, num_bblks);
82 }
83 return xfs_buf_get_noaddr(BBTOB(num_bblks), log->l_mp->m_logdev_targp);
84}
85
86void
87xlog_put_bp(
88 xfs_buf_t *bp)
89{
90 xfs_buf_free(bp);
91}
92
93
94/*
95 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
96 */
97int
98xlog_bread(
99 xlog_t *log,
100 xfs_daddr_t blk_no,
101 int nbblks,
102 xfs_buf_t *bp)
103{
104 int error;
105
106 if (log->l_sectbb_log) {
107 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
108 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
109 }
110
111 ASSERT(nbblks > 0);
112 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
113 ASSERT(bp);
114
115 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
116 XFS_BUF_READ(bp);
117 XFS_BUF_BUSY(bp);
118 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
119 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
120
121 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
122 error = xfs_iowait(bp);
123 if (error)
1da177e4
LT
124 xfs_ioerror_alert("xlog_bread", log->l_mp,
125 bp, XFS_BUF_ADDR(bp));
126 return error;
127}
128
129/*
130 * Write out the buffer at the given block for the given number of blocks.
131 * The buffer is kept locked across the write and is returned locked.
132 * This can only be used for synchronous log writes.
133 */
ba0f32d4 134STATIC int
1da177e4
LT
135xlog_bwrite(
136 xlog_t *log,
137 xfs_daddr_t blk_no,
138 int nbblks,
139 xfs_buf_t *bp)
140{
141 int error;
142
143 if (log->l_sectbb_log) {
144 blk_no = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, blk_no);
145 nbblks = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, nbblks);
146 }
147
148 ASSERT(nbblks > 0);
149 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
150
151 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
152 XFS_BUF_ZEROFLAGS(bp);
153 XFS_BUF_BUSY(bp);
154 XFS_BUF_HOLD(bp);
155 XFS_BUF_PSEMA(bp, PRIBIO);
156 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
157 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
158
159 if ((error = xfs_bwrite(log->l_mp, bp)))
160 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
161 bp, XFS_BUF_ADDR(bp));
162 return error;
163}
164
ba0f32d4 165STATIC xfs_caddr_t
1da177e4
LT
166xlog_align(
167 xlog_t *log,
168 xfs_daddr_t blk_no,
169 int nbblks,
170 xfs_buf_t *bp)
171{
172 xfs_caddr_t ptr;
173
174 if (!log->l_sectbb_log)
175 return XFS_BUF_PTR(bp);
176
177 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
178 ASSERT(XFS_BUF_SIZE(bp) >=
179 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
180 return ptr;
181}
182
183#ifdef DEBUG
184/*
185 * dump debug superblock and log record information
186 */
187STATIC void
188xlog_header_check_dump(
189 xfs_mount_t *mp,
190 xlog_rec_header_t *head)
191{
192 int b;
193
34a622b2 194 cmn_err(CE_DEBUG, "%s: SB : uuid = ", __func__);
1da177e4 195 for (b = 0; b < 16; b++)
b6574520
NS
196 cmn_err(CE_DEBUG, "%02x", ((uchar_t *)&mp->m_sb.sb_uuid)[b]);
197 cmn_err(CE_DEBUG, ", fmt = %d\n", XLOG_FMT);
198 cmn_err(CE_DEBUG, " log : uuid = ");
1da177e4 199 for (b = 0; b < 16; b++)
b6574520 200 cmn_err(CE_DEBUG, "%02x",((uchar_t *)&head->h_fs_uuid)[b]);
b53e675d 201 cmn_err(CE_DEBUG, ", fmt = %d\n", be32_to_cpu(head->h_fmt));
1da177e4
LT
202}
203#else
204#define xlog_header_check_dump(mp, head)
205#endif
206
207/*
208 * check log record header for recovery
209 */
210STATIC int
211xlog_header_check_recover(
212 xfs_mount_t *mp,
213 xlog_rec_header_t *head)
214{
b53e675d 215 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
216
217 /*
218 * IRIX doesn't write the h_fmt field and leaves it zeroed
219 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
220 * a dirty log created in IRIX.
221 */
b53e675d 222 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
1da177e4
LT
223 xlog_warn(
224 "XFS: dirty log written in incompatible format - can't recover");
225 xlog_header_check_dump(mp, head);
226 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
227 XFS_ERRLEVEL_HIGH, mp);
228 return XFS_ERROR(EFSCORRUPTED);
229 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
230 xlog_warn(
231 "XFS: dirty log entry has mismatched uuid - can't recover");
232 xlog_header_check_dump(mp, head);
233 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
234 XFS_ERRLEVEL_HIGH, mp);
235 return XFS_ERROR(EFSCORRUPTED);
236 }
237 return 0;
238}
239
240/*
241 * read the head block of the log and check the header
242 */
243STATIC int
244xlog_header_check_mount(
245 xfs_mount_t *mp,
246 xlog_rec_header_t *head)
247{
b53e675d 248 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
249
250 if (uuid_is_nil(&head->h_fs_uuid)) {
251 /*
252 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
253 * h_fs_uuid is nil, we assume this log was last mounted
254 * by IRIX and continue.
255 */
256 xlog_warn("XFS: nil uuid in log - IRIX style log");
257 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
258 xlog_warn("XFS: log has mismatched uuid - can't recover");
259 xlog_header_check_dump(mp, head);
260 XFS_ERROR_REPORT("xlog_header_check_mount",
261 XFS_ERRLEVEL_HIGH, mp);
262 return XFS_ERROR(EFSCORRUPTED);
263 }
264 return 0;
265}
266
267STATIC void
268xlog_recover_iodone(
269 struct xfs_buf *bp)
270{
271 xfs_mount_t *mp;
272
273 ASSERT(XFS_BUF_FSPRIVATE(bp, void *));
274
275 if (XFS_BUF_GETERROR(bp)) {
276 /*
277 * We're not going to bother about retrying
278 * this during recovery. One strike!
279 */
280 mp = XFS_BUF_FSPRIVATE(bp, xfs_mount_t *);
281 xfs_ioerror_alert("xlog_recover_iodone",
282 mp, bp, XFS_BUF_ADDR(bp));
7d04a335 283 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1da177e4
LT
284 }
285 XFS_BUF_SET_FSPRIVATE(bp, NULL);
286 XFS_BUF_CLR_IODONE_FUNC(bp);
287 xfs_biodone(bp);
288}
289
290/*
291 * This routine finds (to an approximation) the first block in the physical
292 * log which contains the given cycle. It uses a binary search algorithm.
293 * Note that the algorithm can not be perfect because the disk will not
294 * necessarily be perfect.
295 */
a8272ce0 296STATIC int
1da177e4
LT
297xlog_find_cycle_start(
298 xlog_t *log,
299 xfs_buf_t *bp,
300 xfs_daddr_t first_blk,
301 xfs_daddr_t *last_blk,
302 uint cycle)
303{
304 xfs_caddr_t offset;
305 xfs_daddr_t mid_blk;
306 uint mid_cycle;
307 int error;
308
309 mid_blk = BLK_AVG(first_blk, *last_blk);
310 while (mid_blk != first_blk && mid_blk != *last_blk) {
311 if ((error = xlog_bread(log, mid_blk, 1, bp)))
312 return error;
313 offset = xlog_align(log, mid_blk, 1, bp);
03bea6fe 314 mid_cycle = xlog_get_cycle(offset);
1da177e4
LT
315 if (mid_cycle == cycle) {
316 *last_blk = mid_blk;
317 /* last_half_cycle == mid_cycle */
318 } else {
319 first_blk = mid_blk;
320 /* first_half_cycle == mid_cycle */
321 }
322 mid_blk = BLK_AVG(first_blk, *last_blk);
323 }
324 ASSERT((mid_blk == first_blk && mid_blk+1 == *last_blk) ||
325 (mid_blk == *last_blk && mid_blk-1 == first_blk));
326
327 return 0;
328}
329
330/*
331 * Check that the range of blocks does not contain the cycle number
332 * given. The scan needs to occur from front to back and the ptr into the
333 * region must be updated since a later routine will need to perform another
334 * test. If the region is completely good, we end up returning the same
335 * last block number.
336 *
337 * Set blkno to -1 if we encounter no errors. This is an invalid block number
338 * since we don't ever expect logs to get this large.
339 */
340STATIC int
341xlog_find_verify_cycle(
342 xlog_t *log,
343 xfs_daddr_t start_blk,
344 int nbblks,
345 uint stop_on_cycle_no,
346 xfs_daddr_t *new_blk)
347{
348 xfs_daddr_t i, j;
349 uint cycle;
350 xfs_buf_t *bp;
351 xfs_daddr_t bufblks;
352 xfs_caddr_t buf = NULL;
353 int error = 0;
354
355 bufblks = 1 << ffs(nbblks);
356
357 while (!(bp = xlog_get_bp(log, bufblks))) {
358 /* can't get enough memory to do everything in one big buffer */
359 bufblks >>= 1;
360 if (bufblks <= log->l_sectbb_log)
361 return ENOMEM;
362 }
363
364 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
365 int bcount;
366
367 bcount = min(bufblks, (start_blk + nbblks - i));
368
369 if ((error = xlog_bread(log, i, bcount, bp)))
370 goto out;
371
372 buf = xlog_align(log, i, bcount, bp);
373 for (j = 0; j < bcount; j++) {
03bea6fe 374 cycle = xlog_get_cycle(buf);
1da177e4
LT
375 if (cycle == stop_on_cycle_no) {
376 *new_blk = i+j;
377 goto out;
378 }
379
380 buf += BBSIZE;
381 }
382 }
383
384 *new_blk = -1;
385
386out:
387 xlog_put_bp(bp);
388 return error;
389}
390
391/*
392 * Potentially backup over partial log record write.
393 *
394 * In the typical case, last_blk is the number of the block directly after
395 * a good log record. Therefore, we subtract one to get the block number
396 * of the last block in the given buffer. extra_bblks contains the number
397 * of blocks we would have read on a previous read. This happens when the
398 * last log record is split over the end of the physical log.
399 *
400 * extra_bblks is the number of blocks potentially verified on a previous
401 * call to this routine.
402 */
403STATIC int
404xlog_find_verify_log_record(
405 xlog_t *log,
406 xfs_daddr_t start_blk,
407 xfs_daddr_t *last_blk,
408 int extra_bblks)
409{
410 xfs_daddr_t i;
411 xfs_buf_t *bp;
412 xfs_caddr_t offset = NULL;
413 xlog_rec_header_t *head = NULL;
414 int error = 0;
415 int smallmem = 0;
416 int num_blks = *last_blk - start_blk;
417 int xhdrs;
418
419 ASSERT(start_blk != 0 || *last_blk != start_blk);
420
421 if (!(bp = xlog_get_bp(log, num_blks))) {
422 if (!(bp = xlog_get_bp(log, 1)))
423 return ENOMEM;
424 smallmem = 1;
425 } else {
426 if ((error = xlog_bread(log, start_blk, num_blks, bp)))
427 goto out;
428 offset = xlog_align(log, start_blk, num_blks, bp);
429 offset += ((num_blks - 1) << BBSHIFT);
430 }
431
432 for (i = (*last_blk) - 1; i >= 0; i--) {
433 if (i < start_blk) {
434 /* valid log record not found */
435 xlog_warn(
436 "XFS: Log inconsistent (didn't find previous header)");
437 ASSERT(0);
438 error = XFS_ERROR(EIO);
439 goto out;
440 }
441
442 if (smallmem) {
443 if ((error = xlog_bread(log, i, 1, bp)))
444 goto out;
445 offset = xlog_align(log, i, 1, bp);
446 }
447
448 head = (xlog_rec_header_t *)offset;
449
b53e675d 450 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
1da177e4
LT
451 break;
452
453 if (!smallmem)
454 offset -= BBSIZE;
455 }
456
457 /*
458 * We hit the beginning of the physical log & still no header. Return
459 * to caller. If caller can handle a return of -1, then this routine
460 * will be called again for the end of the physical log.
461 */
462 if (i == -1) {
463 error = -1;
464 goto out;
465 }
466
467 /*
468 * We have the final block of the good log (the first block
469 * of the log record _before_ the head. So we check the uuid.
470 */
471 if ((error = xlog_header_check_mount(log->l_mp, head)))
472 goto out;
473
474 /*
475 * We may have found a log record header before we expected one.
476 * last_blk will be the 1st block # with a given cycle #. We may end
477 * up reading an entire log record. In this case, we don't want to
478 * reset last_blk. Only when last_blk points in the middle of a log
479 * record do we update last_blk.
480 */
62118709 481 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 482 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
483
484 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
485 if (h_size % XLOG_HEADER_CYCLE_SIZE)
486 xhdrs++;
487 } else {
488 xhdrs = 1;
489 }
490
b53e675d
CH
491 if (*last_blk - i + extra_bblks !=
492 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
493 *last_blk = i;
494
495out:
496 xlog_put_bp(bp);
497 return error;
498}
499
500/*
501 * Head is defined to be the point of the log where the next log write
502 * write could go. This means that incomplete LR writes at the end are
503 * eliminated when calculating the head. We aren't guaranteed that previous
504 * LR have complete transactions. We only know that a cycle number of
505 * current cycle number -1 won't be present in the log if we start writing
506 * from our current block number.
507 *
508 * last_blk contains the block number of the first block with a given
509 * cycle number.
510 *
511 * Return: zero if normal, non-zero if error.
512 */
ba0f32d4 513STATIC int
1da177e4
LT
514xlog_find_head(
515 xlog_t *log,
516 xfs_daddr_t *return_head_blk)
517{
518 xfs_buf_t *bp;
519 xfs_caddr_t offset;
520 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
521 int num_scan_bblks;
522 uint first_half_cycle, last_half_cycle;
523 uint stop_on_cycle;
524 int error, log_bbnum = log->l_logBBsize;
525
526 /* Is the end of the log device zeroed? */
527 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
528 *return_head_blk = first_blk;
529
530 /* Is the whole lot zeroed? */
531 if (!first_blk) {
532 /* Linux XFS shouldn't generate totally zeroed logs -
533 * mkfs etc write a dummy unmount record to a fresh
534 * log so we can store the uuid in there
535 */
536 xlog_warn("XFS: totally zeroed log");
537 }
538
539 return 0;
540 } else if (error) {
541 xlog_warn("XFS: empty log check failed");
542 return error;
543 }
544
545 first_blk = 0; /* get cycle # of 1st block */
546 bp = xlog_get_bp(log, 1);
547 if (!bp)
548 return ENOMEM;
549 if ((error = xlog_bread(log, 0, 1, bp)))
550 goto bp_err;
551 offset = xlog_align(log, 0, 1, bp);
03bea6fe 552 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
553
554 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
555 if ((error = xlog_bread(log, last_blk, 1, bp)))
556 goto bp_err;
557 offset = xlog_align(log, last_blk, 1, bp);
03bea6fe 558 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
559 ASSERT(last_half_cycle != 0);
560
561 /*
562 * If the 1st half cycle number is equal to the last half cycle number,
563 * then the entire log is stamped with the same cycle number. In this
564 * case, head_blk can't be set to zero (which makes sense). The below
565 * math doesn't work out properly with head_blk equal to zero. Instead,
566 * we set it to log_bbnum which is an invalid block number, but this
567 * value makes the math correct. If head_blk doesn't changed through
568 * all the tests below, *head_blk is set to zero at the very end rather
569 * than log_bbnum. In a sense, log_bbnum and zero are the same block
570 * in a circular file.
571 */
572 if (first_half_cycle == last_half_cycle) {
573 /*
574 * In this case we believe that the entire log should have
575 * cycle number last_half_cycle. We need to scan backwards
576 * from the end verifying that there are no holes still
577 * containing last_half_cycle - 1. If we find such a hole,
578 * then the start of that hole will be the new head. The
579 * simple case looks like
580 * x | x ... | x - 1 | x
581 * Another case that fits this picture would be
582 * x | x + 1 | x ... | x
c41564b5 583 * In this case the head really is somewhere at the end of the
1da177e4
LT
584 * log, as one of the latest writes at the beginning was
585 * incomplete.
586 * One more case is
587 * x | x + 1 | x ... | x - 1 | x
588 * This is really the combination of the above two cases, and
589 * the head has to end up at the start of the x-1 hole at the
590 * end of the log.
591 *
592 * In the 256k log case, we will read from the beginning to the
593 * end of the log and search for cycle numbers equal to x-1.
594 * We don't worry about the x+1 blocks that we encounter,
595 * because we know that they cannot be the head since the log
596 * started with x.
597 */
598 head_blk = log_bbnum;
599 stop_on_cycle = last_half_cycle - 1;
600 } else {
601 /*
602 * In this case we want to find the first block with cycle
603 * number matching last_half_cycle. We expect the log to be
604 * some variation on
605 * x + 1 ... | x ...
606 * The first block with cycle number x (last_half_cycle) will
607 * be where the new head belongs. First we do a binary search
608 * for the first occurrence of last_half_cycle. The binary
609 * search may not be totally accurate, so then we scan back
610 * from there looking for occurrences of last_half_cycle before
611 * us. If that backwards scan wraps around the beginning of
612 * the log, then we look for occurrences of last_half_cycle - 1
613 * at the end of the log. The cases we're looking for look
614 * like
615 * x + 1 ... | x | x + 1 | x ...
616 * ^ binary search stopped here
617 * or
618 * x + 1 ... | x ... | x - 1 | x
619 * <---------> less than scan distance
620 */
621 stop_on_cycle = last_half_cycle;
622 if ((error = xlog_find_cycle_start(log, bp, first_blk,
623 &head_blk, last_half_cycle)))
624 goto bp_err;
625 }
626
627 /*
628 * Now validate the answer. Scan back some number of maximum possible
629 * blocks and make sure each one has the expected cycle number. The
630 * maximum is determined by the total possible amount of buffering
631 * in the in-core log. The following number can be made tighter if
632 * we actually look at the block size of the filesystem.
633 */
634 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
635 if (head_blk >= num_scan_bblks) {
636 /*
637 * We are guaranteed that the entire check can be performed
638 * in one buffer.
639 */
640 start_blk = head_blk - num_scan_bblks;
641 if ((error = xlog_find_verify_cycle(log,
642 start_blk, num_scan_bblks,
643 stop_on_cycle, &new_blk)))
644 goto bp_err;
645 if (new_blk != -1)
646 head_blk = new_blk;
647 } else { /* need to read 2 parts of log */
648 /*
649 * We are going to scan backwards in the log in two parts.
650 * First we scan the physical end of the log. In this part
651 * of the log, we are looking for blocks with cycle number
652 * last_half_cycle - 1.
653 * If we find one, then we know that the log starts there, as
654 * we've found a hole that didn't get written in going around
655 * the end of the physical log. The simple case for this is
656 * x + 1 ... | x ... | x - 1 | x
657 * <---------> less than scan distance
658 * If all of the blocks at the end of the log have cycle number
659 * last_half_cycle, then we check the blocks at the start of
660 * the log looking for occurrences of last_half_cycle. If we
661 * find one, then our current estimate for the location of the
662 * first occurrence of last_half_cycle is wrong and we move
663 * back to the hole we've found. This case looks like
664 * x + 1 ... | x | x + 1 | x ...
665 * ^ binary search stopped here
666 * Another case we need to handle that only occurs in 256k
667 * logs is
668 * x + 1 ... | x ... | x+1 | x ...
669 * ^ binary search stops here
670 * In a 256k log, the scan at the end of the log will see the
671 * x + 1 blocks. We need to skip past those since that is
672 * certainly not the head of the log. By searching for
673 * last_half_cycle-1 we accomplish that.
674 */
675 start_blk = log_bbnum - num_scan_bblks + head_blk;
676 ASSERT(head_blk <= INT_MAX &&
677 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
678 if ((error = xlog_find_verify_cycle(log, start_blk,
679 num_scan_bblks - (int)head_blk,
680 (stop_on_cycle - 1), &new_blk)))
681 goto bp_err;
682 if (new_blk != -1) {
683 head_blk = new_blk;
684 goto bad_blk;
685 }
686
687 /*
688 * Scan beginning of log now. The last part of the physical
689 * log is good. This scan needs to verify that it doesn't find
690 * the last_half_cycle.
691 */
692 start_blk = 0;
693 ASSERT(head_blk <= INT_MAX);
694 if ((error = xlog_find_verify_cycle(log,
695 start_blk, (int)head_blk,
696 stop_on_cycle, &new_blk)))
697 goto bp_err;
698 if (new_blk != -1)
699 head_blk = new_blk;
700 }
701
702 bad_blk:
703 /*
704 * Now we need to make sure head_blk is not pointing to a block in
705 * the middle of a log record.
706 */
707 num_scan_bblks = XLOG_REC_SHIFT(log);
708 if (head_blk >= num_scan_bblks) {
709 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
710
711 /* start ptr at last block ptr before head_blk */
712 if ((error = xlog_find_verify_log_record(log, start_blk,
713 &head_blk, 0)) == -1) {
714 error = XFS_ERROR(EIO);
715 goto bp_err;
716 } else if (error)
717 goto bp_err;
718 } else {
719 start_blk = 0;
720 ASSERT(head_blk <= INT_MAX);
721 if ((error = xlog_find_verify_log_record(log, start_blk,
722 &head_blk, 0)) == -1) {
723 /* We hit the beginning of the log during our search */
724 start_blk = log_bbnum - num_scan_bblks + head_blk;
725 new_blk = log_bbnum;
726 ASSERT(start_blk <= INT_MAX &&
727 (xfs_daddr_t) log_bbnum-start_blk >= 0);
728 ASSERT(head_blk <= INT_MAX);
729 if ((error = xlog_find_verify_log_record(log,
730 start_blk, &new_blk,
731 (int)head_blk)) == -1) {
732 error = XFS_ERROR(EIO);
733 goto bp_err;
734 } else if (error)
735 goto bp_err;
736 if (new_blk != log_bbnum)
737 head_blk = new_blk;
738 } else if (error)
739 goto bp_err;
740 }
741
742 xlog_put_bp(bp);
743 if (head_blk == log_bbnum)
744 *return_head_blk = 0;
745 else
746 *return_head_blk = head_blk;
747 /*
748 * When returning here, we have a good block number. Bad block
749 * means that during a previous crash, we didn't have a clean break
750 * from cycle number N to cycle number N-1. In this case, we need
751 * to find the first block with cycle number N-1.
752 */
753 return 0;
754
755 bp_err:
756 xlog_put_bp(bp);
757
758 if (error)
759 xlog_warn("XFS: failed to find log head");
760 return error;
761}
762
763/*
764 * Find the sync block number or the tail of the log.
765 *
766 * This will be the block number of the last record to have its
767 * associated buffers synced to disk. Every log record header has
768 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
769 * to get a sync block number. The only concern is to figure out which
770 * log record header to believe.
771 *
772 * The following algorithm uses the log record header with the largest
773 * lsn. The entire log record does not need to be valid. We only care
774 * that the header is valid.
775 *
776 * We could speed up search by using current head_blk buffer, but it is not
777 * available.
778 */
779int
780xlog_find_tail(
781 xlog_t *log,
782 xfs_daddr_t *head_blk,
65be6054 783 xfs_daddr_t *tail_blk)
1da177e4
LT
784{
785 xlog_rec_header_t *rhead;
786 xlog_op_header_t *op_head;
787 xfs_caddr_t offset = NULL;
788 xfs_buf_t *bp;
789 int error, i, found;
790 xfs_daddr_t umount_data_blk;
791 xfs_daddr_t after_umount_blk;
792 xfs_lsn_t tail_lsn;
793 int hblks;
794
795 found = 0;
796
797 /*
798 * Find previous log record
799 */
800 if ((error = xlog_find_head(log, head_blk)))
801 return error;
802
803 bp = xlog_get_bp(log, 1);
804 if (!bp)
805 return ENOMEM;
806 if (*head_blk == 0) { /* special case */
807 if ((error = xlog_bread(log, 0, 1, bp)))
808 goto bread_err;
809 offset = xlog_align(log, 0, 1, bp);
03bea6fe 810 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
811 *tail_blk = 0;
812 /* leave all other log inited values alone */
813 goto exit;
814 }
815 }
816
817 /*
818 * Search backwards looking for log record header block
819 */
820 ASSERT(*head_blk < INT_MAX);
821 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
822 if ((error = xlog_bread(log, i, 1, bp)))
823 goto bread_err;
824 offset = xlog_align(log, i, 1, bp);
b53e675d 825 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
826 found = 1;
827 break;
828 }
829 }
830 /*
831 * If we haven't found the log record header block, start looking
832 * again from the end of the physical log. XXXmiken: There should be
833 * a check here to make sure we didn't search more than N blocks in
834 * the previous code.
835 */
836 if (!found) {
837 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
838 if ((error = xlog_bread(log, i, 1, bp)))
839 goto bread_err;
840 offset = xlog_align(log, i, 1, bp);
841 if (XLOG_HEADER_MAGIC_NUM ==
b53e675d 842 be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
843 found = 2;
844 break;
845 }
846 }
847 }
848 if (!found) {
849 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
850 ASSERT(0);
851 return XFS_ERROR(EIO);
852 }
853
854 /* find blk_no of tail of log */
855 rhead = (xlog_rec_header_t *)offset;
b53e675d 856 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
857
858 /*
859 * Reset log values according to the state of the log when we
860 * crashed. In the case where head_blk == 0, we bump curr_cycle
861 * one because the next write starts a new cycle rather than
862 * continuing the cycle of the last good log record. At this
863 * point we have guaranteed that all partial log records have been
864 * accounted for. Therefore, we know that the last good log record
865 * written was complete and ended exactly on the end boundary
866 * of the physical log.
867 */
868 log->l_prev_block = i;
869 log->l_curr_block = (int)*head_blk;
b53e675d 870 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
871 if (found == 2)
872 log->l_curr_cycle++;
b53e675d
CH
873 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
874 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
1da177e4
LT
875 log->l_grant_reserve_cycle = log->l_curr_cycle;
876 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
877 log->l_grant_write_cycle = log->l_curr_cycle;
878 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
879
880 /*
881 * Look for unmount record. If we find it, then we know there
882 * was a clean unmount. Since 'i' could be the last block in
883 * the physical log, we convert to a log block before comparing
884 * to the head_blk.
885 *
886 * Save the current tail lsn to use to pass to
887 * xlog_clear_stale_blocks() below. We won't want to clear the
888 * unmount record if there is one, so we pass the lsn of the
889 * unmount record rather than the block after it.
890 */
62118709 891 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
892 int h_size = be32_to_cpu(rhead->h_size);
893 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
894
895 if ((h_version & XLOG_VERSION_2) &&
896 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
897 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
898 if (h_size % XLOG_HEADER_CYCLE_SIZE)
899 hblks++;
900 } else {
901 hblks = 1;
902 }
903 } else {
904 hblks = 1;
905 }
906 after_umount_blk = (i + hblks + (int)
b53e675d 907 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1da177e4
LT
908 tail_lsn = log->l_tail_lsn;
909 if (*head_blk == after_umount_blk &&
b53e675d 910 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4
LT
911 umount_data_blk = (i + hblks) % log->l_logBBsize;
912 if ((error = xlog_bread(log, umount_data_blk, 1, bp))) {
913 goto bread_err;
914 }
915 offset = xlog_align(log, umount_data_blk, 1, bp);
916 op_head = (xlog_op_header_t *)offset;
917 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
918 /*
919 * Set tail and last sync so that newly written
920 * log records will point recovery to after the
921 * current unmount record.
922 */
03bea6fe
CH
923 log->l_tail_lsn =
924 xlog_assign_lsn(log->l_curr_cycle,
925 after_umount_blk);
926 log->l_last_sync_lsn =
927 xlog_assign_lsn(log->l_curr_cycle,
928 after_umount_blk);
1da177e4 929 *tail_blk = after_umount_blk;
92821e2b
DC
930
931 /*
932 * Note that the unmount was clean. If the unmount
933 * was not clean, we need to know this to rebuild the
934 * superblock counters from the perag headers if we
935 * have a filesystem using non-persistent counters.
936 */
937 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
938 }
939 }
940
941 /*
942 * Make sure that there are no blocks in front of the head
943 * with the same cycle number as the head. This can happen
944 * because we allow multiple outstanding log writes concurrently,
945 * and the later writes might make it out before earlier ones.
946 *
947 * We use the lsn from before modifying it so that we'll never
948 * overwrite the unmount record after a clean unmount.
949 *
950 * Do this only if we are going to recover the filesystem
951 *
952 * NOTE: This used to say "if (!readonly)"
953 * However on Linux, we can & do recover a read-only filesystem.
954 * We only skip recovery if NORECOVERY is specified on mount,
955 * in which case we would not be here.
956 *
957 * But... if the -device- itself is readonly, just skip this.
958 * We can't recover this device anyway, so it won't matter.
959 */
960 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
961 error = xlog_clear_stale_blocks(log, tail_lsn);
962 }
963
964bread_err:
965exit:
966 xlog_put_bp(bp);
967
968 if (error)
969 xlog_warn("XFS: failed to locate log tail");
970 return error;
971}
972
973/*
974 * Is the log zeroed at all?
975 *
976 * The last binary search should be changed to perform an X block read
977 * once X becomes small enough. You can then search linearly through
978 * the X blocks. This will cut down on the number of reads we need to do.
979 *
980 * If the log is partially zeroed, this routine will pass back the blkno
981 * of the first block with cycle number 0. It won't have a complete LR
982 * preceding it.
983 *
984 * Return:
985 * 0 => the log is completely written to
986 * -1 => use *blk_no as the first block of the log
987 * >0 => error has occurred
988 */
a8272ce0 989STATIC int
1da177e4
LT
990xlog_find_zeroed(
991 xlog_t *log,
992 xfs_daddr_t *blk_no)
993{
994 xfs_buf_t *bp;
995 xfs_caddr_t offset;
996 uint first_cycle, last_cycle;
997 xfs_daddr_t new_blk, last_blk, start_blk;
998 xfs_daddr_t num_scan_bblks;
999 int error, log_bbnum = log->l_logBBsize;
1000
6fdf8ccc
NS
1001 *blk_no = 0;
1002
1da177e4
LT
1003 /* check totally zeroed log */
1004 bp = xlog_get_bp(log, 1);
1005 if (!bp)
1006 return ENOMEM;
1007 if ((error = xlog_bread(log, 0, 1, bp)))
1008 goto bp_err;
1009 offset = xlog_align(log, 0, 1, bp);
03bea6fe 1010 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1011 if (first_cycle == 0) { /* completely zeroed log */
1012 *blk_no = 0;
1013 xlog_put_bp(bp);
1014 return -1;
1015 }
1016
1017 /* check partially zeroed log */
1018 if ((error = xlog_bread(log, log_bbnum-1, 1, bp)))
1019 goto bp_err;
1020 offset = xlog_align(log, log_bbnum-1, 1, bp);
03bea6fe 1021 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1022 if (last_cycle != 0) { /* log completely written to */
1023 xlog_put_bp(bp);
1024 return 0;
1025 } else if (first_cycle != 1) {
1026 /*
1027 * If the cycle of the last block is zero, the cycle of
1028 * the first block must be 1. If it's not, maybe we're
1029 * not looking at a log... Bail out.
1030 */
1031 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1032 return XFS_ERROR(EINVAL);
1033 }
1034
1035 /* we have a partially zeroed log */
1036 last_blk = log_bbnum-1;
1037 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1038 goto bp_err;
1039
1040 /*
1041 * Validate the answer. Because there is no way to guarantee that
1042 * the entire log is made up of log records which are the same size,
1043 * we scan over the defined maximum blocks. At this point, the maximum
1044 * is not chosen to mean anything special. XXXmiken
1045 */
1046 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1047 ASSERT(num_scan_bblks <= INT_MAX);
1048
1049 if (last_blk < num_scan_bblks)
1050 num_scan_bblks = last_blk;
1051 start_blk = last_blk - num_scan_bblks;
1052
1053 /*
1054 * We search for any instances of cycle number 0 that occur before
1055 * our current estimate of the head. What we're trying to detect is
1056 * 1 ... | 0 | 1 | 0...
1057 * ^ binary search ends here
1058 */
1059 if ((error = xlog_find_verify_cycle(log, start_blk,
1060 (int)num_scan_bblks, 0, &new_blk)))
1061 goto bp_err;
1062 if (new_blk != -1)
1063 last_blk = new_blk;
1064
1065 /*
1066 * Potentially backup over partial log record write. We don't need
1067 * to search the end of the log because we know it is zero.
1068 */
1069 if ((error = xlog_find_verify_log_record(log, start_blk,
1070 &last_blk, 0)) == -1) {
1071 error = XFS_ERROR(EIO);
1072 goto bp_err;
1073 } else if (error)
1074 goto bp_err;
1075
1076 *blk_no = last_blk;
1077bp_err:
1078 xlog_put_bp(bp);
1079 if (error)
1080 return error;
1081 return -1;
1082}
1083
1084/*
1085 * These are simple subroutines used by xlog_clear_stale_blocks() below
1086 * to initialize a buffer full of empty log record headers and write
1087 * them into the log.
1088 */
1089STATIC void
1090xlog_add_record(
1091 xlog_t *log,
1092 xfs_caddr_t buf,
1093 int cycle,
1094 int block,
1095 int tail_cycle,
1096 int tail_block)
1097{
1098 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1099
1100 memset(buf, 0, BBSIZE);
b53e675d
CH
1101 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1102 recp->h_cycle = cpu_to_be32(cycle);
1103 recp->h_version = cpu_to_be32(
62118709 1104 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1105 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1106 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1107 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1108 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1109}
1110
1111STATIC int
1112xlog_write_log_records(
1113 xlog_t *log,
1114 int cycle,
1115 int start_block,
1116 int blocks,
1117 int tail_cycle,
1118 int tail_block)
1119{
1120 xfs_caddr_t offset;
1121 xfs_buf_t *bp;
1122 int balign, ealign;
1123 int sectbb = XLOG_SECTOR_ROUNDUP_BBCOUNT(log, 1);
1124 int end_block = start_block + blocks;
1125 int bufblks;
1126 int error = 0;
1127 int i, j = 0;
1128
1129 bufblks = 1 << ffs(blocks);
1130 while (!(bp = xlog_get_bp(log, bufblks))) {
1131 bufblks >>= 1;
1132 if (bufblks <= log->l_sectbb_log)
1133 return ENOMEM;
1134 }
1135
1136 /* We may need to do a read at the start to fill in part of
1137 * the buffer in the starting sector not covered by the first
1138 * write below.
1139 */
1140 balign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, start_block);
1141 if (balign != start_block) {
1142 if ((error = xlog_bread(log, start_block, 1, bp))) {
1143 xlog_put_bp(bp);
1144 return error;
1145 }
1146 j = start_block - balign;
1147 }
1148
1149 for (i = start_block; i < end_block; i += bufblks) {
1150 int bcount, endcount;
1151
1152 bcount = min(bufblks, end_block - start_block);
1153 endcount = bcount - j;
1154
1155 /* We may need to do a read at the end to fill in part of
1156 * the buffer in the final sector not covered by the write.
1157 * If this is the same sector as the above read, skip it.
1158 */
1159 ealign = XLOG_SECTOR_ROUNDDOWN_BLKNO(log, end_block);
1160 if (j == 0 && (start_block + endcount > ealign)) {
1161 offset = XFS_BUF_PTR(bp);
1162 balign = BBTOB(ealign - start_block);
234f56ac
DC
1163 error = XFS_BUF_SET_PTR(bp, offset + balign,
1164 BBTOB(sectbb));
1165 if (!error)
1166 error = xlog_bread(log, ealign, sectbb, bp);
1167 if (!error)
1168 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
1169 if (error)
1da177e4 1170 break;
1da177e4
LT
1171 }
1172
1173 offset = xlog_align(log, start_block, endcount, bp);
1174 for (; j < endcount; j++) {
1175 xlog_add_record(log, offset, cycle, i+j,
1176 tail_cycle, tail_block);
1177 offset += BBSIZE;
1178 }
1179 error = xlog_bwrite(log, start_block, endcount, bp);
1180 if (error)
1181 break;
1182 start_block += endcount;
1183 j = 0;
1184 }
1185 xlog_put_bp(bp);
1186 return error;
1187}
1188
1189/*
1190 * This routine is called to blow away any incomplete log writes out
1191 * in front of the log head. We do this so that we won't become confused
1192 * if we come up, write only a little bit more, and then crash again.
1193 * If we leave the partial log records out there, this situation could
1194 * cause us to think those partial writes are valid blocks since they
1195 * have the current cycle number. We get rid of them by overwriting them
1196 * with empty log records with the old cycle number rather than the
1197 * current one.
1198 *
1199 * The tail lsn is passed in rather than taken from
1200 * the log so that we will not write over the unmount record after a
1201 * clean unmount in a 512 block log. Doing so would leave the log without
1202 * any valid log records in it until a new one was written. If we crashed
1203 * during that time we would not be able to recover.
1204 */
1205STATIC int
1206xlog_clear_stale_blocks(
1207 xlog_t *log,
1208 xfs_lsn_t tail_lsn)
1209{
1210 int tail_cycle, head_cycle;
1211 int tail_block, head_block;
1212 int tail_distance, max_distance;
1213 int distance;
1214 int error;
1215
1216 tail_cycle = CYCLE_LSN(tail_lsn);
1217 tail_block = BLOCK_LSN(tail_lsn);
1218 head_cycle = log->l_curr_cycle;
1219 head_block = log->l_curr_block;
1220
1221 /*
1222 * Figure out the distance between the new head of the log
1223 * and the tail. We want to write over any blocks beyond the
1224 * head that we may have written just before the crash, but
1225 * we don't want to overwrite the tail of the log.
1226 */
1227 if (head_cycle == tail_cycle) {
1228 /*
1229 * The tail is behind the head in the physical log,
1230 * so the distance from the head to the tail is the
1231 * distance from the head to the end of the log plus
1232 * the distance from the beginning of the log to the
1233 * tail.
1234 */
1235 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1236 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1237 XFS_ERRLEVEL_LOW, log->l_mp);
1238 return XFS_ERROR(EFSCORRUPTED);
1239 }
1240 tail_distance = tail_block + (log->l_logBBsize - head_block);
1241 } else {
1242 /*
1243 * The head is behind the tail in the physical log,
1244 * so the distance from the head to the tail is just
1245 * the tail block minus the head block.
1246 */
1247 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1248 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1249 XFS_ERRLEVEL_LOW, log->l_mp);
1250 return XFS_ERROR(EFSCORRUPTED);
1251 }
1252 tail_distance = tail_block - head_block;
1253 }
1254
1255 /*
1256 * If the head is right up against the tail, we can't clear
1257 * anything.
1258 */
1259 if (tail_distance <= 0) {
1260 ASSERT(tail_distance == 0);
1261 return 0;
1262 }
1263
1264 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1265 /*
1266 * Take the smaller of the maximum amount of outstanding I/O
1267 * we could have and the distance to the tail to clear out.
1268 * We take the smaller so that we don't overwrite the tail and
1269 * we don't waste all day writing from the head to the tail
1270 * for no reason.
1271 */
1272 max_distance = MIN(max_distance, tail_distance);
1273
1274 if ((head_block + max_distance) <= log->l_logBBsize) {
1275 /*
1276 * We can stomp all the blocks we need to without
1277 * wrapping around the end of the log. Just do it
1278 * in a single write. Use the cycle number of the
1279 * current cycle minus one so that the log will look like:
1280 * n ... | n - 1 ...
1281 */
1282 error = xlog_write_log_records(log, (head_cycle - 1),
1283 head_block, max_distance, tail_cycle,
1284 tail_block);
1285 if (error)
1286 return error;
1287 } else {
1288 /*
1289 * We need to wrap around the end of the physical log in
1290 * order to clear all the blocks. Do it in two separate
1291 * I/Os. The first write should be from the head to the
1292 * end of the physical log, and it should use the current
1293 * cycle number minus one just like above.
1294 */
1295 distance = log->l_logBBsize - head_block;
1296 error = xlog_write_log_records(log, (head_cycle - 1),
1297 head_block, distance, tail_cycle,
1298 tail_block);
1299
1300 if (error)
1301 return error;
1302
1303 /*
1304 * Now write the blocks at the start of the physical log.
1305 * This writes the remainder of the blocks we want to clear.
1306 * It uses the current cycle number since we're now on the
1307 * same cycle as the head so that we get:
1308 * n ... n ... | n - 1 ...
1309 * ^^^^^ blocks we're writing
1310 */
1311 distance = max_distance - (log->l_logBBsize - head_block);
1312 error = xlog_write_log_records(log, head_cycle, 0, distance,
1313 tail_cycle, tail_block);
1314 if (error)
1315 return error;
1316 }
1317
1318 return 0;
1319}
1320
1321/******************************************************************************
1322 *
1323 * Log recover routines
1324 *
1325 ******************************************************************************
1326 */
1327
1328STATIC xlog_recover_t *
1329xlog_recover_find_tid(
1330 xlog_recover_t *q,
1331 xlog_tid_t tid)
1332{
1333 xlog_recover_t *p = q;
1334
1335 while (p != NULL) {
1336 if (p->r_log_tid == tid)
1337 break;
1338 p = p->r_next;
1339 }
1340 return p;
1341}
1342
1343STATIC void
1344xlog_recover_put_hashq(
1345 xlog_recover_t **q,
1346 xlog_recover_t *trans)
1347{
1348 trans->r_next = *q;
1349 *q = trans;
1350}
1351
1352STATIC void
1353xlog_recover_add_item(
1354 xlog_recover_item_t **itemq)
1355{
1356 xlog_recover_item_t *item;
1357
1358 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
1359 xlog_recover_insert_item_backq(itemq, item);
1360}
1361
1362STATIC int
1363xlog_recover_add_to_cont_trans(
1364 xlog_recover_t *trans,
1365 xfs_caddr_t dp,
1366 int len)
1367{
1368 xlog_recover_item_t *item;
1369 xfs_caddr_t ptr, old_ptr;
1370 int old_len;
1371
1372 item = trans->r_itemq;
4b80916b 1373 if (item == NULL) {
1da177e4
LT
1374 /* finish copying rest of trans header */
1375 xlog_recover_add_item(&trans->r_itemq);
1376 ptr = (xfs_caddr_t) &trans->r_theader +
1377 sizeof(xfs_trans_header_t) - len;
1378 memcpy(ptr, dp, len); /* d, s, l */
1379 return 0;
1380 }
1381 item = item->ri_prev;
1382
1383 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1384 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1385
760dea67 1386 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1387 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1388 item->ri_buf[item->ri_cnt-1].i_len += len;
1389 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
1390 return 0;
1391}
1392
1393/*
1394 * The next region to add is the start of a new region. It could be
1395 * a whole region or it could be the first part of a new region. Because
1396 * of this, the assumption here is that the type and size fields of all
1397 * format structures fit into the first 32 bits of the structure.
1398 *
1399 * This works because all regions must be 32 bit aligned. Therefore, we
1400 * either have both fields or we have neither field. In the case we have
1401 * neither field, the data part of the region is zero length. We only have
1402 * a log_op_header and can throw away the header since a new one will appear
1403 * later. If we have at least 4 bytes, then we can determine how many regions
1404 * will appear in the current log item.
1405 */
1406STATIC int
1407xlog_recover_add_to_trans(
1408 xlog_recover_t *trans,
1409 xfs_caddr_t dp,
1410 int len)
1411{
1412 xfs_inode_log_format_t *in_f; /* any will do */
1413 xlog_recover_item_t *item;
1414 xfs_caddr_t ptr;
1415
1416 if (!len)
1417 return 0;
1418 item = trans->r_itemq;
4b80916b 1419 if (item == NULL) {
1da177e4
LT
1420 ASSERT(*(uint *)dp == XFS_TRANS_HEADER_MAGIC);
1421 if (len == sizeof(xfs_trans_header_t))
1422 xlog_recover_add_item(&trans->r_itemq);
1423 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1424 return 0;
1425 }
1426
1427 ptr = kmem_alloc(len, KM_SLEEP);
1428 memcpy(ptr, dp, len);
1429 in_f = (xfs_inode_log_format_t *)ptr;
1430
1431 if (item->ri_prev->ri_total != 0 &&
1432 item->ri_prev->ri_total == item->ri_prev->ri_cnt) {
1433 xlog_recover_add_item(&trans->r_itemq);
1434 }
1435 item = trans->r_itemq;
1436 item = item->ri_prev;
1437
1438 if (item->ri_total == 0) { /* first region to be added */
1439 item->ri_total = in_f->ilf_size;
1440 ASSERT(item->ri_total <= XLOG_MAX_REGIONS_IN_ITEM);
1441 item->ri_buf = kmem_zalloc((item->ri_total *
1442 sizeof(xfs_log_iovec_t)), KM_SLEEP);
1443 }
1444 ASSERT(item->ri_total > item->ri_cnt);
1445 /* Description region is ri_buf[0] */
1446 item->ri_buf[item->ri_cnt].i_addr = ptr;
1447 item->ri_buf[item->ri_cnt].i_len = len;
1448 item->ri_cnt++;
1449 return 0;
1450}
1451
1452STATIC void
1453xlog_recover_new_tid(
1454 xlog_recover_t **q,
1455 xlog_tid_t tid,
1456 xfs_lsn_t lsn)
1457{
1458 xlog_recover_t *trans;
1459
1460 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1461 trans->r_log_tid = tid;
1462 trans->r_lsn = lsn;
1463 xlog_recover_put_hashq(q, trans);
1464}
1465
1466STATIC int
1467xlog_recover_unlink_tid(
1468 xlog_recover_t **q,
1469 xlog_recover_t *trans)
1470{
1471 xlog_recover_t *tp;
1472 int found = 0;
1473
4b80916b 1474 ASSERT(trans != NULL);
1da177e4
LT
1475 if (trans == *q) {
1476 *q = (*q)->r_next;
1477 } else {
1478 tp = *q;
4b80916b 1479 while (tp) {
1da177e4
LT
1480 if (tp->r_next == trans) {
1481 found = 1;
1482 break;
1483 }
1484 tp = tp->r_next;
1485 }
1486 if (!found) {
1487 xlog_warn(
1488 "XFS: xlog_recover_unlink_tid: trans not found");
1489 ASSERT(0);
1490 return XFS_ERROR(EIO);
1491 }
1492 tp->r_next = tp->r_next->r_next;
1493 }
1494 return 0;
1495}
1496
1497STATIC void
1498xlog_recover_insert_item_backq(
1499 xlog_recover_item_t **q,
1500 xlog_recover_item_t *item)
1501{
4b80916b 1502 if (*q == NULL) {
1da177e4
LT
1503 item->ri_prev = item->ri_next = item;
1504 *q = item;
1505 } else {
1506 item->ri_next = *q;
1507 item->ri_prev = (*q)->ri_prev;
1508 (*q)->ri_prev = item;
1509 item->ri_prev->ri_next = item;
1510 }
1511}
1512
1513STATIC void
1514xlog_recover_insert_item_frontq(
1515 xlog_recover_item_t **q,
1516 xlog_recover_item_t *item)
1517{
1518 xlog_recover_insert_item_backq(q, item);
1519 *q = item;
1520}
1521
1522STATIC int
1523xlog_recover_reorder_trans(
1da177e4
LT
1524 xlog_recover_t *trans)
1525{
1526 xlog_recover_item_t *first_item, *itemq, *itemq_next;
1527 xfs_buf_log_format_t *buf_f;
1da177e4
LT
1528 ushort flags = 0;
1529
1530 first_item = itemq = trans->r_itemq;
1531 trans->r_itemq = NULL;
1532 do {
1533 itemq_next = itemq->ri_next;
1534 buf_f = (xfs_buf_log_format_t *)itemq->ri_buf[0].i_addr;
1da177e4
LT
1535
1536 switch (ITEM_TYPE(itemq)) {
1537 case XFS_LI_BUF:
804195b6 1538 flags = buf_f->blf_flags;
1da177e4
LT
1539 if (!(flags & XFS_BLI_CANCEL)) {
1540 xlog_recover_insert_item_frontq(&trans->r_itemq,
1541 itemq);
1542 break;
1543 }
1544 case XFS_LI_INODE:
1da177e4
LT
1545 case XFS_LI_DQUOT:
1546 case XFS_LI_QUOTAOFF:
1547 case XFS_LI_EFD:
1548 case XFS_LI_EFI:
1549 xlog_recover_insert_item_backq(&trans->r_itemq, itemq);
1550 break;
1551 default:
1552 xlog_warn(
1553 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1554 ASSERT(0);
1555 return XFS_ERROR(EIO);
1556 }
1557 itemq = itemq_next;
1558 } while (first_item != itemq);
1559 return 0;
1560}
1561
1562/*
1563 * Build up the table of buf cancel records so that we don't replay
1564 * cancelled data in the second pass. For buffer records that are
1565 * not cancel records, there is nothing to do here so we just return.
1566 *
1567 * If we get a cancel record which is already in the table, this indicates
1568 * that the buffer was cancelled multiple times. In order to ensure
1569 * that during pass 2 we keep the record in the table until we reach its
1570 * last occurrence in the log, we keep a reference count in the cancel
1571 * record in the table to tell us how many times we expect to see this
1572 * record during the second pass.
1573 */
1574STATIC void
1575xlog_recover_do_buffer_pass1(
1576 xlog_t *log,
1577 xfs_buf_log_format_t *buf_f)
1578{
1579 xfs_buf_cancel_t *bcp;
1580 xfs_buf_cancel_t *nextp;
1581 xfs_buf_cancel_t *prevp;
1582 xfs_buf_cancel_t **bucket;
1da177e4
LT
1583 xfs_daddr_t blkno = 0;
1584 uint len = 0;
1585 ushort flags = 0;
1586
1587 switch (buf_f->blf_type) {
1588 case XFS_LI_BUF:
1589 blkno = buf_f->blf_blkno;
1590 len = buf_f->blf_len;
1591 flags = buf_f->blf_flags;
1592 break;
1da177e4
LT
1593 }
1594
1595 /*
1596 * If this isn't a cancel buffer item, then just return.
1597 */
1598 if (!(flags & XFS_BLI_CANCEL))
1599 return;
1600
1601 /*
1602 * Insert an xfs_buf_cancel record into the hash table of
1603 * them. If there is already an identical record, bump
1604 * its reference count.
1605 */
1606 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1607 XLOG_BC_TABLE_SIZE];
1608 /*
1609 * If the hash bucket is empty then just insert a new record into
1610 * the bucket.
1611 */
1612 if (*bucket == NULL) {
1613 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1614 KM_SLEEP);
1615 bcp->bc_blkno = blkno;
1616 bcp->bc_len = len;
1617 bcp->bc_refcount = 1;
1618 bcp->bc_next = NULL;
1619 *bucket = bcp;
1620 return;
1621 }
1622
1623 /*
1624 * The hash bucket is not empty, so search for duplicates of our
1625 * record. If we find one them just bump its refcount. If not
1626 * then add us at the end of the list.
1627 */
1628 prevp = NULL;
1629 nextp = *bucket;
1630 while (nextp != NULL) {
1631 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1632 nextp->bc_refcount++;
1633 return;
1634 }
1635 prevp = nextp;
1636 nextp = nextp->bc_next;
1637 }
1638 ASSERT(prevp != NULL);
1639 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1640 KM_SLEEP);
1641 bcp->bc_blkno = blkno;
1642 bcp->bc_len = len;
1643 bcp->bc_refcount = 1;
1644 bcp->bc_next = NULL;
1645 prevp->bc_next = bcp;
1646}
1647
1648/*
1649 * Check to see whether the buffer being recovered has a corresponding
1650 * entry in the buffer cancel record table. If it does then return 1
1651 * so that it will be cancelled, otherwise return 0. If the buffer is
1652 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1653 * the refcount on the entry in the table and remove it from the table
1654 * if this is the last reference.
1655 *
1656 * We remove the cancel record from the table when we encounter its
1657 * last occurrence in the log so that if the same buffer is re-used
1658 * again after its last cancellation we actually replay the changes
1659 * made at that point.
1660 */
1661STATIC int
1662xlog_check_buffer_cancelled(
1663 xlog_t *log,
1664 xfs_daddr_t blkno,
1665 uint len,
1666 ushort flags)
1667{
1668 xfs_buf_cancel_t *bcp;
1669 xfs_buf_cancel_t *prevp;
1670 xfs_buf_cancel_t **bucket;
1671
1672 if (log->l_buf_cancel_table == NULL) {
1673 /*
1674 * There is nothing in the table built in pass one,
1675 * so this buffer must not be cancelled.
1676 */
1677 ASSERT(!(flags & XFS_BLI_CANCEL));
1678 return 0;
1679 }
1680
1681 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1682 XLOG_BC_TABLE_SIZE];
1683 bcp = *bucket;
1684 if (bcp == NULL) {
1685 /*
1686 * There is no corresponding entry in the table built
1687 * in pass one, so this buffer has not been cancelled.
1688 */
1689 ASSERT(!(flags & XFS_BLI_CANCEL));
1690 return 0;
1691 }
1692
1693 /*
1694 * Search for an entry in the buffer cancel table that
1695 * matches our buffer.
1696 */
1697 prevp = NULL;
1698 while (bcp != NULL) {
1699 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1700 /*
1701 * We've go a match, so return 1 so that the
1702 * recovery of this buffer is cancelled.
1703 * If this buffer is actually a buffer cancel
1704 * log item, then decrement the refcount on the
1705 * one in the table and remove it if this is the
1706 * last reference.
1707 */
1708 if (flags & XFS_BLI_CANCEL) {
1709 bcp->bc_refcount--;
1710 if (bcp->bc_refcount == 0) {
1711 if (prevp == NULL) {
1712 *bucket = bcp->bc_next;
1713 } else {
1714 prevp->bc_next = bcp->bc_next;
1715 }
f0e2d93c 1716 kmem_free(bcp);
1da177e4
LT
1717 }
1718 }
1719 return 1;
1720 }
1721 prevp = bcp;
1722 bcp = bcp->bc_next;
1723 }
1724 /*
1725 * We didn't find a corresponding entry in the table, so
1726 * return 0 so that the buffer is NOT cancelled.
1727 */
1728 ASSERT(!(flags & XFS_BLI_CANCEL));
1729 return 0;
1730}
1731
1732STATIC int
1733xlog_recover_do_buffer_pass2(
1734 xlog_t *log,
1735 xfs_buf_log_format_t *buf_f)
1736{
1da177e4
LT
1737 xfs_daddr_t blkno = 0;
1738 ushort flags = 0;
1739 uint len = 0;
1740
1741 switch (buf_f->blf_type) {
1742 case XFS_LI_BUF:
1743 blkno = buf_f->blf_blkno;
1744 flags = buf_f->blf_flags;
1745 len = buf_f->blf_len;
1746 break;
1da177e4
LT
1747 }
1748
1749 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1750}
1751
1752/*
1753 * Perform recovery for a buffer full of inodes. In these buffers,
1754 * the only data which should be recovered is that which corresponds
1755 * to the di_next_unlinked pointers in the on disk inode structures.
1756 * The rest of the data for the inodes is always logged through the
1757 * inodes themselves rather than the inode buffer and is recovered
1758 * in xlog_recover_do_inode_trans().
1759 *
1760 * The only time when buffers full of inodes are fully recovered is
1761 * when the buffer is full of newly allocated inodes. In this case
1762 * the buffer will not be marked as an inode buffer and so will be
1763 * sent to xlog_recover_do_reg_buffer() below during recovery.
1764 */
1765STATIC int
1766xlog_recover_do_inode_buffer(
1767 xfs_mount_t *mp,
1768 xlog_recover_item_t *item,
1769 xfs_buf_t *bp,
1770 xfs_buf_log_format_t *buf_f)
1771{
1772 int i;
1773 int item_index;
1774 int bit;
1775 int nbits;
1776 int reg_buf_offset;
1777 int reg_buf_bytes;
1778 int next_unlinked_offset;
1779 int inodes_per_buf;
1780 xfs_agino_t *logged_nextp;
1781 xfs_agino_t *buffer_nextp;
1da177e4
LT
1782 unsigned int *data_map = NULL;
1783 unsigned int map_size = 0;
1784
1785 switch (buf_f->blf_type) {
1786 case XFS_LI_BUF:
1787 data_map = buf_f->blf_data_map;
1788 map_size = buf_f->blf_map_size;
1789 break;
1da177e4
LT
1790 }
1791 /*
1792 * Set the variables corresponding to the current region to
1793 * 0 so that we'll initialize them on the first pass through
1794 * the loop.
1795 */
1796 reg_buf_offset = 0;
1797 reg_buf_bytes = 0;
1798 bit = 0;
1799 nbits = 0;
1800 item_index = 0;
1801 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1802 for (i = 0; i < inodes_per_buf; i++) {
1803 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1804 offsetof(xfs_dinode_t, di_next_unlinked);
1805
1806 while (next_unlinked_offset >=
1807 (reg_buf_offset + reg_buf_bytes)) {
1808 /*
1809 * The next di_next_unlinked field is beyond
1810 * the current logged region. Find the next
1811 * logged region that contains or is beyond
1812 * the current di_next_unlinked field.
1813 */
1814 bit += nbits;
1815 bit = xfs_next_bit(data_map, map_size, bit);
1816
1817 /*
1818 * If there are no more logged regions in the
1819 * buffer, then we're done.
1820 */
1821 if (bit == -1) {
1822 return 0;
1823 }
1824
1825 nbits = xfs_contig_bits(data_map, map_size,
1826 bit);
1827 ASSERT(nbits > 0);
1828 reg_buf_offset = bit << XFS_BLI_SHIFT;
1829 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1830 item_index++;
1831 }
1832
1833 /*
1834 * If the current logged region starts after the current
1835 * di_next_unlinked field, then move on to the next
1836 * di_next_unlinked field.
1837 */
1838 if (next_unlinked_offset < reg_buf_offset) {
1839 continue;
1840 }
1841
1842 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1843 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1844 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1845
1846 /*
1847 * The current logged region contains a copy of the
1848 * current di_next_unlinked field. Extract its value
1849 * and copy it to the buffer copy.
1850 */
1851 logged_nextp = (xfs_agino_t *)
1852 ((char *)(item->ri_buf[item_index].i_addr) +
1853 (next_unlinked_offset - reg_buf_offset));
1854 if (unlikely(*logged_nextp == 0)) {
1855 xfs_fs_cmn_err(CE_ALERT, mp,
1856 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1857 item, bp);
1858 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1859 XFS_ERRLEVEL_LOW, mp);
1860 return XFS_ERROR(EFSCORRUPTED);
1861 }
1862
1863 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1864 next_unlinked_offset);
87c199c2 1865 *buffer_nextp = *logged_nextp;
1da177e4
LT
1866 }
1867
1868 return 0;
1869}
1870
1871/*
1872 * Perform a 'normal' buffer recovery. Each logged region of the
1873 * buffer should be copied over the corresponding region in the
1874 * given buffer. The bitmap in the buf log format structure indicates
1875 * where to place the logged data.
1876 */
1877/*ARGSUSED*/
1878STATIC void
1879xlog_recover_do_reg_buffer(
1da177e4
LT
1880 xlog_recover_item_t *item,
1881 xfs_buf_t *bp,
1882 xfs_buf_log_format_t *buf_f)
1883{
1884 int i;
1885 int bit;
1886 int nbits;
1da177e4
LT
1887 unsigned int *data_map = NULL;
1888 unsigned int map_size = 0;
1889 int error;
1890
1891 switch (buf_f->blf_type) {
1892 case XFS_LI_BUF:
1893 data_map = buf_f->blf_data_map;
1894 map_size = buf_f->blf_map_size;
1895 break;
1da177e4
LT
1896 }
1897 bit = 0;
1898 i = 1; /* 0 is the buf format structure */
1899 while (1) {
1900 bit = xfs_next_bit(data_map, map_size, bit);
1901 if (bit == -1)
1902 break;
1903 nbits = xfs_contig_bits(data_map, map_size, bit);
1904 ASSERT(nbits > 0);
4b80916b 1905 ASSERT(item->ri_buf[i].i_addr != NULL);
1da177e4
LT
1906 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1907 ASSERT(XFS_BUF_COUNT(bp) >=
1908 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1909
1910 /*
1911 * Do a sanity check if this is a dquot buffer. Just checking
1912 * the first dquot in the buffer should do. XXXThis is
1913 * probably a good thing to do for other buf types also.
1914 */
1915 error = 0;
c8ad20ff
NS
1916 if (buf_f->blf_flags &
1917 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
1918 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1919 item->ri_buf[i].i_addr,
1920 -1, 0, XFS_QMOPT_DOWARN,
1921 "dquot_buf_recover");
1922 }
053c59a0 1923 if (!error)
1da177e4
LT
1924 memcpy(xfs_buf_offset(bp,
1925 (uint)bit << XFS_BLI_SHIFT), /* dest */
1926 item->ri_buf[i].i_addr, /* source */
1927 nbits<<XFS_BLI_SHIFT); /* length */
1928 i++;
1929 bit += nbits;
1930 }
1931
1932 /* Shouldn't be any more regions */
1933 ASSERT(i == item->ri_total);
1934}
1935
1936/*
1937 * Do some primitive error checking on ondisk dquot data structures.
1938 */
1939int
1940xfs_qm_dqcheck(
1941 xfs_disk_dquot_t *ddq,
1942 xfs_dqid_t id,
1943 uint type, /* used only when IO_dorepair is true */
1944 uint flags,
1945 char *str)
1946{
1947 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1948 int errs = 0;
1949
1950 /*
1951 * We can encounter an uninitialized dquot buffer for 2 reasons:
1952 * 1. If we crash while deleting the quotainode(s), and those blks got
1953 * used for user data. This is because we take the path of regular
1954 * file deletion; however, the size field of quotainodes is never
1955 * updated, so all the tricks that we play in itruncate_finish
1956 * don't quite matter.
1957 *
1958 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1959 * But the allocation will be replayed so we'll end up with an
1960 * uninitialized quota block.
1961 *
1962 * This is all fine; things are still consistent, and we haven't lost
1963 * any quota information. Just don't complain about bad dquot blks.
1964 */
1149d96a 1965 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1da177e4
LT
1966 if (flags & XFS_QMOPT_DOWARN)
1967 cmn_err(CE_ALERT,
1968 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 1969 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
1970 errs++;
1971 }
1149d96a 1972 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4
LT
1973 if (flags & XFS_QMOPT_DOWARN)
1974 cmn_err(CE_ALERT,
1975 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 1976 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
1977 errs++;
1978 }
1979
1149d96a
CH
1980 if (ddq->d_flags != XFS_DQ_USER &&
1981 ddq->d_flags != XFS_DQ_PROJ &&
1982 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4
LT
1983 if (flags & XFS_QMOPT_DOWARN)
1984 cmn_err(CE_ALERT,
1985 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 1986 str, id, ddq->d_flags);
1da177e4
LT
1987 errs++;
1988 }
1989
1149d96a 1990 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4
LT
1991 if (flags & XFS_QMOPT_DOWARN)
1992 cmn_err(CE_ALERT,
1993 "%s : ondisk-dquot 0x%p, ID mismatch: "
1994 "0x%x expected, found id 0x%x",
1149d96a 1995 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
1996 errs++;
1997 }
1998
1999 if (!errs && ddq->d_id) {
1149d96a
CH
2000 if (ddq->d_blk_softlimit &&
2001 be64_to_cpu(ddq->d_bcount) >=
2002 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2003 if (!ddq->d_btimer) {
2004 if (flags & XFS_QMOPT_DOWARN)
2005 cmn_err(CE_ALERT,
2006 "%s : Dquot ID 0x%x (0x%p) "
2007 "BLK TIMER NOT STARTED",
1149d96a 2008 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2009 errs++;
2010 }
2011 }
1149d96a
CH
2012 if (ddq->d_ino_softlimit &&
2013 be64_to_cpu(ddq->d_icount) >=
2014 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2015 if (!ddq->d_itimer) {
2016 if (flags & XFS_QMOPT_DOWARN)
2017 cmn_err(CE_ALERT,
2018 "%s : Dquot ID 0x%x (0x%p) "
2019 "INODE TIMER NOT STARTED",
1149d96a 2020 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2021 errs++;
2022 }
2023 }
1149d96a
CH
2024 if (ddq->d_rtb_softlimit &&
2025 be64_to_cpu(ddq->d_rtbcount) >=
2026 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2027 if (!ddq->d_rtbtimer) {
2028 if (flags & XFS_QMOPT_DOWARN)
2029 cmn_err(CE_ALERT,
2030 "%s : Dquot ID 0x%x (0x%p) "
2031 "RTBLK TIMER NOT STARTED",
1149d96a 2032 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2033 errs++;
2034 }
2035 }
2036 }
2037
2038 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2039 return errs;
2040
2041 if (flags & XFS_QMOPT_DOWARN)
2042 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2043
2044 /*
2045 * Typically, a repair is only requested by quotacheck.
2046 */
2047 ASSERT(id != -1);
2048 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2049 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2050
2051 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2052 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2053 d->dd_diskdq.d_flags = type;
2054 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2055
2056 return errs;
2057}
2058
2059/*
2060 * Perform a dquot buffer recovery.
2061 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2062 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2063 * Else, treat it as a regular buffer and do recovery.
2064 */
2065STATIC void
2066xlog_recover_do_dquot_buffer(
2067 xfs_mount_t *mp,
2068 xlog_t *log,
2069 xlog_recover_item_t *item,
2070 xfs_buf_t *bp,
2071 xfs_buf_log_format_t *buf_f)
2072{
2073 uint type;
2074
2075 /*
2076 * Filesystems are required to send in quota flags at mount time.
2077 */
2078 if (mp->m_qflags == 0) {
2079 return;
2080 }
2081
2082 type = 0;
2083 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2084 type |= XFS_DQ_USER;
c8ad20ff
NS
2085 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2086 type |= XFS_DQ_PROJ;
1da177e4
LT
2087 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2088 type |= XFS_DQ_GROUP;
2089 /*
2090 * This type of quotas was turned off, so ignore this buffer
2091 */
2092 if (log->l_quotaoffs_flag & type)
2093 return;
2094
053c59a0 2095 xlog_recover_do_reg_buffer(item, bp, buf_f);
1da177e4
LT
2096}
2097
2098/*
2099 * This routine replays a modification made to a buffer at runtime.
2100 * There are actually two types of buffer, regular and inode, which
2101 * are handled differently. Inode buffers are handled differently
2102 * in that we only recover a specific set of data from them, namely
2103 * the inode di_next_unlinked fields. This is because all other inode
2104 * data is actually logged via inode records and any data we replay
2105 * here which overlaps that may be stale.
2106 *
2107 * When meta-data buffers are freed at run time we log a buffer item
2108 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2109 * of the buffer in the log should not be replayed at recovery time.
2110 * This is so that if the blocks covered by the buffer are reused for
2111 * file data before we crash we don't end up replaying old, freed
2112 * meta-data into a user's file.
2113 *
2114 * To handle the cancellation of buffer log items, we make two passes
2115 * over the log during recovery. During the first we build a table of
2116 * those buffers which have been cancelled, and during the second we
2117 * only replay those buffers which do not have corresponding cancel
2118 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2119 * for more details on the implementation of the table of cancel records.
2120 */
2121STATIC int
2122xlog_recover_do_buffer_trans(
2123 xlog_t *log,
2124 xlog_recover_item_t *item,
2125 int pass)
2126{
2127 xfs_buf_log_format_t *buf_f;
1da177e4
LT
2128 xfs_mount_t *mp;
2129 xfs_buf_t *bp;
2130 int error;
2131 int cancel;
2132 xfs_daddr_t blkno;
2133 int len;
2134 ushort flags;
2135
2136 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2137
2138 if (pass == XLOG_RECOVER_PASS1) {
2139 /*
2140 * In this pass we're only looking for buf items
2141 * with the XFS_BLI_CANCEL bit set.
2142 */
2143 xlog_recover_do_buffer_pass1(log, buf_f);
2144 return 0;
2145 } else {
2146 /*
2147 * In this pass we want to recover all the buffers
2148 * which have not been cancelled and are not
2149 * cancellation buffers themselves. The routine
2150 * we call here will tell us whether or not to
2151 * continue with the replay of this buffer.
2152 */
2153 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2154 if (cancel) {
2155 return 0;
2156 }
2157 }
2158 switch (buf_f->blf_type) {
2159 case XFS_LI_BUF:
2160 blkno = buf_f->blf_blkno;
2161 len = buf_f->blf_len;
2162 flags = buf_f->blf_flags;
2163 break;
1da177e4
LT
2164 default:
2165 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
fc1f8c1c
NS
2166 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2167 buf_f->blf_type, log->l_mp->m_logname ?
2168 log->l_mp->m_logname : "internal");
1da177e4
LT
2169 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2170 XFS_ERRLEVEL_LOW, log->l_mp);
2171 return XFS_ERROR(EFSCORRUPTED);
2172 }
2173
2174 mp = log->l_mp;
2175 if (flags & XFS_BLI_INODE_BUF) {
2176 bp = xfs_buf_read_flags(mp->m_ddev_targp, blkno, len,
2177 XFS_BUF_LOCK);
2178 } else {
2179 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, 0);
2180 }
2181 if (XFS_BUF_ISERROR(bp)) {
2182 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2183 bp, blkno);
2184 error = XFS_BUF_GETERROR(bp);
2185 xfs_buf_relse(bp);
2186 return error;
2187 }
2188
2189 error = 0;
2190 if (flags & XFS_BLI_INODE_BUF) {
2191 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
c8ad20ff
NS
2192 } else if (flags &
2193 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
2194 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2195 } else {
053c59a0 2196 xlog_recover_do_reg_buffer(item, bp, buf_f);
1da177e4
LT
2197 }
2198 if (error)
2199 return XFS_ERROR(error);
2200
2201 /*
2202 * Perform delayed write on the buffer. Asynchronous writes will be
2203 * slower when taking into account all the buffers to be flushed.
2204 *
2205 * Also make sure that only inode buffers with good sizes stay in
2206 * the buffer cache. The kernel moves inodes in buffers of 1 block
2207 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2208 * buffers in the log can be a different size if the log was generated
2209 * by an older kernel using unclustered inode buffers or a newer kernel
2210 * running with a different inode cluster size. Regardless, if the
2211 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2212 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2213 * the buffer out of the buffer cache so that the buffer won't
2214 * overlap with future reads of those inodes.
2215 */
2216 if (XFS_DINODE_MAGIC ==
b53e675d 2217 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1da177e4
LT
2218 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2219 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2220 XFS_BUF_STALE(bp);
2221 error = xfs_bwrite(mp, bp);
2222 } else {
2223 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2224 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2225 XFS_BUF_SET_FSPRIVATE(bp, mp);
2226 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2227 xfs_bdwrite(mp, bp);
2228 }
2229
2230 return (error);
2231}
2232
2233STATIC int
2234xlog_recover_do_inode_trans(
2235 xlog_t *log,
2236 xlog_recover_item_t *item,
2237 int pass)
2238{
2239 xfs_inode_log_format_t *in_f;
2240 xfs_mount_t *mp;
2241 xfs_buf_t *bp;
2242 xfs_imap_t imap;
2243 xfs_dinode_t *dip;
2244 xfs_ino_t ino;
2245 int len;
2246 xfs_caddr_t src;
2247 xfs_caddr_t dest;
2248 int error;
2249 int attr_index;
2250 uint fields;
347d1c01 2251 xfs_icdinode_t *dicp;
6d192a9b 2252 int need_free = 0;
1da177e4
LT
2253
2254 if (pass == XLOG_RECOVER_PASS1) {
2255 return 0;
2256 }
2257
6d192a9b
TS
2258 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2259 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2260 } else {
2261 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2262 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2263 need_free = 1;
2264 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2265 if (error)
2266 goto error;
2267 }
1da177e4
LT
2268 ino = in_f->ilf_ino;
2269 mp = log->l_mp;
2270 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2271 imap.im_blkno = (xfs_daddr_t)in_f->ilf_blkno;
2272 imap.im_len = in_f->ilf_len;
2273 imap.im_boffset = in_f->ilf_boffset;
2274 } else {
2275 /*
2276 * It's an old inode format record. We don't know where
2277 * its cluster is located on disk, and we can't allow
2278 * xfs_imap() to figure it out because the inode btrees
2279 * are not ready to be used. Therefore do not pass the
2280 * XFS_IMAP_LOOKUP flag to xfs_imap(). This will give
2281 * us only the single block in which the inode lives
2282 * rather than its cluster, so we must make sure to
2283 * invalidate the buffer when we write it out below.
2284 */
2285 imap.im_blkno = 0;
64bfe1bf
DC
2286 error = xfs_imap(log->l_mp, NULL, ino, &imap, 0);
2287 if (error)
2288 goto error;
1da177e4
LT
2289 }
2290
2291 /*
2292 * Inode buffers can be freed, look out for it,
2293 * and do not replay the inode.
2294 */
6d192a9b
TS
2295 if (xlog_check_buffer_cancelled(log, imap.im_blkno, imap.im_len, 0)) {
2296 error = 0;
2297 goto error;
2298 }
1da177e4
LT
2299
2300 bp = xfs_buf_read_flags(mp->m_ddev_targp, imap.im_blkno, imap.im_len,
2301 XFS_BUF_LOCK);
2302 if (XFS_BUF_ISERROR(bp)) {
2303 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
2304 bp, imap.im_blkno);
2305 error = XFS_BUF_GETERROR(bp);
2306 xfs_buf_relse(bp);
6d192a9b 2307 goto error;
1da177e4
LT
2308 }
2309 error = 0;
2310 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2311 dip = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
2312
2313 /*
2314 * Make sure the place we're flushing out to really looks
2315 * like an inode!
2316 */
347d1c01 2317 if (unlikely(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC)) {
1da177e4
LT
2318 xfs_buf_relse(bp);
2319 xfs_fs_cmn_err(CE_ALERT, mp,
2320 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2321 dip, bp, ino);
2322 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2323 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2324 error = EFSCORRUPTED;
2325 goto error;
1da177e4 2326 }
347d1c01 2327 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
1da177e4
LT
2328 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2329 xfs_buf_relse(bp);
2330 xfs_fs_cmn_err(CE_ALERT, mp,
2331 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2332 item, ino);
2333 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2334 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2335 error = EFSCORRUPTED;
2336 goto error;
1da177e4
LT
2337 }
2338
2339 /* Skip replay when the on disk inode is newer than the log one */
347d1c01 2340 if (dicp->di_flushiter < be16_to_cpu(dip->di_core.di_flushiter)) {
1da177e4
LT
2341 /*
2342 * Deal with the wrap case, DI_MAX_FLUSH is less
2343 * than smaller numbers
2344 */
347d1c01
CH
2345 if (be16_to_cpu(dip->di_core.di_flushiter) == DI_MAX_FLUSH &&
2346 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2347 /* do nothing */
2348 } else {
2349 xfs_buf_relse(bp);
6d192a9b
TS
2350 error = 0;
2351 goto error;
1da177e4
LT
2352 }
2353 }
2354 /* Take the opportunity to reset the flush iteration count */
2355 dicp->di_flushiter = 0;
2356
2357 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2358 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2359 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2360 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2361 XFS_ERRLEVEL_LOW, mp, dicp);
2362 xfs_buf_relse(bp);
2363 xfs_fs_cmn_err(CE_ALERT, mp,
2364 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2365 item, dip, bp, ino);
6d192a9b
TS
2366 error = EFSCORRUPTED;
2367 goto error;
1da177e4
LT
2368 }
2369 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2370 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2371 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2372 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2373 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2374 XFS_ERRLEVEL_LOW, mp, dicp);
2375 xfs_buf_relse(bp);
2376 xfs_fs_cmn_err(CE_ALERT, mp,
2377 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2378 item, dip, bp, ino);
6d192a9b
TS
2379 error = EFSCORRUPTED;
2380 goto error;
1da177e4
LT
2381 }
2382 }
2383 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2384 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2385 XFS_ERRLEVEL_LOW, mp, dicp);
2386 xfs_buf_relse(bp);
2387 xfs_fs_cmn_err(CE_ALERT, mp,
2388 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2389 item, dip, bp, ino,
2390 dicp->di_nextents + dicp->di_anextents,
2391 dicp->di_nblocks);
6d192a9b
TS
2392 error = EFSCORRUPTED;
2393 goto error;
1da177e4
LT
2394 }
2395 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2396 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2397 XFS_ERRLEVEL_LOW, mp, dicp);
2398 xfs_buf_relse(bp);
2399 xfs_fs_cmn_err(CE_ALERT, mp,
2400 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2401 item, dip, bp, ino, dicp->di_forkoff);
6d192a9b
TS
2402 error = EFSCORRUPTED;
2403 goto error;
1da177e4
LT
2404 }
2405 if (unlikely(item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t))) {
2406 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2407 XFS_ERRLEVEL_LOW, mp, dicp);
2408 xfs_buf_relse(bp);
2409 xfs_fs_cmn_err(CE_ALERT, mp,
2410 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2411 item->ri_buf[1].i_len, item);
6d192a9b
TS
2412 error = EFSCORRUPTED;
2413 goto error;
1da177e4
LT
2414 }
2415
2416 /* The core is in in-core format */
347d1c01
CH
2417 xfs_dinode_to_disk(&dip->di_core,
2418 (xfs_icdinode_t *)item->ri_buf[1].i_addr);
1da177e4
LT
2419
2420 /* the rest is in on-disk format */
2421 if (item->ri_buf[1].i_len > sizeof(xfs_dinode_core_t)) {
2422 memcpy((xfs_caddr_t) dip + sizeof(xfs_dinode_core_t),
2423 item->ri_buf[1].i_addr + sizeof(xfs_dinode_core_t),
2424 item->ri_buf[1].i_len - sizeof(xfs_dinode_core_t));
2425 }
2426
2427 fields = in_f->ilf_fields;
2428 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2429 case XFS_ILOG_DEV:
347d1c01 2430 dip->di_u.di_dev = cpu_to_be32(in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2431 break;
2432 case XFS_ILOG_UUID:
2433 dip->di_u.di_muuid = in_f->ilf_u.ilfu_uuid;
2434 break;
2435 }
2436
2437 if (in_f->ilf_size == 2)
2438 goto write_inode_buffer;
2439 len = item->ri_buf[2].i_len;
2440 src = item->ri_buf[2].i_addr;
2441 ASSERT(in_f->ilf_size <= 4);
2442 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2443 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2444 (len == in_f->ilf_dsize));
2445
2446 switch (fields & XFS_ILOG_DFORK) {
2447 case XFS_ILOG_DDATA:
2448 case XFS_ILOG_DEXT:
2449 memcpy(&dip->di_u, src, len);
2450 break;
2451
2452 case XFS_ILOG_DBROOT:
7cc95a82
CH
2453 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
2454 &dip->di_u.di_bmbt,
1da177e4
LT
2455 XFS_DFORK_DSIZE(dip, mp));
2456 break;
2457
2458 default:
2459 /*
2460 * There are no data fork flags set.
2461 */
2462 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2463 break;
2464 }
2465
2466 /*
2467 * If we logged any attribute data, recover it. There may or
2468 * may not have been any other non-core data logged in this
2469 * transaction.
2470 */
2471 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2472 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2473 attr_index = 3;
2474 } else {
2475 attr_index = 2;
2476 }
2477 len = item->ri_buf[attr_index].i_len;
2478 src = item->ri_buf[attr_index].i_addr;
2479 ASSERT(len == in_f->ilf_asize);
2480
2481 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2482 case XFS_ILOG_ADATA:
2483 case XFS_ILOG_AEXT:
2484 dest = XFS_DFORK_APTR(dip);
2485 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2486 memcpy(dest, src, len);
2487 break;
2488
2489 case XFS_ILOG_ABROOT:
2490 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2491 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2492 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2493 XFS_DFORK_ASIZE(dip, mp));
2494 break;
2495
2496 default:
2497 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2498 ASSERT(0);
2499 xfs_buf_relse(bp);
6d192a9b
TS
2500 error = EIO;
2501 goto error;
1da177e4
LT
2502 }
2503 }
2504
2505write_inode_buffer:
2506 if (ITEM_TYPE(item) == XFS_LI_INODE) {
2507 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2508 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2509 XFS_BUF_SET_FSPRIVATE(bp, mp);
2510 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2511 xfs_bdwrite(mp, bp);
2512 } else {
2513 XFS_BUF_STALE(bp);
2514 error = xfs_bwrite(mp, bp);
2515 }
2516
6d192a9b
TS
2517error:
2518 if (need_free)
f0e2d93c 2519 kmem_free(in_f);
6d192a9b 2520 return XFS_ERROR(error);
1da177e4
LT
2521}
2522
2523/*
2524 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2525 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2526 * of that type.
2527 */
2528STATIC int
2529xlog_recover_do_quotaoff_trans(
2530 xlog_t *log,
2531 xlog_recover_item_t *item,
2532 int pass)
2533{
2534 xfs_qoff_logformat_t *qoff_f;
2535
2536 if (pass == XLOG_RECOVER_PASS2) {
2537 return (0);
2538 }
2539
2540 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2541 ASSERT(qoff_f);
2542
2543 /*
2544 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2545 * group/project quotaoff or both.
1da177e4
LT
2546 */
2547 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2548 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2549 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2550 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2551 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2552 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2553
2554 return (0);
2555}
2556
2557/*
2558 * Recover a dquot record
2559 */
2560STATIC int
2561xlog_recover_do_dquot_trans(
2562 xlog_t *log,
2563 xlog_recover_item_t *item,
2564 int pass)
2565{
2566 xfs_mount_t *mp;
2567 xfs_buf_t *bp;
2568 struct xfs_disk_dquot *ddq, *recddq;
2569 int error;
2570 xfs_dq_logformat_t *dq_f;
2571 uint type;
2572
2573 if (pass == XLOG_RECOVER_PASS1) {
2574 return 0;
2575 }
2576 mp = log->l_mp;
2577
2578 /*
2579 * Filesystems are required to send in quota flags at mount time.
2580 */
2581 if (mp->m_qflags == 0)
2582 return (0);
2583
2584 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
2585 ASSERT(recddq);
2586 /*
2587 * This type of quotas was turned off, so ignore this record.
2588 */
b53e675d 2589 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2590 ASSERT(type);
2591 if (log->l_quotaoffs_flag & type)
2592 return (0);
2593
2594 /*
2595 * At this point we know that quota was _not_ turned off.
2596 * Since the mount flags are not indicating to us otherwise, this
2597 * must mean that quota is on, and the dquot needs to be replayed.
2598 * Remember that we may not have fully recovered the superblock yet,
2599 * so we can't do the usual trick of looking at the SB quota bits.
2600 *
2601 * The other possibility, of course, is that the quota subsystem was
2602 * removed since the last mount - ENOSYS.
2603 */
2604 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2605 ASSERT(dq_f);
2606 if ((error = xfs_qm_dqcheck(recddq,
2607 dq_f->qlf_id,
2608 0, XFS_QMOPT_DOWARN,
2609 "xlog_recover_do_dquot_trans (log copy)"))) {
2610 return XFS_ERROR(EIO);
2611 }
2612 ASSERT(dq_f->qlf_len == 1);
2613
2614 error = xfs_read_buf(mp, mp->m_ddev_targp,
2615 dq_f->qlf_blkno,
2616 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2617 0, &bp);
2618 if (error) {
2619 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2620 bp, dq_f->qlf_blkno);
2621 return error;
2622 }
2623 ASSERT(bp);
2624 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2625
2626 /*
2627 * At least the magic num portion should be on disk because this
2628 * was among a chunk of dquots created earlier, and we did some
2629 * minimal initialization then.
2630 */
2631 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2632 "xlog_recover_do_dquot_trans")) {
2633 xfs_buf_relse(bp);
2634 return XFS_ERROR(EIO);
2635 }
2636
2637 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2638
2639 ASSERT(dq_f->qlf_size == 2);
2640 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL ||
2641 XFS_BUF_FSPRIVATE(bp, xfs_mount_t *) == mp);
2642 XFS_BUF_SET_FSPRIVATE(bp, mp);
2643 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2644 xfs_bdwrite(mp, bp);
2645
2646 return (0);
2647}
2648
2649/*
2650 * This routine is called to create an in-core extent free intent
2651 * item from the efi format structure which was logged on disk.
2652 * It allocates an in-core efi, copies the extents from the format
2653 * structure into it, and adds the efi to the AIL with the given
2654 * LSN.
2655 */
6d192a9b 2656STATIC int
1da177e4
LT
2657xlog_recover_do_efi_trans(
2658 xlog_t *log,
2659 xlog_recover_item_t *item,
2660 xfs_lsn_t lsn,
2661 int pass)
2662{
6d192a9b 2663 int error;
1da177e4
LT
2664 xfs_mount_t *mp;
2665 xfs_efi_log_item_t *efip;
2666 xfs_efi_log_format_t *efi_formatp;
1da177e4
LT
2667
2668 if (pass == XLOG_RECOVER_PASS1) {
6d192a9b 2669 return 0;
1da177e4
LT
2670 }
2671
2672 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
1da177e4
LT
2673
2674 mp = log->l_mp;
2675 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2676 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2677 &(efip->efi_format)))) {
2678 xfs_efi_item_free(efip);
2679 return error;
2680 }
1da177e4
LT
2681 efip->efi_next_extent = efi_formatp->efi_nextents;
2682 efip->efi_flags |= XFS_EFI_COMMITTED;
2683
a9c21c1b 2684 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2685 /*
783a2f65 2686 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2687 */
783a2f65 2688 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
6d192a9b 2689 return 0;
1da177e4
LT
2690}
2691
2692
2693/*
2694 * This routine is called when an efd format structure is found in
2695 * a committed transaction in the log. It's purpose is to cancel
2696 * the corresponding efi if it was still in the log. To do this
2697 * it searches the AIL for the efi with an id equal to that in the
2698 * efd format structure. If we find it, we remove the efi from the
2699 * AIL and free it.
2700 */
2701STATIC void
2702xlog_recover_do_efd_trans(
2703 xlog_t *log,
2704 xlog_recover_item_t *item,
2705 int pass)
2706{
1da177e4
LT
2707 xfs_efd_log_format_t *efd_formatp;
2708 xfs_efi_log_item_t *efip = NULL;
2709 xfs_log_item_t *lip;
1da177e4 2710 __uint64_t efi_id;
27d8d5fe 2711 struct xfs_ail_cursor cur;
783a2f65 2712 struct xfs_ail *ailp = log->l_ailp;
1da177e4
LT
2713
2714 if (pass == XLOG_RECOVER_PASS1) {
2715 return;
2716 }
2717
2718 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
6d192a9b
TS
2719 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2720 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2721 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2722 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2723 efi_id = efd_formatp->efd_efi_id;
2724
2725 /*
2726 * Search for the efi with the id in the efd format structure
2727 * in the AIL.
2728 */
a9c21c1b
DC
2729 spin_lock(&ailp->xa_lock);
2730 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2731 while (lip != NULL) {
2732 if (lip->li_type == XFS_LI_EFI) {
2733 efip = (xfs_efi_log_item_t *)lip;
2734 if (efip->efi_format.efi_id == efi_id) {
2735 /*
783a2f65 2736 * xfs_trans_ail_delete() drops the
1da177e4
LT
2737 * AIL lock.
2738 */
783a2f65 2739 xfs_trans_ail_delete(ailp, lip);
8ae2c0f6 2740 xfs_efi_item_free(efip);
a9c21c1b 2741 spin_lock(&ailp->xa_lock);
27d8d5fe 2742 break;
1da177e4
LT
2743 }
2744 }
a9c21c1b 2745 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2746 }
a9c21c1b
DC
2747 xfs_trans_ail_cursor_done(ailp, &cur);
2748 spin_unlock(&ailp->xa_lock);
1da177e4
LT
2749}
2750
2751/*
2752 * Perform the transaction
2753 *
2754 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2755 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2756 */
2757STATIC int
2758xlog_recover_do_trans(
2759 xlog_t *log,
2760 xlog_recover_t *trans,
2761 int pass)
2762{
2763 int error = 0;
2764 xlog_recover_item_t *item, *first_item;
2765
e9ed9d22 2766 if ((error = xlog_recover_reorder_trans(trans)))
1da177e4
LT
2767 return error;
2768 first_item = item = trans->r_itemq;
2769 do {
2770 /*
2771 * we don't need to worry about the block number being
2772 * truncated in > 1 TB buffers because in user-land,
2773 * we're now n32 or 64-bit so xfs_daddr_t is 64-bits so
c41564b5 2774 * the blknos will get through the user-mode buffer
1da177e4
LT
2775 * cache properly. The only bad case is o32 kernels
2776 * where xfs_daddr_t is 32-bits but mount will warn us
2777 * off a > 1 TB filesystem before we get here.
2778 */
804195b6 2779 if ((ITEM_TYPE(item) == XFS_LI_BUF)) {
1da177e4
LT
2780 if ((error = xlog_recover_do_buffer_trans(log, item,
2781 pass)))
2782 break;
6d192a9b 2783 } else if ((ITEM_TYPE(item) == XFS_LI_INODE)) {
1da177e4
LT
2784 if ((error = xlog_recover_do_inode_trans(log, item,
2785 pass)))
2786 break;
2787 } else if (ITEM_TYPE(item) == XFS_LI_EFI) {
6d192a9b
TS
2788 if ((error = xlog_recover_do_efi_trans(log, item, trans->r_lsn,
2789 pass)))
2790 break;
1da177e4
LT
2791 } else if (ITEM_TYPE(item) == XFS_LI_EFD) {
2792 xlog_recover_do_efd_trans(log, item, pass);
2793 } else if (ITEM_TYPE(item) == XFS_LI_DQUOT) {
2794 if ((error = xlog_recover_do_dquot_trans(log, item,
2795 pass)))
2796 break;
2797 } else if ((ITEM_TYPE(item) == XFS_LI_QUOTAOFF)) {
2798 if ((error = xlog_recover_do_quotaoff_trans(log, item,
2799 pass)))
2800 break;
2801 } else {
2802 xlog_warn("XFS: xlog_recover_do_trans");
2803 ASSERT(0);
2804 error = XFS_ERROR(EIO);
2805 break;
2806 }
2807 item = item->ri_next;
2808 } while (first_item != item);
2809
2810 return error;
2811}
2812
2813/*
2814 * Free up any resources allocated by the transaction
2815 *
2816 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2817 */
2818STATIC void
2819xlog_recover_free_trans(
2820 xlog_recover_t *trans)
2821{
2822 xlog_recover_item_t *first_item, *item, *free_item;
2823 int i;
2824
2825 item = first_item = trans->r_itemq;
2826 do {
2827 free_item = item;
2828 item = item->ri_next;
2829 /* Free the regions in the item. */
2830 for (i = 0; i < free_item->ri_cnt; i++) {
f0e2d93c 2831 kmem_free(free_item->ri_buf[i].i_addr);
1da177e4
LT
2832 }
2833 /* Free the item itself */
f0e2d93c
DV
2834 kmem_free(free_item->ri_buf);
2835 kmem_free(free_item);
1da177e4
LT
2836 } while (first_item != item);
2837 /* Free the transaction recover structure */
f0e2d93c 2838 kmem_free(trans);
1da177e4
LT
2839}
2840
2841STATIC int
2842xlog_recover_commit_trans(
2843 xlog_t *log,
2844 xlog_recover_t **q,
2845 xlog_recover_t *trans,
2846 int pass)
2847{
2848 int error;
2849
2850 if ((error = xlog_recover_unlink_tid(q, trans)))
2851 return error;
2852 if ((error = xlog_recover_do_trans(log, trans, pass)))
2853 return error;
2854 xlog_recover_free_trans(trans); /* no error */
2855 return 0;
2856}
2857
2858STATIC int
2859xlog_recover_unmount_trans(
2860 xlog_recover_t *trans)
2861{
2862 /* Do nothing now */
2863 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2864 return 0;
2865}
2866
2867/*
2868 * There are two valid states of the r_state field. 0 indicates that the
2869 * transaction structure is in a normal state. We have either seen the
2870 * start of the transaction or the last operation we added was not a partial
2871 * operation. If the last operation we added to the transaction was a
2872 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2873 *
2874 * NOTE: skip LRs with 0 data length.
2875 */
2876STATIC int
2877xlog_recover_process_data(
2878 xlog_t *log,
2879 xlog_recover_t *rhash[],
2880 xlog_rec_header_t *rhead,
2881 xfs_caddr_t dp,
2882 int pass)
2883{
2884 xfs_caddr_t lp;
2885 int num_logops;
2886 xlog_op_header_t *ohead;
2887 xlog_recover_t *trans;
2888 xlog_tid_t tid;
2889 int error;
2890 unsigned long hash;
2891 uint flags;
2892
b53e675d
CH
2893 lp = dp + be32_to_cpu(rhead->h_len);
2894 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2895
2896 /* check the log format matches our own - else we can't recover */
2897 if (xlog_header_check_recover(log->l_mp, rhead))
2898 return (XFS_ERROR(EIO));
2899
2900 while ((dp < lp) && num_logops) {
2901 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2902 ohead = (xlog_op_header_t *)dp;
2903 dp += sizeof(xlog_op_header_t);
2904 if (ohead->oh_clientid != XFS_TRANSACTION &&
2905 ohead->oh_clientid != XFS_LOG) {
2906 xlog_warn(
2907 "XFS: xlog_recover_process_data: bad clientid");
2908 ASSERT(0);
2909 return (XFS_ERROR(EIO));
2910 }
67fcb7bf 2911 tid = be32_to_cpu(ohead->oh_tid);
1da177e4
LT
2912 hash = XLOG_RHASH(tid);
2913 trans = xlog_recover_find_tid(rhash[hash], tid);
2914 if (trans == NULL) { /* not found; add new tid */
2915 if (ohead->oh_flags & XLOG_START_TRANS)
2916 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2917 be64_to_cpu(rhead->h_lsn));
1da177e4 2918 } else {
9742bb93
LM
2919 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2920 xlog_warn(
2921 "XFS: xlog_recover_process_data: bad length");
2922 WARN_ON(1);
2923 return (XFS_ERROR(EIO));
2924 }
1da177e4
LT
2925 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2926 if (flags & XLOG_WAS_CONT_TRANS)
2927 flags &= ~XLOG_CONTINUE_TRANS;
2928 switch (flags) {
2929 case XLOG_COMMIT_TRANS:
2930 error = xlog_recover_commit_trans(log,
2931 &rhash[hash], trans, pass);
2932 break;
2933 case XLOG_UNMOUNT_TRANS:
2934 error = xlog_recover_unmount_trans(trans);
2935 break;
2936 case XLOG_WAS_CONT_TRANS:
2937 error = xlog_recover_add_to_cont_trans(trans,
67fcb7bf 2938 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2939 break;
2940 case XLOG_START_TRANS:
2941 xlog_warn(
2942 "XFS: xlog_recover_process_data: bad transaction");
2943 ASSERT(0);
2944 error = XFS_ERROR(EIO);
2945 break;
2946 case 0:
2947 case XLOG_CONTINUE_TRANS:
2948 error = xlog_recover_add_to_trans(trans,
67fcb7bf 2949 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2950 break;
2951 default:
2952 xlog_warn(
2953 "XFS: xlog_recover_process_data: bad flag");
2954 ASSERT(0);
2955 error = XFS_ERROR(EIO);
2956 break;
2957 }
2958 if (error)
2959 return error;
2960 }
67fcb7bf 2961 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2962 num_logops--;
2963 }
2964 return 0;
2965}
2966
2967/*
2968 * Process an extent free intent item that was recovered from
2969 * the log. We need to free the extents that it describes.
2970 */
3c1e2bbe 2971STATIC int
1da177e4
LT
2972xlog_recover_process_efi(
2973 xfs_mount_t *mp,
2974 xfs_efi_log_item_t *efip)
2975{
2976 xfs_efd_log_item_t *efdp;
2977 xfs_trans_t *tp;
2978 int i;
3c1e2bbe 2979 int error = 0;
1da177e4
LT
2980 xfs_extent_t *extp;
2981 xfs_fsblock_t startblock_fsb;
2982
2983 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
2984
2985 /*
2986 * First check the validity of the extents described by the
2987 * EFI. If any are bad, then assume that all are bad and
2988 * just toss the EFI.
2989 */
2990 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2991 extp = &(efip->efi_format.efi_extents[i]);
2992 startblock_fsb = XFS_BB_TO_FSB(mp,
2993 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2994 if ((startblock_fsb == 0) ||
2995 (extp->ext_len == 0) ||
2996 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2997 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2998 /*
2999 * This will pull the EFI from the AIL and
3000 * free the memory associated with it.
3001 */
3002 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3003 return XFS_ERROR(EIO);
1da177e4
LT
3004 }
3005 }
3006
3007 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 3008 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
3009 if (error)
3010 goto abort_error;
1da177e4
LT
3011 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3012
3013 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3014 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3015 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3016 if (error)
3017 goto abort_error;
1da177e4
LT
3018 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3019 extp->ext_len);
3020 }
3021
3022 efip->efi_flags |= XFS_EFI_RECOVERED;
e5720eec 3023 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3024 return error;
fc6149d8
DC
3025
3026abort_error:
3027 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3028 return error;
1da177e4
LT
3029}
3030
1da177e4
LT
3031/*
3032 * When this is called, all of the EFIs which did not have
3033 * corresponding EFDs should be in the AIL. What we do now
3034 * is free the extents associated with each one.
3035 *
3036 * Since we process the EFIs in normal transactions, they
3037 * will be removed at some point after the commit. This prevents
3038 * us from just walking down the list processing each one.
3039 * We'll use a flag in the EFI to skip those that we've already
3040 * processed and use the AIL iteration mechanism's generation
3041 * count to try to speed this up at least a bit.
3042 *
3043 * When we start, we know that the EFIs are the only things in
3044 * the AIL. As we process them, however, other items are added
3045 * to the AIL. Since everything added to the AIL must come after
3046 * everything already in the AIL, we stop processing as soon as
3047 * we see something other than an EFI in the AIL.
3048 */
3c1e2bbe 3049STATIC int
1da177e4
LT
3050xlog_recover_process_efis(
3051 xlog_t *log)
3052{
3053 xfs_log_item_t *lip;
3054 xfs_efi_log_item_t *efip;
3c1e2bbe 3055 int error = 0;
27d8d5fe 3056 struct xfs_ail_cursor cur;
a9c21c1b 3057 struct xfs_ail *ailp;
1da177e4 3058
a9c21c1b
DC
3059 ailp = log->l_ailp;
3060 spin_lock(&ailp->xa_lock);
3061 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3062 while (lip != NULL) {
3063 /*
3064 * We're done when we see something other than an EFI.
27d8d5fe 3065 * There should be no EFIs left in the AIL now.
1da177e4
LT
3066 */
3067 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3068#ifdef DEBUG
a9c21c1b 3069 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3070 ASSERT(lip->li_type != XFS_LI_EFI);
3071#endif
1da177e4
LT
3072 break;
3073 }
3074
3075 /*
3076 * Skip EFIs that we've already processed.
3077 */
3078 efip = (xfs_efi_log_item_t *)lip;
3079 if (efip->efi_flags & XFS_EFI_RECOVERED) {
a9c21c1b 3080 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3081 continue;
3082 }
3083
a9c21c1b
DC
3084 spin_unlock(&ailp->xa_lock);
3085 error = xlog_recover_process_efi(log->l_mp, efip);
3086 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3087 if (error)
3088 goto out;
a9c21c1b 3089 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3090 }
27d8d5fe 3091out:
a9c21c1b
DC
3092 xfs_trans_ail_cursor_done(ailp, &cur);
3093 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3094 return error;
1da177e4
LT
3095}
3096
3097/*
3098 * This routine performs a transaction to null out a bad inode pointer
3099 * in an agi unlinked inode hash bucket.
3100 */
3101STATIC void
3102xlog_recover_clear_agi_bucket(
3103 xfs_mount_t *mp,
3104 xfs_agnumber_t agno,
3105 int bucket)
3106{
3107 xfs_trans_t *tp;
3108 xfs_agi_t *agi;
3109 xfs_buf_t *agibp;
3110 int offset;
3111 int error;
3112
3113 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3c1e2bbe
DC
3114 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp), 0, 0, 0);
3115 if (!error)
3116 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1da177e4
LT
3117 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3118 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
e5720eec
DC
3119 if (error)
3120 goto out_abort;
1da177e4 3121
e5720eec 3122 error = EINVAL;
1da177e4 3123 agi = XFS_BUF_TO_AGI(agibp);
e5720eec
DC
3124 if (be32_to_cpu(agi->agi_magicnum) != XFS_AGI_MAGIC)
3125 goto out_abort;
1da177e4 3126
16259e7d 3127 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3128 offset = offsetof(xfs_agi_t, agi_unlinked) +
3129 (sizeof(xfs_agino_t) * bucket);
3130 xfs_trans_log_buf(tp, agibp, offset,
3131 (offset + sizeof(xfs_agino_t) - 1));
3132
e5720eec
DC
3133 error = xfs_trans_commit(tp, 0);
3134 if (error)
3135 goto out_error;
3136 return;
3137
3138out_abort:
3139 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3140out_error:
3141 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3142 "failed to clear agi %d. Continuing.", agno);
3143 return;
1da177e4
LT
3144}
3145
3146/*
3147 * xlog_iunlink_recover
3148 *
3149 * This is called during recovery to process any inodes which
3150 * we unlinked but not freed when the system crashed. These
3151 * inodes will be on the lists in the AGI blocks. What we do
3152 * here is scan all the AGIs and fully truncate and free any
3153 * inodes found on the lists. Each inode is removed from the
3154 * lists when it has been fully truncated and is freed. The
3155 * freeing of the inode and its removal from the list must be
3156 * atomic.
3157 */
3158void
3159xlog_recover_process_iunlinks(
3160 xlog_t *log)
3161{
3162 xfs_mount_t *mp;
3163 xfs_agnumber_t agno;
3164 xfs_agi_t *agi;
3165 xfs_buf_t *agibp;
3166 xfs_buf_t *ibp;
3167 xfs_dinode_t *dip;
3168 xfs_inode_t *ip;
3169 xfs_agino_t agino;
3170 xfs_ino_t ino;
3171 int bucket;
3172 int error;
3173 uint mp_dmevmask;
3174
3175 mp = log->l_mp;
3176
3177 /*
3178 * Prevent any DMAPI event from being sent while in this function.
3179 */
3180 mp_dmevmask = mp->m_dmevmask;
3181 mp->m_dmevmask = 0;
3182
3183 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3184 /*
3185 * Find the agi for this ag.
3186 */
3187 agibp = xfs_buf_read(mp->m_ddev_targp,
3188 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
3189 XFS_FSS_TO_BB(mp, 1), 0);
3190 if (XFS_BUF_ISERROR(agibp)) {
3191 xfs_ioerror_alert("xlog_recover_process_iunlinks(#1)",
3192 log->l_mp, agibp,
3193 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)));
3194 }
3195 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3196 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agi->agi_magicnum));
1da177e4
LT
3197
3198 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
3199
16259e7d 3200 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4
LT
3201 while (agino != NULLAGINO) {
3202
3203 /*
3204 * Release the agi buffer so that it can
3205 * be acquired in the normal course of the
3206 * transaction to truncate and free the inode.
3207 */
3208 xfs_buf_relse(agibp);
3209
3210 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3211 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3212 ASSERT(error || (ip != NULL));
3213
3214 if (!error) {
3215 /*
3216 * Get the on disk inode to find the
3217 * next inode in the bucket.
3218 */
3219 error = xfs_itobp(mp, NULL, ip, &dip,
a3f74ffb
DC
3220 &ibp, 0, 0,
3221 XFS_BUF_LOCK);
1da177e4
LT
3222 ASSERT(error || (dip != NULL));
3223 }
3224
3225 if (!error) {
3226 ASSERT(ip->i_d.di_nlink == 0);
3227
3228 /* setup for the next pass */
347d1c01
CH
3229 agino = be32_to_cpu(
3230 dip->di_next_unlinked);
1da177e4
LT
3231 xfs_buf_relse(ibp);
3232 /*
3233 * Prevent any DMAPI event from
3234 * being sent when the
3235 * reference on the inode is
3236 * dropped.
3237 */
3238 ip->i_d.di_dmevmask = 0;
3239
3240 /*
3241 * If this is a new inode, handle
3242 * it specially. Otherwise,
3243 * just drop our reference to the
3244 * inode. If there are no
3245 * other references, this will
3246 * send the inode to
3247 * xfs_inactive() which will
3248 * truncate the file and free
3249 * the inode.
3250 */
3251 if (ip->i_d.di_mode == 0)
3252 xfs_iput_new(ip, 0);
3253 else
43355099 3254 IRELE(ip);
1da177e4
LT
3255 } else {
3256 /*
3257 * We can't read in the inode
3258 * this bucket points to, or
3259 * this inode is messed up. Just
3260 * ditch this bucket of inodes. We
3261 * will lose some inodes and space,
3262 * but at least we won't hang. Call
3263 * xlog_recover_clear_agi_bucket()
3264 * to perform a transaction to clear
3265 * the inode pointer in the bucket.
3266 */
3267 xlog_recover_clear_agi_bucket(mp, agno,
3268 bucket);
3269
3270 agino = NULLAGINO;
3271 }
3272
3273 /*
3274 * Reacquire the agibuffer and continue around
3275 * the loop.
3276 */
3277 agibp = xfs_buf_read(mp->m_ddev_targp,
3278 XFS_AG_DADDR(mp, agno,
3279 XFS_AGI_DADDR(mp)),
3280 XFS_FSS_TO_BB(mp, 1), 0);
3281 if (XFS_BUF_ISERROR(agibp)) {
3282 xfs_ioerror_alert(
3283 "xlog_recover_process_iunlinks(#2)",
3284 log->l_mp, agibp,
3285 XFS_AG_DADDR(mp, agno,
3286 XFS_AGI_DADDR(mp)));
3287 }
3288 agi = XFS_BUF_TO_AGI(agibp);
16259e7d
CH
3289 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(
3290 agi->agi_magicnum));
1da177e4
LT
3291 }
3292 }
3293
3294 /*
3295 * Release the buffer for the current agi so we can
3296 * go on to the next one.
3297 */
3298 xfs_buf_relse(agibp);
3299 }
3300
3301 mp->m_dmevmask = mp_dmevmask;
3302}
3303
3304
3305#ifdef DEBUG
3306STATIC void
3307xlog_pack_data_checksum(
3308 xlog_t *log,
3309 xlog_in_core_t *iclog,
3310 int size)
3311{
3312 int i;
b53e675d 3313 __be32 *up;
1da177e4
LT
3314 uint chksum = 0;
3315
b53e675d 3316 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3317 /* divide length by 4 to get # words */
3318 for (i = 0; i < (size >> 2); i++) {
b53e675d 3319 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3320 up++;
3321 }
b53e675d 3322 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3323}
3324#else
3325#define xlog_pack_data_checksum(log, iclog, size)
3326#endif
3327
3328/*
3329 * Stamp cycle number in every block
3330 */
3331void
3332xlog_pack_data(
3333 xlog_t *log,
3334 xlog_in_core_t *iclog,
3335 int roundoff)
3336{
3337 int i, j, k;
3338 int size = iclog->ic_offset + roundoff;
b53e675d 3339 __be32 cycle_lsn;
1da177e4
LT
3340 xfs_caddr_t dp;
3341 xlog_in_core_2_t *xhdr;
3342
3343 xlog_pack_data_checksum(log, iclog, size);
3344
3345 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3346
3347 dp = iclog->ic_datap;
3348 for (i = 0; i < BTOBB(size) &&
3349 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3350 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3351 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3352 dp += BBSIZE;
3353 }
3354
62118709 3355 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3356 xhdr = (xlog_in_core_2_t *)&iclog->ic_header;
3357 for ( ; i < BTOBB(size); i++) {
3358 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3359 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3360 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3361 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3362 dp += BBSIZE;
3363 }
3364
3365 for (i = 1; i < log->l_iclog_heads; i++) {
3366 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3367 }
3368 }
3369}
3370
3371#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3372STATIC void
3373xlog_unpack_data_checksum(
3374 xlog_rec_header_t *rhead,
3375 xfs_caddr_t dp,
3376 xlog_t *log)
3377{
b53e675d 3378 __be32 *up = (__be32 *)dp;
1da177e4
LT
3379 uint chksum = 0;
3380 int i;
3381
3382 /* divide length by 4 to get # words */
b53e675d
CH
3383 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3384 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3385 up++;
3386 }
b53e675d 3387 if (chksum != be32_to_cpu(rhead->h_chksum)) {
1da177e4
LT
3388 if (rhead->h_chksum ||
3389 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3390 cmn_err(CE_DEBUG,
b6574520 3391 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
b53e675d 3392 be32_to_cpu(rhead->h_chksum), chksum);
1da177e4
LT
3393 cmn_err(CE_DEBUG,
3394"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
62118709 3395 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4 3396 cmn_err(CE_DEBUG,
b6574520 3397 "XFS: LogR this is a LogV2 filesystem\n");
1da177e4
LT
3398 }
3399 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3400 }
3401 }
3402}
3403#else
3404#define xlog_unpack_data_checksum(rhead, dp, log)
3405#endif
3406
3407STATIC void
3408xlog_unpack_data(
3409 xlog_rec_header_t *rhead,
3410 xfs_caddr_t dp,
3411 xlog_t *log)
3412{
3413 int i, j, k;
3414 xlog_in_core_2_t *xhdr;
3415
b53e675d 3416 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3417 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3418 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3419 dp += BBSIZE;
3420 }
3421
62118709 3422 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4 3423 xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3424 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3425 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3426 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3427 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3428 dp += BBSIZE;
3429 }
3430 }
3431
3432 xlog_unpack_data_checksum(rhead, dp, log);
3433}
3434
3435STATIC int
3436xlog_valid_rec_header(
3437 xlog_t *log,
3438 xlog_rec_header_t *rhead,
3439 xfs_daddr_t blkno)
3440{
3441 int hlen;
3442
b53e675d 3443 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
3444 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3445 XFS_ERRLEVEL_LOW, log->l_mp);
3446 return XFS_ERROR(EFSCORRUPTED);
3447 }
3448 if (unlikely(
3449 (!rhead->h_version ||
b53e675d 3450 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
1da177e4 3451 xlog_warn("XFS: %s: unrecognised log version (%d).",
34a622b2 3452 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3453 return XFS_ERROR(EIO);
3454 }
3455
3456 /* LR body must have data or it wouldn't have been written */
b53e675d 3457 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3458 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3459 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3460 XFS_ERRLEVEL_LOW, log->l_mp);
3461 return XFS_ERROR(EFSCORRUPTED);
3462 }
3463 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3464 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3465 XFS_ERRLEVEL_LOW, log->l_mp);
3466 return XFS_ERROR(EFSCORRUPTED);
3467 }
3468 return 0;
3469}
3470
3471/*
3472 * Read the log from tail to head and process the log records found.
3473 * Handle the two cases where the tail and head are in the same cycle
3474 * and where the active portion of the log wraps around the end of
3475 * the physical log separately. The pass parameter is passed through
3476 * to the routines called to process the data and is not looked at
3477 * here.
3478 */
3479STATIC int
3480xlog_do_recovery_pass(
3481 xlog_t *log,
3482 xfs_daddr_t head_blk,
3483 xfs_daddr_t tail_blk,
3484 int pass)
3485{
3486 xlog_rec_header_t *rhead;
3487 xfs_daddr_t blk_no;
3488 xfs_caddr_t bufaddr, offset;
3489 xfs_buf_t *hbp, *dbp;
3490 int error = 0, h_size;
3491 int bblks, split_bblks;
3492 int hblks, split_hblks, wrapped_hblks;
3493 xlog_recover_t *rhash[XLOG_RHASH_SIZE];
3494
3495 ASSERT(head_blk != tail_blk);
3496
3497 /*
3498 * Read the header of the tail block and get the iclog buffer size from
3499 * h_size. Use this to tell how many sectors make up the log header.
3500 */
62118709 3501 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3502 /*
3503 * When using variable length iclogs, read first sector of
3504 * iclog header and extract the header size from it. Get a
3505 * new hbp that is the correct size.
3506 */
3507 hbp = xlog_get_bp(log, 1);
3508 if (!hbp)
3509 return ENOMEM;
3510 if ((error = xlog_bread(log, tail_blk, 1, hbp)))
3511 goto bread_err1;
3512 offset = xlog_align(log, tail_blk, 1, hbp);
3513 rhead = (xlog_rec_header_t *)offset;
3514 error = xlog_valid_rec_header(log, rhead, tail_blk);
3515 if (error)
3516 goto bread_err1;
b53e675d
CH
3517 h_size = be32_to_cpu(rhead->h_size);
3518 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3519 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3520 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3521 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3522 hblks++;
3523 xlog_put_bp(hbp);
3524 hbp = xlog_get_bp(log, hblks);
3525 } else {
3526 hblks = 1;
3527 }
3528 } else {
3529 ASSERT(log->l_sectbb_log == 0);
3530 hblks = 1;
3531 hbp = xlog_get_bp(log, 1);
3532 h_size = XLOG_BIG_RECORD_BSIZE;
3533 }
3534
3535 if (!hbp)
3536 return ENOMEM;
3537 dbp = xlog_get_bp(log, BTOBB(h_size));
3538 if (!dbp) {
3539 xlog_put_bp(hbp);
3540 return ENOMEM;
3541 }
3542
3543 memset(rhash, 0, sizeof(rhash));
3544 if (tail_blk <= head_blk) {
3545 for (blk_no = tail_blk; blk_no < head_blk; ) {
3546 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3547 goto bread_err2;
3548 offset = xlog_align(log, blk_no, hblks, hbp);
3549 rhead = (xlog_rec_header_t *)offset;
3550 error = xlog_valid_rec_header(log, rhead, blk_no);
3551 if (error)
3552 goto bread_err2;
3553
3554 /* blocks in data section */
b53e675d 3555 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3556 error = xlog_bread(log, blk_no + hblks, bblks, dbp);
3557 if (error)
3558 goto bread_err2;
3559 offset = xlog_align(log, blk_no + hblks, bblks, dbp);
3560 xlog_unpack_data(rhead, offset, log);
3561 if ((error = xlog_recover_process_data(log,
3562 rhash, rhead, offset, pass)))
3563 goto bread_err2;
3564 blk_no += bblks + hblks;
3565 }
3566 } else {
3567 /*
3568 * Perform recovery around the end of the physical log.
3569 * When the head is not on the same cycle number as the tail,
3570 * we can't do a sequential recovery as above.
3571 */
3572 blk_no = tail_blk;
3573 while (blk_no < log->l_logBBsize) {
3574 /*
3575 * Check for header wrapping around physical end-of-log
3576 */
3577 offset = NULL;
3578 split_hblks = 0;
3579 wrapped_hblks = 0;
3580 if (blk_no + hblks <= log->l_logBBsize) {
3581 /* Read header in one read */
3582 error = xlog_bread(log, blk_no, hblks, hbp);
3583 if (error)
3584 goto bread_err2;
3585 offset = xlog_align(log, blk_no, hblks, hbp);
3586 } else {
3587 /* This LR is split across physical log end */
3588 if (blk_no != log->l_logBBsize) {
3589 /* some data before physical log end */
3590 ASSERT(blk_no <= INT_MAX);
3591 split_hblks = log->l_logBBsize - (int)blk_no;
3592 ASSERT(split_hblks > 0);
3593 if ((error = xlog_bread(log, blk_no,
3594 split_hblks, hbp)))
3595 goto bread_err2;
3596 offset = xlog_align(log, blk_no,
3597 split_hblks, hbp);
3598 }
3599 /*
3600 * Note: this black magic still works with
3601 * large sector sizes (non-512) only because:
3602 * - we increased the buffer size originally
3603 * by 1 sector giving us enough extra space
3604 * for the second read;
3605 * - the log start is guaranteed to be sector
3606 * aligned;
3607 * - we read the log end (LR header start)
3608 * _first_, then the log start (LR header end)
3609 * - order is important.
3610 */
234f56ac 3611 wrapped_hblks = hblks - split_hblks;
1da177e4 3612 bufaddr = XFS_BUF_PTR(hbp);
234f56ac 3613 error = XFS_BUF_SET_PTR(hbp,
1da177e4
LT
3614 bufaddr + BBTOB(split_hblks),
3615 BBTOB(hblks - split_hblks));
234f56ac
DC
3616 if (!error)
3617 error = xlog_bread(log, 0,
3618 wrapped_hblks, hbp);
3619 if (!error)
3620 error = XFS_BUF_SET_PTR(hbp, bufaddr,
3621 BBTOB(hblks));
1da177e4
LT
3622 if (error)
3623 goto bread_err2;
1da177e4
LT
3624 if (!offset)
3625 offset = xlog_align(log, 0,
3626 wrapped_hblks, hbp);
3627 }
3628 rhead = (xlog_rec_header_t *)offset;
3629 error = xlog_valid_rec_header(log, rhead,
3630 split_hblks ? blk_no : 0);
3631 if (error)
3632 goto bread_err2;
3633
b53e675d 3634 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3635 blk_no += hblks;
3636
3637 /* Read in data for log record */
3638 if (blk_no + bblks <= log->l_logBBsize) {
3639 error = xlog_bread(log, blk_no, bblks, dbp);
3640 if (error)
3641 goto bread_err2;
3642 offset = xlog_align(log, blk_no, bblks, dbp);
3643 } else {
3644 /* This log record is split across the
3645 * physical end of log */
3646 offset = NULL;
3647 split_bblks = 0;
3648 if (blk_no != log->l_logBBsize) {
3649 /* some data is before the physical
3650 * end of log */
3651 ASSERT(!wrapped_hblks);
3652 ASSERT(blk_no <= INT_MAX);
3653 split_bblks =
3654 log->l_logBBsize - (int)blk_no;
3655 ASSERT(split_bblks > 0);
3656 if ((error = xlog_bread(log, blk_no,
3657 split_bblks, dbp)))
3658 goto bread_err2;
3659 offset = xlog_align(log, blk_no,
3660 split_bblks, dbp);
3661 }
3662 /*
3663 * Note: this black magic still works with
3664 * large sector sizes (non-512) only because:
3665 * - we increased the buffer size originally
3666 * by 1 sector giving us enough extra space
3667 * for the second read;
3668 * - the log start is guaranteed to be sector
3669 * aligned;
3670 * - we read the log end (LR header start)
3671 * _first_, then the log start (LR header end)
3672 * - order is important.
3673 */
3674 bufaddr = XFS_BUF_PTR(dbp);
234f56ac 3675 error = XFS_BUF_SET_PTR(dbp,
1da177e4
LT
3676 bufaddr + BBTOB(split_bblks),
3677 BBTOB(bblks - split_bblks));
234f56ac
DC
3678 if (!error)
3679 error = xlog_bread(log, wrapped_hblks,
3680 bblks - split_bblks,
3681 dbp);
3682 if (!error)
3683 error = XFS_BUF_SET_PTR(dbp, bufaddr,
3684 h_size);
3685 if (error)
1da177e4 3686 goto bread_err2;
1da177e4
LT
3687 if (!offset)
3688 offset = xlog_align(log, wrapped_hblks,
3689 bblks - split_bblks, dbp);
3690 }
3691 xlog_unpack_data(rhead, offset, log);
3692 if ((error = xlog_recover_process_data(log, rhash,
3693 rhead, offset, pass)))
3694 goto bread_err2;
3695 blk_no += bblks;
3696 }
3697
3698 ASSERT(blk_no >= log->l_logBBsize);
3699 blk_no -= log->l_logBBsize;
3700
3701 /* read first part of physical log */
3702 while (blk_no < head_blk) {
3703 if ((error = xlog_bread(log, blk_no, hblks, hbp)))
3704 goto bread_err2;
3705 offset = xlog_align(log, blk_no, hblks, hbp);
3706 rhead = (xlog_rec_header_t *)offset;
3707 error = xlog_valid_rec_header(log, rhead, blk_no);
3708 if (error)
3709 goto bread_err2;
b53e675d 3710 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3711 if ((error = xlog_bread(log, blk_no+hblks, bblks, dbp)))
3712 goto bread_err2;
3713 offset = xlog_align(log, blk_no+hblks, bblks, dbp);
3714 xlog_unpack_data(rhead, offset, log);
3715 if ((error = xlog_recover_process_data(log, rhash,
3716 rhead, offset, pass)))
3717 goto bread_err2;
3718 blk_no += bblks + hblks;
3719 }
3720 }
3721
3722 bread_err2:
3723 xlog_put_bp(dbp);
3724 bread_err1:
3725 xlog_put_bp(hbp);
3726 return error;
3727}
3728
3729/*
3730 * Do the recovery of the log. We actually do this in two phases.
3731 * The two passes are necessary in order to implement the function
3732 * of cancelling a record written into the log. The first pass
3733 * determines those things which have been cancelled, and the
3734 * second pass replays log items normally except for those which
3735 * have been cancelled. The handling of the replay and cancellations
3736 * takes place in the log item type specific routines.
3737 *
3738 * The table of items which have cancel records in the log is allocated
3739 * and freed at this level, since only here do we know when all of
3740 * the log recovery has been completed.
3741 */
3742STATIC int
3743xlog_do_log_recovery(
3744 xlog_t *log,
3745 xfs_daddr_t head_blk,
3746 xfs_daddr_t tail_blk)
3747{
3748 int error;
3749
3750 ASSERT(head_blk != tail_blk);
3751
3752 /*
3753 * First do a pass to find all of the cancelled buf log items.
3754 * Store them in the buf_cancel_table for use in the second pass.
3755 */
3756 log->l_buf_cancel_table =
3757 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3758 sizeof(xfs_buf_cancel_t*),
3759 KM_SLEEP);
3760 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3761 XLOG_RECOVER_PASS1);
3762 if (error != 0) {
f0e2d93c 3763 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3764 log->l_buf_cancel_table = NULL;
3765 return error;
3766 }
3767 /*
3768 * Then do a second pass to actually recover the items in the log.
3769 * When it is complete free the table of buf cancel items.
3770 */
3771 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3772 XLOG_RECOVER_PASS2);
3773#ifdef DEBUG
6d192a9b 3774 if (!error) {
1da177e4
LT
3775 int i;
3776
3777 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3778 ASSERT(log->l_buf_cancel_table[i] == NULL);
3779 }
3780#endif /* DEBUG */
3781
f0e2d93c 3782 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3783 log->l_buf_cancel_table = NULL;
3784
3785 return error;
3786}
3787
3788/*
3789 * Do the actual recovery
3790 */
3791STATIC int
3792xlog_do_recover(
3793 xlog_t *log,
3794 xfs_daddr_t head_blk,
3795 xfs_daddr_t tail_blk)
3796{
3797 int error;
3798 xfs_buf_t *bp;
3799 xfs_sb_t *sbp;
3800
3801 /*
3802 * First replay the images in the log.
3803 */
3804 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3805 if (error) {
3806 return error;
3807 }
3808
3809 XFS_bflush(log->l_mp->m_ddev_targp);
3810
3811 /*
3812 * If IO errors happened during recovery, bail out.
3813 */
3814 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3815 return (EIO);
3816 }
3817
3818 /*
3819 * We now update the tail_lsn since much of the recovery has completed
3820 * and there may be space available to use. If there were no extent
3821 * or iunlinks, we can free up the entire log and set the tail_lsn to
3822 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3823 * lsn of the last known good LR on disk. If there are extent frees
3824 * or iunlinks they will have some entries in the AIL; so we look at
3825 * the AIL to determine how to set the tail_lsn.
3826 */
3827 xlog_assign_tail_lsn(log->l_mp);
3828
3829 /*
3830 * Now that we've finished replaying all buffer and inode
3831 * updates, re-read in the superblock.
3832 */
3833 bp = xfs_getsb(log->l_mp, 0);
3834 XFS_BUF_UNDONE(bp);
bebf963f
LM
3835 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3836 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
1da177e4 3837 XFS_BUF_READ(bp);
bebf963f 3838 XFS_BUF_UNASYNC(bp);
1da177e4 3839 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
3840 error = xfs_iowait(bp);
3841 if (error) {
1da177e4
LT
3842 xfs_ioerror_alert("xlog_do_recover",
3843 log->l_mp, bp, XFS_BUF_ADDR(bp));
3844 ASSERT(0);
3845 xfs_buf_relse(bp);
3846 return error;
3847 }
3848
3849 /* Convert superblock from on-disk format */
3850 sbp = &log->l_mp->m_sb;
2bdf7cd0 3851 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3852 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3853 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3854 xfs_buf_relse(bp);
3855
5478eead
LM
3856 /* We've re-read the superblock so re-initialize per-cpu counters */
3857 xfs_icsb_reinit_counters(log->l_mp);
3858
1da177e4
LT
3859 xlog_recover_check_summary(log);
3860
3861 /* Normal transactions can now occur */
3862 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3863 return 0;
3864}
3865
3866/*
3867 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3868 *
3869 * Return error or zero.
3870 */
3871int
3872xlog_recover(
65be6054 3873 xlog_t *log)
1da177e4
LT
3874{
3875 xfs_daddr_t head_blk, tail_blk;
3876 int error;
3877
3878 /* find the tail of the log */
65be6054 3879 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3880 return error;
3881
3882 if (tail_blk != head_blk) {
3883 /* There used to be a comment here:
3884 *
3885 * disallow recovery on read-only mounts. note -- mount
3886 * checks for ENOSPC and turns it into an intelligent
3887 * error message.
3888 * ...but this is no longer true. Now, unless you specify
3889 * NORECOVERY (in which case this function would never be
3890 * called), we just go ahead and recover. We do this all
3891 * under the vfs layer, so we can get away with it unless
3892 * the device itself is read-only, in which case we fail.
3893 */
3a02ee18 3894 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3895 return error;
3896 }
3897
3898 cmn_err(CE_NOTE,
fc1f8c1c
NS
3899 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3900 log->l_mp->m_fsname, log->l_mp->m_logname ?
3901 log->l_mp->m_logname : "internal");
1da177e4
LT
3902
3903 error = xlog_do_recover(log, head_blk, tail_blk);
3904 log->l_flags |= XLOG_RECOVERY_NEEDED;
3905 }
3906 return error;
3907}
3908
3909/*
3910 * In the first part of recovery we replay inodes and buffers and build
3911 * up the list of extent free items which need to be processed. Here
3912 * we process the extent free items and clean up the on disk unlinked
3913 * inode lists. This is separated from the first part of recovery so
3914 * that the root and real-time bitmap inodes can be read in from disk in
3915 * between the two stages. This is necessary so that we can free space
3916 * in the real-time portion of the file system.
3917 */
3918int
3919xlog_recover_finish(
4249023a 3920 xlog_t *log)
1da177e4
LT
3921{
3922 /*
3923 * Now we're ready to do the transactions needed for the
3924 * rest of recovery. Start with completing all the extent
3925 * free intent records and then process the unlinked inode
3926 * lists. At this point, we essentially run in normal mode
3927 * except that we're still performing recovery actions
3928 * rather than accepting new requests.
3929 */
3930 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3931 int error;
3932 error = xlog_recover_process_efis(log);
3933 if (error) {
3934 cmn_err(CE_ALERT,
3935 "Failed to recover EFIs on filesystem: %s",
3936 log->l_mp->m_fsname);
3937 return error;
3938 }
1da177e4
LT
3939 /*
3940 * Sync the log to get all the EFIs out of the AIL.
3941 * This isn't absolutely necessary, but it helps in
3942 * case the unlink transactions would have problems
3943 * pushing the EFIs out of the way.
3944 */
3945 xfs_log_force(log->l_mp, (xfs_lsn_t)0,
3946 (XFS_LOG_FORCE | XFS_LOG_SYNC));
3947
4249023a 3948 xlog_recover_process_iunlinks(log);
1da177e4
LT
3949
3950 xlog_recover_check_summary(log);
3951
3952 cmn_err(CE_NOTE,
fc1f8c1c
NS
3953 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3954 log->l_mp->m_fsname, log->l_mp->m_logname ?
3955 log->l_mp->m_logname : "internal");
1da177e4
LT
3956 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3957 } else {
3958 cmn_err(CE_DEBUG,
b6574520 3959 "!Ending clean XFS mount for filesystem: %s\n",
1da177e4
LT
3960 log->l_mp->m_fsname);
3961 }
3962 return 0;
3963}
3964
3965
3966#if defined(DEBUG)
3967/*
3968 * Read all of the agf and agi counters and check that they
3969 * are consistent with the superblock counters.
3970 */
3971void
3972xlog_recover_check_summary(
3973 xlog_t *log)
3974{
3975 xfs_mount_t *mp;
3976 xfs_agf_t *agfp;
3977 xfs_agi_t *agip;
3978 xfs_buf_t *agfbp;
3979 xfs_buf_t *agibp;
3980 xfs_daddr_t agfdaddr;
3981 xfs_daddr_t agidaddr;
3982 xfs_buf_t *sbbp;
3983#ifdef XFS_LOUD_RECOVERY
3984 xfs_sb_t *sbp;
3985#endif
3986 xfs_agnumber_t agno;
3987 __uint64_t freeblks;
3988 __uint64_t itotal;
3989 __uint64_t ifree;
3990
3991 mp = log->l_mp;
3992
3993 freeblks = 0LL;
3994 itotal = 0LL;
3995 ifree = 0LL;
3996 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3997 agfdaddr = XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp));
3998 agfbp = xfs_buf_read(mp->m_ddev_targp, agfdaddr,
3999 XFS_FSS_TO_BB(mp, 1), 0);
4000 if (XFS_BUF_ISERROR(agfbp)) {
4001 xfs_ioerror_alert("xlog_recover_check_summary(agf)",
4002 mp, agfbp, agfdaddr);
4003 }
4004 agfp = XFS_BUF_TO_AGF(agfbp);
16259e7d
CH
4005 ASSERT(XFS_AGF_MAGIC == be32_to_cpu(agfp->agf_magicnum));
4006 ASSERT(XFS_AGF_GOOD_VERSION(be32_to_cpu(agfp->agf_versionnum)));
4007 ASSERT(be32_to_cpu(agfp->agf_seqno) == agno);
4008
4009 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4010 be32_to_cpu(agfp->agf_flcount);
1da177e4
LT
4011 xfs_buf_relse(agfbp);
4012
4013 agidaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
4014 agibp = xfs_buf_read(mp->m_ddev_targp, agidaddr,
4015 XFS_FSS_TO_BB(mp, 1), 0);
4016 if (XFS_BUF_ISERROR(agibp)) {
4017 xfs_ioerror_alert("xlog_recover_check_summary(agi)",
4018 mp, agibp, agidaddr);
4019 }
4020 agip = XFS_BUF_TO_AGI(agibp);
16259e7d
CH
4021 ASSERT(XFS_AGI_MAGIC == be32_to_cpu(agip->agi_magicnum));
4022 ASSERT(XFS_AGI_GOOD_VERSION(be32_to_cpu(agip->agi_versionnum)));
4023 ASSERT(be32_to_cpu(agip->agi_seqno) == agno);
4024
4025 itotal += be32_to_cpu(agip->agi_count);
4026 ifree += be32_to_cpu(agip->agi_freecount);
1da177e4
LT
4027 xfs_buf_relse(agibp);
4028 }
4029
4030 sbbp = xfs_getsb(mp, 0);
4031#ifdef XFS_LOUD_RECOVERY
4032 sbp = &mp->m_sb;
2bdf7cd0 4033 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
1da177e4
LT
4034 cmn_err(CE_NOTE,
4035 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4036 sbp->sb_icount, itotal);
4037 cmn_err(CE_NOTE,
4038 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4039 sbp->sb_ifree, ifree);
4040 cmn_err(CE_NOTE,
4041 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4042 sbp->sb_fdblocks, freeblks);
4043#if 0
4044 /*
4045 * This is turned off until I account for the allocation
4046 * btree blocks which live in free space.
4047 */
4048 ASSERT(sbp->sb_icount == itotal);
4049 ASSERT(sbp->sb_ifree == ifree);
4050 ASSERT(sbp->sb_fdblocks == freeblks);
4051#endif
4052#endif
4053 xfs_buf_relse(sbbp);
4054}
4055#endif /* DEBUG */