]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_log_recover.c
"xfs: fix error handling for synchronous writes" revisited
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
1da177e4 32#include "xfs_dinode.h"
1da177e4 33#include "xfs_inode.h"
a844f451 34#include "xfs_inode_item.h"
a844f451 35#include "xfs_alloc.h"
1da177e4
LT
36#include "xfs_ialloc.h"
37#include "xfs_log_priv.h"
38#include "xfs_buf_item.h"
1da177e4
LT
39#include "xfs_log_recover.h"
40#include "xfs_extfree_item.h"
41#include "xfs_trans_priv.h"
1da177e4
LT
42#include "xfs_quota.h"
43#include "xfs_rw.h"
43355099 44#include "xfs_utils.h"
0b1b213f 45#include "xfs_trace.h"
1da177e4
LT
46
47STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
1da177e4
LT
49#if defined(DEBUG)
50STATIC void xlog_recover_check_summary(xlog_t *);
1da177e4
LT
51#else
52#define xlog_recover_check_summary(log)
1da177e4
LT
53#endif
54
d5689eaa
CH
55/*
56 * This structure is used during recovery to record the buf log items which
57 * have been canceled and should not be replayed.
58 */
59struct xfs_buf_cancel {
60 xfs_daddr_t bc_blkno;
61 uint bc_len;
62 int bc_refcount;
63 struct list_head bc_list;
64};
65
1da177e4
LT
66/*
67 * Sector aligned buffer routines for buffer create/read/write/access
68 */
69
ff30a622
AE
70/*
71 * Verify the given count of basic blocks is valid number of blocks
72 * to specify for an operation involving the given XFS log buffer.
73 * Returns nonzero if the count is valid, 0 otherwise.
74 */
75
76static inline int
77xlog_buf_bbcount_valid(
78 xlog_t *log,
79 int bbcount)
80{
81 return bbcount > 0 && bbcount <= log->l_logBBsize;
82}
83
36adecff
AE
84/*
85 * Allocate a buffer to hold log data. The buffer needs to be able
86 * to map to a range of nbblks basic blocks at any valid (basic
87 * block) offset within the log.
88 */
5d77c0dc 89STATIC xfs_buf_t *
1da177e4
LT
90xlog_get_bp(
91 xlog_t *log,
3228149c 92 int nbblks)
1da177e4 93{
c8da0faf
CH
94 struct xfs_buf *bp;
95
ff30a622 96 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 97 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
98 nbblks);
99 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
100 return NULL;
101 }
1da177e4 102
36adecff
AE
103 /*
104 * We do log I/O in units of log sectors (a power-of-2
105 * multiple of the basic block size), so we round up the
25985edc 106 * requested size to accommodate the basic blocks required
36adecff
AE
107 * for complete log sectors.
108 *
109 * In addition, the buffer may be used for a non-sector-
110 * aligned block offset, in which case an I/O of the
111 * requested size could extend beyond the end of the
112 * buffer. If the requested size is only 1 basic block it
113 * will never straddle a sector boundary, so this won't be
114 * an issue. Nor will this be a problem if the log I/O is
115 * done in basic blocks (sector size 1). But otherwise we
116 * extend the buffer by one extra log sector to ensure
25985edc 117 * there's space to accommodate this possibility.
36adecff 118 */
69ce58f0
AE
119 if (nbblks > 1 && log->l_sectBBsize > 1)
120 nbblks += log->l_sectBBsize;
121 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 122
c8da0faf
CH
123 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, BBTOB(nbblks), 0);
124 if (bp)
125 xfs_buf_unlock(bp);
126 return bp;
1da177e4
LT
127}
128
5d77c0dc 129STATIC void
1da177e4
LT
130xlog_put_bp(
131 xfs_buf_t *bp)
132{
133 xfs_buf_free(bp);
134}
135
48389ef1
AE
136/*
137 * Return the address of the start of the given block number's data
138 * in a log buffer. The buffer covers a log sector-aligned region.
139 */
076e6acb
CH
140STATIC xfs_caddr_t
141xlog_align(
142 xlog_t *log,
143 xfs_daddr_t blk_no,
144 int nbblks,
145 xfs_buf_t *bp)
146{
fdc07f44 147 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 148
fdc07f44 149 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
62926044 150 return bp->b_addr + BBTOB(offset);
076e6acb
CH
151}
152
1da177e4
LT
153
154/*
155 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
156 */
076e6acb
CH
157STATIC int
158xlog_bread_noalign(
1da177e4
LT
159 xlog_t *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 xfs_buf_t *bp)
163{
164 int error;
165
ff30a622 166 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 167 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
168 nbblks);
169 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
170 return EFSCORRUPTED;
171 }
172
69ce58f0
AE
173 blk_no = round_down(blk_no, log->l_sectBBsize);
174 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
175
176 ASSERT(nbblks > 0);
177 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
1da177e4
LT
178
179 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
180 XFS_BUF_READ(bp);
1da177e4 181 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
1da177e4
LT
182
183 xfsbdstrat(log->l_mp, bp);
1a1a3e97 184 error = xfs_buf_iowait(bp);
d64e31a2 185 if (error)
1da177e4
LT
186 xfs_ioerror_alert("xlog_bread", log->l_mp,
187 bp, XFS_BUF_ADDR(bp));
188 return error;
189}
190
076e6acb
CH
191STATIC int
192xlog_bread(
193 xlog_t *log,
194 xfs_daddr_t blk_no,
195 int nbblks,
196 xfs_buf_t *bp,
197 xfs_caddr_t *offset)
198{
199 int error;
200
201 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
202 if (error)
203 return error;
204
205 *offset = xlog_align(log, blk_no, nbblks, bp);
206 return 0;
207}
208
44396476
DC
209/*
210 * Read at an offset into the buffer. Returns with the buffer in it's original
211 * state regardless of the result of the read.
212 */
213STATIC int
214xlog_bread_offset(
215 xlog_t *log,
216 xfs_daddr_t blk_no, /* block to read from */
217 int nbblks, /* blocks to read */
218 xfs_buf_t *bp,
219 xfs_caddr_t offset)
220{
62926044 221 xfs_caddr_t orig_offset = bp->b_addr;
44396476
DC
222 int orig_len = bp->b_buffer_length;
223 int error, error2;
224
02fe03d9 225 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
226 if (error)
227 return error;
228
229 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
230
231 /* must reset buffer pointer even on error */
02fe03d9 232 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
233 if (error)
234 return error;
235 return error2;
236}
237
1da177e4
LT
238/*
239 * Write out the buffer at the given block for the given number of blocks.
240 * The buffer is kept locked across the write and is returned locked.
241 * This can only be used for synchronous log writes.
242 */
ba0f32d4 243STATIC int
1da177e4
LT
244xlog_bwrite(
245 xlog_t *log,
246 xfs_daddr_t blk_no,
247 int nbblks,
248 xfs_buf_t *bp)
249{
250 int error;
251
ff30a622 252 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 253 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
254 nbblks);
255 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
256 return EFSCORRUPTED;
257 }
258
69ce58f0
AE
259 blk_no = round_down(blk_no, log->l_sectBBsize);
260 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
261
262 ASSERT(nbblks > 0);
263 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
264
265 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
266 XFS_BUF_ZEROFLAGS(bp);
72790aa1 267 xfs_buf_hold(bp);
0c842ad4 268 xfs_buf_lock(bp);
1da177e4 269 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
1da177e4
LT
270
271 if ((error = xfs_bwrite(log->l_mp, bp)))
272 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
273 bp, XFS_BUF_ADDR(bp));
274 return error;
275}
276
1da177e4
LT
277#ifdef DEBUG
278/*
279 * dump debug superblock and log record information
280 */
281STATIC void
282xlog_header_check_dump(
283 xfs_mount_t *mp,
284 xlog_rec_header_t *head)
285{
a0fa2b67 286 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
03daa57c 287 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
a0fa2b67 288 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
03daa57c 289 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
290}
291#else
292#define xlog_header_check_dump(mp, head)
293#endif
294
295/*
296 * check log record header for recovery
297 */
298STATIC int
299xlog_header_check_recover(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302{
69ef921b 303 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
304
305 /*
306 * IRIX doesn't write the h_fmt field and leaves it zeroed
307 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
308 * a dirty log created in IRIX.
309 */
69ef921b 310 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
311 xfs_warn(mp,
312 "dirty log written in incompatible format - can't recover");
1da177e4
LT
313 xlog_header_check_dump(mp, head);
314 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
315 XFS_ERRLEVEL_HIGH, mp);
316 return XFS_ERROR(EFSCORRUPTED);
317 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
318 xfs_warn(mp,
319 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
320 xlog_header_check_dump(mp, head);
321 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
322 XFS_ERRLEVEL_HIGH, mp);
323 return XFS_ERROR(EFSCORRUPTED);
324 }
325 return 0;
326}
327
328/*
329 * read the head block of the log and check the header
330 */
331STATIC int
332xlog_header_check_mount(
333 xfs_mount_t *mp,
334 xlog_rec_header_t *head)
335{
69ef921b 336 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
337
338 if (uuid_is_nil(&head->h_fs_uuid)) {
339 /*
340 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
341 * h_fs_uuid is nil, we assume this log was last mounted
342 * by IRIX and continue.
343 */
a0fa2b67 344 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 346 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
347 xlog_header_check_dump(mp, head);
348 XFS_ERROR_REPORT("xlog_header_check_mount",
349 XFS_ERRLEVEL_HIGH, mp);
350 return XFS_ERROR(EFSCORRUPTED);
351 }
352 return 0;
353}
354
355STATIC void
356xlog_recover_iodone(
357 struct xfs_buf *bp)
358{
5a52c2a5 359 if (bp->b_error) {
1da177e4
LT
360 /*
361 * We're not going to bother about retrying
362 * this during recovery. One strike!
363 */
1da177e4 364 xfs_ioerror_alert("xlog_recover_iodone",
ebad861b
DC
365 bp->b_target->bt_mount, bp,
366 XFS_BUF_ADDR(bp));
367 xfs_force_shutdown(bp->b_target->bt_mount,
368 SHUTDOWN_META_IO_ERROR);
1da177e4 369 }
cb669ca5 370 bp->b_iodone = NULL;
1a1a3e97 371 xfs_buf_ioend(bp, 0);
1da177e4
LT
372}
373
374/*
375 * This routine finds (to an approximation) the first block in the physical
376 * log which contains the given cycle. It uses a binary search algorithm.
377 * Note that the algorithm can not be perfect because the disk will not
378 * necessarily be perfect.
379 */
a8272ce0 380STATIC int
1da177e4
LT
381xlog_find_cycle_start(
382 xlog_t *log,
383 xfs_buf_t *bp,
384 xfs_daddr_t first_blk,
385 xfs_daddr_t *last_blk,
386 uint cycle)
387{
388 xfs_caddr_t offset;
389 xfs_daddr_t mid_blk;
e3bb2e30 390 xfs_daddr_t end_blk;
1da177e4
LT
391 uint mid_cycle;
392 int error;
393
e3bb2e30
AE
394 end_blk = *last_blk;
395 mid_blk = BLK_AVG(first_blk, end_blk);
396 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
397 error = xlog_bread(log, mid_blk, 1, bp, &offset);
398 if (error)
1da177e4 399 return error;
03bea6fe 400 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
401 if (mid_cycle == cycle)
402 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
403 else
404 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
405 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 406 }
e3bb2e30
AE
407 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
408 (mid_blk == end_blk && mid_blk-1 == first_blk));
409
410 *last_blk = end_blk;
1da177e4
LT
411
412 return 0;
413}
414
415/*
3f943d85
AE
416 * Check that a range of blocks does not contain stop_on_cycle_no.
417 * Fill in *new_blk with the block offset where such a block is
418 * found, or with -1 (an invalid block number) if there is no such
419 * block in the range. The scan needs to occur from front to back
420 * and the pointer into the region must be updated since a later
421 * routine will need to perform another test.
1da177e4
LT
422 */
423STATIC int
424xlog_find_verify_cycle(
425 xlog_t *log,
426 xfs_daddr_t start_blk,
427 int nbblks,
428 uint stop_on_cycle_no,
429 xfs_daddr_t *new_blk)
430{
431 xfs_daddr_t i, j;
432 uint cycle;
433 xfs_buf_t *bp;
434 xfs_daddr_t bufblks;
435 xfs_caddr_t buf = NULL;
436 int error = 0;
437
6881a229
AE
438 /*
439 * Greedily allocate a buffer big enough to handle the full
440 * range of basic blocks we'll be examining. If that fails,
441 * try a smaller size. We need to be able to read at least
442 * a log sector, or we're out of luck.
443 */
1da177e4 444 bufblks = 1 << ffs(nbblks);
1da177e4 445 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 446 bufblks >>= 1;
69ce58f0 447 if (bufblks < log->l_sectBBsize)
1da177e4
LT
448 return ENOMEM;
449 }
450
451 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
452 int bcount;
453
454 bcount = min(bufblks, (start_blk + nbblks - i));
455
076e6acb
CH
456 error = xlog_bread(log, i, bcount, bp, &buf);
457 if (error)
1da177e4
LT
458 goto out;
459
1da177e4 460 for (j = 0; j < bcount; j++) {
03bea6fe 461 cycle = xlog_get_cycle(buf);
1da177e4
LT
462 if (cycle == stop_on_cycle_no) {
463 *new_blk = i+j;
464 goto out;
465 }
466
467 buf += BBSIZE;
468 }
469 }
470
471 *new_blk = -1;
472
473out:
474 xlog_put_bp(bp);
475 return error;
476}
477
478/*
479 * Potentially backup over partial log record write.
480 *
481 * In the typical case, last_blk is the number of the block directly after
482 * a good log record. Therefore, we subtract one to get the block number
483 * of the last block in the given buffer. extra_bblks contains the number
484 * of blocks we would have read on a previous read. This happens when the
485 * last log record is split over the end of the physical log.
486 *
487 * extra_bblks is the number of blocks potentially verified on a previous
488 * call to this routine.
489 */
490STATIC int
491xlog_find_verify_log_record(
492 xlog_t *log,
493 xfs_daddr_t start_blk,
494 xfs_daddr_t *last_blk,
495 int extra_bblks)
496{
497 xfs_daddr_t i;
498 xfs_buf_t *bp;
499 xfs_caddr_t offset = NULL;
500 xlog_rec_header_t *head = NULL;
501 int error = 0;
502 int smallmem = 0;
503 int num_blks = *last_blk - start_blk;
504 int xhdrs;
505
506 ASSERT(start_blk != 0 || *last_blk != start_blk);
507
508 if (!(bp = xlog_get_bp(log, num_blks))) {
509 if (!(bp = xlog_get_bp(log, 1)))
510 return ENOMEM;
511 smallmem = 1;
512 } else {
076e6acb
CH
513 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
514 if (error)
1da177e4 515 goto out;
1da177e4
LT
516 offset += ((num_blks - 1) << BBSHIFT);
517 }
518
519 for (i = (*last_blk) - 1; i >= 0; i--) {
520 if (i < start_blk) {
521 /* valid log record not found */
a0fa2b67
DC
522 xfs_warn(log->l_mp,
523 "Log inconsistent (didn't find previous header)");
1da177e4
LT
524 ASSERT(0);
525 error = XFS_ERROR(EIO);
526 goto out;
527 }
528
529 if (smallmem) {
076e6acb
CH
530 error = xlog_bread(log, i, 1, bp, &offset);
531 if (error)
1da177e4 532 goto out;
1da177e4
LT
533 }
534
535 head = (xlog_rec_header_t *)offset;
536
69ef921b 537 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
538 break;
539
540 if (!smallmem)
541 offset -= BBSIZE;
542 }
543
544 /*
545 * We hit the beginning of the physical log & still no header. Return
546 * to caller. If caller can handle a return of -1, then this routine
547 * will be called again for the end of the physical log.
548 */
549 if (i == -1) {
550 error = -1;
551 goto out;
552 }
553
554 /*
555 * We have the final block of the good log (the first block
556 * of the log record _before_ the head. So we check the uuid.
557 */
558 if ((error = xlog_header_check_mount(log->l_mp, head)))
559 goto out;
560
561 /*
562 * We may have found a log record header before we expected one.
563 * last_blk will be the 1st block # with a given cycle #. We may end
564 * up reading an entire log record. In this case, we don't want to
565 * reset last_blk. Only when last_blk points in the middle of a log
566 * record do we update last_blk.
567 */
62118709 568 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 569 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
570
571 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
572 if (h_size % XLOG_HEADER_CYCLE_SIZE)
573 xhdrs++;
574 } else {
575 xhdrs = 1;
576 }
577
b53e675d
CH
578 if (*last_blk - i + extra_bblks !=
579 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
580 *last_blk = i;
581
582out:
583 xlog_put_bp(bp);
584 return error;
585}
586
587/*
588 * Head is defined to be the point of the log where the next log write
589 * write could go. This means that incomplete LR writes at the end are
590 * eliminated when calculating the head. We aren't guaranteed that previous
591 * LR have complete transactions. We only know that a cycle number of
592 * current cycle number -1 won't be present in the log if we start writing
593 * from our current block number.
594 *
595 * last_blk contains the block number of the first block with a given
596 * cycle number.
597 *
598 * Return: zero if normal, non-zero if error.
599 */
ba0f32d4 600STATIC int
1da177e4
LT
601xlog_find_head(
602 xlog_t *log,
603 xfs_daddr_t *return_head_blk)
604{
605 xfs_buf_t *bp;
606 xfs_caddr_t offset;
607 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
608 int num_scan_bblks;
609 uint first_half_cycle, last_half_cycle;
610 uint stop_on_cycle;
611 int error, log_bbnum = log->l_logBBsize;
612
613 /* Is the end of the log device zeroed? */
614 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
615 *return_head_blk = first_blk;
616
617 /* Is the whole lot zeroed? */
618 if (!first_blk) {
619 /* Linux XFS shouldn't generate totally zeroed logs -
620 * mkfs etc write a dummy unmount record to a fresh
621 * log so we can store the uuid in there
622 */
a0fa2b67 623 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
624 }
625
626 return 0;
627 } else if (error) {
a0fa2b67 628 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
629 return error;
630 }
631
632 first_blk = 0; /* get cycle # of 1st block */
633 bp = xlog_get_bp(log, 1);
634 if (!bp)
635 return ENOMEM;
076e6acb
CH
636
637 error = xlog_bread(log, 0, 1, bp, &offset);
638 if (error)
1da177e4 639 goto bp_err;
076e6acb 640
03bea6fe 641 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
642
643 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
644 error = xlog_bread(log, last_blk, 1, bp, &offset);
645 if (error)
1da177e4 646 goto bp_err;
076e6acb 647
03bea6fe 648 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
649 ASSERT(last_half_cycle != 0);
650
651 /*
652 * If the 1st half cycle number is equal to the last half cycle number,
653 * then the entire log is stamped with the same cycle number. In this
654 * case, head_blk can't be set to zero (which makes sense). The below
655 * math doesn't work out properly with head_blk equal to zero. Instead,
656 * we set it to log_bbnum which is an invalid block number, but this
657 * value makes the math correct. If head_blk doesn't changed through
658 * all the tests below, *head_blk is set to zero at the very end rather
659 * than log_bbnum. In a sense, log_bbnum and zero are the same block
660 * in a circular file.
661 */
662 if (first_half_cycle == last_half_cycle) {
663 /*
664 * In this case we believe that the entire log should have
665 * cycle number last_half_cycle. We need to scan backwards
666 * from the end verifying that there are no holes still
667 * containing last_half_cycle - 1. If we find such a hole,
668 * then the start of that hole will be the new head. The
669 * simple case looks like
670 * x | x ... | x - 1 | x
671 * Another case that fits this picture would be
672 * x | x + 1 | x ... | x
c41564b5 673 * In this case the head really is somewhere at the end of the
1da177e4
LT
674 * log, as one of the latest writes at the beginning was
675 * incomplete.
676 * One more case is
677 * x | x + 1 | x ... | x - 1 | x
678 * This is really the combination of the above two cases, and
679 * the head has to end up at the start of the x-1 hole at the
680 * end of the log.
681 *
682 * In the 256k log case, we will read from the beginning to the
683 * end of the log and search for cycle numbers equal to x-1.
684 * We don't worry about the x+1 blocks that we encounter,
685 * because we know that they cannot be the head since the log
686 * started with x.
687 */
688 head_blk = log_bbnum;
689 stop_on_cycle = last_half_cycle - 1;
690 } else {
691 /*
692 * In this case we want to find the first block with cycle
693 * number matching last_half_cycle. We expect the log to be
694 * some variation on
3f943d85 695 * x + 1 ... | x ... | x
1da177e4
LT
696 * The first block with cycle number x (last_half_cycle) will
697 * be where the new head belongs. First we do a binary search
698 * for the first occurrence of last_half_cycle. The binary
699 * search may not be totally accurate, so then we scan back
700 * from there looking for occurrences of last_half_cycle before
701 * us. If that backwards scan wraps around the beginning of
702 * the log, then we look for occurrences of last_half_cycle - 1
703 * at the end of the log. The cases we're looking for look
704 * like
3f943d85
AE
705 * v binary search stopped here
706 * x + 1 ... | x | x + 1 | x ... | x
707 * ^ but we want to locate this spot
1da177e4 708 * or
1da177e4 709 * <---------> less than scan distance
3f943d85
AE
710 * x + 1 ... | x ... | x - 1 | x
711 * ^ we want to locate this spot
1da177e4
LT
712 */
713 stop_on_cycle = last_half_cycle;
714 if ((error = xlog_find_cycle_start(log, bp, first_blk,
715 &head_blk, last_half_cycle)))
716 goto bp_err;
717 }
718
719 /*
720 * Now validate the answer. Scan back some number of maximum possible
721 * blocks and make sure each one has the expected cycle number. The
722 * maximum is determined by the total possible amount of buffering
723 * in the in-core log. The following number can be made tighter if
724 * we actually look at the block size of the filesystem.
725 */
726 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
727 if (head_blk >= num_scan_bblks) {
728 /*
729 * We are guaranteed that the entire check can be performed
730 * in one buffer.
731 */
732 start_blk = head_blk - num_scan_bblks;
733 if ((error = xlog_find_verify_cycle(log,
734 start_blk, num_scan_bblks,
735 stop_on_cycle, &new_blk)))
736 goto bp_err;
737 if (new_blk != -1)
738 head_blk = new_blk;
739 } else { /* need to read 2 parts of log */
740 /*
741 * We are going to scan backwards in the log in two parts.
742 * First we scan the physical end of the log. In this part
743 * of the log, we are looking for blocks with cycle number
744 * last_half_cycle - 1.
745 * If we find one, then we know that the log starts there, as
746 * we've found a hole that didn't get written in going around
747 * the end of the physical log. The simple case for this is
748 * x + 1 ... | x ... | x - 1 | x
749 * <---------> less than scan distance
750 * If all of the blocks at the end of the log have cycle number
751 * last_half_cycle, then we check the blocks at the start of
752 * the log looking for occurrences of last_half_cycle. If we
753 * find one, then our current estimate for the location of the
754 * first occurrence of last_half_cycle is wrong and we move
755 * back to the hole we've found. This case looks like
756 * x + 1 ... | x | x + 1 | x ...
757 * ^ binary search stopped here
758 * Another case we need to handle that only occurs in 256k
759 * logs is
760 * x + 1 ... | x ... | x+1 | x ...
761 * ^ binary search stops here
762 * In a 256k log, the scan at the end of the log will see the
763 * x + 1 blocks. We need to skip past those since that is
764 * certainly not the head of the log. By searching for
765 * last_half_cycle-1 we accomplish that.
766 */
1da177e4 767 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
768 (xfs_daddr_t) num_scan_bblks >= head_blk);
769 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
770 if ((error = xlog_find_verify_cycle(log, start_blk,
771 num_scan_bblks - (int)head_blk,
772 (stop_on_cycle - 1), &new_blk)))
773 goto bp_err;
774 if (new_blk != -1) {
775 head_blk = new_blk;
9db127ed 776 goto validate_head;
1da177e4
LT
777 }
778
779 /*
780 * Scan beginning of log now. The last part of the physical
781 * log is good. This scan needs to verify that it doesn't find
782 * the last_half_cycle.
783 */
784 start_blk = 0;
785 ASSERT(head_blk <= INT_MAX);
786 if ((error = xlog_find_verify_cycle(log,
787 start_blk, (int)head_blk,
788 stop_on_cycle, &new_blk)))
789 goto bp_err;
790 if (new_blk != -1)
791 head_blk = new_blk;
792 }
793
9db127ed 794validate_head:
1da177e4
LT
795 /*
796 * Now we need to make sure head_blk is not pointing to a block in
797 * the middle of a log record.
798 */
799 num_scan_bblks = XLOG_REC_SHIFT(log);
800 if (head_blk >= num_scan_bblks) {
801 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
802
803 /* start ptr at last block ptr before head_blk */
804 if ((error = xlog_find_verify_log_record(log, start_blk,
805 &head_blk, 0)) == -1) {
806 error = XFS_ERROR(EIO);
807 goto bp_err;
808 } else if (error)
809 goto bp_err;
810 } else {
811 start_blk = 0;
812 ASSERT(head_blk <= INT_MAX);
813 if ((error = xlog_find_verify_log_record(log, start_blk,
814 &head_blk, 0)) == -1) {
815 /* We hit the beginning of the log during our search */
3f943d85 816 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
817 new_blk = log_bbnum;
818 ASSERT(start_blk <= INT_MAX &&
819 (xfs_daddr_t) log_bbnum-start_blk >= 0);
820 ASSERT(head_blk <= INT_MAX);
821 if ((error = xlog_find_verify_log_record(log,
822 start_blk, &new_blk,
823 (int)head_blk)) == -1) {
824 error = XFS_ERROR(EIO);
825 goto bp_err;
826 } else if (error)
827 goto bp_err;
828 if (new_blk != log_bbnum)
829 head_blk = new_blk;
830 } else if (error)
831 goto bp_err;
832 }
833
834 xlog_put_bp(bp);
835 if (head_blk == log_bbnum)
836 *return_head_blk = 0;
837 else
838 *return_head_blk = head_blk;
839 /*
840 * When returning here, we have a good block number. Bad block
841 * means that during a previous crash, we didn't have a clean break
842 * from cycle number N to cycle number N-1. In this case, we need
843 * to find the first block with cycle number N-1.
844 */
845 return 0;
846
847 bp_err:
848 xlog_put_bp(bp);
849
850 if (error)
a0fa2b67 851 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
852 return error;
853}
854
855/*
856 * Find the sync block number or the tail of the log.
857 *
858 * This will be the block number of the last record to have its
859 * associated buffers synced to disk. Every log record header has
860 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
861 * to get a sync block number. The only concern is to figure out which
862 * log record header to believe.
863 *
864 * The following algorithm uses the log record header with the largest
865 * lsn. The entire log record does not need to be valid. We only care
866 * that the header is valid.
867 *
868 * We could speed up search by using current head_blk buffer, but it is not
869 * available.
870 */
5d77c0dc 871STATIC int
1da177e4
LT
872xlog_find_tail(
873 xlog_t *log,
874 xfs_daddr_t *head_blk,
65be6054 875 xfs_daddr_t *tail_blk)
1da177e4
LT
876{
877 xlog_rec_header_t *rhead;
878 xlog_op_header_t *op_head;
879 xfs_caddr_t offset = NULL;
880 xfs_buf_t *bp;
881 int error, i, found;
882 xfs_daddr_t umount_data_blk;
883 xfs_daddr_t after_umount_blk;
884 xfs_lsn_t tail_lsn;
885 int hblks;
886
887 found = 0;
888
889 /*
890 * Find previous log record
891 */
892 if ((error = xlog_find_head(log, head_blk)))
893 return error;
894
895 bp = xlog_get_bp(log, 1);
896 if (!bp)
897 return ENOMEM;
898 if (*head_blk == 0) { /* special case */
076e6acb
CH
899 error = xlog_bread(log, 0, 1, bp, &offset);
900 if (error)
9db127ed 901 goto done;
076e6acb 902
03bea6fe 903 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
904 *tail_blk = 0;
905 /* leave all other log inited values alone */
9db127ed 906 goto done;
1da177e4
LT
907 }
908 }
909
910 /*
911 * Search backwards looking for log record header block
912 */
913 ASSERT(*head_blk < INT_MAX);
914 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
915 error = xlog_bread(log, i, 1, bp, &offset);
916 if (error)
9db127ed 917 goto done;
076e6acb 918
69ef921b 919 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
920 found = 1;
921 break;
922 }
923 }
924 /*
925 * If we haven't found the log record header block, start looking
926 * again from the end of the physical log. XXXmiken: There should be
927 * a check here to make sure we didn't search more than N blocks in
928 * the previous code.
929 */
930 if (!found) {
931 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
932 error = xlog_bread(log, i, 1, bp, &offset);
933 if (error)
9db127ed 934 goto done;
076e6acb 935
69ef921b
CH
936 if (*(__be32 *)offset ==
937 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
938 found = 2;
939 break;
940 }
941 }
942 }
943 if (!found) {
a0fa2b67 944 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1da177e4
LT
945 ASSERT(0);
946 return XFS_ERROR(EIO);
947 }
948
949 /* find blk_no of tail of log */
950 rhead = (xlog_rec_header_t *)offset;
b53e675d 951 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
952
953 /*
954 * Reset log values according to the state of the log when we
955 * crashed. In the case where head_blk == 0, we bump curr_cycle
956 * one because the next write starts a new cycle rather than
957 * continuing the cycle of the last good log record. At this
958 * point we have guaranteed that all partial log records have been
959 * accounted for. Therefore, we know that the last good log record
960 * written was complete and ended exactly on the end boundary
961 * of the physical log.
962 */
963 log->l_prev_block = i;
964 log->l_curr_block = (int)*head_blk;
b53e675d 965 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
966 if (found == 2)
967 log->l_curr_cycle++;
1c3cb9ec 968 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 969 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
a69ed03c
DC
970 xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
971 BBTOB(log->l_curr_block));
972 xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
973 BBTOB(log->l_curr_block));
1da177e4
LT
974
975 /*
976 * Look for unmount record. If we find it, then we know there
977 * was a clean unmount. Since 'i' could be the last block in
978 * the physical log, we convert to a log block before comparing
979 * to the head_blk.
980 *
981 * Save the current tail lsn to use to pass to
982 * xlog_clear_stale_blocks() below. We won't want to clear the
983 * unmount record if there is one, so we pass the lsn of the
984 * unmount record rather than the block after it.
985 */
62118709 986 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
987 int h_size = be32_to_cpu(rhead->h_size);
988 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
989
990 if ((h_version & XLOG_VERSION_2) &&
991 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
992 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
993 if (h_size % XLOG_HEADER_CYCLE_SIZE)
994 hblks++;
995 } else {
996 hblks = 1;
997 }
998 } else {
999 hblks = 1;
1000 }
1001 after_umount_blk = (i + hblks + (int)
b53e675d 1002 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1003 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1004 if (*head_blk == after_umount_blk &&
b53e675d 1005 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1006 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1007 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1008 if (error)
9db127ed 1009 goto done;
076e6acb 1010
1da177e4
LT
1011 op_head = (xlog_op_header_t *)offset;
1012 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1013 /*
1014 * Set tail and last sync so that newly written
1015 * log records will point recovery to after the
1016 * current unmount record.
1017 */
1c3cb9ec
DC
1018 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1019 log->l_curr_cycle, after_umount_blk);
1020 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1021 log->l_curr_cycle, after_umount_blk);
1da177e4 1022 *tail_blk = after_umount_blk;
92821e2b
DC
1023
1024 /*
1025 * Note that the unmount was clean. If the unmount
1026 * was not clean, we need to know this to rebuild the
1027 * superblock counters from the perag headers if we
1028 * have a filesystem using non-persistent counters.
1029 */
1030 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1031 }
1032 }
1033
1034 /*
1035 * Make sure that there are no blocks in front of the head
1036 * with the same cycle number as the head. This can happen
1037 * because we allow multiple outstanding log writes concurrently,
1038 * and the later writes might make it out before earlier ones.
1039 *
1040 * We use the lsn from before modifying it so that we'll never
1041 * overwrite the unmount record after a clean unmount.
1042 *
1043 * Do this only if we are going to recover the filesystem
1044 *
1045 * NOTE: This used to say "if (!readonly)"
1046 * However on Linux, we can & do recover a read-only filesystem.
1047 * We only skip recovery if NORECOVERY is specified on mount,
1048 * in which case we would not be here.
1049 *
1050 * But... if the -device- itself is readonly, just skip this.
1051 * We can't recover this device anyway, so it won't matter.
1052 */
9db127ed 1053 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1054 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1055
9db127ed 1056done:
1da177e4
LT
1057 xlog_put_bp(bp);
1058
1059 if (error)
a0fa2b67 1060 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1061 return error;
1062}
1063
1064/*
1065 * Is the log zeroed at all?
1066 *
1067 * The last binary search should be changed to perform an X block read
1068 * once X becomes small enough. You can then search linearly through
1069 * the X blocks. This will cut down on the number of reads we need to do.
1070 *
1071 * If the log is partially zeroed, this routine will pass back the blkno
1072 * of the first block with cycle number 0. It won't have a complete LR
1073 * preceding it.
1074 *
1075 * Return:
1076 * 0 => the log is completely written to
1077 * -1 => use *blk_no as the first block of the log
1078 * >0 => error has occurred
1079 */
a8272ce0 1080STATIC int
1da177e4
LT
1081xlog_find_zeroed(
1082 xlog_t *log,
1083 xfs_daddr_t *blk_no)
1084{
1085 xfs_buf_t *bp;
1086 xfs_caddr_t offset;
1087 uint first_cycle, last_cycle;
1088 xfs_daddr_t new_blk, last_blk, start_blk;
1089 xfs_daddr_t num_scan_bblks;
1090 int error, log_bbnum = log->l_logBBsize;
1091
6fdf8ccc
NS
1092 *blk_no = 0;
1093
1da177e4
LT
1094 /* check totally zeroed log */
1095 bp = xlog_get_bp(log, 1);
1096 if (!bp)
1097 return ENOMEM;
076e6acb
CH
1098 error = xlog_bread(log, 0, 1, bp, &offset);
1099 if (error)
1da177e4 1100 goto bp_err;
076e6acb 1101
03bea6fe 1102 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1103 if (first_cycle == 0) { /* completely zeroed log */
1104 *blk_no = 0;
1105 xlog_put_bp(bp);
1106 return -1;
1107 }
1108
1109 /* check partially zeroed log */
076e6acb
CH
1110 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1111 if (error)
1da177e4 1112 goto bp_err;
076e6acb 1113
03bea6fe 1114 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1115 if (last_cycle != 0) { /* log completely written to */
1116 xlog_put_bp(bp);
1117 return 0;
1118 } else if (first_cycle != 1) {
1119 /*
1120 * If the cycle of the last block is zero, the cycle of
1121 * the first block must be 1. If it's not, maybe we're
1122 * not looking at a log... Bail out.
1123 */
a0fa2b67
DC
1124 xfs_warn(log->l_mp,
1125 "Log inconsistent or not a log (last==0, first!=1)");
1da177e4
LT
1126 return XFS_ERROR(EINVAL);
1127 }
1128
1129 /* we have a partially zeroed log */
1130 last_blk = log_bbnum-1;
1131 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1132 goto bp_err;
1133
1134 /*
1135 * Validate the answer. Because there is no way to guarantee that
1136 * the entire log is made up of log records which are the same size,
1137 * we scan over the defined maximum blocks. At this point, the maximum
1138 * is not chosen to mean anything special. XXXmiken
1139 */
1140 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1141 ASSERT(num_scan_bblks <= INT_MAX);
1142
1143 if (last_blk < num_scan_bblks)
1144 num_scan_bblks = last_blk;
1145 start_blk = last_blk - num_scan_bblks;
1146
1147 /*
1148 * We search for any instances of cycle number 0 that occur before
1149 * our current estimate of the head. What we're trying to detect is
1150 * 1 ... | 0 | 1 | 0...
1151 * ^ binary search ends here
1152 */
1153 if ((error = xlog_find_verify_cycle(log, start_blk,
1154 (int)num_scan_bblks, 0, &new_blk)))
1155 goto bp_err;
1156 if (new_blk != -1)
1157 last_blk = new_blk;
1158
1159 /*
1160 * Potentially backup over partial log record write. We don't need
1161 * to search the end of the log because we know it is zero.
1162 */
1163 if ((error = xlog_find_verify_log_record(log, start_blk,
1164 &last_blk, 0)) == -1) {
1165 error = XFS_ERROR(EIO);
1166 goto bp_err;
1167 } else if (error)
1168 goto bp_err;
1169
1170 *blk_no = last_blk;
1171bp_err:
1172 xlog_put_bp(bp);
1173 if (error)
1174 return error;
1175 return -1;
1176}
1177
1178/*
1179 * These are simple subroutines used by xlog_clear_stale_blocks() below
1180 * to initialize a buffer full of empty log record headers and write
1181 * them into the log.
1182 */
1183STATIC void
1184xlog_add_record(
1185 xlog_t *log,
1186 xfs_caddr_t buf,
1187 int cycle,
1188 int block,
1189 int tail_cycle,
1190 int tail_block)
1191{
1192 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1193
1194 memset(buf, 0, BBSIZE);
b53e675d
CH
1195 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1196 recp->h_cycle = cpu_to_be32(cycle);
1197 recp->h_version = cpu_to_be32(
62118709 1198 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1199 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1200 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1201 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1202 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1203}
1204
1205STATIC int
1206xlog_write_log_records(
1207 xlog_t *log,
1208 int cycle,
1209 int start_block,
1210 int blocks,
1211 int tail_cycle,
1212 int tail_block)
1213{
1214 xfs_caddr_t offset;
1215 xfs_buf_t *bp;
1216 int balign, ealign;
69ce58f0 1217 int sectbb = log->l_sectBBsize;
1da177e4
LT
1218 int end_block = start_block + blocks;
1219 int bufblks;
1220 int error = 0;
1221 int i, j = 0;
1222
6881a229
AE
1223 /*
1224 * Greedily allocate a buffer big enough to handle the full
1225 * range of basic blocks to be written. If that fails, try
1226 * a smaller size. We need to be able to write at least a
1227 * log sector, or we're out of luck.
1228 */
1da177e4
LT
1229 bufblks = 1 << ffs(blocks);
1230 while (!(bp = xlog_get_bp(log, bufblks))) {
1231 bufblks >>= 1;
69ce58f0 1232 if (bufblks < sectbb)
1da177e4
LT
1233 return ENOMEM;
1234 }
1235
1236 /* We may need to do a read at the start to fill in part of
1237 * the buffer in the starting sector not covered by the first
1238 * write below.
1239 */
5c17f533 1240 balign = round_down(start_block, sectbb);
1da177e4 1241 if (balign != start_block) {
076e6acb
CH
1242 error = xlog_bread_noalign(log, start_block, 1, bp);
1243 if (error)
1244 goto out_put_bp;
1245
1da177e4
LT
1246 j = start_block - balign;
1247 }
1248
1249 for (i = start_block; i < end_block; i += bufblks) {
1250 int bcount, endcount;
1251
1252 bcount = min(bufblks, end_block - start_block);
1253 endcount = bcount - j;
1254
1255 /* We may need to do a read at the end to fill in part of
1256 * the buffer in the final sector not covered by the write.
1257 * If this is the same sector as the above read, skip it.
1258 */
5c17f533 1259 ealign = round_down(end_block, sectbb);
1da177e4 1260 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1261 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1262 error = xlog_bread_offset(log, ealign, sectbb,
1263 bp, offset);
076e6acb
CH
1264 if (error)
1265 break;
1266
1da177e4
LT
1267 }
1268
1269 offset = xlog_align(log, start_block, endcount, bp);
1270 for (; j < endcount; j++) {
1271 xlog_add_record(log, offset, cycle, i+j,
1272 tail_cycle, tail_block);
1273 offset += BBSIZE;
1274 }
1275 error = xlog_bwrite(log, start_block, endcount, bp);
1276 if (error)
1277 break;
1278 start_block += endcount;
1279 j = 0;
1280 }
076e6acb
CH
1281
1282 out_put_bp:
1da177e4
LT
1283 xlog_put_bp(bp);
1284 return error;
1285}
1286
1287/*
1288 * This routine is called to blow away any incomplete log writes out
1289 * in front of the log head. We do this so that we won't become confused
1290 * if we come up, write only a little bit more, and then crash again.
1291 * If we leave the partial log records out there, this situation could
1292 * cause us to think those partial writes are valid blocks since they
1293 * have the current cycle number. We get rid of them by overwriting them
1294 * with empty log records with the old cycle number rather than the
1295 * current one.
1296 *
1297 * The tail lsn is passed in rather than taken from
1298 * the log so that we will not write over the unmount record after a
1299 * clean unmount in a 512 block log. Doing so would leave the log without
1300 * any valid log records in it until a new one was written. If we crashed
1301 * during that time we would not be able to recover.
1302 */
1303STATIC int
1304xlog_clear_stale_blocks(
1305 xlog_t *log,
1306 xfs_lsn_t tail_lsn)
1307{
1308 int tail_cycle, head_cycle;
1309 int tail_block, head_block;
1310 int tail_distance, max_distance;
1311 int distance;
1312 int error;
1313
1314 tail_cycle = CYCLE_LSN(tail_lsn);
1315 tail_block = BLOCK_LSN(tail_lsn);
1316 head_cycle = log->l_curr_cycle;
1317 head_block = log->l_curr_block;
1318
1319 /*
1320 * Figure out the distance between the new head of the log
1321 * and the tail. We want to write over any blocks beyond the
1322 * head that we may have written just before the crash, but
1323 * we don't want to overwrite the tail of the log.
1324 */
1325 if (head_cycle == tail_cycle) {
1326 /*
1327 * The tail is behind the head in the physical log,
1328 * so the distance from the head to the tail is the
1329 * distance from the head to the end of the log plus
1330 * the distance from the beginning of the log to the
1331 * tail.
1332 */
1333 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1334 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1335 XFS_ERRLEVEL_LOW, log->l_mp);
1336 return XFS_ERROR(EFSCORRUPTED);
1337 }
1338 tail_distance = tail_block + (log->l_logBBsize - head_block);
1339 } else {
1340 /*
1341 * The head is behind the tail in the physical log,
1342 * so the distance from the head to the tail is just
1343 * the tail block minus the head block.
1344 */
1345 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1346 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1347 XFS_ERRLEVEL_LOW, log->l_mp);
1348 return XFS_ERROR(EFSCORRUPTED);
1349 }
1350 tail_distance = tail_block - head_block;
1351 }
1352
1353 /*
1354 * If the head is right up against the tail, we can't clear
1355 * anything.
1356 */
1357 if (tail_distance <= 0) {
1358 ASSERT(tail_distance == 0);
1359 return 0;
1360 }
1361
1362 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1363 /*
1364 * Take the smaller of the maximum amount of outstanding I/O
1365 * we could have and the distance to the tail to clear out.
1366 * We take the smaller so that we don't overwrite the tail and
1367 * we don't waste all day writing from the head to the tail
1368 * for no reason.
1369 */
1370 max_distance = MIN(max_distance, tail_distance);
1371
1372 if ((head_block + max_distance) <= log->l_logBBsize) {
1373 /*
1374 * We can stomp all the blocks we need to without
1375 * wrapping around the end of the log. Just do it
1376 * in a single write. Use the cycle number of the
1377 * current cycle minus one so that the log will look like:
1378 * n ... | n - 1 ...
1379 */
1380 error = xlog_write_log_records(log, (head_cycle - 1),
1381 head_block, max_distance, tail_cycle,
1382 tail_block);
1383 if (error)
1384 return error;
1385 } else {
1386 /*
1387 * We need to wrap around the end of the physical log in
1388 * order to clear all the blocks. Do it in two separate
1389 * I/Os. The first write should be from the head to the
1390 * end of the physical log, and it should use the current
1391 * cycle number minus one just like above.
1392 */
1393 distance = log->l_logBBsize - head_block;
1394 error = xlog_write_log_records(log, (head_cycle - 1),
1395 head_block, distance, tail_cycle,
1396 tail_block);
1397
1398 if (error)
1399 return error;
1400
1401 /*
1402 * Now write the blocks at the start of the physical log.
1403 * This writes the remainder of the blocks we want to clear.
1404 * It uses the current cycle number since we're now on the
1405 * same cycle as the head so that we get:
1406 * n ... n ... | n - 1 ...
1407 * ^^^^^ blocks we're writing
1408 */
1409 distance = max_distance - (log->l_logBBsize - head_block);
1410 error = xlog_write_log_records(log, head_cycle, 0, distance,
1411 tail_cycle, tail_block);
1412 if (error)
1413 return error;
1414 }
1415
1416 return 0;
1417}
1418
1419/******************************************************************************
1420 *
1421 * Log recover routines
1422 *
1423 ******************************************************************************
1424 */
1425
1426STATIC xlog_recover_t *
1427xlog_recover_find_tid(
f0a76953 1428 struct hlist_head *head,
1da177e4
LT
1429 xlog_tid_t tid)
1430{
f0a76953
DC
1431 xlog_recover_t *trans;
1432 struct hlist_node *n;
1da177e4 1433
f0a76953
DC
1434 hlist_for_each_entry(trans, n, head, r_list) {
1435 if (trans->r_log_tid == tid)
1436 return trans;
1da177e4 1437 }
f0a76953 1438 return NULL;
1da177e4
LT
1439}
1440
1441STATIC void
f0a76953
DC
1442xlog_recover_new_tid(
1443 struct hlist_head *head,
1444 xlog_tid_t tid,
1445 xfs_lsn_t lsn)
1da177e4 1446{
f0a76953
DC
1447 xlog_recover_t *trans;
1448
1449 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1450 trans->r_log_tid = tid;
1451 trans->r_lsn = lsn;
1452 INIT_LIST_HEAD(&trans->r_itemq);
1453
1454 INIT_HLIST_NODE(&trans->r_list);
1455 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1456}
1457
1458STATIC void
1459xlog_recover_add_item(
f0a76953 1460 struct list_head *head)
1da177e4
LT
1461{
1462 xlog_recover_item_t *item;
1463
1464 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1465 INIT_LIST_HEAD(&item->ri_list);
1466 list_add_tail(&item->ri_list, head);
1da177e4
LT
1467}
1468
1469STATIC int
1470xlog_recover_add_to_cont_trans(
9abbc539 1471 struct log *log,
1da177e4
LT
1472 xlog_recover_t *trans,
1473 xfs_caddr_t dp,
1474 int len)
1475{
1476 xlog_recover_item_t *item;
1477 xfs_caddr_t ptr, old_ptr;
1478 int old_len;
1479
f0a76953 1480 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1481 /* finish copying rest of trans header */
1482 xlog_recover_add_item(&trans->r_itemq);
1483 ptr = (xfs_caddr_t) &trans->r_theader +
1484 sizeof(xfs_trans_header_t) - len;
1485 memcpy(ptr, dp, len); /* d, s, l */
1486 return 0;
1487 }
f0a76953
DC
1488 /* take the tail entry */
1489 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1490
1491 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1492 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1493
760dea67 1494 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1495 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1496 item->ri_buf[item->ri_cnt-1].i_len += len;
1497 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1498 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1499 return 0;
1500}
1501
1502/*
1503 * The next region to add is the start of a new region. It could be
1504 * a whole region or it could be the first part of a new region. Because
1505 * of this, the assumption here is that the type and size fields of all
1506 * format structures fit into the first 32 bits of the structure.
1507 *
1508 * This works because all regions must be 32 bit aligned. Therefore, we
1509 * either have both fields or we have neither field. In the case we have
1510 * neither field, the data part of the region is zero length. We only have
1511 * a log_op_header and can throw away the header since a new one will appear
1512 * later. If we have at least 4 bytes, then we can determine how many regions
1513 * will appear in the current log item.
1514 */
1515STATIC int
1516xlog_recover_add_to_trans(
9abbc539 1517 struct log *log,
1da177e4
LT
1518 xlog_recover_t *trans,
1519 xfs_caddr_t dp,
1520 int len)
1521{
1522 xfs_inode_log_format_t *in_f; /* any will do */
1523 xlog_recover_item_t *item;
1524 xfs_caddr_t ptr;
1525
1526 if (!len)
1527 return 0;
f0a76953 1528 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1529 /* we need to catch log corruptions here */
1530 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1531 xfs_warn(log->l_mp, "%s: bad header magic number",
1532 __func__);
5a792c45
DC
1533 ASSERT(0);
1534 return XFS_ERROR(EIO);
1535 }
1da177e4
LT
1536 if (len == sizeof(xfs_trans_header_t))
1537 xlog_recover_add_item(&trans->r_itemq);
1538 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1539 return 0;
1540 }
1541
1542 ptr = kmem_alloc(len, KM_SLEEP);
1543 memcpy(ptr, dp, len);
1544 in_f = (xfs_inode_log_format_t *)ptr;
1545
f0a76953
DC
1546 /* take the tail entry */
1547 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1548 if (item->ri_total != 0 &&
1549 item->ri_total == item->ri_cnt) {
1550 /* tail item is in use, get a new one */
1da177e4 1551 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1552 item = list_entry(trans->r_itemq.prev,
1553 xlog_recover_item_t, ri_list);
1da177e4 1554 }
1da177e4
LT
1555
1556 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1557 if (in_f->ilf_size == 0 ||
1558 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1559 xfs_warn(log->l_mp,
1560 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1561 in_f->ilf_size);
1562 ASSERT(0);
1563 return XFS_ERROR(EIO);
1564 }
1565
1566 item->ri_total = in_f->ilf_size;
1567 item->ri_buf =
1568 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1569 KM_SLEEP);
1da177e4
LT
1570 }
1571 ASSERT(item->ri_total > item->ri_cnt);
1572 /* Description region is ri_buf[0] */
1573 item->ri_buf[item->ri_cnt].i_addr = ptr;
1574 item->ri_buf[item->ri_cnt].i_len = len;
1575 item->ri_cnt++;
9abbc539 1576 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1577 return 0;
1578}
1579
f0a76953
DC
1580/*
1581 * Sort the log items in the transaction. Cancelled buffers need
1582 * to be put first so they are processed before any items that might
1583 * modify the buffers. If they are cancelled, then the modifications
1584 * don't need to be replayed.
1585 */
1da177e4
LT
1586STATIC int
1587xlog_recover_reorder_trans(
9abbc539
DC
1588 struct log *log,
1589 xlog_recover_t *trans,
1590 int pass)
1da177e4 1591{
f0a76953
DC
1592 xlog_recover_item_t *item, *n;
1593 LIST_HEAD(sort_list);
1594
1595 list_splice_init(&trans->r_itemq, &sort_list);
1596 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1597 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1598
f0a76953 1599 switch (ITEM_TYPE(item)) {
1da177e4 1600 case XFS_LI_BUF:
c1155410 1601 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539
DC
1602 trace_xfs_log_recover_item_reorder_head(log,
1603 trans, item, pass);
f0a76953 1604 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1605 break;
1606 }
1607 case XFS_LI_INODE:
1da177e4
LT
1608 case XFS_LI_DQUOT:
1609 case XFS_LI_QUOTAOFF:
1610 case XFS_LI_EFD:
1611 case XFS_LI_EFI:
9abbc539
DC
1612 trace_xfs_log_recover_item_reorder_tail(log,
1613 trans, item, pass);
f0a76953 1614 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1615 break;
1616 default:
a0fa2b67
DC
1617 xfs_warn(log->l_mp,
1618 "%s: unrecognized type of log operation",
1619 __func__);
1da177e4
LT
1620 ASSERT(0);
1621 return XFS_ERROR(EIO);
1622 }
f0a76953
DC
1623 }
1624 ASSERT(list_empty(&sort_list));
1da177e4
LT
1625 return 0;
1626}
1627
1628/*
1629 * Build up the table of buf cancel records so that we don't replay
1630 * cancelled data in the second pass. For buffer records that are
1631 * not cancel records, there is nothing to do here so we just return.
1632 *
1633 * If we get a cancel record which is already in the table, this indicates
1634 * that the buffer was cancelled multiple times. In order to ensure
1635 * that during pass 2 we keep the record in the table until we reach its
1636 * last occurrence in the log, we keep a reference count in the cancel
1637 * record in the table to tell us how many times we expect to see this
1638 * record during the second pass.
1639 */
c9f71f5f
CH
1640STATIC int
1641xlog_recover_buffer_pass1(
d5689eaa 1642 struct log *log,
c9f71f5f 1643 xlog_recover_item_t *item)
1da177e4 1644{
c9f71f5f 1645 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1646 struct list_head *bucket;
1647 struct xfs_buf_cancel *bcp;
1da177e4
LT
1648
1649 /*
1650 * If this isn't a cancel buffer item, then just return.
1651 */
e2714bf8 1652 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1653 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1654 return 0;
9abbc539 1655 }
1da177e4
LT
1656
1657 /*
d5689eaa
CH
1658 * Insert an xfs_buf_cancel record into the hash table of them.
1659 * If there is already an identical record, bump its reference count.
1da177e4 1660 */
d5689eaa
CH
1661 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1662 list_for_each_entry(bcp, bucket, bc_list) {
1663 if (bcp->bc_blkno == buf_f->blf_blkno &&
1664 bcp->bc_len == buf_f->blf_len) {
1665 bcp->bc_refcount++;
9abbc539 1666 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1667 return 0;
1da177e4 1668 }
d5689eaa
CH
1669 }
1670
1671 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1672 bcp->bc_blkno = buf_f->blf_blkno;
1673 bcp->bc_len = buf_f->blf_len;
1da177e4 1674 bcp->bc_refcount = 1;
d5689eaa
CH
1675 list_add_tail(&bcp->bc_list, bucket);
1676
9abbc539 1677 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1678 return 0;
1da177e4
LT
1679}
1680
1681/*
1682 * Check to see whether the buffer being recovered has a corresponding
1683 * entry in the buffer cancel record table. If it does then return 1
1684 * so that it will be cancelled, otherwise return 0. If the buffer is
c1155410 1685 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1da177e4
LT
1686 * the refcount on the entry in the table and remove it from the table
1687 * if this is the last reference.
1688 *
1689 * We remove the cancel record from the table when we encounter its
1690 * last occurrence in the log so that if the same buffer is re-used
1691 * again after its last cancellation we actually replay the changes
1692 * made at that point.
1693 */
1694STATIC int
1695xlog_check_buffer_cancelled(
d5689eaa 1696 struct log *log,
1da177e4
LT
1697 xfs_daddr_t blkno,
1698 uint len,
1699 ushort flags)
1700{
d5689eaa
CH
1701 struct list_head *bucket;
1702 struct xfs_buf_cancel *bcp;
1da177e4
LT
1703
1704 if (log->l_buf_cancel_table == NULL) {
1705 /*
1706 * There is nothing in the table built in pass one,
1707 * so this buffer must not be cancelled.
1708 */
c1155410 1709 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1710 return 0;
1711 }
1712
1da177e4 1713 /*
d5689eaa 1714 * Search for an entry in the cancel table that matches our buffer.
1da177e4 1715 */
d5689eaa
CH
1716 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1717 list_for_each_entry(bcp, bucket, bc_list) {
1718 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1719 goto found;
1da177e4 1720 }
d5689eaa 1721
1da177e4 1722 /*
d5689eaa
CH
1723 * We didn't find a corresponding entry in the table, so return 0 so
1724 * that the buffer is NOT cancelled.
1da177e4 1725 */
c1155410 1726 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4 1727 return 0;
d5689eaa
CH
1728
1729found:
1730 /*
1731 * We've go a match, so return 1 so that the recovery of this buffer
1732 * is cancelled. If this buffer is actually a buffer cancel log
1733 * item, then decrement the refcount on the one in the table and
1734 * remove it if this is the last reference.
1735 */
1736 if (flags & XFS_BLF_CANCEL) {
1737 if (--bcp->bc_refcount == 0) {
1738 list_del(&bcp->bc_list);
1739 kmem_free(bcp);
1740 }
1741 }
1742 return 1;
1da177e4
LT
1743}
1744
1da177e4 1745/*
e2714bf8
CH
1746 * Perform recovery for a buffer full of inodes. In these buffers, the only
1747 * data which should be recovered is that which corresponds to the
1748 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1749 * data for the inodes is always logged through the inodes themselves rather
1750 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1751 *
e2714bf8
CH
1752 * The only time when buffers full of inodes are fully recovered is when the
1753 * buffer is full of newly allocated inodes. In this case the buffer will
1754 * not be marked as an inode buffer and so will be sent to
1755 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1756 */
1757STATIC int
1758xlog_recover_do_inode_buffer(
e2714bf8 1759 struct xfs_mount *mp,
1da177e4 1760 xlog_recover_item_t *item,
e2714bf8 1761 struct xfs_buf *bp,
1da177e4
LT
1762 xfs_buf_log_format_t *buf_f)
1763{
1764 int i;
e2714bf8
CH
1765 int item_index = 0;
1766 int bit = 0;
1767 int nbits = 0;
1768 int reg_buf_offset = 0;
1769 int reg_buf_bytes = 0;
1da177e4
LT
1770 int next_unlinked_offset;
1771 int inodes_per_buf;
1772 xfs_agino_t *logged_nextp;
1773 xfs_agino_t *buffer_nextp;
1da177e4 1774
9abbc539
DC
1775 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1776
1da177e4
LT
1777 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1778 for (i = 0; i < inodes_per_buf; i++) {
1779 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1780 offsetof(xfs_dinode_t, di_next_unlinked);
1781
1782 while (next_unlinked_offset >=
1783 (reg_buf_offset + reg_buf_bytes)) {
1784 /*
1785 * The next di_next_unlinked field is beyond
1786 * the current logged region. Find the next
1787 * logged region that contains or is beyond
1788 * the current di_next_unlinked field.
1789 */
1790 bit += nbits;
e2714bf8
CH
1791 bit = xfs_next_bit(buf_f->blf_data_map,
1792 buf_f->blf_map_size, bit);
1da177e4
LT
1793
1794 /*
1795 * If there are no more logged regions in the
1796 * buffer, then we're done.
1797 */
e2714bf8 1798 if (bit == -1)
1da177e4 1799 return 0;
1da177e4 1800
e2714bf8
CH
1801 nbits = xfs_contig_bits(buf_f->blf_data_map,
1802 buf_f->blf_map_size, bit);
1da177e4 1803 ASSERT(nbits > 0);
c1155410
DC
1804 reg_buf_offset = bit << XFS_BLF_SHIFT;
1805 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1806 item_index++;
1807 }
1808
1809 /*
1810 * If the current logged region starts after the current
1811 * di_next_unlinked field, then move on to the next
1812 * di_next_unlinked field.
1813 */
e2714bf8 1814 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1815 continue;
1da177e4
LT
1816
1817 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1818 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1da177e4
LT
1819 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1820
1821 /*
1822 * The current logged region contains a copy of the
1823 * current di_next_unlinked field. Extract its value
1824 * and copy it to the buffer copy.
1825 */
4e0d5f92
CH
1826 logged_nextp = item->ri_buf[item_index].i_addr +
1827 next_unlinked_offset - reg_buf_offset;
1da177e4 1828 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1829 xfs_alert(mp,
1830 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1831 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1832 item, bp);
1833 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1834 XFS_ERRLEVEL_LOW, mp);
1835 return XFS_ERROR(EFSCORRUPTED);
1836 }
1837
1838 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1839 next_unlinked_offset);
87c199c2 1840 *buffer_nextp = *logged_nextp;
1da177e4
LT
1841 }
1842
1843 return 0;
1844}
1845
1846/*
1847 * Perform a 'normal' buffer recovery. Each logged region of the
1848 * buffer should be copied over the corresponding region in the
1849 * given buffer. The bitmap in the buf log format structure indicates
1850 * where to place the logged data.
1851 */
1da177e4
LT
1852STATIC void
1853xlog_recover_do_reg_buffer(
9abbc539 1854 struct xfs_mount *mp,
1da177e4 1855 xlog_recover_item_t *item,
e2714bf8 1856 struct xfs_buf *bp,
1da177e4
LT
1857 xfs_buf_log_format_t *buf_f)
1858{
1859 int i;
1860 int bit;
1861 int nbits;
1da177e4
LT
1862 int error;
1863
9abbc539
DC
1864 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1865
1da177e4
LT
1866 bit = 0;
1867 i = 1; /* 0 is the buf format structure */
1868 while (1) {
e2714bf8
CH
1869 bit = xfs_next_bit(buf_f->blf_data_map,
1870 buf_f->blf_map_size, bit);
1da177e4
LT
1871 if (bit == -1)
1872 break;
e2714bf8
CH
1873 nbits = xfs_contig_bits(buf_f->blf_data_map,
1874 buf_f->blf_map_size, bit);
1da177e4 1875 ASSERT(nbits > 0);
4b80916b 1876 ASSERT(item->ri_buf[i].i_addr != NULL);
c1155410 1877 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1da177e4 1878 ASSERT(XFS_BUF_COUNT(bp) >=
c1155410 1879 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1da177e4
LT
1880
1881 /*
1882 * Do a sanity check if this is a dquot buffer. Just checking
1883 * the first dquot in the buffer should do. XXXThis is
1884 * probably a good thing to do for other buf types also.
1885 */
1886 error = 0;
c8ad20ff 1887 if (buf_f->blf_flags &
c1155410 1888 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
0c5e1ce8 1889 if (item->ri_buf[i].i_addr == NULL) {
a0fa2b67 1890 xfs_alert(mp,
0c5e1ce8
CH
1891 "XFS: NULL dquot in %s.", __func__);
1892 goto next;
1893 }
8ec6dba2 1894 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 1895 xfs_alert(mp,
0c5e1ce8
CH
1896 "XFS: dquot too small (%d) in %s.",
1897 item->ri_buf[i].i_len, __func__);
1898 goto next;
1899 }
a0fa2b67 1900 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1da177e4
LT
1901 -1, 0, XFS_QMOPT_DOWARN,
1902 "dquot_buf_recover");
0c5e1ce8
CH
1903 if (error)
1904 goto next;
1da177e4 1905 }
0c5e1ce8
CH
1906
1907 memcpy(xfs_buf_offset(bp,
c1155410 1908 (uint)bit << XFS_BLF_SHIFT), /* dest */
0c5e1ce8 1909 item->ri_buf[i].i_addr, /* source */
c1155410 1910 nbits<<XFS_BLF_SHIFT); /* length */
0c5e1ce8 1911 next:
1da177e4
LT
1912 i++;
1913 bit += nbits;
1914 }
1915
1916 /* Shouldn't be any more regions */
1917 ASSERT(i == item->ri_total);
1918}
1919
1920/*
1921 * Do some primitive error checking on ondisk dquot data structures.
1922 */
1923int
1924xfs_qm_dqcheck(
a0fa2b67 1925 struct xfs_mount *mp,
1da177e4
LT
1926 xfs_disk_dquot_t *ddq,
1927 xfs_dqid_t id,
1928 uint type, /* used only when IO_dorepair is true */
1929 uint flags,
1930 char *str)
1931{
1932 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1933 int errs = 0;
1934
1935 /*
1936 * We can encounter an uninitialized dquot buffer for 2 reasons:
1937 * 1. If we crash while deleting the quotainode(s), and those blks got
1938 * used for user data. This is because we take the path of regular
1939 * file deletion; however, the size field of quotainodes is never
1940 * updated, so all the tricks that we play in itruncate_finish
1941 * don't quite matter.
1942 *
1943 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1944 * But the allocation will be replayed so we'll end up with an
1945 * uninitialized quota block.
1946 *
1947 * This is all fine; things are still consistent, and we haven't lost
1948 * any quota information. Just don't complain about bad dquot blks.
1949 */
69ef921b 1950 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 1951 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1952 xfs_alert(mp,
1da177e4 1953 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 1954 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
1955 errs++;
1956 }
1149d96a 1957 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 1958 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1959 xfs_alert(mp,
1da177e4 1960 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 1961 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
1962 errs++;
1963 }
1964
1149d96a
CH
1965 if (ddq->d_flags != XFS_DQ_USER &&
1966 ddq->d_flags != XFS_DQ_PROJ &&
1967 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 1968 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1969 xfs_alert(mp,
1da177e4 1970 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 1971 str, id, ddq->d_flags);
1da177e4
LT
1972 errs++;
1973 }
1974
1149d96a 1975 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 1976 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1977 xfs_alert(mp,
1da177e4
LT
1978 "%s : ondisk-dquot 0x%p, ID mismatch: "
1979 "0x%x expected, found id 0x%x",
1149d96a 1980 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
1981 errs++;
1982 }
1983
1984 if (!errs && ddq->d_id) {
1149d96a
CH
1985 if (ddq->d_blk_softlimit &&
1986 be64_to_cpu(ddq->d_bcount) >=
1987 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
1988 if (!ddq->d_btimer) {
1989 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
1990 xfs_alert(mp,
1991 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 1992 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
1993 errs++;
1994 }
1995 }
1149d96a
CH
1996 if (ddq->d_ino_softlimit &&
1997 be64_to_cpu(ddq->d_icount) >=
1998 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
1999 if (!ddq->d_itimer) {
2000 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2001 xfs_alert(mp,
2002 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2003 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2004 errs++;
2005 }
2006 }
1149d96a
CH
2007 if (ddq->d_rtb_softlimit &&
2008 be64_to_cpu(ddq->d_rtbcount) >=
2009 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2010 if (!ddq->d_rtbtimer) {
2011 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2012 xfs_alert(mp,
2013 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2014 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2015 errs++;
2016 }
2017 }
2018 }
2019
2020 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2021 return errs;
2022
2023 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2024 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2025
2026 /*
2027 * Typically, a repair is only requested by quotacheck.
2028 */
2029 ASSERT(id != -1);
2030 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2031 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2032
2033 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2034 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2035 d->dd_diskdq.d_flags = type;
2036 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2037
2038 return errs;
2039}
2040
2041/*
2042 * Perform a dquot buffer recovery.
2043 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2044 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2045 * Else, treat it as a regular buffer and do recovery.
2046 */
2047STATIC void
2048xlog_recover_do_dquot_buffer(
2049 xfs_mount_t *mp,
2050 xlog_t *log,
2051 xlog_recover_item_t *item,
2052 xfs_buf_t *bp,
2053 xfs_buf_log_format_t *buf_f)
2054{
2055 uint type;
2056
9abbc539
DC
2057 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2058
1da177e4
LT
2059 /*
2060 * Filesystems are required to send in quota flags at mount time.
2061 */
2062 if (mp->m_qflags == 0) {
2063 return;
2064 }
2065
2066 type = 0;
c1155410 2067 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2068 type |= XFS_DQ_USER;
c1155410 2069 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2070 type |= XFS_DQ_PROJ;
c1155410 2071 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2072 type |= XFS_DQ_GROUP;
2073 /*
2074 * This type of quotas was turned off, so ignore this buffer
2075 */
2076 if (log->l_quotaoffs_flag & type)
2077 return;
2078
9abbc539 2079 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2080}
2081
2082/*
2083 * This routine replays a modification made to a buffer at runtime.
2084 * There are actually two types of buffer, regular and inode, which
2085 * are handled differently. Inode buffers are handled differently
2086 * in that we only recover a specific set of data from them, namely
2087 * the inode di_next_unlinked fields. This is because all other inode
2088 * data is actually logged via inode records and any data we replay
2089 * here which overlaps that may be stale.
2090 *
2091 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2092 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2093 * of the buffer in the log should not be replayed at recovery time.
2094 * This is so that if the blocks covered by the buffer are reused for
2095 * file data before we crash we don't end up replaying old, freed
2096 * meta-data into a user's file.
2097 *
2098 * To handle the cancellation of buffer log items, we make two passes
2099 * over the log during recovery. During the first we build a table of
2100 * those buffers which have been cancelled, and during the second we
2101 * only replay those buffers which do not have corresponding cancel
2102 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2103 * for more details on the implementation of the table of cancel records.
2104 */
2105STATIC int
c9f71f5f 2106xlog_recover_buffer_pass2(
1da177e4 2107 xlog_t *log,
c9f71f5f 2108 xlog_recover_item_t *item)
1da177e4 2109{
4e0d5f92 2110 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2111 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2112 xfs_buf_t *bp;
2113 int error;
6ad112bf 2114 uint buf_flags;
1da177e4 2115
c9f71f5f
CH
2116 /*
2117 * In this pass we only want to recover all the buffers which have
2118 * not been cancelled and are not cancellation buffers themselves.
2119 */
2120 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2121 buf_f->blf_len, buf_f->blf_flags)) {
2122 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2123 return 0;
1da177e4 2124 }
c9f71f5f 2125
9abbc539 2126 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2127
0cadda1c 2128 buf_flags = XBF_LOCK;
e2714bf8 2129 if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
0cadda1c 2130 buf_flags |= XBF_MAPPED;
6ad112bf 2131
e2714bf8
CH
2132 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2133 buf_flags);
5a52c2a5
CS
2134 error = xfs_buf_geterror(bp);
2135 if (error) {
e2714bf8
CH
2136 xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
2137 bp, buf_f->blf_blkno);
1da177e4
LT
2138 xfs_buf_relse(bp);
2139 return error;
2140 }
2141
e2714bf8 2142 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2143 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2144 } else if (buf_f->blf_flags &
c1155410 2145 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2146 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2147 } else {
9abbc539 2148 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2149 }
2150 if (error)
2151 return XFS_ERROR(error);
2152
2153 /*
2154 * Perform delayed write on the buffer. Asynchronous writes will be
2155 * slower when taking into account all the buffers to be flushed.
2156 *
2157 * Also make sure that only inode buffers with good sizes stay in
2158 * the buffer cache. The kernel moves inodes in buffers of 1 block
2159 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2160 * buffers in the log can be a different size if the log was generated
2161 * by an older kernel using unclustered inode buffers or a newer kernel
2162 * running with a different inode cluster size. Regardless, if the
2163 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2164 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2165 * the buffer out of the buffer cache so that the buffer won't
2166 * overlap with future reads of those inodes.
2167 */
2168 if (XFS_DINODE_MAGIC ==
b53e675d 2169 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1da177e4
LT
2170 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2171 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2172 XFS_BUF_STALE(bp);
2173 error = xfs_bwrite(mp, bp);
2174 } else {
ebad861b 2175 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2176 bp->b_iodone = xlog_recover_iodone;
1da177e4
LT
2177 xfs_bdwrite(mp, bp);
2178 }
2179
2180 return (error);
2181}
2182
2183STATIC int
c9f71f5f 2184xlog_recover_inode_pass2(
1da177e4 2185 xlog_t *log,
c9f71f5f 2186 xlog_recover_item_t *item)
1da177e4
LT
2187{
2188 xfs_inode_log_format_t *in_f;
c9f71f5f 2189 xfs_mount_t *mp = log->l_mp;
1da177e4 2190 xfs_buf_t *bp;
1da177e4 2191 xfs_dinode_t *dip;
1da177e4
LT
2192 int len;
2193 xfs_caddr_t src;
2194 xfs_caddr_t dest;
2195 int error;
2196 int attr_index;
2197 uint fields;
347d1c01 2198 xfs_icdinode_t *dicp;
6d192a9b 2199 int need_free = 0;
1da177e4 2200
6d192a9b 2201 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2202 in_f = item->ri_buf[0].i_addr;
6d192a9b 2203 } else {
4e0d5f92 2204 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2205 need_free = 1;
2206 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2207 if (error)
2208 goto error;
2209 }
1da177e4
LT
2210
2211 /*
2212 * Inode buffers can be freed, look out for it,
2213 * and do not replay the inode.
2214 */
a1941895
CH
2215 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2216 in_f->ilf_len, 0)) {
6d192a9b 2217 error = 0;
9abbc539 2218 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2219 goto error;
2220 }
9abbc539 2221 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2222
6ad112bf 2223 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
0cadda1c 2224 XBF_LOCK);
5a52c2a5
CS
2225 error = xfs_buf_geterror(bp);
2226 if (error) {
1da177e4 2227 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
a1941895 2228 bp, in_f->ilf_blkno);
1da177e4 2229 xfs_buf_relse(bp);
6d192a9b 2230 goto error;
1da177e4 2231 }
1da177e4 2232 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2233 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2234
2235 /*
2236 * Make sure the place we're flushing out to really looks
2237 * like an inode!
2238 */
69ef921b 2239 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
1da177e4 2240 xfs_buf_relse(bp);
a0fa2b67
DC
2241 xfs_alert(mp,
2242 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2243 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2244 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2245 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2246 error = EFSCORRUPTED;
2247 goto error;
1da177e4 2248 }
4e0d5f92 2249 dicp = item->ri_buf[1].i_addr;
1da177e4
LT
2250 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2251 xfs_buf_relse(bp);
a0fa2b67
DC
2252 xfs_alert(mp,
2253 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2254 __func__, item, in_f->ilf_ino);
c9f71f5f 2255 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2256 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2257 error = EFSCORRUPTED;
2258 goto error;
1da177e4
LT
2259 }
2260
2261 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2262 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2263 /*
2264 * Deal with the wrap case, DI_MAX_FLUSH is less
2265 * than smaller numbers
2266 */
81591fe2 2267 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2268 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2269 /* do nothing */
2270 } else {
2271 xfs_buf_relse(bp);
9abbc539 2272 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2273 error = 0;
2274 goto error;
1da177e4
LT
2275 }
2276 }
2277 /* Take the opportunity to reset the flush iteration count */
2278 dicp->di_flushiter = 0;
2279
abbede1b 2280 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2281 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2282 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2283 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4
LT
2284 XFS_ERRLEVEL_LOW, mp, dicp);
2285 xfs_buf_relse(bp);
a0fa2b67
DC
2286 xfs_alert(mp,
2287 "%s: Bad regular inode log record, rec ptr 0x%p, "
2288 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2289 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2290 error = EFSCORRUPTED;
2291 goto error;
1da177e4 2292 }
abbede1b 2293 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2294 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2295 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2296 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2297 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4
LT
2298 XFS_ERRLEVEL_LOW, mp, dicp);
2299 xfs_buf_relse(bp);
a0fa2b67
DC
2300 xfs_alert(mp,
2301 "%s: Bad dir inode log record, rec ptr 0x%p, "
2302 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2303 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2304 error = EFSCORRUPTED;
2305 goto error;
1da177e4
LT
2306 }
2307 }
2308 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2309 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4
LT
2310 XFS_ERRLEVEL_LOW, mp, dicp);
2311 xfs_buf_relse(bp);
a0fa2b67
DC
2312 xfs_alert(mp,
2313 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2314 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2315 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2316 dicp->di_nextents + dicp->di_anextents,
2317 dicp->di_nblocks);
6d192a9b
TS
2318 error = EFSCORRUPTED;
2319 goto error;
1da177e4
LT
2320 }
2321 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2322 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4
LT
2323 XFS_ERRLEVEL_LOW, mp, dicp);
2324 xfs_buf_relse(bp);
a0fa2b67
DC
2325 xfs_alert(mp,
2326 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2327 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2328 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b
TS
2329 error = EFSCORRUPTED;
2330 goto error;
1da177e4 2331 }
81591fe2 2332 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
c9f71f5f 2333 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4
LT
2334 XFS_ERRLEVEL_LOW, mp, dicp);
2335 xfs_buf_relse(bp);
a0fa2b67
DC
2336 xfs_alert(mp,
2337 "%s: Bad inode log record length %d, rec ptr 0x%p",
2338 __func__, item->ri_buf[1].i_len, item);
6d192a9b
TS
2339 error = EFSCORRUPTED;
2340 goto error;
1da177e4
LT
2341 }
2342
2343 /* The core is in in-core format */
4e0d5f92 2344 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
1da177e4
LT
2345
2346 /* the rest is in on-disk format */
81591fe2
CH
2347 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2348 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2349 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2350 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
1da177e4
LT
2351 }
2352
2353 fields = in_f->ilf_fields;
2354 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2355 case XFS_ILOG_DEV:
81591fe2 2356 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2357 break;
2358 case XFS_ILOG_UUID:
81591fe2
CH
2359 memcpy(XFS_DFORK_DPTR(dip),
2360 &in_f->ilf_u.ilfu_uuid,
2361 sizeof(uuid_t));
1da177e4
LT
2362 break;
2363 }
2364
2365 if (in_f->ilf_size == 2)
2366 goto write_inode_buffer;
2367 len = item->ri_buf[2].i_len;
2368 src = item->ri_buf[2].i_addr;
2369 ASSERT(in_f->ilf_size <= 4);
2370 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2371 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2372 (len == in_f->ilf_dsize));
2373
2374 switch (fields & XFS_ILOG_DFORK) {
2375 case XFS_ILOG_DDATA:
2376 case XFS_ILOG_DEXT:
81591fe2 2377 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2378 break;
2379
2380 case XFS_ILOG_DBROOT:
7cc95a82 2381 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2382 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2383 XFS_DFORK_DSIZE(dip, mp));
2384 break;
2385
2386 default:
2387 /*
2388 * There are no data fork flags set.
2389 */
2390 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2391 break;
2392 }
2393
2394 /*
2395 * If we logged any attribute data, recover it. There may or
2396 * may not have been any other non-core data logged in this
2397 * transaction.
2398 */
2399 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2400 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2401 attr_index = 3;
2402 } else {
2403 attr_index = 2;
2404 }
2405 len = item->ri_buf[attr_index].i_len;
2406 src = item->ri_buf[attr_index].i_addr;
2407 ASSERT(len == in_f->ilf_asize);
2408
2409 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2410 case XFS_ILOG_ADATA:
2411 case XFS_ILOG_AEXT:
2412 dest = XFS_DFORK_APTR(dip);
2413 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2414 memcpy(dest, src, len);
2415 break;
2416
2417 case XFS_ILOG_ABROOT:
2418 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2419 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2420 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2421 XFS_DFORK_ASIZE(dip, mp));
2422 break;
2423
2424 default:
a0fa2b67 2425 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4
LT
2426 ASSERT(0);
2427 xfs_buf_relse(bp);
6d192a9b
TS
2428 error = EIO;
2429 goto error;
1da177e4
LT
2430 }
2431 }
2432
2433write_inode_buffer:
ebad861b 2434 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2435 bp->b_iodone = xlog_recover_iodone;
dd0bbad8 2436 xfs_bdwrite(mp, bp);
6d192a9b
TS
2437error:
2438 if (need_free)
f0e2d93c 2439 kmem_free(in_f);
6d192a9b 2440 return XFS_ERROR(error);
1da177e4
LT
2441}
2442
2443/*
2444 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2445 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2446 * of that type.
2447 */
2448STATIC int
c9f71f5f 2449xlog_recover_quotaoff_pass1(
1da177e4 2450 xlog_t *log,
c9f71f5f 2451 xlog_recover_item_t *item)
1da177e4 2452{
c9f71f5f 2453 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2454 ASSERT(qoff_f);
2455
2456 /*
2457 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2458 * group/project quotaoff or both.
1da177e4
LT
2459 */
2460 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2461 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2462 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2463 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2464 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2465 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2466
2467 return (0);
2468}
2469
2470/*
2471 * Recover a dquot record
2472 */
2473STATIC int
c9f71f5f 2474xlog_recover_dquot_pass2(
1da177e4 2475 xlog_t *log,
c9f71f5f 2476 xlog_recover_item_t *item)
1da177e4 2477{
c9f71f5f 2478 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2479 xfs_buf_t *bp;
2480 struct xfs_disk_dquot *ddq, *recddq;
2481 int error;
2482 xfs_dq_logformat_t *dq_f;
2483 uint type;
2484
1da177e4
LT
2485
2486 /*
2487 * Filesystems are required to send in quota flags at mount time.
2488 */
2489 if (mp->m_qflags == 0)
2490 return (0);
2491
4e0d5f92
CH
2492 recddq = item->ri_buf[1].i_addr;
2493 if (recddq == NULL) {
a0fa2b67 2494 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
2495 return XFS_ERROR(EIO);
2496 }
8ec6dba2 2497 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2498 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
2499 item->ri_buf[1].i_len, __func__);
2500 return XFS_ERROR(EIO);
2501 }
2502
1da177e4
LT
2503 /*
2504 * This type of quotas was turned off, so ignore this record.
2505 */
b53e675d 2506 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2507 ASSERT(type);
2508 if (log->l_quotaoffs_flag & type)
2509 return (0);
2510
2511 /*
2512 * At this point we know that quota was _not_ turned off.
2513 * Since the mount flags are not indicating to us otherwise, this
2514 * must mean that quota is on, and the dquot needs to be replayed.
2515 * Remember that we may not have fully recovered the superblock yet,
2516 * so we can't do the usual trick of looking at the SB quota bits.
2517 *
2518 * The other possibility, of course, is that the quota subsystem was
2519 * removed since the last mount - ENOSYS.
2520 */
4e0d5f92 2521 dq_f = item->ri_buf[0].i_addr;
1da177e4 2522 ASSERT(dq_f);
a0fa2b67
DC
2523 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2524 "xlog_recover_dquot_pass2 (log copy)");
2525 if (error)
1da177e4 2526 return XFS_ERROR(EIO);
1da177e4
LT
2527 ASSERT(dq_f->qlf_len == 1);
2528
2529 error = xfs_read_buf(mp, mp->m_ddev_targp,
2530 dq_f->qlf_blkno,
2531 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2532 0, &bp);
2533 if (error) {
2534 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2535 bp, dq_f->qlf_blkno);
2536 return error;
2537 }
2538 ASSERT(bp);
2539 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2540
2541 /*
2542 * At least the magic num portion should be on disk because this
2543 * was among a chunk of dquots created earlier, and we did some
2544 * minimal initialization then.
2545 */
a0fa2b67
DC
2546 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2547 "xlog_recover_dquot_pass2");
2548 if (error) {
1da177e4
LT
2549 xfs_buf_relse(bp);
2550 return XFS_ERROR(EIO);
2551 }
2552
2553 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2554
2555 ASSERT(dq_f->qlf_size == 2);
ebad861b 2556 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2557 bp->b_iodone = xlog_recover_iodone;
1da177e4
LT
2558 xfs_bdwrite(mp, bp);
2559
2560 return (0);
2561}
2562
2563/*
2564 * This routine is called to create an in-core extent free intent
2565 * item from the efi format structure which was logged on disk.
2566 * It allocates an in-core efi, copies the extents from the format
2567 * structure into it, and adds the efi to the AIL with the given
2568 * LSN.
2569 */
6d192a9b 2570STATIC int
c9f71f5f 2571xlog_recover_efi_pass2(
1da177e4
LT
2572 xlog_t *log,
2573 xlog_recover_item_t *item,
c9f71f5f 2574 xfs_lsn_t lsn)
1da177e4 2575{
6d192a9b 2576 int error;
c9f71f5f 2577 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2578 xfs_efi_log_item_t *efip;
2579 xfs_efi_log_format_t *efi_formatp;
1da177e4 2580
4e0d5f92 2581 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2582
1da177e4 2583 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2584 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2585 &(efip->efi_format)))) {
2586 xfs_efi_item_free(efip);
2587 return error;
2588 }
b199c8a4 2589 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2590
a9c21c1b 2591 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2592 /*
783a2f65 2593 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2594 */
e6059949 2595 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2596 return 0;
1da177e4
LT
2597}
2598
2599
2600/*
2601 * This routine is called when an efd format structure is found in
2602 * a committed transaction in the log. It's purpose is to cancel
2603 * the corresponding efi if it was still in the log. To do this
2604 * it searches the AIL for the efi with an id equal to that in the
2605 * efd format structure. If we find it, we remove the efi from the
2606 * AIL and free it.
2607 */
c9f71f5f
CH
2608STATIC int
2609xlog_recover_efd_pass2(
1da177e4 2610 xlog_t *log,
c9f71f5f 2611 xlog_recover_item_t *item)
1da177e4 2612{
1da177e4
LT
2613 xfs_efd_log_format_t *efd_formatp;
2614 xfs_efi_log_item_t *efip = NULL;
2615 xfs_log_item_t *lip;
1da177e4 2616 __uint64_t efi_id;
27d8d5fe 2617 struct xfs_ail_cursor cur;
783a2f65 2618 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2619
4e0d5f92 2620 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2621 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2622 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2623 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2624 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2625 efi_id = efd_formatp->efd_efi_id;
2626
2627 /*
2628 * Search for the efi with the id in the efd format structure
2629 * in the AIL.
2630 */
a9c21c1b
DC
2631 spin_lock(&ailp->xa_lock);
2632 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2633 while (lip != NULL) {
2634 if (lip->li_type == XFS_LI_EFI) {
2635 efip = (xfs_efi_log_item_t *)lip;
2636 if (efip->efi_format.efi_id == efi_id) {
2637 /*
783a2f65 2638 * xfs_trans_ail_delete() drops the
1da177e4
LT
2639 * AIL lock.
2640 */
783a2f65 2641 xfs_trans_ail_delete(ailp, lip);
8ae2c0f6 2642 xfs_efi_item_free(efip);
a9c21c1b 2643 spin_lock(&ailp->xa_lock);
27d8d5fe 2644 break;
1da177e4
LT
2645 }
2646 }
a9c21c1b 2647 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2648 }
a9c21c1b
DC
2649 xfs_trans_ail_cursor_done(ailp, &cur);
2650 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
2651
2652 return 0;
1da177e4
LT
2653}
2654
1da177e4
LT
2655/*
2656 * Free up any resources allocated by the transaction
2657 *
2658 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2659 */
2660STATIC void
2661xlog_recover_free_trans(
d0450948 2662 struct xlog_recover *trans)
1da177e4 2663{
f0a76953 2664 xlog_recover_item_t *item, *n;
1da177e4
LT
2665 int i;
2666
f0a76953
DC
2667 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2668 /* Free the regions in the item. */
2669 list_del(&item->ri_list);
2670 for (i = 0; i < item->ri_cnt; i++)
2671 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2672 /* Free the item itself */
f0a76953
DC
2673 kmem_free(item->ri_buf);
2674 kmem_free(item);
2675 }
1da177e4 2676 /* Free the transaction recover structure */
f0e2d93c 2677 kmem_free(trans);
1da177e4
LT
2678}
2679
d0450948 2680STATIC int
c9f71f5f 2681xlog_recover_commit_pass1(
d0450948
CH
2682 struct log *log,
2683 struct xlog_recover *trans,
c9f71f5f 2684 xlog_recover_item_t *item)
d0450948 2685{
c9f71f5f 2686 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
2687
2688 switch (ITEM_TYPE(item)) {
2689 case XFS_LI_BUF:
c9f71f5f
CH
2690 return xlog_recover_buffer_pass1(log, item);
2691 case XFS_LI_QUOTAOFF:
2692 return xlog_recover_quotaoff_pass1(log, item);
d0450948 2693 case XFS_LI_INODE:
d0450948 2694 case XFS_LI_EFI:
d0450948 2695 case XFS_LI_EFD:
c9f71f5f
CH
2696 case XFS_LI_DQUOT:
2697 /* nothing to do in pass 1 */
d0450948 2698 return 0;
c9f71f5f 2699 default:
a0fa2b67
DC
2700 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2701 __func__, ITEM_TYPE(item));
c9f71f5f
CH
2702 ASSERT(0);
2703 return XFS_ERROR(EIO);
2704 }
2705}
2706
2707STATIC int
2708xlog_recover_commit_pass2(
2709 struct log *log,
2710 struct xlog_recover *trans,
2711 xlog_recover_item_t *item)
2712{
2713 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2714
2715 switch (ITEM_TYPE(item)) {
2716 case XFS_LI_BUF:
2717 return xlog_recover_buffer_pass2(log, item);
2718 case XFS_LI_INODE:
2719 return xlog_recover_inode_pass2(log, item);
2720 case XFS_LI_EFI:
2721 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2722 case XFS_LI_EFD:
2723 return xlog_recover_efd_pass2(log, item);
d0450948 2724 case XFS_LI_DQUOT:
c9f71f5f 2725 return xlog_recover_dquot_pass2(log, item);
d0450948 2726 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
2727 /* nothing to do in pass2 */
2728 return 0;
d0450948 2729 default:
a0fa2b67
DC
2730 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2731 __func__, ITEM_TYPE(item));
d0450948
CH
2732 ASSERT(0);
2733 return XFS_ERROR(EIO);
2734 }
2735}
2736
2737/*
2738 * Perform the transaction.
2739 *
2740 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2741 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2742 */
1da177e4
LT
2743STATIC int
2744xlog_recover_commit_trans(
d0450948
CH
2745 struct log *log,
2746 struct xlog_recover *trans,
1da177e4
LT
2747 int pass)
2748{
d0450948
CH
2749 int error = 0;
2750 xlog_recover_item_t *item;
1da177e4 2751
f0a76953 2752 hlist_del(&trans->r_list);
d0450948
CH
2753
2754 error = xlog_recover_reorder_trans(log, trans, pass);
2755 if (error)
1da177e4 2756 return error;
d0450948
CH
2757
2758 list_for_each_entry(item, &trans->r_itemq, ri_list) {
c9f71f5f
CH
2759 if (pass == XLOG_RECOVER_PASS1)
2760 error = xlog_recover_commit_pass1(log, trans, item);
2761 else
2762 error = xlog_recover_commit_pass2(log, trans, item);
d0450948
CH
2763 if (error)
2764 return error;
2765 }
2766
2767 xlog_recover_free_trans(trans);
1da177e4
LT
2768 return 0;
2769}
2770
2771STATIC int
2772xlog_recover_unmount_trans(
a0fa2b67 2773 struct log *log,
1da177e4
LT
2774 xlog_recover_t *trans)
2775{
2776 /* Do nothing now */
a0fa2b67 2777 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
2778 return 0;
2779}
2780
2781/*
2782 * There are two valid states of the r_state field. 0 indicates that the
2783 * transaction structure is in a normal state. We have either seen the
2784 * start of the transaction or the last operation we added was not a partial
2785 * operation. If the last operation we added to the transaction was a
2786 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2787 *
2788 * NOTE: skip LRs with 0 data length.
2789 */
2790STATIC int
2791xlog_recover_process_data(
2792 xlog_t *log,
f0a76953 2793 struct hlist_head rhash[],
1da177e4
LT
2794 xlog_rec_header_t *rhead,
2795 xfs_caddr_t dp,
2796 int pass)
2797{
2798 xfs_caddr_t lp;
2799 int num_logops;
2800 xlog_op_header_t *ohead;
2801 xlog_recover_t *trans;
2802 xlog_tid_t tid;
2803 int error;
2804 unsigned long hash;
2805 uint flags;
2806
b53e675d
CH
2807 lp = dp + be32_to_cpu(rhead->h_len);
2808 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2809
2810 /* check the log format matches our own - else we can't recover */
2811 if (xlog_header_check_recover(log->l_mp, rhead))
2812 return (XFS_ERROR(EIO));
2813
2814 while ((dp < lp) && num_logops) {
2815 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2816 ohead = (xlog_op_header_t *)dp;
2817 dp += sizeof(xlog_op_header_t);
2818 if (ohead->oh_clientid != XFS_TRANSACTION &&
2819 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
2820 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2821 __func__, ohead->oh_clientid);
1da177e4
LT
2822 ASSERT(0);
2823 return (XFS_ERROR(EIO));
2824 }
67fcb7bf 2825 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 2826 hash = XLOG_RHASH(tid);
f0a76953 2827 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
2828 if (trans == NULL) { /* not found; add new tid */
2829 if (ohead->oh_flags & XLOG_START_TRANS)
2830 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2831 be64_to_cpu(rhead->h_lsn));
1da177e4 2832 } else {
9742bb93 2833 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
2834 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2835 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
2836 WARN_ON(1);
2837 return (XFS_ERROR(EIO));
2838 }
1da177e4
LT
2839 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2840 if (flags & XLOG_WAS_CONT_TRANS)
2841 flags &= ~XLOG_CONTINUE_TRANS;
2842 switch (flags) {
2843 case XLOG_COMMIT_TRANS:
2844 error = xlog_recover_commit_trans(log,
f0a76953 2845 trans, pass);
1da177e4
LT
2846 break;
2847 case XLOG_UNMOUNT_TRANS:
a0fa2b67 2848 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
2849 break;
2850 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
2851 error = xlog_recover_add_to_cont_trans(log,
2852 trans, dp,
2853 be32_to_cpu(ohead->oh_len));
1da177e4
LT
2854 break;
2855 case XLOG_START_TRANS:
a0fa2b67
DC
2856 xfs_warn(log->l_mp, "%s: bad transaction",
2857 __func__);
1da177e4
LT
2858 ASSERT(0);
2859 error = XFS_ERROR(EIO);
2860 break;
2861 case 0:
2862 case XLOG_CONTINUE_TRANS:
9abbc539 2863 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 2864 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2865 break;
2866 default:
a0fa2b67
DC
2867 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2868 __func__, flags);
1da177e4
LT
2869 ASSERT(0);
2870 error = XFS_ERROR(EIO);
2871 break;
2872 }
2873 if (error)
2874 return error;
2875 }
67fcb7bf 2876 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2877 num_logops--;
2878 }
2879 return 0;
2880}
2881
2882/*
2883 * Process an extent free intent item that was recovered from
2884 * the log. We need to free the extents that it describes.
2885 */
3c1e2bbe 2886STATIC int
1da177e4
LT
2887xlog_recover_process_efi(
2888 xfs_mount_t *mp,
2889 xfs_efi_log_item_t *efip)
2890{
2891 xfs_efd_log_item_t *efdp;
2892 xfs_trans_t *tp;
2893 int i;
3c1e2bbe 2894 int error = 0;
1da177e4
LT
2895 xfs_extent_t *extp;
2896 xfs_fsblock_t startblock_fsb;
2897
b199c8a4 2898 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
2899
2900 /*
2901 * First check the validity of the extents described by the
2902 * EFI. If any are bad, then assume that all are bad and
2903 * just toss the EFI.
2904 */
2905 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2906 extp = &(efip->efi_format.efi_extents[i]);
2907 startblock_fsb = XFS_BB_TO_FSB(mp,
2908 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2909 if ((startblock_fsb == 0) ||
2910 (extp->ext_len == 0) ||
2911 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2912 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2913 /*
2914 * This will pull the EFI from the AIL and
2915 * free the memory associated with it.
2916 */
2917 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 2918 return XFS_ERROR(EIO);
1da177e4
LT
2919 }
2920 }
2921
2922 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 2923 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
2924 if (error)
2925 goto abort_error;
1da177e4
LT
2926 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2927
2928 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2929 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
2930 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2931 if (error)
2932 goto abort_error;
1da177e4
LT
2933 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2934 extp->ext_len);
2935 }
2936
b199c8a4 2937 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 2938 error = xfs_trans_commit(tp, 0);
3c1e2bbe 2939 return error;
fc6149d8
DC
2940
2941abort_error:
2942 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2943 return error;
1da177e4
LT
2944}
2945
1da177e4
LT
2946/*
2947 * When this is called, all of the EFIs which did not have
2948 * corresponding EFDs should be in the AIL. What we do now
2949 * is free the extents associated with each one.
2950 *
2951 * Since we process the EFIs in normal transactions, they
2952 * will be removed at some point after the commit. This prevents
2953 * us from just walking down the list processing each one.
2954 * We'll use a flag in the EFI to skip those that we've already
2955 * processed and use the AIL iteration mechanism's generation
2956 * count to try to speed this up at least a bit.
2957 *
2958 * When we start, we know that the EFIs are the only things in
2959 * the AIL. As we process them, however, other items are added
2960 * to the AIL. Since everything added to the AIL must come after
2961 * everything already in the AIL, we stop processing as soon as
2962 * we see something other than an EFI in the AIL.
2963 */
3c1e2bbe 2964STATIC int
1da177e4
LT
2965xlog_recover_process_efis(
2966 xlog_t *log)
2967{
2968 xfs_log_item_t *lip;
2969 xfs_efi_log_item_t *efip;
3c1e2bbe 2970 int error = 0;
27d8d5fe 2971 struct xfs_ail_cursor cur;
a9c21c1b 2972 struct xfs_ail *ailp;
1da177e4 2973
a9c21c1b
DC
2974 ailp = log->l_ailp;
2975 spin_lock(&ailp->xa_lock);
2976 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2977 while (lip != NULL) {
2978 /*
2979 * We're done when we see something other than an EFI.
27d8d5fe 2980 * There should be no EFIs left in the AIL now.
1da177e4
LT
2981 */
2982 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 2983#ifdef DEBUG
a9c21c1b 2984 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
2985 ASSERT(lip->li_type != XFS_LI_EFI);
2986#endif
1da177e4
LT
2987 break;
2988 }
2989
2990 /*
2991 * Skip EFIs that we've already processed.
2992 */
2993 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 2994 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 2995 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
2996 continue;
2997 }
2998
a9c21c1b
DC
2999 spin_unlock(&ailp->xa_lock);
3000 error = xlog_recover_process_efi(log->l_mp, efip);
3001 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3002 if (error)
3003 goto out;
a9c21c1b 3004 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3005 }
27d8d5fe 3006out:
a9c21c1b
DC
3007 xfs_trans_ail_cursor_done(ailp, &cur);
3008 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3009 return error;
1da177e4
LT
3010}
3011
3012/*
3013 * This routine performs a transaction to null out a bad inode pointer
3014 * in an agi unlinked inode hash bucket.
3015 */
3016STATIC void
3017xlog_recover_clear_agi_bucket(
3018 xfs_mount_t *mp,
3019 xfs_agnumber_t agno,
3020 int bucket)
3021{
3022 xfs_trans_t *tp;
3023 xfs_agi_t *agi;
3024 xfs_buf_t *agibp;
3025 int offset;
3026 int error;
3027
3028 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3029 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3030 0, 0, 0);
e5720eec
DC
3031 if (error)
3032 goto out_abort;
1da177e4 3033
5e1be0fb
CH
3034 error = xfs_read_agi(mp, tp, agno, &agibp);
3035 if (error)
e5720eec 3036 goto out_abort;
1da177e4 3037
5e1be0fb 3038 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3039 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3040 offset = offsetof(xfs_agi_t, agi_unlinked) +
3041 (sizeof(xfs_agino_t) * bucket);
3042 xfs_trans_log_buf(tp, agibp, offset,
3043 (offset + sizeof(xfs_agino_t) - 1));
3044
e5720eec
DC
3045 error = xfs_trans_commit(tp, 0);
3046 if (error)
3047 goto out_error;
3048 return;
3049
3050out_abort:
3051 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3052out_error:
a0fa2b67 3053 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3054 return;
1da177e4
LT
3055}
3056
23fac50f
CH
3057STATIC xfs_agino_t
3058xlog_recover_process_one_iunlink(
3059 struct xfs_mount *mp,
3060 xfs_agnumber_t agno,
3061 xfs_agino_t agino,
3062 int bucket)
3063{
3064 struct xfs_buf *ibp;
3065 struct xfs_dinode *dip;
3066 struct xfs_inode *ip;
3067 xfs_ino_t ino;
3068 int error;
3069
3070 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3071 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3072 if (error)
3073 goto fail;
3074
3075 /*
3076 * Get the on disk inode to find the next inode in the bucket.
3077 */
0cadda1c 3078 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
23fac50f 3079 if (error)
0e446673 3080 goto fail_iput;
23fac50f 3081
23fac50f 3082 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3083 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3084
3085 /* setup for the next pass */
3086 agino = be32_to_cpu(dip->di_next_unlinked);
3087 xfs_buf_relse(ibp);
3088
3089 /*
3090 * Prevent any DMAPI event from being sent when the reference on
3091 * the inode is dropped.
3092 */
3093 ip->i_d.di_dmevmask = 0;
3094
0e446673 3095 IRELE(ip);
23fac50f
CH
3096 return agino;
3097
0e446673
CH
3098 fail_iput:
3099 IRELE(ip);
23fac50f
CH
3100 fail:
3101 /*
3102 * We can't read in the inode this bucket points to, or this inode
3103 * is messed up. Just ditch this bucket of inodes. We will lose
3104 * some inodes and space, but at least we won't hang.
3105 *
3106 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3107 * clear the inode pointer in the bucket.
3108 */
3109 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3110 return NULLAGINO;
3111}
3112
1da177e4
LT
3113/*
3114 * xlog_iunlink_recover
3115 *
3116 * This is called during recovery to process any inodes which
3117 * we unlinked but not freed when the system crashed. These
3118 * inodes will be on the lists in the AGI blocks. What we do
3119 * here is scan all the AGIs and fully truncate and free any
3120 * inodes found on the lists. Each inode is removed from the
3121 * lists when it has been fully truncated and is freed. The
3122 * freeing of the inode and its removal from the list must be
3123 * atomic.
3124 */
d96f8f89 3125STATIC void
1da177e4
LT
3126xlog_recover_process_iunlinks(
3127 xlog_t *log)
3128{
3129 xfs_mount_t *mp;
3130 xfs_agnumber_t agno;
3131 xfs_agi_t *agi;
3132 xfs_buf_t *agibp;
1da177e4 3133 xfs_agino_t agino;
1da177e4
LT
3134 int bucket;
3135 int error;
3136 uint mp_dmevmask;
3137
3138 mp = log->l_mp;
3139
3140 /*
3141 * Prevent any DMAPI event from being sent while in this function.
3142 */
3143 mp_dmevmask = mp->m_dmevmask;
3144 mp->m_dmevmask = 0;
3145
3146 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3147 /*
3148 * Find the agi for this ag.
3149 */
5e1be0fb
CH
3150 error = xfs_read_agi(mp, NULL, agno, &agibp);
3151 if (error) {
3152 /*
3153 * AGI is b0rked. Don't process it.
3154 *
3155 * We should probably mark the filesystem as corrupt
3156 * after we've recovered all the ag's we can....
3157 */
3158 continue;
1da177e4
LT
3159 }
3160 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3161
3162 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3163 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3164 while (agino != NULLAGINO) {
1da177e4
LT
3165 /*
3166 * Release the agi buffer so that it can
3167 * be acquired in the normal course of the
3168 * transaction to truncate and free the inode.
3169 */
3170 xfs_buf_relse(agibp);
3171
23fac50f
CH
3172 agino = xlog_recover_process_one_iunlink(mp,
3173 agno, agino, bucket);
1da177e4
LT
3174
3175 /*
3176 * Reacquire the agibuffer and continue around
5e1be0fb
CH
3177 * the loop. This should never fail as we know
3178 * the buffer was good earlier on.
1da177e4 3179 */
5e1be0fb
CH
3180 error = xfs_read_agi(mp, NULL, agno, &agibp);
3181 ASSERT(error == 0);
1da177e4 3182 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3183 }
3184 }
3185
3186 /*
3187 * Release the buffer for the current agi so we can
3188 * go on to the next one.
3189 */
3190 xfs_buf_relse(agibp);
3191 }
3192
3193 mp->m_dmevmask = mp_dmevmask;
3194}
3195
3196
3197#ifdef DEBUG
3198STATIC void
3199xlog_pack_data_checksum(
3200 xlog_t *log,
3201 xlog_in_core_t *iclog,
3202 int size)
3203{
3204 int i;
b53e675d 3205 __be32 *up;
1da177e4
LT
3206 uint chksum = 0;
3207
b53e675d 3208 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3209 /* divide length by 4 to get # words */
3210 for (i = 0; i < (size >> 2); i++) {
b53e675d 3211 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3212 up++;
3213 }
b53e675d 3214 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3215}
3216#else
3217#define xlog_pack_data_checksum(log, iclog, size)
3218#endif
3219
3220/*
3221 * Stamp cycle number in every block
3222 */
3223void
3224xlog_pack_data(
3225 xlog_t *log,
3226 xlog_in_core_t *iclog,
3227 int roundoff)
3228{
3229 int i, j, k;
3230 int size = iclog->ic_offset + roundoff;
b53e675d 3231 __be32 cycle_lsn;
1da177e4 3232 xfs_caddr_t dp;
1da177e4
LT
3233
3234 xlog_pack_data_checksum(log, iclog, size);
3235
3236 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3237
3238 dp = iclog->ic_datap;
3239 for (i = 0; i < BTOBB(size) &&
3240 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3241 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3242 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3243 dp += BBSIZE;
3244 }
3245
62118709 3246 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6
CH
3247 xlog_in_core_2_t *xhdr = iclog->ic_data;
3248
1da177e4
LT
3249 for ( ; i < BTOBB(size); i++) {
3250 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3251 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3252 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3253 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3254 dp += BBSIZE;
3255 }
3256
3257 for (i = 1; i < log->l_iclog_heads; i++) {
3258 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3259 }
3260 }
3261}
3262
1da177e4
LT
3263STATIC void
3264xlog_unpack_data(
3265 xlog_rec_header_t *rhead,
3266 xfs_caddr_t dp,
3267 xlog_t *log)
3268{
3269 int i, j, k;
1da177e4 3270
b53e675d 3271 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3272 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3273 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3274 dp += BBSIZE;
3275 }
3276
62118709 3277 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3278 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3279 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3280 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3281 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3282 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3283 dp += BBSIZE;
3284 }
3285 }
1da177e4
LT
3286}
3287
3288STATIC int
3289xlog_valid_rec_header(
3290 xlog_t *log,
3291 xlog_rec_header_t *rhead,
3292 xfs_daddr_t blkno)
3293{
3294 int hlen;
3295
69ef921b 3296 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
3297 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3298 XFS_ERRLEVEL_LOW, log->l_mp);
3299 return XFS_ERROR(EFSCORRUPTED);
3300 }
3301 if (unlikely(
3302 (!rhead->h_version ||
b53e675d 3303 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 3304 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 3305 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3306 return XFS_ERROR(EIO);
3307 }
3308
3309 /* LR body must have data or it wouldn't have been written */
b53e675d 3310 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3311 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3312 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3313 XFS_ERRLEVEL_LOW, log->l_mp);
3314 return XFS_ERROR(EFSCORRUPTED);
3315 }
3316 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3317 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3318 XFS_ERRLEVEL_LOW, log->l_mp);
3319 return XFS_ERROR(EFSCORRUPTED);
3320 }
3321 return 0;
3322}
3323
3324/*
3325 * Read the log from tail to head and process the log records found.
3326 * Handle the two cases where the tail and head are in the same cycle
3327 * and where the active portion of the log wraps around the end of
3328 * the physical log separately. The pass parameter is passed through
3329 * to the routines called to process the data and is not looked at
3330 * here.
3331 */
3332STATIC int
3333xlog_do_recovery_pass(
3334 xlog_t *log,
3335 xfs_daddr_t head_blk,
3336 xfs_daddr_t tail_blk,
3337 int pass)
3338{
3339 xlog_rec_header_t *rhead;
3340 xfs_daddr_t blk_no;
fc5bc4c8 3341 xfs_caddr_t offset;
1da177e4
LT
3342 xfs_buf_t *hbp, *dbp;
3343 int error = 0, h_size;
3344 int bblks, split_bblks;
3345 int hblks, split_hblks, wrapped_hblks;
f0a76953 3346 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3347
3348 ASSERT(head_blk != tail_blk);
3349
3350 /*
3351 * Read the header of the tail block and get the iclog buffer size from
3352 * h_size. Use this to tell how many sectors make up the log header.
3353 */
62118709 3354 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3355 /*
3356 * When using variable length iclogs, read first sector of
3357 * iclog header and extract the header size from it. Get a
3358 * new hbp that is the correct size.
3359 */
3360 hbp = xlog_get_bp(log, 1);
3361 if (!hbp)
3362 return ENOMEM;
076e6acb
CH
3363
3364 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3365 if (error)
1da177e4 3366 goto bread_err1;
076e6acb 3367
1da177e4
LT
3368 rhead = (xlog_rec_header_t *)offset;
3369 error = xlog_valid_rec_header(log, rhead, tail_blk);
3370 if (error)
3371 goto bread_err1;
b53e675d
CH
3372 h_size = be32_to_cpu(rhead->h_size);
3373 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3374 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3375 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3376 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3377 hblks++;
3378 xlog_put_bp(hbp);
3379 hbp = xlog_get_bp(log, hblks);
3380 } else {
3381 hblks = 1;
3382 }
3383 } else {
69ce58f0 3384 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
3385 hblks = 1;
3386 hbp = xlog_get_bp(log, 1);
3387 h_size = XLOG_BIG_RECORD_BSIZE;
3388 }
3389
3390 if (!hbp)
3391 return ENOMEM;
3392 dbp = xlog_get_bp(log, BTOBB(h_size));
3393 if (!dbp) {
3394 xlog_put_bp(hbp);
3395 return ENOMEM;
3396 }
3397
3398 memset(rhash, 0, sizeof(rhash));
3399 if (tail_blk <= head_blk) {
3400 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3401 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3402 if (error)
1da177e4 3403 goto bread_err2;
076e6acb 3404
1da177e4
LT
3405 rhead = (xlog_rec_header_t *)offset;
3406 error = xlog_valid_rec_header(log, rhead, blk_no);
3407 if (error)
3408 goto bread_err2;
3409
3410 /* blocks in data section */
b53e675d 3411 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3412 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3413 &offset);
1da177e4
LT
3414 if (error)
3415 goto bread_err2;
076e6acb 3416
1da177e4
LT
3417 xlog_unpack_data(rhead, offset, log);
3418 if ((error = xlog_recover_process_data(log,
3419 rhash, rhead, offset, pass)))
3420 goto bread_err2;
3421 blk_no += bblks + hblks;
3422 }
3423 } else {
3424 /*
3425 * Perform recovery around the end of the physical log.
3426 * When the head is not on the same cycle number as the tail,
3427 * we can't do a sequential recovery as above.
3428 */
3429 blk_no = tail_blk;
3430 while (blk_no < log->l_logBBsize) {
3431 /*
3432 * Check for header wrapping around physical end-of-log
3433 */
62926044 3434 offset = hbp->b_addr;
1da177e4
LT
3435 split_hblks = 0;
3436 wrapped_hblks = 0;
3437 if (blk_no + hblks <= log->l_logBBsize) {
3438 /* Read header in one read */
076e6acb
CH
3439 error = xlog_bread(log, blk_no, hblks, hbp,
3440 &offset);
1da177e4
LT
3441 if (error)
3442 goto bread_err2;
1da177e4
LT
3443 } else {
3444 /* This LR is split across physical log end */
3445 if (blk_no != log->l_logBBsize) {
3446 /* some data before physical log end */
3447 ASSERT(blk_no <= INT_MAX);
3448 split_hblks = log->l_logBBsize - (int)blk_no;
3449 ASSERT(split_hblks > 0);
076e6acb
CH
3450 error = xlog_bread(log, blk_no,
3451 split_hblks, hbp,
3452 &offset);
3453 if (error)
1da177e4 3454 goto bread_err2;
1da177e4 3455 }
076e6acb 3456
1da177e4
LT
3457 /*
3458 * Note: this black magic still works with
3459 * large sector sizes (non-512) only because:
3460 * - we increased the buffer size originally
3461 * by 1 sector giving us enough extra space
3462 * for the second read;
3463 * - the log start is guaranteed to be sector
3464 * aligned;
3465 * - we read the log end (LR header start)
3466 * _first_, then the log start (LR header end)
3467 * - order is important.
3468 */
234f56ac 3469 wrapped_hblks = hblks - split_hblks;
44396476
DC
3470 error = xlog_bread_offset(log, 0,
3471 wrapped_hblks, hbp,
3472 offset + BBTOB(split_hblks));
1da177e4
LT
3473 if (error)
3474 goto bread_err2;
1da177e4
LT
3475 }
3476 rhead = (xlog_rec_header_t *)offset;
3477 error = xlog_valid_rec_header(log, rhead,
3478 split_hblks ? blk_no : 0);
3479 if (error)
3480 goto bread_err2;
3481
b53e675d 3482 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3483 blk_no += hblks;
3484
3485 /* Read in data for log record */
3486 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3487 error = xlog_bread(log, blk_no, bblks, dbp,
3488 &offset);
1da177e4
LT
3489 if (error)
3490 goto bread_err2;
1da177e4
LT
3491 } else {
3492 /* This log record is split across the
3493 * physical end of log */
62926044 3494 offset = dbp->b_addr;
1da177e4
LT
3495 split_bblks = 0;
3496 if (blk_no != log->l_logBBsize) {
3497 /* some data is before the physical
3498 * end of log */
3499 ASSERT(!wrapped_hblks);
3500 ASSERT(blk_no <= INT_MAX);
3501 split_bblks =
3502 log->l_logBBsize - (int)blk_no;
3503 ASSERT(split_bblks > 0);
076e6acb
CH
3504 error = xlog_bread(log, blk_no,
3505 split_bblks, dbp,
3506 &offset);
3507 if (error)
1da177e4 3508 goto bread_err2;
1da177e4 3509 }
076e6acb 3510
1da177e4
LT
3511 /*
3512 * Note: this black magic still works with
3513 * large sector sizes (non-512) only because:
3514 * - we increased the buffer size originally
3515 * by 1 sector giving us enough extra space
3516 * for the second read;
3517 * - the log start is guaranteed to be sector
3518 * aligned;
3519 * - we read the log end (LR header start)
3520 * _first_, then the log start (LR header end)
3521 * - order is important.
3522 */
44396476
DC
3523 error = xlog_bread_offset(log, 0,
3524 bblks - split_bblks, hbp,
3525 offset + BBTOB(split_bblks));
076e6acb
CH
3526 if (error)
3527 goto bread_err2;
1da177e4
LT
3528 }
3529 xlog_unpack_data(rhead, offset, log);
3530 if ((error = xlog_recover_process_data(log, rhash,
3531 rhead, offset, pass)))
3532 goto bread_err2;
3533 blk_no += bblks;
3534 }
3535
3536 ASSERT(blk_no >= log->l_logBBsize);
3537 blk_no -= log->l_logBBsize;
3538
3539 /* read first part of physical log */
3540 while (blk_no < head_blk) {
076e6acb
CH
3541 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3542 if (error)
1da177e4 3543 goto bread_err2;
076e6acb 3544
1da177e4
LT
3545 rhead = (xlog_rec_header_t *)offset;
3546 error = xlog_valid_rec_header(log, rhead, blk_no);
3547 if (error)
3548 goto bread_err2;
076e6acb 3549
b53e675d 3550 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3551 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3552 &offset);
3553 if (error)
1da177e4 3554 goto bread_err2;
076e6acb 3555
1da177e4
LT
3556 xlog_unpack_data(rhead, offset, log);
3557 if ((error = xlog_recover_process_data(log, rhash,
3558 rhead, offset, pass)))
3559 goto bread_err2;
3560 blk_no += bblks + hblks;
3561 }
3562 }
3563
3564 bread_err2:
3565 xlog_put_bp(dbp);
3566 bread_err1:
3567 xlog_put_bp(hbp);
3568 return error;
3569}
3570
3571/*
3572 * Do the recovery of the log. We actually do this in two phases.
3573 * The two passes are necessary in order to implement the function
3574 * of cancelling a record written into the log. The first pass
3575 * determines those things which have been cancelled, and the
3576 * second pass replays log items normally except for those which
3577 * have been cancelled. The handling of the replay and cancellations
3578 * takes place in the log item type specific routines.
3579 *
3580 * The table of items which have cancel records in the log is allocated
3581 * and freed at this level, since only here do we know when all of
3582 * the log recovery has been completed.
3583 */
3584STATIC int
3585xlog_do_log_recovery(
3586 xlog_t *log,
3587 xfs_daddr_t head_blk,
3588 xfs_daddr_t tail_blk)
3589{
d5689eaa 3590 int error, i;
1da177e4
LT
3591
3592 ASSERT(head_blk != tail_blk);
3593
3594 /*
3595 * First do a pass to find all of the cancelled buf log items.
3596 * Store them in the buf_cancel_table for use in the second pass.
3597 */
d5689eaa
CH
3598 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3599 sizeof(struct list_head),
1da177e4 3600 KM_SLEEP);
d5689eaa
CH
3601 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3602 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3603
1da177e4
LT
3604 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3605 XLOG_RECOVER_PASS1);
3606 if (error != 0) {
f0e2d93c 3607 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3608 log->l_buf_cancel_table = NULL;
3609 return error;
3610 }
3611 /*
3612 * Then do a second pass to actually recover the items in the log.
3613 * When it is complete free the table of buf cancel items.
3614 */
3615 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3616 XLOG_RECOVER_PASS2);
3617#ifdef DEBUG
6d192a9b 3618 if (!error) {
1da177e4
LT
3619 int i;
3620
3621 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 3622 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
3623 }
3624#endif /* DEBUG */
3625
f0e2d93c 3626 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3627 log->l_buf_cancel_table = NULL;
3628
3629 return error;
3630}
3631
3632/*
3633 * Do the actual recovery
3634 */
3635STATIC int
3636xlog_do_recover(
3637 xlog_t *log,
3638 xfs_daddr_t head_blk,
3639 xfs_daddr_t tail_blk)
3640{
3641 int error;
3642 xfs_buf_t *bp;
3643 xfs_sb_t *sbp;
3644
3645 /*
3646 * First replay the images in the log.
3647 */
3648 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3649 if (error) {
3650 return error;
3651 }
3652
3653 XFS_bflush(log->l_mp->m_ddev_targp);
3654
3655 /*
3656 * If IO errors happened during recovery, bail out.
3657 */
3658 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3659 return (EIO);
3660 }
3661
3662 /*
3663 * We now update the tail_lsn since much of the recovery has completed
3664 * and there may be space available to use. If there were no extent
3665 * or iunlinks, we can free up the entire log and set the tail_lsn to
3666 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3667 * lsn of the last known good LR on disk. If there are extent frees
3668 * or iunlinks they will have some entries in the AIL; so we look at
3669 * the AIL to determine how to set the tail_lsn.
3670 */
3671 xlog_assign_tail_lsn(log->l_mp);
3672
3673 /*
3674 * Now that we've finished replaying all buffer and inode
3675 * updates, re-read in the superblock.
3676 */
3677 bp = xfs_getsb(log->l_mp, 0);
3678 XFS_BUF_UNDONE(bp);
bebf963f
LM
3679 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3680 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
1da177e4 3681 XFS_BUF_READ(bp);
bebf963f 3682 XFS_BUF_UNASYNC(bp);
1da177e4 3683 xfsbdstrat(log->l_mp, bp);
1a1a3e97 3684 error = xfs_buf_iowait(bp);
d64e31a2 3685 if (error) {
1da177e4
LT
3686 xfs_ioerror_alert("xlog_do_recover",
3687 log->l_mp, bp, XFS_BUF_ADDR(bp));
3688 ASSERT(0);
3689 xfs_buf_relse(bp);
3690 return error;
3691 }
3692
3693 /* Convert superblock from on-disk format */
3694 sbp = &log->l_mp->m_sb;
2bdf7cd0 3695 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3696 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3697 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3698 xfs_buf_relse(bp);
3699
5478eead
LM
3700 /* We've re-read the superblock so re-initialize per-cpu counters */
3701 xfs_icsb_reinit_counters(log->l_mp);
3702
1da177e4
LT
3703 xlog_recover_check_summary(log);
3704
3705 /* Normal transactions can now occur */
3706 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3707 return 0;
3708}
3709
3710/*
3711 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3712 *
3713 * Return error or zero.
3714 */
3715int
3716xlog_recover(
65be6054 3717 xlog_t *log)
1da177e4
LT
3718{
3719 xfs_daddr_t head_blk, tail_blk;
3720 int error;
3721
3722 /* find the tail of the log */
65be6054 3723 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3724 return error;
3725
3726 if (tail_blk != head_blk) {
3727 /* There used to be a comment here:
3728 *
3729 * disallow recovery on read-only mounts. note -- mount
3730 * checks for ENOSPC and turns it into an intelligent
3731 * error message.
3732 * ...but this is no longer true. Now, unless you specify
3733 * NORECOVERY (in which case this function would never be
3734 * called), we just go ahead and recover. We do this all
3735 * under the vfs layer, so we can get away with it unless
3736 * the device itself is read-only, in which case we fail.
3737 */
3a02ee18 3738 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3739 return error;
3740 }
3741
a0fa2b67
DC
3742 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3743 log->l_mp->m_logname ? log->l_mp->m_logname
3744 : "internal");
1da177e4
LT
3745
3746 error = xlog_do_recover(log, head_blk, tail_blk);
3747 log->l_flags |= XLOG_RECOVERY_NEEDED;
3748 }
3749 return error;
3750}
3751
3752/*
3753 * In the first part of recovery we replay inodes and buffers and build
3754 * up the list of extent free items which need to be processed. Here
3755 * we process the extent free items and clean up the on disk unlinked
3756 * inode lists. This is separated from the first part of recovery so
3757 * that the root and real-time bitmap inodes can be read in from disk in
3758 * between the two stages. This is necessary so that we can free space
3759 * in the real-time portion of the file system.
3760 */
3761int
3762xlog_recover_finish(
4249023a 3763 xlog_t *log)
1da177e4
LT
3764{
3765 /*
3766 * Now we're ready to do the transactions needed for the
3767 * rest of recovery. Start with completing all the extent
3768 * free intent records and then process the unlinked inode
3769 * lists. At this point, we essentially run in normal mode
3770 * except that we're still performing recovery actions
3771 * rather than accepting new requests.
3772 */
3773 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3774 int error;
3775 error = xlog_recover_process_efis(log);
3776 if (error) {
a0fa2b67 3777 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
3778 return error;
3779 }
1da177e4
LT
3780 /*
3781 * Sync the log to get all the EFIs out of the AIL.
3782 * This isn't absolutely necessary, but it helps in
3783 * case the unlink transactions would have problems
3784 * pushing the EFIs out of the way.
3785 */
a14a348b 3786 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 3787
4249023a 3788 xlog_recover_process_iunlinks(log);
1da177e4
LT
3789
3790 xlog_recover_check_summary(log);
3791
a0fa2b67
DC
3792 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3793 log->l_mp->m_logname ? log->l_mp->m_logname
3794 : "internal");
1da177e4
LT
3795 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3796 } else {
a0fa2b67 3797 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
3798 }
3799 return 0;
3800}
3801
3802
3803#if defined(DEBUG)
3804/*
3805 * Read all of the agf and agi counters and check that they
3806 * are consistent with the superblock counters.
3807 */
3808void
3809xlog_recover_check_summary(
3810 xlog_t *log)
3811{
3812 xfs_mount_t *mp;
3813 xfs_agf_t *agfp;
1da177e4
LT
3814 xfs_buf_t *agfbp;
3815 xfs_buf_t *agibp;
1da177e4
LT
3816 xfs_agnumber_t agno;
3817 __uint64_t freeblks;
3818 __uint64_t itotal;
3819 __uint64_t ifree;
5e1be0fb 3820 int error;
1da177e4
LT
3821
3822 mp = log->l_mp;
3823
3824 freeblks = 0LL;
3825 itotal = 0LL;
3826 ifree = 0LL;
3827 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
CH
3828 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3829 if (error) {
a0fa2b67
DC
3830 xfs_alert(mp, "%s agf read failed agno %d error %d",
3831 __func__, agno, error);
4805621a
CH
3832 } else {
3833 agfp = XFS_BUF_TO_AGF(agfbp);
3834 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3835 be32_to_cpu(agfp->agf_flcount);
3836 xfs_buf_relse(agfbp);
1da177e4 3837 }
1da177e4 3838
5e1be0fb 3839 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
3840 if (error) {
3841 xfs_alert(mp, "%s agi read failed agno %d error %d",
3842 __func__, agno, error);
3843 } else {
5e1be0fb 3844 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3845
5e1be0fb
CH
3846 itotal += be32_to_cpu(agi->agi_count);
3847 ifree += be32_to_cpu(agi->agi_freecount);
3848 xfs_buf_relse(agibp);
3849 }
1da177e4 3850 }
1da177e4
LT
3851}
3852#endif /* DEBUG */