]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/xfs/xfs_log_recover.c
xfs: flush outstanding buffers on log mount failure
[mirror_ubuntu-zesty-kernel.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
1da177e4 32#include "xfs_dinode.h"
1da177e4 33#include "xfs_inode.h"
a844f451 34#include "xfs_inode_item.h"
a844f451 35#include "xfs_alloc.h"
1da177e4
LT
36#include "xfs_ialloc.h"
37#include "xfs_log_priv.h"
38#include "xfs_buf_item.h"
1da177e4
LT
39#include "xfs_log_recover.h"
40#include "xfs_extfree_item.h"
41#include "xfs_trans_priv.h"
1da177e4 42#include "xfs_quota.h"
43355099 43#include "xfs_utils.h"
0b1b213f 44#include "xfs_trace.h"
1da177e4
LT
45
46STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
47STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
1da177e4
LT
48#if defined(DEBUG)
49STATIC void xlog_recover_check_summary(xlog_t *);
1da177e4
LT
50#else
51#define xlog_recover_check_summary(log)
1da177e4
LT
52#endif
53
d5689eaa
CH
54/*
55 * This structure is used during recovery to record the buf log items which
56 * have been canceled and should not be replayed.
57 */
58struct xfs_buf_cancel {
59 xfs_daddr_t bc_blkno;
60 uint bc_len;
61 int bc_refcount;
62 struct list_head bc_list;
63};
64
1da177e4
LT
65/*
66 * Sector aligned buffer routines for buffer create/read/write/access
67 */
68
ff30a622
AE
69/*
70 * Verify the given count of basic blocks is valid number of blocks
71 * to specify for an operation involving the given XFS log buffer.
72 * Returns nonzero if the count is valid, 0 otherwise.
73 */
74
75static inline int
76xlog_buf_bbcount_valid(
77 xlog_t *log,
78 int bbcount)
79{
80 return bbcount > 0 && bbcount <= log->l_logBBsize;
81}
82
36adecff
AE
83/*
84 * Allocate a buffer to hold log data. The buffer needs to be able
85 * to map to a range of nbblks basic blocks at any valid (basic
86 * block) offset within the log.
87 */
5d77c0dc 88STATIC xfs_buf_t *
1da177e4
LT
89xlog_get_bp(
90 xlog_t *log,
3228149c 91 int nbblks)
1da177e4 92{
c8da0faf
CH
93 struct xfs_buf *bp;
94
ff30a622 95 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 96 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
97 nbblks);
98 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
99 return NULL;
100 }
1da177e4 101
36adecff
AE
102 /*
103 * We do log I/O in units of log sectors (a power-of-2
104 * multiple of the basic block size), so we round up the
25985edc 105 * requested size to accommodate the basic blocks required
36adecff
AE
106 * for complete log sectors.
107 *
108 * In addition, the buffer may be used for a non-sector-
109 * aligned block offset, in which case an I/O of the
110 * requested size could extend beyond the end of the
111 * buffer. If the requested size is only 1 basic block it
112 * will never straddle a sector boundary, so this won't be
113 * an issue. Nor will this be a problem if the log I/O is
114 * done in basic blocks (sector size 1). But otherwise we
115 * extend the buffer by one extra log sector to ensure
25985edc 116 * there's space to accommodate this possibility.
36adecff 117 */
69ce58f0
AE
118 if (nbblks > 1 && log->l_sectBBsize > 1)
119 nbblks += log->l_sectBBsize;
120 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 121
e70b73f8 122 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
123 if (bp)
124 xfs_buf_unlock(bp);
125 return bp;
1da177e4
LT
126}
127
5d77c0dc 128STATIC void
1da177e4
LT
129xlog_put_bp(
130 xfs_buf_t *bp)
131{
132 xfs_buf_free(bp);
133}
134
48389ef1
AE
135/*
136 * Return the address of the start of the given block number's data
137 * in a log buffer. The buffer covers a log sector-aligned region.
138 */
076e6acb
CH
139STATIC xfs_caddr_t
140xlog_align(
141 xlog_t *log,
142 xfs_daddr_t blk_no,
143 int nbblks,
144 xfs_buf_t *bp)
145{
fdc07f44 146 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 147
4e94b71b 148 ASSERT(offset + nbblks <= bp->b_length);
62926044 149 return bp->b_addr + BBTOB(offset);
076e6acb
CH
150}
151
1da177e4
LT
152
153/*
154 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
155 */
076e6acb
CH
156STATIC int
157xlog_bread_noalign(
1da177e4
LT
158 xlog_t *log,
159 xfs_daddr_t blk_no,
160 int nbblks,
161 xfs_buf_t *bp)
162{
163 int error;
164
ff30a622 165 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 166 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
167 nbblks);
168 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
169 return EFSCORRUPTED;
170 }
171
69ce58f0
AE
172 blk_no = round_down(blk_no, log->l_sectBBsize);
173 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
174
175 ASSERT(nbblks > 0);
4e94b71b 176 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
177
178 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
179 XFS_BUF_READ(bp);
aa0e8833 180 bp->b_io_length = nbblks;
0e95f19a 181 bp->b_error = 0;
1da177e4
LT
182
183 xfsbdstrat(log->l_mp, bp);
1a1a3e97 184 error = xfs_buf_iowait(bp);
d64e31a2 185 if (error)
901796af 186 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
187 return error;
188}
189
076e6acb
CH
190STATIC int
191xlog_bread(
192 xlog_t *log,
193 xfs_daddr_t blk_no,
194 int nbblks,
195 xfs_buf_t *bp,
196 xfs_caddr_t *offset)
197{
198 int error;
199
200 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
201 if (error)
202 return error;
203
204 *offset = xlog_align(log, blk_no, nbblks, bp);
205 return 0;
206}
207
44396476
DC
208/*
209 * Read at an offset into the buffer. Returns with the buffer in it's original
210 * state regardless of the result of the read.
211 */
212STATIC int
213xlog_bread_offset(
214 xlog_t *log,
215 xfs_daddr_t blk_no, /* block to read from */
216 int nbblks, /* blocks to read */
217 xfs_buf_t *bp,
218 xfs_caddr_t offset)
219{
62926044 220 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 221 int orig_len = BBTOB(bp->b_length);
44396476
DC
222 int error, error2;
223
02fe03d9 224 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
225 if (error)
226 return error;
227
228 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
229
230 /* must reset buffer pointer even on error */
02fe03d9 231 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
232 if (error)
233 return error;
234 return error2;
235}
236
1da177e4
LT
237/*
238 * Write out the buffer at the given block for the given number of blocks.
239 * The buffer is kept locked across the write and is returned locked.
240 * This can only be used for synchronous log writes.
241 */
ba0f32d4 242STATIC int
1da177e4
LT
243xlog_bwrite(
244 xlog_t *log,
245 xfs_daddr_t blk_no,
246 int nbblks,
247 xfs_buf_t *bp)
248{
249 int error;
250
ff30a622 251 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 252 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
253 nbblks);
254 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
255 return EFSCORRUPTED;
256 }
257
69ce58f0
AE
258 blk_no = round_down(blk_no, log->l_sectBBsize);
259 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
260
261 ASSERT(nbblks > 0);
4e94b71b 262 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
263
264 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
265 XFS_BUF_ZEROFLAGS(bp);
72790aa1 266 xfs_buf_hold(bp);
0c842ad4 267 xfs_buf_lock(bp);
aa0e8833 268 bp->b_io_length = nbblks;
0e95f19a 269 bp->b_error = 0;
1da177e4 270
c2b006c1 271 error = xfs_bwrite(bp);
901796af
CH
272 if (error)
273 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 274 xfs_buf_relse(bp);
1da177e4
LT
275 return error;
276}
277
1da177e4
LT
278#ifdef DEBUG
279/*
280 * dump debug superblock and log record information
281 */
282STATIC void
283xlog_header_check_dump(
284 xfs_mount_t *mp,
285 xlog_rec_header_t *head)
286{
a0fa2b67 287 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
03daa57c 288 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
a0fa2b67 289 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
03daa57c 290 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
291}
292#else
293#define xlog_header_check_dump(mp, head)
294#endif
295
296/*
297 * check log record header for recovery
298 */
299STATIC int
300xlog_header_check_recover(
301 xfs_mount_t *mp,
302 xlog_rec_header_t *head)
303{
69ef921b 304 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
305
306 /*
307 * IRIX doesn't write the h_fmt field and leaves it zeroed
308 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
309 * a dirty log created in IRIX.
310 */
69ef921b 311 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
312 xfs_warn(mp,
313 "dirty log written in incompatible format - can't recover");
1da177e4
LT
314 xlog_header_check_dump(mp, head);
315 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
316 XFS_ERRLEVEL_HIGH, mp);
317 return XFS_ERROR(EFSCORRUPTED);
318 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
319 xfs_warn(mp,
320 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
321 xlog_header_check_dump(mp, head);
322 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
323 XFS_ERRLEVEL_HIGH, mp);
324 return XFS_ERROR(EFSCORRUPTED);
325 }
326 return 0;
327}
328
329/*
330 * read the head block of the log and check the header
331 */
332STATIC int
333xlog_header_check_mount(
334 xfs_mount_t *mp,
335 xlog_rec_header_t *head)
336{
69ef921b 337 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
338
339 if (uuid_is_nil(&head->h_fs_uuid)) {
340 /*
341 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
342 * h_fs_uuid is nil, we assume this log was last mounted
343 * by IRIX and continue.
344 */
a0fa2b67 345 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 346 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 347 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
348 xlog_header_check_dump(mp, head);
349 XFS_ERROR_REPORT("xlog_header_check_mount",
350 XFS_ERRLEVEL_HIGH, mp);
351 return XFS_ERROR(EFSCORRUPTED);
352 }
353 return 0;
354}
355
356STATIC void
357xlog_recover_iodone(
358 struct xfs_buf *bp)
359{
5a52c2a5 360 if (bp->b_error) {
1da177e4
LT
361 /*
362 * We're not going to bother about retrying
363 * this during recovery. One strike!
364 */
901796af 365 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
366 xfs_force_shutdown(bp->b_target->bt_mount,
367 SHUTDOWN_META_IO_ERROR);
1da177e4 368 }
cb669ca5 369 bp->b_iodone = NULL;
1a1a3e97 370 xfs_buf_ioend(bp, 0);
1da177e4
LT
371}
372
373/*
374 * This routine finds (to an approximation) the first block in the physical
375 * log which contains the given cycle. It uses a binary search algorithm.
376 * Note that the algorithm can not be perfect because the disk will not
377 * necessarily be perfect.
378 */
a8272ce0 379STATIC int
1da177e4
LT
380xlog_find_cycle_start(
381 xlog_t *log,
382 xfs_buf_t *bp,
383 xfs_daddr_t first_blk,
384 xfs_daddr_t *last_blk,
385 uint cycle)
386{
387 xfs_caddr_t offset;
388 xfs_daddr_t mid_blk;
e3bb2e30 389 xfs_daddr_t end_blk;
1da177e4
LT
390 uint mid_cycle;
391 int error;
392
e3bb2e30
AE
393 end_blk = *last_blk;
394 mid_blk = BLK_AVG(first_blk, end_blk);
395 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
396 error = xlog_bread(log, mid_blk, 1, bp, &offset);
397 if (error)
1da177e4 398 return error;
03bea6fe 399 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
400 if (mid_cycle == cycle)
401 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
402 else
403 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
404 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 405 }
e3bb2e30
AE
406 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
407 (mid_blk == end_blk && mid_blk-1 == first_blk));
408
409 *last_blk = end_blk;
1da177e4
LT
410
411 return 0;
412}
413
414/*
3f943d85
AE
415 * Check that a range of blocks does not contain stop_on_cycle_no.
416 * Fill in *new_blk with the block offset where such a block is
417 * found, or with -1 (an invalid block number) if there is no such
418 * block in the range. The scan needs to occur from front to back
419 * and the pointer into the region must be updated since a later
420 * routine will need to perform another test.
1da177e4
LT
421 */
422STATIC int
423xlog_find_verify_cycle(
424 xlog_t *log,
425 xfs_daddr_t start_blk,
426 int nbblks,
427 uint stop_on_cycle_no,
428 xfs_daddr_t *new_blk)
429{
430 xfs_daddr_t i, j;
431 uint cycle;
432 xfs_buf_t *bp;
433 xfs_daddr_t bufblks;
434 xfs_caddr_t buf = NULL;
435 int error = 0;
436
6881a229
AE
437 /*
438 * Greedily allocate a buffer big enough to handle the full
439 * range of basic blocks we'll be examining. If that fails,
440 * try a smaller size. We need to be able to read at least
441 * a log sector, or we're out of luck.
442 */
1da177e4 443 bufblks = 1 << ffs(nbblks);
81158e0c
DC
444 while (bufblks > log->l_logBBsize)
445 bufblks >>= 1;
1da177e4 446 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 447 bufblks >>= 1;
69ce58f0 448 if (bufblks < log->l_sectBBsize)
1da177e4
LT
449 return ENOMEM;
450 }
451
452 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
453 int bcount;
454
455 bcount = min(bufblks, (start_blk + nbblks - i));
456
076e6acb
CH
457 error = xlog_bread(log, i, bcount, bp, &buf);
458 if (error)
1da177e4
LT
459 goto out;
460
1da177e4 461 for (j = 0; j < bcount; j++) {
03bea6fe 462 cycle = xlog_get_cycle(buf);
1da177e4
LT
463 if (cycle == stop_on_cycle_no) {
464 *new_blk = i+j;
465 goto out;
466 }
467
468 buf += BBSIZE;
469 }
470 }
471
472 *new_blk = -1;
473
474out:
475 xlog_put_bp(bp);
476 return error;
477}
478
479/*
480 * Potentially backup over partial log record write.
481 *
482 * In the typical case, last_blk is the number of the block directly after
483 * a good log record. Therefore, we subtract one to get the block number
484 * of the last block in the given buffer. extra_bblks contains the number
485 * of blocks we would have read on a previous read. This happens when the
486 * last log record is split over the end of the physical log.
487 *
488 * extra_bblks is the number of blocks potentially verified on a previous
489 * call to this routine.
490 */
491STATIC int
492xlog_find_verify_log_record(
493 xlog_t *log,
494 xfs_daddr_t start_blk,
495 xfs_daddr_t *last_blk,
496 int extra_bblks)
497{
498 xfs_daddr_t i;
499 xfs_buf_t *bp;
500 xfs_caddr_t offset = NULL;
501 xlog_rec_header_t *head = NULL;
502 int error = 0;
503 int smallmem = 0;
504 int num_blks = *last_blk - start_blk;
505 int xhdrs;
506
507 ASSERT(start_blk != 0 || *last_blk != start_blk);
508
509 if (!(bp = xlog_get_bp(log, num_blks))) {
510 if (!(bp = xlog_get_bp(log, 1)))
511 return ENOMEM;
512 smallmem = 1;
513 } else {
076e6acb
CH
514 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
515 if (error)
1da177e4 516 goto out;
1da177e4
LT
517 offset += ((num_blks - 1) << BBSHIFT);
518 }
519
520 for (i = (*last_blk) - 1; i >= 0; i--) {
521 if (i < start_blk) {
522 /* valid log record not found */
a0fa2b67
DC
523 xfs_warn(log->l_mp,
524 "Log inconsistent (didn't find previous header)");
1da177e4
LT
525 ASSERT(0);
526 error = XFS_ERROR(EIO);
527 goto out;
528 }
529
530 if (smallmem) {
076e6acb
CH
531 error = xlog_bread(log, i, 1, bp, &offset);
532 if (error)
1da177e4 533 goto out;
1da177e4
LT
534 }
535
536 head = (xlog_rec_header_t *)offset;
537
69ef921b 538 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
539 break;
540
541 if (!smallmem)
542 offset -= BBSIZE;
543 }
544
545 /*
546 * We hit the beginning of the physical log & still no header. Return
547 * to caller. If caller can handle a return of -1, then this routine
548 * will be called again for the end of the physical log.
549 */
550 if (i == -1) {
551 error = -1;
552 goto out;
553 }
554
555 /*
556 * We have the final block of the good log (the first block
557 * of the log record _before_ the head. So we check the uuid.
558 */
559 if ((error = xlog_header_check_mount(log->l_mp, head)))
560 goto out;
561
562 /*
563 * We may have found a log record header before we expected one.
564 * last_blk will be the 1st block # with a given cycle #. We may end
565 * up reading an entire log record. In this case, we don't want to
566 * reset last_blk. Only when last_blk points in the middle of a log
567 * record do we update last_blk.
568 */
62118709 569 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 570 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
571
572 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
573 if (h_size % XLOG_HEADER_CYCLE_SIZE)
574 xhdrs++;
575 } else {
576 xhdrs = 1;
577 }
578
b53e675d
CH
579 if (*last_blk - i + extra_bblks !=
580 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
581 *last_blk = i;
582
583out:
584 xlog_put_bp(bp);
585 return error;
586}
587
588/*
589 * Head is defined to be the point of the log where the next log write
590 * write could go. This means that incomplete LR writes at the end are
591 * eliminated when calculating the head. We aren't guaranteed that previous
592 * LR have complete transactions. We only know that a cycle number of
593 * current cycle number -1 won't be present in the log if we start writing
594 * from our current block number.
595 *
596 * last_blk contains the block number of the first block with a given
597 * cycle number.
598 *
599 * Return: zero if normal, non-zero if error.
600 */
ba0f32d4 601STATIC int
1da177e4
LT
602xlog_find_head(
603 xlog_t *log,
604 xfs_daddr_t *return_head_blk)
605{
606 xfs_buf_t *bp;
607 xfs_caddr_t offset;
608 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
609 int num_scan_bblks;
610 uint first_half_cycle, last_half_cycle;
611 uint stop_on_cycle;
612 int error, log_bbnum = log->l_logBBsize;
613
614 /* Is the end of the log device zeroed? */
615 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
616 *return_head_blk = first_blk;
617
618 /* Is the whole lot zeroed? */
619 if (!first_blk) {
620 /* Linux XFS shouldn't generate totally zeroed logs -
621 * mkfs etc write a dummy unmount record to a fresh
622 * log so we can store the uuid in there
623 */
a0fa2b67 624 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
625 }
626
627 return 0;
628 } else if (error) {
a0fa2b67 629 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
630 return error;
631 }
632
633 first_blk = 0; /* get cycle # of 1st block */
634 bp = xlog_get_bp(log, 1);
635 if (!bp)
636 return ENOMEM;
076e6acb
CH
637
638 error = xlog_bread(log, 0, 1, bp, &offset);
639 if (error)
1da177e4 640 goto bp_err;
076e6acb 641
03bea6fe 642 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
643
644 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
645 error = xlog_bread(log, last_blk, 1, bp, &offset);
646 if (error)
1da177e4 647 goto bp_err;
076e6acb 648
03bea6fe 649 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
650 ASSERT(last_half_cycle != 0);
651
652 /*
653 * If the 1st half cycle number is equal to the last half cycle number,
654 * then the entire log is stamped with the same cycle number. In this
655 * case, head_blk can't be set to zero (which makes sense). The below
656 * math doesn't work out properly with head_blk equal to zero. Instead,
657 * we set it to log_bbnum which is an invalid block number, but this
658 * value makes the math correct. If head_blk doesn't changed through
659 * all the tests below, *head_blk is set to zero at the very end rather
660 * than log_bbnum. In a sense, log_bbnum and zero are the same block
661 * in a circular file.
662 */
663 if (first_half_cycle == last_half_cycle) {
664 /*
665 * In this case we believe that the entire log should have
666 * cycle number last_half_cycle. We need to scan backwards
667 * from the end verifying that there are no holes still
668 * containing last_half_cycle - 1. If we find such a hole,
669 * then the start of that hole will be the new head. The
670 * simple case looks like
671 * x | x ... | x - 1 | x
672 * Another case that fits this picture would be
673 * x | x + 1 | x ... | x
c41564b5 674 * In this case the head really is somewhere at the end of the
1da177e4
LT
675 * log, as one of the latest writes at the beginning was
676 * incomplete.
677 * One more case is
678 * x | x + 1 | x ... | x - 1 | x
679 * This is really the combination of the above two cases, and
680 * the head has to end up at the start of the x-1 hole at the
681 * end of the log.
682 *
683 * In the 256k log case, we will read from the beginning to the
684 * end of the log and search for cycle numbers equal to x-1.
685 * We don't worry about the x+1 blocks that we encounter,
686 * because we know that they cannot be the head since the log
687 * started with x.
688 */
689 head_blk = log_bbnum;
690 stop_on_cycle = last_half_cycle - 1;
691 } else {
692 /*
693 * In this case we want to find the first block with cycle
694 * number matching last_half_cycle. We expect the log to be
695 * some variation on
3f943d85 696 * x + 1 ... | x ... | x
1da177e4
LT
697 * The first block with cycle number x (last_half_cycle) will
698 * be where the new head belongs. First we do a binary search
699 * for the first occurrence of last_half_cycle. The binary
700 * search may not be totally accurate, so then we scan back
701 * from there looking for occurrences of last_half_cycle before
702 * us. If that backwards scan wraps around the beginning of
703 * the log, then we look for occurrences of last_half_cycle - 1
704 * at the end of the log. The cases we're looking for look
705 * like
3f943d85
AE
706 * v binary search stopped here
707 * x + 1 ... | x | x + 1 | x ... | x
708 * ^ but we want to locate this spot
1da177e4 709 * or
1da177e4 710 * <---------> less than scan distance
3f943d85
AE
711 * x + 1 ... | x ... | x - 1 | x
712 * ^ we want to locate this spot
1da177e4
LT
713 */
714 stop_on_cycle = last_half_cycle;
715 if ((error = xlog_find_cycle_start(log, bp, first_blk,
716 &head_blk, last_half_cycle)))
717 goto bp_err;
718 }
719
720 /*
721 * Now validate the answer. Scan back some number of maximum possible
722 * blocks and make sure each one has the expected cycle number. The
723 * maximum is determined by the total possible amount of buffering
724 * in the in-core log. The following number can be made tighter if
725 * we actually look at the block size of the filesystem.
726 */
727 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
728 if (head_blk >= num_scan_bblks) {
729 /*
730 * We are guaranteed that the entire check can be performed
731 * in one buffer.
732 */
733 start_blk = head_blk - num_scan_bblks;
734 if ((error = xlog_find_verify_cycle(log,
735 start_blk, num_scan_bblks,
736 stop_on_cycle, &new_blk)))
737 goto bp_err;
738 if (new_blk != -1)
739 head_blk = new_blk;
740 } else { /* need to read 2 parts of log */
741 /*
742 * We are going to scan backwards in the log in two parts.
743 * First we scan the physical end of the log. In this part
744 * of the log, we are looking for blocks with cycle number
745 * last_half_cycle - 1.
746 * If we find one, then we know that the log starts there, as
747 * we've found a hole that didn't get written in going around
748 * the end of the physical log. The simple case for this is
749 * x + 1 ... | x ... | x - 1 | x
750 * <---------> less than scan distance
751 * If all of the blocks at the end of the log have cycle number
752 * last_half_cycle, then we check the blocks at the start of
753 * the log looking for occurrences of last_half_cycle. If we
754 * find one, then our current estimate for the location of the
755 * first occurrence of last_half_cycle is wrong and we move
756 * back to the hole we've found. This case looks like
757 * x + 1 ... | x | x + 1 | x ...
758 * ^ binary search stopped here
759 * Another case we need to handle that only occurs in 256k
760 * logs is
761 * x + 1 ... | x ... | x+1 | x ...
762 * ^ binary search stops here
763 * In a 256k log, the scan at the end of the log will see the
764 * x + 1 blocks. We need to skip past those since that is
765 * certainly not the head of the log. By searching for
766 * last_half_cycle-1 we accomplish that.
767 */
1da177e4 768 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
769 (xfs_daddr_t) num_scan_bblks >= head_blk);
770 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
771 if ((error = xlog_find_verify_cycle(log, start_blk,
772 num_scan_bblks - (int)head_blk,
773 (stop_on_cycle - 1), &new_blk)))
774 goto bp_err;
775 if (new_blk != -1) {
776 head_blk = new_blk;
9db127ed 777 goto validate_head;
1da177e4
LT
778 }
779
780 /*
781 * Scan beginning of log now. The last part of the physical
782 * log is good. This scan needs to verify that it doesn't find
783 * the last_half_cycle.
784 */
785 start_blk = 0;
786 ASSERT(head_blk <= INT_MAX);
787 if ((error = xlog_find_verify_cycle(log,
788 start_blk, (int)head_blk,
789 stop_on_cycle, &new_blk)))
790 goto bp_err;
791 if (new_blk != -1)
792 head_blk = new_blk;
793 }
794
9db127ed 795validate_head:
1da177e4
LT
796 /*
797 * Now we need to make sure head_blk is not pointing to a block in
798 * the middle of a log record.
799 */
800 num_scan_bblks = XLOG_REC_SHIFT(log);
801 if (head_blk >= num_scan_bblks) {
802 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
803
804 /* start ptr at last block ptr before head_blk */
805 if ((error = xlog_find_verify_log_record(log, start_blk,
806 &head_blk, 0)) == -1) {
807 error = XFS_ERROR(EIO);
808 goto bp_err;
809 } else if (error)
810 goto bp_err;
811 } else {
812 start_blk = 0;
813 ASSERT(head_blk <= INT_MAX);
814 if ((error = xlog_find_verify_log_record(log, start_blk,
815 &head_blk, 0)) == -1) {
816 /* We hit the beginning of the log during our search */
3f943d85 817 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
818 new_blk = log_bbnum;
819 ASSERT(start_blk <= INT_MAX &&
820 (xfs_daddr_t) log_bbnum-start_blk >= 0);
821 ASSERT(head_blk <= INT_MAX);
822 if ((error = xlog_find_verify_log_record(log,
823 start_blk, &new_blk,
824 (int)head_blk)) == -1) {
825 error = XFS_ERROR(EIO);
826 goto bp_err;
827 } else if (error)
828 goto bp_err;
829 if (new_blk != log_bbnum)
830 head_blk = new_blk;
831 } else if (error)
832 goto bp_err;
833 }
834
835 xlog_put_bp(bp);
836 if (head_blk == log_bbnum)
837 *return_head_blk = 0;
838 else
839 *return_head_blk = head_blk;
840 /*
841 * When returning here, we have a good block number. Bad block
842 * means that during a previous crash, we didn't have a clean break
843 * from cycle number N to cycle number N-1. In this case, we need
844 * to find the first block with cycle number N-1.
845 */
846 return 0;
847
848 bp_err:
849 xlog_put_bp(bp);
850
851 if (error)
a0fa2b67 852 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
853 return error;
854}
855
856/*
857 * Find the sync block number or the tail of the log.
858 *
859 * This will be the block number of the last record to have its
860 * associated buffers synced to disk. Every log record header has
861 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
862 * to get a sync block number. The only concern is to figure out which
863 * log record header to believe.
864 *
865 * The following algorithm uses the log record header with the largest
866 * lsn. The entire log record does not need to be valid. We only care
867 * that the header is valid.
868 *
869 * We could speed up search by using current head_blk buffer, but it is not
870 * available.
871 */
5d77c0dc 872STATIC int
1da177e4
LT
873xlog_find_tail(
874 xlog_t *log,
875 xfs_daddr_t *head_blk,
65be6054 876 xfs_daddr_t *tail_blk)
1da177e4
LT
877{
878 xlog_rec_header_t *rhead;
879 xlog_op_header_t *op_head;
880 xfs_caddr_t offset = NULL;
881 xfs_buf_t *bp;
882 int error, i, found;
883 xfs_daddr_t umount_data_blk;
884 xfs_daddr_t after_umount_blk;
885 xfs_lsn_t tail_lsn;
886 int hblks;
887
888 found = 0;
889
890 /*
891 * Find previous log record
892 */
893 if ((error = xlog_find_head(log, head_blk)))
894 return error;
895
896 bp = xlog_get_bp(log, 1);
897 if (!bp)
898 return ENOMEM;
899 if (*head_blk == 0) { /* special case */
076e6acb
CH
900 error = xlog_bread(log, 0, 1, bp, &offset);
901 if (error)
9db127ed 902 goto done;
076e6acb 903
03bea6fe 904 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
905 *tail_blk = 0;
906 /* leave all other log inited values alone */
9db127ed 907 goto done;
1da177e4
LT
908 }
909 }
910
911 /*
912 * Search backwards looking for log record header block
913 */
914 ASSERT(*head_blk < INT_MAX);
915 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
916 error = xlog_bread(log, i, 1, bp, &offset);
917 if (error)
9db127ed 918 goto done;
076e6acb 919
69ef921b 920 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
921 found = 1;
922 break;
923 }
924 }
925 /*
926 * If we haven't found the log record header block, start looking
927 * again from the end of the physical log. XXXmiken: There should be
928 * a check here to make sure we didn't search more than N blocks in
929 * the previous code.
930 */
931 if (!found) {
932 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
933 error = xlog_bread(log, i, 1, bp, &offset);
934 if (error)
9db127ed 935 goto done;
076e6acb 936
69ef921b
CH
937 if (*(__be32 *)offset ==
938 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
939 found = 2;
940 break;
941 }
942 }
943 }
944 if (!found) {
a0fa2b67 945 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1da177e4
LT
946 ASSERT(0);
947 return XFS_ERROR(EIO);
948 }
949
950 /* find blk_no of tail of log */
951 rhead = (xlog_rec_header_t *)offset;
b53e675d 952 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
953
954 /*
955 * Reset log values according to the state of the log when we
956 * crashed. In the case where head_blk == 0, we bump curr_cycle
957 * one because the next write starts a new cycle rather than
958 * continuing the cycle of the last good log record. At this
959 * point we have guaranteed that all partial log records have been
960 * accounted for. Therefore, we know that the last good log record
961 * written was complete and ended exactly on the end boundary
962 * of the physical log.
963 */
964 log->l_prev_block = i;
965 log->l_curr_block = (int)*head_blk;
b53e675d 966 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
967 if (found == 2)
968 log->l_curr_cycle++;
1c3cb9ec 969 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 970 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 971 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 972 BBTOB(log->l_curr_block));
28496968 973 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 974 BBTOB(log->l_curr_block));
1da177e4
LT
975
976 /*
977 * Look for unmount record. If we find it, then we know there
978 * was a clean unmount. Since 'i' could be the last block in
979 * the physical log, we convert to a log block before comparing
980 * to the head_blk.
981 *
982 * Save the current tail lsn to use to pass to
983 * xlog_clear_stale_blocks() below. We won't want to clear the
984 * unmount record if there is one, so we pass the lsn of the
985 * unmount record rather than the block after it.
986 */
62118709 987 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
988 int h_size = be32_to_cpu(rhead->h_size);
989 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
990
991 if ((h_version & XLOG_VERSION_2) &&
992 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
993 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
994 if (h_size % XLOG_HEADER_CYCLE_SIZE)
995 hblks++;
996 } else {
997 hblks = 1;
998 }
999 } else {
1000 hblks = 1;
1001 }
1002 after_umount_blk = (i + hblks + (int)
b53e675d 1003 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1004 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1005 if (*head_blk == after_umount_blk &&
b53e675d 1006 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1007 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1008 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1009 if (error)
9db127ed 1010 goto done;
076e6acb 1011
1da177e4
LT
1012 op_head = (xlog_op_header_t *)offset;
1013 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1014 /*
1015 * Set tail and last sync so that newly written
1016 * log records will point recovery to after the
1017 * current unmount record.
1018 */
1c3cb9ec
DC
1019 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1020 log->l_curr_cycle, after_umount_blk);
1021 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1022 log->l_curr_cycle, after_umount_blk);
1da177e4 1023 *tail_blk = after_umount_blk;
92821e2b
DC
1024
1025 /*
1026 * Note that the unmount was clean. If the unmount
1027 * was not clean, we need to know this to rebuild the
1028 * superblock counters from the perag headers if we
1029 * have a filesystem using non-persistent counters.
1030 */
1031 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1032 }
1033 }
1034
1035 /*
1036 * Make sure that there are no blocks in front of the head
1037 * with the same cycle number as the head. This can happen
1038 * because we allow multiple outstanding log writes concurrently,
1039 * and the later writes might make it out before earlier ones.
1040 *
1041 * We use the lsn from before modifying it so that we'll never
1042 * overwrite the unmount record after a clean unmount.
1043 *
1044 * Do this only if we are going to recover the filesystem
1045 *
1046 * NOTE: This used to say "if (!readonly)"
1047 * However on Linux, we can & do recover a read-only filesystem.
1048 * We only skip recovery if NORECOVERY is specified on mount,
1049 * in which case we would not be here.
1050 *
1051 * But... if the -device- itself is readonly, just skip this.
1052 * We can't recover this device anyway, so it won't matter.
1053 */
9db127ed 1054 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1055 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1056
9db127ed 1057done:
1da177e4
LT
1058 xlog_put_bp(bp);
1059
1060 if (error)
a0fa2b67 1061 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1062 return error;
1063}
1064
1065/*
1066 * Is the log zeroed at all?
1067 *
1068 * The last binary search should be changed to perform an X block read
1069 * once X becomes small enough. You can then search linearly through
1070 * the X blocks. This will cut down on the number of reads we need to do.
1071 *
1072 * If the log is partially zeroed, this routine will pass back the blkno
1073 * of the first block with cycle number 0. It won't have a complete LR
1074 * preceding it.
1075 *
1076 * Return:
1077 * 0 => the log is completely written to
1078 * -1 => use *blk_no as the first block of the log
1079 * >0 => error has occurred
1080 */
a8272ce0 1081STATIC int
1da177e4
LT
1082xlog_find_zeroed(
1083 xlog_t *log,
1084 xfs_daddr_t *blk_no)
1085{
1086 xfs_buf_t *bp;
1087 xfs_caddr_t offset;
1088 uint first_cycle, last_cycle;
1089 xfs_daddr_t new_blk, last_blk, start_blk;
1090 xfs_daddr_t num_scan_bblks;
1091 int error, log_bbnum = log->l_logBBsize;
1092
6fdf8ccc
NS
1093 *blk_no = 0;
1094
1da177e4
LT
1095 /* check totally zeroed log */
1096 bp = xlog_get_bp(log, 1);
1097 if (!bp)
1098 return ENOMEM;
076e6acb
CH
1099 error = xlog_bread(log, 0, 1, bp, &offset);
1100 if (error)
1da177e4 1101 goto bp_err;
076e6acb 1102
03bea6fe 1103 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1104 if (first_cycle == 0) { /* completely zeroed log */
1105 *blk_no = 0;
1106 xlog_put_bp(bp);
1107 return -1;
1108 }
1109
1110 /* check partially zeroed log */
076e6acb
CH
1111 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1112 if (error)
1da177e4 1113 goto bp_err;
076e6acb 1114
03bea6fe 1115 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1116 if (last_cycle != 0) { /* log completely written to */
1117 xlog_put_bp(bp);
1118 return 0;
1119 } else if (first_cycle != 1) {
1120 /*
1121 * If the cycle of the last block is zero, the cycle of
1122 * the first block must be 1. If it's not, maybe we're
1123 * not looking at a log... Bail out.
1124 */
a0fa2b67
DC
1125 xfs_warn(log->l_mp,
1126 "Log inconsistent or not a log (last==0, first!=1)");
1da177e4
LT
1127 return XFS_ERROR(EINVAL);
1128 }
1129
1130 /* we have a partially zeroed log */
1131 last_blk = log_bbnum-1;
1132 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1133 goto bp_err;
1134
1135 /*
1136 * Validate the answer. Because there is no way to guarantee that
1137 * the entire log is made up of log records which are the same size,
1138 * we scan over the defined maximum blocks. At this point, the maximum
1139 * is not chosen to mean anything special. XXXmiken
1140 */
1141 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1142 ASSERT(num_scan_bblks <= INT_MAX);
1143
1144 if (last_blk < num_scan_bblks)
1145 num_scan_bblks = last_blk;
1146 start_blk = last_blk - num_scan_bblks;
1147
1148 /*
1149 * We search for any instances of cycle number 0 that occur before
1150 * our current estimate of the head. What we're trying to detect is
1151 * 1 ... | 0 | 1 | 0...
1152 * ^ binary search ends here
1153 */
1154 if ((error = xlog_find_verify_cycle(log, start_blk,
1155 (int)num_scan_bblks, 0, &new_blk)))
1156 goto bp_err;
1157 if (new_blk != -1)
1158 last_blk = new_blk;
1159
1160 /*
1161 * Potentially backup over partial log record write. We don't need
1162 * to search the end of the log because we know it is zero.
1163 */
1164 if ((error = xlog_find_verify_log_record(log, start_blk,
1165 &last_blk, 0)) == -1) {
1166 error = XFS_ERROR(EIO);
1167 goto bp_err;
1168 } else if (error)
1169 goto bp_err;
1170
1171 *blk_no = last_blk;
1172bp_err:
1173 xlog_put_bp(bp);
1174 if (error)
1175 return error;
1176 return -1;
1177}
1178
1179/*
1180 * These are simple subroutines used by xlog_clear_stale_blocks() below
1181 * to initialize a buffer full of empty log record headers and write
1182 * them into the log.
1183 */
1184STATIC void
1185xlog_add_record(
1186 xlog_t *log,
1187 xfs_caddr_t buf,
1188 int cycle,
1189 int block,
1190 int tail_cycle,
1191 int tail_block)
1192{
1193 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1194
1195 memset(buf, 0, BBSIZE);
b53e675d
CH
1196 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1197 recp->h_cycle = cpu_to_be32(cycle);
1198 recp->h_version = cpu_to_be32(
62118709 1199 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1200 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1201 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1202 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1203 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1204}
1205
1206STATIC int
1207xlog_write_log_records(
1208 xlog_t *log,
1209 int cycle,
1210 int start_block,
1211 int blocks,
1212 int tail_cycle,
1213 int tail_block)
1214{
1215 xfs_caddr_t offset;
1216 xfs_buf_t *bp;
1217 int balign, ealign;
69ce58f0 1218 int sectbb = log->l_sectBBsize;
1da177e4
LT
1219 int end_block = start_block + blocks;
1220 int bufblks;
1221 int error = 0;
1222 int i, j = 0;
1223
6881a229
AE
1224 /*
1225 * Greedily allocate a buffer big enough to handle the full
1226 * range of basic blocks to be written. If that fails, try
1227 * a smaller size. We need to be able to write at least a
1228 * log sector, or we're out of luck.
1229 */
1da177e4 1230 bufblks = 1 << ffs(blocks);
81158e0c
DC
1231 while (bufblks > log->l_logBBsize)
1232 bufblks >>= 1;
1da177e4
LT
1233 while (!(bp = xlog_get_bp(log, bufblks))) {
1234 bufblks >>= 1;
69ce58f0 1235 if (bufblks < sectbb)
1da177e4
LT
1236 return ENOMEM;
1237 }
1238
1239 /* We may need to do a read at the start to fill in part of
1240 * the buffer in the starting sector not covered by the first
1241 * write below.
1242 */
5c17f533 1243 balign = round_down(start_block, sectbb);
1da177e4 1244 if (balign != start_block) {
076e6acb
CH
1245 error = xlog_bread_noalign(log, start_block, 1, bp);
1246 if (error)
1247 goto out_put_bp;
1248
1da177e4
LT
1249 j = start_block - balign;
1250 }
1251
1252 for (i = start_block; i < end_block; i += bufblks) {
1253 int bcount, endcount;
1254
1255 bcount = min(bufblks, end_block - start_block);
1256 endcount = bcount - j;
1257
1258 /* We may need to do a read at the end to fill in part of
1259 * the buffer in the final sector not covered by the write.
1260 * If this is the same sector as the above read, skip it.
1261 */
5c17f533 1262 ealign = round_down(end_block, sectbb);
1da177e4 1263 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1264 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1265 error = xlog_bread_offset(log, ealign, sectbb,
1266 bp, offset);
076e6acb
CH
1267 if (error)
1268 break;
1269
1da177e4
LT
1270 }
1271
1272 offset = xlog_align(log, start_block, endcount, bp);
1273 for (; j < endcount; j++) {
1274 xlog_add_record(log, offset, cycle, i+j,
1275 tail_cycle, tail_block);
1276 offset += BBSIZE;
1277 }
1278 error = xlog_bwrite(log, start_block, endcount, bp);
1279 if (error)
1280 break;
1281 start_block += endcount;
1282 j = 0;
1283 }
076e6acb
CH
1284
1285 out_put_bp:
1da177e4
LT
1286 xlog_put_bp(bp);
1287 return error;
1288}
1289
1290/*
1291 * This routine is called to blow away any incomplete log writes out
1292 * in front of the log head. We do this so that we won't become confused
1293 * if we come up, write only a little bit more, and then crash again.
1294 * If we leave the partial log records out there, this situation could
1295 * cause us to think those partial writes are valid blocks since they
1296 * have the current cycle number. We get rid of them by overwriting them
1297 * with empty log records with the old cycle number rather than the
1298 * current one.
1299 *
1300 * The tail lsn is passed in rather than taken from
1301 * the log so that we will not write over the unmount record after a
1302 * clean unmount in a 512 block log. Doing so would leave the log without
1303 * any valid log records in it until a new one was written. If we crashed
1304 * during that time we would not be able to recover.
1305 */
1306STATIC int
1307xlog_clear_stale_blocks(
1308 xlog_t *log,
1309 xfs_lsn_t tail_lsn)
1310{
1311 int tail_cycle, head_cycle;
1312 int tail_block, head_block;
1313 int tail_distance, max_distance;
1314 int distance;
1315 int error;
1316
1317 tail_cycle = CYCLE_LSN(tail_lsn);
1318 tail_block = BLOCK_LSN(tail_lsn);
1319 head_cycle = log->l_curr_cycle;
1320 head_block = log->l_curr_block;
1321
1322 /*
1323 * Figure out the distance between the new head of the log
1324 * and the tail. We want to write over any blocks beyond the
1325 * head that we may have written just before the crash, but
1326 * we don't want to overwrite the tail of the log.
1327 */
1328 if (head_cycle == tail_cycle) {
1329 /*
1330 * The tail is behind the head in the physical log,
1331 * so the distance from the head to the tail is the
1332 * distance from the head to the end of the log plus
1333 * the distance from the beginning of the log to the
1334 * tail.
1335 */
1336 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1337 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1338 XFS_ERRLEVEL_LOW, log->l_mp);
1339 return XFS_ERROR(EFSCORRUPTED);
1340 }
1341 tail_distance = tail_block + (log->l_logBBsize - head_block);
1342 } else {
1343 /*
1344 * The head is behind the tail in the physical log,
1345 * so the distance from the head to the tail is just
1346 * the tail block minus the head block.
1347 */
1348 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1349 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1350 XFS_ERRLEVEL_LOW, log->l_mp);
1351 return XFS_ERROR(EFSCORRUPTED);
1352 }
1353 tail_distance = tail_block - head_block;
1354 }
1355
1356 /*
1357 * If the head is right up against the tail, we can't clear
1358 * anything.
1359 */
1360 if (tail_distance <= 0) {
1361 ASSERT(tail_distance == 0);
1362 return 0;
1363 }
1364
1365 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1366 /*
1367 * Take the smaller of the maximum amount of outstanding I/O
1368 * we could have and the distance to the tail to clear out.
1369 * We take the smaller so that we don't overwrite the tail and
1370 * we don't waste all day writing from the head to the tail
1371 * for no reason.
1372 */
1373 max_distance = MIN(max_distance, tail_distance);
1374
1375 if ((head_block + max_distance) <= log->l_logBBsize) {
1376 /*
1377 * We can stomp all the blocks we need to without
1378 * wrapping around the end of the log. Just do it
1379 * in a single write. Use the cycle number of the
1380 * current cycle minus one so that the log will look like:
1381 * n ... | n - 1 ...
1382 */
1383 error = xlog_write_log_records(log, (head_cycle - 1),
1384 head_block, max_distance, tail_cycle,
1385 tail_block);
1386 if (error)
1387 return error;
1388 } else {
1389 /*
1390 * We need to wrap around the end of the physical log in
1391 * order to clear all the blocks. Do it in two separate
1392 * I/Os. The first write should be from the head to the
1393 * end of the physical log, and it should use the current
1394 * cycle number minus one just like above.
1395 */
1396 distance = log->l_logBBsize - head_block;
1397 error = xlog_write_log_records(log, (head_cycle - 1),
1398 head_block, distance, tail_cycle,
1399 tail_block);
1400
1401 if (error)
1402 return error;
1403
1404 /*
1405 * Now write the blocks at the start of the physical log.
1406 * This writes the remainder of the blocks we want to clear.
1407 * It uses the current cycle number since we're now on the
1408 * same cycle as the head so that we get:
1409 * n ... n ... | n - 1 ...
1410 * ^^^^^ blocks we're writing
1411 */
1412 distance = max_distance - (log->l_logBBsize - head_block);
1413 error = xlog_write_log_records(log, head_cycle, 0, distance,
1414 tail_cycle, tail_block);
1415 if (error)
1416 return error;
1417 }
1418
1419 return 0;
1420}
1421
1422/******************************************************************************
1423 *
1424 * Log recover routines
1425 *
1426 ******************************************************************************
1427 */
1428
1429STATIC xlog_recover_t *
1430xlog_recover_find_tid(
f0a76953 1431 struct hlist_head *head,
1da177e4
LT
1432 xlog_tid_t tid)
1433{
f0a76953
DC
1434 xlog_recover_t *trans;
1435 struct hlist_node *n;
1da177e4 1436
f0a76953
DC
1437 hlist_for_each_entry(trans, n, head, r_list) {
1438 if (trans->r_log_tid == tid)
1439 return trans;
1da177e4 1440 }
f0a76953 1441 return NULL;
1da177e4
LT
1442}
1443
1444STATIC void
f0a76953
DC
1445xlog_recover_new_tid(
1446 struct hlist_head *head,
1447 xlog_tid_t tid,
1448 xfs_lsn_t lsn)
1da177e4 1449{
f0a76953
DC
1450 xlog_recover_t *trans;
1451
1452 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1453 trans->r_log_tid = tid;
1454 trans->r_lsn = lsn;
1455 INIT_LIST_HEAD(&trans->r_itemq);
1456
1457 INIT_HLIST_NODE(&trans->r_list);
1458 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1459}
1460
1461STATIC void
1462xlog_recover_add_item(
f0a76953 1463 struct list_head *head)
1da177e4
LT
1464{
1465 xlog_recover_item_t *item;
1466
1467 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1468 INIT_LIST_HEAD(&item->ri_list);
1469 list_add_tail(&item->ri_list, head);
1da177e4
LT
1470}
1471
1472STATIC int
1473xlog_recover_add_to_cont_trans(
9abbc539 1474 struct log *log,
1da177e4
LT
1475 xlog_recover_t *trans,
1476 xfs_caddr_t dp,
1477 int len)
1478{
1479 xlog_recover_item_t *item;
1480 xfs_caddr_t ptr, old_ptr;
1481 int old_len;
1482
f0a76953 1483 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1484 /* finish copying rest of trans header */
1485 xlog_recover_add_item(&trans->r_itemq);
1486 ptr = (xfs_caddr_t) &trans->r_theader +
1487 sizeof(xfs_trans_header_t) - len;
1488 memcpy(ptr, dp, len); /* d, s, l */
1489 return 0;
1490 }
f0a76953
DC
1491 /* take the tail entry */
1492 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1493
1494 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1495 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1496
45053603 1497 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1498 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1499 item->ri_buf[item->ri_cnt-1].i_len += len;
1500 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1501 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1502 return 0;
1503}
1504
1505/*
1506 * The next region to add is the start of a new region. It could be
1507 * a whole region or it could be the first part of a new region. Because
1508 * of this, the assumption here is that the type and size fields of all
1509 * format structures fit into the first 32 bits of the structure.
1510 *
1511 * This works because all regions must be 32 bit aligned. Therefore, we
1512 * either have both fields or we have neither field. In the case we have
1513 * neither field, the data part of the region is zero length. We only have
1514 * a log_op_header and can throw away the header since a new one will appear
1515 * later. If we have at least 4 bytes, then we can determine how many regions
1516 * will appear in the current log item.
1517 */
1518STATIC int
1519xlog_recover_add_to_trans(
9abbc539 1520 struct log *log,
1da177e4
LT
1521 xlog_recover_t *trans,
1522 xfs_caddr_t dp,
1523 int len)
1524{
1525 xfs_inode_log_format_t *in_f; /* any will do */
1526 xlog_recover_item_t *item;
1527 xfs_caddr_t ptr;
1528
1529 if (!len)
1530 return 0;
f0a76953 1531 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1532 /* we need to catch log corruptions here */
1533 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1534 xfs_warn(log->l_mp, "%s: bad header magic number",
1535 __func__);
5a792c45
DC
1536 ASSERT(0);
1537 return XFS_ERROR(EIO);
1538 }
1da177e4
LT
1539 if (len == sizeof(xfs_trans_header_t))
1540 xlog_recover_add_item(&trans->r_itemq);
1541 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1542 return 0;
1543 }
1544
1545 ptr = kmem_alloc(len, KM_SLEEP);
1546 memcpy(ptr, dp, len);
1547 in_f = (xfs_inode_log_format_t *)ptr;
1548
f0a76953
DC
1549 /* take the tail entry */
1550 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1551 if (item->ri_total != 0 &&
1552 item->ri_total == item->ri_cnt) {
1553 /* tail item is in use, get a new one */
1da177e4 1554 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1555 item = list_entry(trans->r_itemq.prev,
1556 xlog_recover_item_t, ri_list);
1da177e4 1557 }
1da177e4
LT
1558
1559 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1560 if (in_f->ilf_size == 0 ||
1561 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1562 xfs_warn(log->l_mp,
1563 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1564 in_f->ilf_size);
1565 ASSERT(0);
1566 return XFS_ERROR(EIO);
1567 }
1568
1569 item->ri_total = in_f->ilf_size;
1570 item->ri_buf =
1571 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1572 KM_SLEEP);
1da177e4
LT
1573 }
1574 ASSERT(item->ri_total > item->ri_cnt);
1575 /* Description region is ri_buf[0] */
1576 item->ri_buf[item->ri_cnt].i_addr = ptr;
1577 item->ri_buf[item->ri_cnt].i_len = len;
1578 item->ri_cnt++;
9abbc539 1579 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1580 return 0;
1581}
1582
f0a76953
DC
1583/*
1584 * Sort the log items in the transaction. Cancelled buffers need
1585 * to be put first so they are processed before any items that might
1586 * modify the buffers. If they are cancelled, then the modifications
1587 * don't need to be replayed.
1588 */
1da177e4
LT
1589STATIC int
1590xlog_recover_reorder_trans(
9abbc539
DC
1591 struct log *log,
1592 xlog_recover_t *trans,
1593 int pass)
1da177e4 1594{
f0a76953
DC
1595 xlog_recover_item_t *item, *n;
1596 LIST_HEAD(sort_list);
1597
1598 list_splice_init(&trans->r_itemq, &sort_list);
1599 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1600 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1601
f0a76953 1602 switch (ITEM_TYPE(item)) {
1da177e4 1603 case XFS_LI_BUF:
c1155410 1604 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539
DC
1605 trace_xfs_log_recover_item_reorder_head(log,
1606 trans, item, pass);
f0a76953 1607 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1608 break;
1609 }
1610 case XFS_LI_INODE:
1da177e4
LT
1611 case XFS_LI_DQUOT:
1612 case XFS_LI_QUOTAOFF:
1613 case XFS_LI_EFD:
1614 case XFS_LI_EFI:
9abbc539
DC
1615 trace_xfs_log_recover_item_reorder_tail(log,
1616 trans, item, pass);
f0a76953 1617 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1618 break;
1619 default:
a0fa2b67
DC
1620 xfs_warn(log->l_mp,
1621 "%s: unrecognized type of log operation",
1622 __func__);
1da177e4
LT
1623 ASSERT(0);
1624 return XFS_ERROR(EIO);
1625 }
f0a76953
DC
1626 }
1627 ASSERT(list_empty(&sort_list));
1da177e4
LT
1628 return 0;
1629}
1630
1631/*
1632 * Build up the table of buf cancel records so that we don't replay
1633 * cancelled data in the second pass. For buffer records that are
1634 * not cancel records, there is nothing to do here so we just return.
1635 *
1636 * If we get a cancel record which is already in the table, this indicates
1637 * that the buffer was cancelled multiple times. In order to ensure
1638 * that during pass 2 we keep the record in the table until we reach its
1639 * last occurrence in the log, we keep a reference count in the cancel
1640 * record in the table to tell us how many times we expect to see this
1641 * record during the second pass.
1642 */
c9f71f5f
CH
1643STATIC int
1644xlog_recover_buffer_pass1(
d5689eaa 1645 struct log *log,
c9f71f5f 1646 xlog_recover_item_t *item)
1da177e4 1647{
c9f71f5f 1648 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1649 struct list_head *bucket;
1650 struct xfs_buf_cancel *bcp;
1da177e4
LT
1651
1652 /*
1653 * If this isn't a cancel buffer item, then just return.
1654 */
e2714bf8 1655 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1656 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1657 return 0;
9abbc539 1658 }
1da177e4
LT
1659
1660 /*
d5689eaa
CH
1661 * Insert an xfs_buf_cancel record into the hash table of them.
1662 * If there is already an identical record, bump its reference count.
1da177e4 1663 */
d5689eaa
CH
1664 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1665 list_for_each_entry(bcp, bucket, bc_list) {
1666 if (bcp->bc_blkno == buf_f->blf_blkno &&
1667 bcp->bc_len == buf_f->blf_len) {
1668 bcp->bc_refcount++;
9abbc539 1669 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1670 return 0;
1da177e4 1671 }
d5689eaa
CH
1672 }
1673
1674 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1675 bcp->bc_blkno = buf_f->blf_blkno;
1676 bcp->bc_len = buf_f->blf_len;
1da177e4 1677 bcp->bc_refcount = 1;
d5689eaa
CH
1678 list_add_tail(&bcp->bc_list, bucket);
1679
9abbc539 1680 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1681 return 0;
1da177e4
LT
1682}
1683
1684/*
1685 * Check to see whether the buffer being recovered has a corresponding
1686 * entry in the buffer cancel record table. If it does then return 1
1687 * so that it will be cancelled, otherwise return 0. If the buffer is
c1155410 1688 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1da177e4
LT
1689 * the refcount on the entry in the table and remove it from the table
1690 * if this is the last reference.
1691 *
1692 * We remove the cancel record from the table when we encounter its
1693 * last occurrence in the log so that if the same buffer is re-used
1694 * again after its last cancellation we actually replay the changes
1695 * made at that point.
1696 */
1697STATIC int
1698xlog_check_buffer_cancelled(
d5689eaa 1699 struct log *log,
1da177e4
LT
1700 xfs_daddr_t blkno,
1701 uint len,
1702 ushort flags)
1703{
d5689eaa
CH
1704 struct list_head *bucket;
1705 struct xfs_buf_cancel *bcp;
1da177e4
LT
1706
1707 if (log->l_buf_cancel_table == NULL) {
1708 /*
1709 * There is nothing in the table built in pass one,
1710 * so this buffer must not be cancelled.
1711 */
c1155410 1712 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1713 return 0;
1714 }
1715
1da177e4 1716 /*
d5689eaa 1717 * Search for an entry in the cancel table that matches our buffer.
1da177e4 1718 */
d5689eaa
CH
1719 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1720 list_for_each_entry(bcp, bucket, bc_list) {
1721 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1722 goto found;
1da177e4 1723 }
d5689eaa 1724
1da177e4 1725 /*
d5689eaa
CH
1726 * We didn't find a corresponding entry in the table, so return 0 so
1727 * that the buffer is NOT cancelled.
1da177e4 1728 */
c1155410 1729 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4 1730 return 0;
d5689eaa
CH
1731
1732found:
1733 /*
1734 * We've go a match, so return 1 so that the recovery of this buffer
1735 * is cancelled. If this buffer is actually a buffer cancel log
1736 * item, then decrement the refcount on the one in the table and
1737 * remove it if this is the last reference.
1738 */
1739 if (flags & XFS_BLF_CANCEL) {
1740 if (--bcp->bc_refcount == 0) {
1741 list_del(&bcp->bc_list);
1742 kmem_free(bcp);
1743 }
1744 }
1745 return 1;
1da177e4
LT
1746}
1747
1da177e4 1748/*
e2714bf8
CH
1749 * Perform recovery for a buffer full of inodes. In these buffers, the only
1750 * data which should be recovered is that which corresponds to the
1751 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1752 * data for the inodes is always logged through the inodes themselves rather
1753 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1754 *
e2714bf8
CH
1755 * The only time when buffers full of inodes are fully recovered is when the
1756 * buffer is full of newly allocated inodes. In this case the buffer will
1757 * not be marked as an inode buffer and so will be sent to
1758 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1759 */
1760STATIC int
1761xlog_recover_do_inode_buffer(
e2714bf8 1762 struct xfs_mount *mp,
1da177e4 1763 xlog_recover_item_t *item,
e2714bf8 1764 struct xfs_buf *bp,
1da177e4
LT
1765 xfs_buf_log_format_t *buf_f)
1766{
1767 int i;
e2714bf8
CH
1768 int item_index = 0;
1769 int bit = 0;
1770 int nbits = 0;
1771 int reg_buf_offset = 0;
1772 int reg_buf_bytes = 0;
1da177e4
LT
1773 int next_unlinked_offset;
1774 int inodes_per_buf;
1775 xfs_agino_t *logged_nextp;
1776 xfs_agino_t *buffer_nextp;
1da177e4 1777
9abbc539
DC
1778 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1779
aa0e8833 1780 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1781 for (i = 0; i < inodes_per_buf; i++) {
1782 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1783 offsetof(xfs_dinode_t, di_next_unlinked);
1784
1785 while (next_unlinked_offset >=
1786 (reg_buf_offset + reg_buf_bytes)) {
1787 /*
1788 * The next di_next_unlinked field is beyond
1789 * the current logged region. Find the next
1790 * logged region that contains or is beyond
1791 * the current di_next_unlinked field.
1792 */
1793 bit += nbits;
e2714bf8
CH
1794 bit = xfs_next_bit(buf_f->blf_data_map,
1795 buf_f->blf_map_size, bit);
1da177e4
LT
1796
1797 /*
1798 * If there are no more logged regions in the
1799 * buffer, then we're done.
1800 */
e2714bf8 1801 if (bit == -1)
1da177e4 1802 return 0;
1da177e4 1803
e2714bf8
CH
1804 nbits = xfs_contig_bits(buf_f->blf_data_map,
1805 buf_f->blf_map_size, bit);
1da177e4 1806 ASSERT(nbits > 0);
c1155410
DC
1807 reg_buf_offset = bit << XFS_BLF_SHIFT;
1808 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1809 item_index++;
1810 }
1811
1812 /*
1813 * If the current logged region starts after the current
1814 * di_next_unlinked field, then move on to the next
1815 * di_next_unlinked field.
1816 */
e2714bf8 1817 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1818 continue;
1da177e4
LT
1819
1820 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1821 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1822 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1823 BBTOB(bp->b_io_length));
1da177e4
LT
1824
1825 /*
1826 * The current logged region contains a copy of the
1827 * current di_next_unlinked field. Extract its value
1828 * and copy it to the buffer copy.
1829 */
4e0d5f92
CH
1830 logged_nextp = item->ri_buf[item_index].i_addr +
1831 next_unlinked_offset - reg_buf_offset;
1da177e4 1832 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1833 xfs_alert(mp,
1834 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1835 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1836 item, bp);
1837 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1838 XFS_ERRLEVEL_LOW, mp);
1839 return XFS_ERROR(EFSCORRUPTED);
1840 }
1841
1842 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1843 next_unlinked_offset);
87c199c2 1844 *buffer_nextp = *logged_nextp;
1da177e4
LT
1845 }
1846
1847 return 0;
1848}
1849
1850/*
1851 * Perform a 'normal' buffer recovery. Each logged region of the
1852 * buffer should be copied over the corresponding region in the
1853 * given buffer. The bitmap in the buf log format structure indicates
1854 * where to place the logged data.
1855 */
1da177e4
LT
1856STATIC void
1857xlog_recover_do_reg_buffer(
9abbc539 1858 struct xfs_mount *mp,
1da177e4 1859 xlog_recover_item_t *item,
e2714bf8 1860 struct xfs_buf *bp,
1da177e4
LT
1861 xfs_buf_log_format_t *buf_f)
1862{
1863 int i;
1864 int bit;
1865 int nbits;
1da177e4
LT
1866 int error;
1867
9abbc539
DC
1868 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1869
1da177e4
LT
1870 bit = 0;
1871 i = 1; /* 0 is the buf format structure */
1872 while (1) {
e2714bf8
CH
1873 bit = xfs_next_bit(buf_f->blf_data_map,
1874 buf_f->blf_map_size, bit);
1da177e4
LT
1875 if (bit == -1)
1876 break;
e2714bf8
CH
1877 nbits = xfs_contig_bits(buf_f->blf_data_map,
1878 buf_f->blf_map_size, bit);
1da177e4 1879 ASSERT(nbits > 0);
4b80916b 1880 ASSERT(item->ri_buf[i].i_addr != NULL);
c1155410 1881 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
aa0e8833
DC
1882 ASSERT(BBTOB(bp->b_io_length) >=
1883 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
1da177e4
LT
1884
1885 /*
1886 * Do a sanity check if this is a dquot buffer. Just checking
1887 * the first dquot in the buffer should do. XXXThis is
1888 * probably a good thing to do for other buf types also.
1889 */
1890 error = 0;
c8ad20ff 1891 if (buf_f->blf_flags &
c1155410 1892 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
0c5e1ce8 1893 if (item->ri_buf[i].i_addr == NULL) {
a0fa2b67 1894 xfs_alert(mp,
0c5e1ce8
CH
1895 "XFS: NULL dquot in %s.", __func__);
1896 goto next;
1897 }
8ec6dba2 1898 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 1899 xfs_alert(mp,
0c5e1ce8
CH
1900 "XFS: dquot too small (%d) in %s.",
1901 item->ri_buf[i].i_len, __func__);
1902 goto next;
1903 }
a0fa2b67 1904 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1da177e4
LT
1905 -1, 0, XFS_QMOPT_DOWARN,
1906 "dquot_buf_recover");
0c5e1ce8
CH
1907 if (error)
1908 goto next;
1da177e4 1909 }
0c5e1ce8
CH
1910
1911 memcpy(xfs_buf_offset(bp,
c1155410 1912 (uint)bit << XFS_BLF_SHIFT), /* dest */
0c5e1ce8 1913 item->ri_buf[i].i_addr, /* source */
c1155410 1914 nbits<<XFS_BLF_SHIFT); /* length */
0c5e1ce8 1915 next:
1da177e4
LT
1916 i++;
1917 bit += nbits;
1918 }
1919
1920 /* Shouldn't be any more regions */
1921 ASSERT(i == item->ri_total);
1922}
1923
1924/*
1925 * Do some primitive error checking on ondisk dquot data structures.
1926 */
1927int
1928xfs_qm_dqcheck(
a0fa2b67 1929 struct xfs_mount *mp,
1da177e4
LT
1930 xfs_disk_dquot_t *ddq,
1931 xfs_dqid_t id,
1932 uint type, /* used only when IO_dorepair is true */
1933 uint flags,
1934 char *str)
1935{
1936 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1937 int errs = 0;
1938
1939 /*
1940 * We can encounter an uninitialized dquot buffer for 2 reasons:
1941 * 1. If we crash while deleting the quotainode(s), and those blks got
1942 * used for user data. This is because we take the path of regular
1943 * file deletion; however, the size field of quotainodes is never
1944 * updated, so all the tricks that we play in itruncate_finish
1945 * don't quite matter.
1946 *
1947 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1948 * But the allocation will be replayed so we'll end up with an
1949 * uninitialized quota block.
1950 *
1951 * This is all fine; things are still consistent, and we haven't lost
1952 * any quota information. Just don't complain about bad dquot blks.
1953 */
69ef921b 1954 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 1955 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1956 xfs_alert(mp,
1da177e4 1957 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 1958 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
1959 errs++;
1960 }
1149d96a 1961 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 1962 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1963 xfs_alert(mp,
1da177e4 1964 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 1965 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
1966 errs++;
1967 }
1968
1149d96a
CH
1969 if (ddq->d_flags != XFS_DQ_USER &&
1970 ddq->d_flags != XFS_DQ_PROJ &&
1971 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 1972 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1973 xfs_alert(mp,
1da177e4 1974 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 1975 str, id, ddq->d_flags);
1da177e4
LT
1976 errs++;
1977 }
1978
1149d96a 1979 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 1980 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1981 xfs_alert(mp,
1da177e4
LT
1982 "%s : ondisk-dquot 0x%p, ID mismatch: "
1983 "0x%x expected, found id 0x%x",
1149d96a 1984 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
1985 errs++;
1986 }
1987
1988 if (!errs && ddq->d_id) {
1149d96a 1989 if (ddq->d_blk_softlimit &&
d0a3fe67 1990 be64_to_cpu(ddq->d_bcount) >
1149d96a 1991 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
1992 if (!ddq->d_btimer) {
1993 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
1994 xfs_alert(mp,
1995 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 1996 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
1997 errs++;
1998 }
1999 }
1149d96a 2000 if (ddq->d_ino_softlimit &&
d0a3fe67 2001 be64_to_cpu(ddq->d_icount) >
1149d96a 2002 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2003 if (!ddq->d_itimer) {
2004 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2005 xfs_alert(mp,
2006 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2007 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2008 errs++;
2009 }
2010 }
1149d96a 2011 if (ddq->d_rtb_softlimit &&
d0a3fe67 2012 be64_to_cpu(ddq->d_rtbcount) >
1149d96a 2013 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2014 if (!ddq->d_rtbtimer) {
2015 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2016 xfs_alert(mp,
2017 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2018 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2019 errs++;
2020 }
2021 }
2022 }
2023
2024 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2025 return errs;
2026
2027 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2028 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2029
2030 /*
2031 * Typically, a repair is only requested by quotacheck.
2032 */
2033 ASSERT(id != -1);
2034 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2035 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2036
2037 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2038 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2039 d->dd_diskdq.d_flags = type;
2040 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2041
2042 return errs;
2043}
2044
2045/*
2046 * Perform a dquot buffer recovery.
2047 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2048 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2049 * Else, treat it as a regular buffer and do recovery.
2050 */
2051STATIC void
2052xlog_recover_do_dquot_buffer(
2053 xfs_mount_t *mp,
2054 xlog_t *log,
2055 xlog_recover_item_t *item,
2056 xfs_buf_t *bp,
2057 xfs_buf_log_format_t *buf_f)
2058{
2059 uint type;
2060
9abbc539
DC
2061 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2062
1da177e4
LT
2063 /*
2064 * Filesystems are required to send in quota flags at mount time.
2065 */
2066 if (mp->m_qflags == 0) {
2067 return;
2068 }
2069
2070 type = 0;
c1155410 2071 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2072 type |= XFS_DQ_USER;
c1155410 2073 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2074 type |= XFS_DQ_PROJ;
c1155410 2075 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2076 type |= XFS_DQ_GROUP;
2077 /*
2078 * This type of quotas was turned off, so ignore this buffer
2079 */
2080 if (log->l_quotaoffs_flag & type)
2081 return;
2082
9abbc539 2083 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2084}
2085
2086/*
2087 * This routine replays a modification made to a buffer at runtime.
2088 * There are actually two types of buffer, regular and inode, which
2089 * are handled differently. Inode buffers are handled differently
2090 * in that we only recover a specific set of data from them, namely
2091 * the inode di_next_unlinked fields. This is because all other inode
2092 * data is actually logged via inode records and any data we replay
2093 * here which overlaps that may be stale.
2094 *
2095 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2096 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2097 * of the buffer in the log should not be replayed at recovery time.
2098 * This is so that if the blocks covered by the buffer are reused for
2099 * file data before we crash we don't end up replaying old, freed
2100 * meta-data into a user's file.
2101 *
2102 * To handle the cancellation of buffer log items, we make two passes
2103 * over the log during recovery. During the first we build a table of
2104 * those buffers which have been cancelled, and during the second we
2105 * only replay those buffers which do not have corresponding cancel
2106 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2107 * for more details on the implementation of the table of cancel records.
2108 */
2109STATIC int
c9f71f5f 2110xlog_recover_buffer_pass2(
1da177e4 2111 xlog_t *log,
43ff2122 2112 struct list_head *buffer_list,
c9f71f5f 2113 xlog_recover_item_t *item)
1da177e4 2114{
4e0d5f92 2115 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2116 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2117 xfs_buf_t *bp;
2118 int error;
6ad112bf 2119 uint buf_flags;
1da177e4 2120
c9f71f5f
CH
2121 /*
2122 * In this pass we only want to recover all the buffers which have
2123 * not been cancelled and are not cancellation buffers themselves.
2124 */
2125 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2126 buf_f->blf_len, buf_f->blf_flags)) {
2127 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2128 return 0;
1da177e4 2129 }
c9f71f5f 2130
9abbc539 2131 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2132
a8acad70 2133 buf_flags = 0;
e2714bf8 2134 if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
0cadda1c 2135 buf_flags |= XBF_MAPPED;
6ad112bf 2136
e2714bf8
CH
2137 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2138 buf_flags);
ac4d6888
CS
2139 if (!bp)
2140 return XFS_ERROR(ENOMEM);
e5702805 2141 error = bp->b_error;
5a52c2a5 2142 if (error) {
901796af 2143 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
1da177e4
LT
2144 xfs_buf_relse(bp);
2145 return error;
2146 }
2147
e2714bf8 2148 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2149 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2150 } else if (buf_f->blf_flags &
c1155410 2151 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2152 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2153 } else {
9abbc539 2154 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2155 }
2156 if (error)
2157 return XFS_ERROR(error);
2158
2159 /*
2160 * Perform delayed write on the buffer. Asynchronous writes will be
2161 * slower when taking into account all the buffers to be flushed.
2162 *
2163 * Also make sure that only inode buffers with good sizes stay in
2164 * the buffer cache. The kernel moves inodes in buffers of 1 block
2165 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2166 * buffers in the log can be a different size if the log was generated
2167 * by an older kernel using unclustered inode buffers or a newer kernel
2168 * running with a different inode cluster size. Regardless, if the
2169 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2170 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2171 * the buffer out of the buffer cache so that the buffer won't
2172 * overlap with future reads of those inodes.
2173 */
2174 if (XFS_DINODE_MAGIC ==
b53e675d 2175 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2176 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
1da177e4 2177 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
c867cb61 2178 xfs_buf_stale(bp);
c2b006c1 2179 error = xfs_bwrite(bp);
1da177e4 2180 } else {
ebad861b 2181 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2182 bp->b_iodone = xlog_recover_iodone;
43ff2122 2183 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2184 }
2185
c2b006c1
CH
2186 xfs_buf_relse(bp);
2187 return error;
1da177e4
LT
2188}
2189
2190STATIC int
c9f71f5f 2191xlog_recover_inode_pass2(
1da177e4 2192 xlog_t *log,
43ff2122 2193 struct list_head *buffer_list,
c9f71f5f 2194 xlog_recover_item_t *item)
1da177e4
LT
2195{
2196 xfs_inode_log_format_t *in_f;
c9f71f5f 2197 xfs_mount_t *mp = log->l_mp;
1da177e4 2198 xfs_buf_t *bp;
1da177e4 2199 xfs_dinode_t *dip;
1da177e4
LT
2200 int len;
2201 xfs_caddr_t src;
2202 xfs_caddr_t dest;
2203 int error;
2204 int attr_index;
2205 uint fields;
347d1c01 2206 xfs_icdinode_t *dicp;
6d192a9b 2207 int need_free = 0;
1da177e4 2208
6d192a9b 2209 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2210 in_f = item->ri_buf[0].i_addr;
6d192a9b 2211 } else {
4e0d5f92 2212 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2213 need_free = 1;
2214 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2215 if (error)
2216 goto error;
2217 }
1da177e4
LT
2218
2219 /*
2220 * Inode buffers can be freed, look out for it,
2221 * and do not replay the inode.
2222 */
a1941895
CH
2223 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2224 in_f->ilf_len, 0)) {
6d192a9b 2225 error = 0;
9abbc539 2226 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2227 goto error;
2228 }
9abbc539 2229 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2230
a8acad70 2231 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0);
ac4d6888
CS
2232 if (!bp) {
2233 error = ENOMEM;
2234 goto error;
2235 }
e5702805 2236 error = bp->b_error;
5a52c2a5 2237 if (error) {
901796af 2238 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
1da177e4 2239 xfs_buf_relse(bp);
6d192a9b 2240 goto error;
1da177e4 2241 }
1da177e4 2242 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2243 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2244
2245 /*
2246 * Make sure the place we're flushing out to really looks
2247 * like an inode!
2248 */
69ef921b 2249 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
1da177e4 2250 xfs_buf_relse(bp);
a0fa2b67
DC
2251 xfs_alert(mp,
2252 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2253 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2254 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2255 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2256 error = EFSCORRUPTED;
2257 goto error;
1da177e4 2258 }
4e0d5f92 2259 dicp = item->ri_buf[1].i_addr;
1da177e4
LT
2260 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2261 xfs_buf_relse(bp);
a0fa2b67
DC
2262 xfs_alert(mp,
2263 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2264 __func__, item, in_f->ilf_ino);
c9f71f5f 2265 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2266 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2267 error = EFSCORRUPTED;
2268 goto error;
1da177e4
LT
2269 }
2270
2271 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2272 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2273 /*
2274 * Deal with the wrap case, DI_MAX_FLUSH is less
2275 * than smaller numbers
2276 */
81591fe2 2277 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2278 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2279 /* do nothing */
2280 } else {
2281 xfs_buf_relse(bp);
9abbc539 2282 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2283 error = 0;
2284 goto error;
1da177e4
LT
2285 }
2286 }
2287 /* Take the opportunity to reset the flush iteration count */
2288 dicp->di_flushiter = 0;
2289
abbede1b 2290 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2291 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2292 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2293 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4
LT
2294 XFS_ERRLEVEL_LOW, mp, dicp);
2295 xfs_buf_relse(bp);
a0fa2b67
DC
2296 xfs_alert(mp,
2297 "%s: Bad regular inode log record, rec ptr 0x%p, "
2298 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2299 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2300 error = EFSCORRUPTED;
2301 goto error;
1da177e4 2302 }
abbede1b 2303 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2304 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2305 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2306 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2307 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4
LT
2308 XFS_ERRLEVEL_LOW, mp, dicp);
2309 xfs_buf_relse(bp);
a0fa2b67
DC
2310 xfs_alert(mp,
2311 "%s: Bad dir inode log record, rec ptr 0x%p, "
2312 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2313 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2314 error = EFSCORRUPTED;
2315 goto error;
1da177e4
LT
2316 }
2317 }
2318 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2319 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4
LT
2320 XFS_ERRLEVEL_LOW, mp, dicp);
2321 xfs_buf_relse(bp);
a0fa2b67
DC
2322 xfs_alert(mp,
2323 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2324 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2325 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2326 dicp->di_nextents + dicp->di_anextents,
2327 dicp->di_nblocks);
6d192a9b
TS
2328 error = EFSCORRUPTED;
2329 goto error;
1da177e4
LT
2330 }
2331 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2332 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4
LT
2333 XFS_ERRLEVEL_LOW, mp, dicp);
2334 xfs_buf_relse(bp);
a0fa2b67
DC
2335 xfs_alert(mp,
2336 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2337 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2338 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b
TS
2339 error = EFSCORRUPTED;
2340 goto error;
1da177e4 2341 }
81591fe2 2342 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
c9f71f5f 2343 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4
LT
2344 XFS_ERRLEVEL_LOW, mp, dicp);
2345 xfs_buf_relse(bp);
a0fa2b67
DC
2346 xfs_alert(mp,
2347 "%s: Bad inode log record length %d, rec ptr 0x%p",
2348 __func__, item->ri_buf[1].i_len, item);
6d192a9b
TS
2349 error = EFSCORRUPTED;
2350 goto error;
1da177e4
LT
2351 }
2352
2353 /* The core is in in-core format */
4e0d5f92 2354 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
1da177e4
LT
2355
2356 /* the rest is in on-disk format */
81591fe2
CH
2357 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2358 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2359 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2360 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
1da177e4
LT
2361 }
2362
2363 fields = in_f->ilf_fields;
2364 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2365 case XFS_ILOG_DEV:
81591fe2 2366 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2367 break;
2368 case XFS_ILOG_UUID:
81591fe2
CH
2369 memcpy(XFS_DFORK_DPTR(dip),
2370 &in_f->ilf_u.ilfu_uuid,
2371 sizeof(uuid_t));
1da177e4
LT
2372 break;
2373 }
2374
2375 if (in_f->ilf_size == 2)
2376 goto write_inode_buffer;
2377 len = item->ri_buf[2].i_len;
2378 src = item->ri_buf[2].i_addr;
2379 ASSERT(in_f->ilf_size <= 4);
2380 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2381 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2382 (len == in_f->ilf_dsize));
2383
2384 switch (fields & XFS_ILOG_DFORK) {
2385 case XFS_ILOG_DDATA:
2386 case XFS_ILOG_DEXT:
81591fe2 2387 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2388 break;
2389
2390 case XFS_ILOG_DBROOT:
7cc95a82 2391 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2392 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2393 XFS_DFORK_DSIZE(dip, mp));
2394 break;
2395
2396 default:
2397 /*
2398 * There are no data fork flags set.
2399 */
2400 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2401 break;
2402 }
2403
2404 /*
2405 * If we logged any attribute data, recover it. There may or
2406 * may not have been any other non-core data logged in this
2407 * transaction.
2408 */
2409 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2410 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2411 attr_index = 3;
2412 } else {
2413 attr_index = 2;
2414 }
2415 len = item->ri_buf[attr_index].i_len;
2416 src = item->ri_buf[attr_index].i_addr;
2417 ASSERT(len == in_f->ilf_asize);
2418
2419 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2420 case XFS_ILOG_ADATA:
2421 case XFS_ILOG_AEXT:
2422 dest = XFS_DFORK_APTR(dip);
2423 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2424 memcpy(dest, src, len);
2425 break;
2426
2427 case XFS_ILOG_ABROOT:
2428 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2429 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2430 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2431 XFS_DFORK_ASIZE(dip, mp));
2432 break;
2433
2434 default:
a0fa2b67 2435 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4
LT
2436 ASSERT(0);
2437 xfs_buf_relse(bp);
6d192a9b
TS
2438 error = EIO;
2439 goto error;
1da177e4
LT
2440 }
2441 }
2442
2443write_inode_buffer:
ebad861b 2444 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2445 bp->b_iodone = xlog_recover_iodone;
43ff2122 2446 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2447 xfs_buf_relse(bp);
6d192a9b
TS
2448error:
2449 if (need_free)
f0e2d93c 2450 kmem_free(in_f);
6d192a9b 2451 return XFS_ERROR(error);
1da177e4
LT
2452}
2453
2454/*
2455 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2456 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2457 * of that type.
2458 */
2459STATIC int
c9f71f5f 2460xlog_recover_quotaoff_pass1(
1da177e4 2461 xlog_t *log,
c9f71f5f 2462 xlog_recover_item_t *item)
1da177e4 2463{
c9f71f5f 2464 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2465 ASSERT(qoff_f);
2466
2467 /*
2468 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2469 * group/project quotaoff or both.
1da177e4
LT
2470 */
2471 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2472 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2473 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2474 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2475 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2476 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2477
2478 return (0);
2479}
2480
2481/*
2482 * Recover a dquot record
2483 */
2484STATIC int
c9f71f5f 2485xlog_recover_dquot_pass2(
1da177e4 2486 xlog_t *log,
43ff2122 2487 struct list_head *buffer_list,
c9f71f5f 2488 xlog_recover_item_t *item)
1da177e4 2489{
c9f71f5f 2490 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2491 xfs_buf_t *bp;
2492 struct xfs_disk_dquot *ddq, *recddq;
2493 int error;
2494 xfs_dq_logformat_t *dq_f;
2495 uint type;
2496
1da177e4
LT
2497
2498 /*
2499 * Filesystems are required to send in quota flags at mount time.
2500 */
2501 if (mp->m_qflags == 0)
2502 return (0);
2503
4e0d5f92
CH
2504 recddq = item->ri_buf[1].i_addr;
2505 if (recddq == NULL) {
a0fa2b67 2506 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
2507 return XFS_ERROR(EIO);
2508 }
8ec6dba2 2509 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2510 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
2511 item->ri_buf[1].i_len, __func__);
2512 return XFS_ERROR(EIO);
2513 }
2514
1da177e4
LT
2515 /*
2516 * This type of quotas was turned off, so ignore this record.
2517 */
b53e675d 2518 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2519 ASSERT(type);
2520 if (log->l_quotaoffs_flag & type)
2521 return (0);
2522
2523 /*
2524 * At this point we know that quota was _not_ turned off.
2525 * Since the mount flags are not indicating to us otherwise, this
2526 * must mean that quota is on, and the dquot needs to be replayed.
2527 * Remember that we may not have fully recovered the superblock yet,
2528 * so we can't do the usual trick of looking at the SB quota bits.
2529 *
2530 * The other possibility, of course, is that the quota subsystem was
2531 * removed since the last mount - ENOSYS.
2532 */
4e0d5f92 2533 dq_f = item->ri_buf[0].i_addr;
1da177e4 2534 ASSERT(dq_f);
a0fa2b67
DC
2535 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2536 "xlog_recover_dquot_pass2 (log copy)");
2537 if (error)
1da177e4 2538 return XFS_ERROR(EIO);
1da177e4
LT
2539 ASSERT(dq_f->qlf_len == 1);
2540
7ca790a5
DC
2541 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
2542 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp);
2543 if (error)
1da177e4 2544 return error;
7ca790a5 2545
1da177e4
LT
2546 ASSERT(bp);
2547 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2548
2549 /*
2550 * At least the magic num portion should be on disk because this
2551 * was among a chunk of dquots created earlier, and we did some
2552 * minimal initialization then.
2553 */
a0fa2b67
DC
2554 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2555 "xlog_recover_dquot_pass2");
2556 if (error) {
1da177e4
LT
2557 xfs_buf_relse(bp);
2558 return XFS_ERROR(EIO);
2559 }
2560
2561 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2562
2563 ASSERT(dq_f->qlf_size == 2);
ebad861b 2564 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2565 bp->b_iodone = xlog_recover_iodone;
43ff2122 2566 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2567 xfs_buf_relse(bp);
1da177e4
LT
2568
2569 return (0);
2570}
2571
2572/*
2573 * This routine is called to create an in-core extent free intent
2574 * item from the efi format structure which was logged on disk.
2575 * It allocates an in-core efi, copies the extents from the format
2576 * structure into it, and adds the efi to the AIL with the given
2577 * LSN.
2578 */
6d192a9b 2579STATIC int
c9f71f5f 2580xlog_recover_efi_pass2(
1da177e4
LT
2581 xlog_t *log,
2582 xlog_recover_item_t *item,
c9f71f5f 2583 xfs_lsn_t lsn)
1da177e4 2584{
6d192a9b 2585 int error;
c9f71f5f 2586 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2587 xfs_efi_log_item_t *efip;
2588 xfs_efi_log_format_t *efi_formatp;
1da177e4 2589
4e0d5f92 2590 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2591
1da177e4 2592 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2593 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2594 &(efip->efi_format)))) {
2595 xfs_efi_item_free(efip);
2596 return error;
2597 }
b199c8a4 2598 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2599
a9c21c1b 2600 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2601 /*
783a2f65 2602 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2603 */
e6059949 2604 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2605 return 0;
1da177e4
LT
2606}
2607
2608
2609/*
2610 * This routine is called when an efd format structure is found in
2611 * a committed transaction in the log. It's purpose is to cancel
2612 * the corresponding efi if it was still in the log. To do this
2613 * it searches the AIL for the efi with an id equal to that in the
2614 * efd format structure. If we find it, we remove the efi from the
2615 * AIL and free it.
2616 */
c9f71f5f
CH
2617STATIC int
2618xlog_recover_efd_pass2(
1da177e4 2619 xlog_t *log,
c9f71f5f 2620 xlog_recover_item_t *item)
1da177e4 2621{
1da177e4
LT
2622 xfs_efd_log_format_t *efd_formatp;
2623 xfs_efi_log_item_t *efip = NULL;
2624 xfs_log_item_t *lip;
1da177e4 2625 __uint64_t efi_id;
27d8d5fe 2626 struct xfs_ail_cursor cur;
783a2f65 2627 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2628
4e0d5f92 2629 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2630 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2631 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2632 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2633 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2634 efi_id = efd_formatp->efd_efi_id;
2635
2636 /*
2637 * Search for the efi with the id in the efd format structure
2638 * in the AIL.
2639 */
a9c21c1b
DC
2640 spin_lock(&ailp->xa_lock);
2641 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2642 while (lip != NULL) {
2643 if (lip->li_type == XFS_LI_EFI) {
2644 efip = (xfs_efi_log_item_t *)lip;
2645 if (efip->efi_format.efi_id == efi_id) {
2646 /*
783a2f65 2647 * xfs_trans_ail_delete() drops the
1da177e4
LT
2648 * AIL lock.
2649 */
04913fdd
DC
2650 xfs_trans_ail_delete(ailp, lip,
2651 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 2652 xfs_efi_item_free(efip);
a9c21c1b 2653 spin_lock(&ailp->xa_lock);
27d8d5fe 2654 break;
1da177e4
LT
2655 }
2656 }
a9c21c1b 2657 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2658 }
a9c21c1b
DC
2659 xfs_trans_ail_cursor_done(ailp, &cur);
2660 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
2661
2662 return 0;
1da177e4
LT
2663}
2664
1da177e4
LT
2665/*
2666 * Free up any resources allocated by the transaction
2667 *
2668 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2669 */
2670STATIC void
2671xlog_recover_free_trans(
d0450948 2672 struct xlog_recover *trans)
1da177e4 2673{
f0a76953 2674 xlog_recover_item_t *item, *n;
1da177e4
LT
2675 int i;
2676
f0a76953
DC
2677 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2678 /* Free the regions in the item. */
2679 list_del(&item->ri_list);
2680 for (i = 0; i < item->ri_cnt; i++)
2681 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2682 /* Free the item itself */
f0a76953
DC
2683 kmem_free(item->ri_buf);
2684 kmem_free(item);
2685 }
1da177e4 2686 /* Free the transaction recover structure */
f0e2d93c 2687 kmem_free(trans);
1da177e4
LT
2688}
2689
d0450948 2690STATIC int
c9f71f5f 2691xlog_recover_commit_pass1(
d0450948
CH
2692 struct log *log,
2693 struct xlog_recover *trans,
c9f71f5f 2694 xlog_recover_item_t *item)
d0450948 2695{
c9f71f5f 2696 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
2697
2698 switch (ITEM_TYPE(item)) {
2699 case XFS_LI_BUF:
c9f71f5f
CH
2700 return xlog_recover_buffer_pass1(log, item);
2701 case XFS_LI_QUOTAOFF:
2702 return xlog_recover_quotaoff_pass1(log, item);
d0450948 2703 case XFS_LI_INODE:
d0450948 2704 case XFS_LI_EFI:
d0450948 2705 case XFS_LI_EFD:
c9f71f5f
CH
2706 case XFS_LI_DQUOT:
2707 /* nothing to do in pass 1 */
d0450948 2708 return 0;
c9f71f5f 2709 default:
a0fa2b67
DC
2710 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2711 __func__, ITEM_TYPE(item));
c9f71f5f
CH
2712 ASSERT(0);
2713 return XFS_ERROR(EIO);
2714 }
2715}
2716
2717STATIC int
2718xlog_recover_commit_pass2(
2719 struct log *log,
2720 struct xlog_recover *trans,
43ff2122 2721 struct list_head *buffer_list,
c9f71f5f
CH
2722 xlog_recover_item_t *item)
2723{
2724 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2725
2726 switch (ITEM_TYPE(item)) {
2727 case XFS_LI_BUF:
43ff2122 2728 return xlog_recover_buffer_pass2(log, buffer_list, item);
c9f71f5f 2729 case XFS_LI_INODE:
43ff2122 2730 return xlog_recover_inode_pass2(log, buffer_list, item);
c9f71f5f
CH
2731 case XFS_LI_EFI:
2732 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2733 case XFS_LI_EFD:
2734 return xlog_recover_efd_pass2(log, item);
d0450948 2735 case XFS_LI_DQUOT:
43ff2122 2736 return xlog_recover_dquot_pass2(log, buffer_list, item);
d0450948 2737 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
2738 /* nothing to do in pass2 */
2739 return 0;
d0450948 2740 default:
a0fa2b67
DC
2741 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2742 __func__, ITEM_TYPE(item));
d0450948
CH
2743 ASSERT(0);
2744 return XFS_ERROR(EIO);
2745 }
2746}
2747
2748/*
2749 * Perform the transaction.
2750 *
2751 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2752 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2753 */
1da177e4
LT
2754STATIC int
2755xlog_recover_commit_trans(
d0450948
CH
2756 struct log *log,
2757 struct xlog_recover *trans,
1da177e4
LT
2758 int pass)
2759{
43ff2122 2760 int error = 0, error2;
d0450948 2761 xlog_recover_item_t *item;
43ff2122 2762 LIST_HEAD (buffer_list);
1da177e4 2763
f0a76953 2764 hlist_del(&trans->r_list);
d0450948
CH
2765
2766 error = xlog_recover_reorder_trans(log, trans, pass);
2767 if (error)
1da177e4 2768 return error;
d0450948
CH
2769
2770 list_for_each_entry(item, &trans->r_itemq, ri_list) {
43ff2122
CH
2771 switch (pass) {
2772 case XLOG_RECOVER_PASS1:
c9f71f5f 2773 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
2774 break;
2775 case XLOG_RECOVER_PASS2:
2776 error = xlog_recover_commit_pass2(log, trans,
2777 &buffer_list, item);
2778 break;
2779 default:
2780 ASSERT(0);
2781 }
2782
d0450948 2783 if (error)
43ff2122 2784 goto out;
d0450948
CH
2785 }
2786
2787 xlog_recover_free_trans(trans);
43ff2122
CH
2788
2789out:
2790 error2 = xfs_buf_delwri_submit(&buffer_list);
2791 return error ? error : error2;
1da177e4
LT
2792}
2793
2794STATIC int
2795xlog_recover_unmount_trans(
a0fa2b67 2796 struct log *log,
1da177e4
LT
2797 xlog_recover_t *trans)
2798{
2799 /* Do nothing now */
a0fa2b67 2800 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
2801 return 0;
2802}
2803
2804/*
2805 * There are two valid states of the r_state field. 0 indicates that the
2806 * transaction structure is in a normal state. We have either seen the
2807 * start of the transaction or the last operation we added was not a partial
2808 * operation. If the last operation we added to the transaction was a
2809 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2810 *
2811 * NOTE: skip LRs with 0 data length.
2812 */
2813STATIC int
2814xlog_recover_process_data(
2815 xlog_t *log,
f0a76953 2816 struct hlist_head rhash[],
1da177e4
LT
2817 xlog_rec_header_t *rhead,
2818 xfs_caddr_t dp,
2819 int pass)
2820{
2821 xfs_caddr_t lp;
2822 int num_logops;
2823 xlog_op_header_t *ohead;
2824 xlog_recover_t *trans;
2825 xlog_tid_t tid;
2826 int error;
2827 unsigned long hash;
2828 uint flags;
2829
b53e675d
CH
2830 lp = dp + be32_to_cpu(rhead->h_len);
2831 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2832
2833 /* check the log format matches our own - else we can't recover */
2834 if (xlog_header_check_recover(log->l_mp, rhead))
2835 return (XFS_ERROR(EIO));
2836
2837 while ((dp < lp) && num_logops) {
2838 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2839 ohead = (xlog_op_header_t *)dp;
2840 dp += sizeof(xlog_op_header_t);
2841 if (ohead->oh_clientid != XFS_TRANSACTION &&
2842 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
2843 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2844 __func__, ohead->oh_clientid);
1da177e4
LT
2845 ASSERT(0);
2846 return (XFS_ERROR(EIO));
2847 }
67fcb7bf 2848 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 2849 hash = XLOG_RHASH(tid);
f0a76953 2850 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
2851 if (trans == NULL) { /* not found; add new tid */
2852 if (ohead->oh_flags & XLOG_START_TRANS)
2853 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2854 be64_to_cpu(rhead->h_lsn));
1da177e4 2855 } else {
9742bb93 2856 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
2857 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2858 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
2859 WARN_ON(1);
2860 return (XFS_ERROR(EIO));
2861 }
1da177e4
LT
2862 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2863 if (flags & XLOG_WAS_CONT_TRANS)
2864 flags &= ~XLOG_CONTINUE_TRANS;
2865 switch (flags) {
2866 case XLOG_COMMIT_TRANS:
2867 error = xlog_recover_commit_trans(log,
f0a76953 2868 trans, pass);
1da177e4
LT
2869 break;
2870 case XLOG_UNMOUNT_TRANS:
a0fa2b67 2871 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
2872 break;
2873 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
2874 error = xlog_recover_add_to_cont_trans(log,
2875 trans, dp,
2876 be32_to_cpu(ohead->oh_len));
1da177e4
LT
2877 break;
2878 case XLOG_START_TRANS:
a0fa2b67
DC
2879 xfs_warn(log->l_mp, "%s: bad transaction",
2880 __func__);
1da177e4
LT
2881 ASSERT(0);
2882 error = XFS_ERROR(EIO);
2883 break;
2884 case 0:
2885 case XLOG_CONTINUE_TRANS:
9abbc539 2886 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 2887 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2888 break;
2889 default:
a0fa2b67
DC
2890 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2891 __func__, flags);
1da177e4
LT
2892 ASSERT(0);
2893 error = XFS_ERROR(EIO);
2894 break;
2895 }
2896 if (error)
2897 return error;
2898 }
67fcb7bf 2899 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2900 num_logops--;
2901 }
2902 return 0;
2903}
2904
2905/*
2906 * Process an extent free intent item that was recovered from
2907 * the log. We need to free the extents that it describes.
2908 */
3c1e2bbe 2909STATIC int
1da177e4
LT
2910xlog_recover_process_efi(
2911 xfs_mount_t *mp,
2912 xfs_efi_log_item_t *efip)
2913{
2914 xfs_efd_log_item_t *efdp;
2915 xfs_trans_t *tp;
2916 int i;
3c1e2bbe 2917 int error = 0;
1da177e4
LT
2918 xfs_extent_t *extp;
2919 xfs_fsblock_t startblock_fsb;
2920
b199c8a4 2921 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
2922
2923 /*
2924 * First check the validity of the extents described by the
2925 * EFI. If any are bad, then assume that all are bad and
2926 * just toss the EFI.
2927 */
2928 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2929 extp = &(efip->efi_format.efi_extents[i]);
2930 startblock_fsb = XFS_BB_TO_FSB(mp,
2931 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2932 if ((startblock_fsb == 0) ||
2933 (extp->ext_len == 0) ||
2934 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2935 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2936 /*
2937 * This will pull the EFI from the AIL and
2938 * free the memory associated with it.
2939 */
2940 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 2941 return XFS_ERROR(EIO);
1da177e4
LT
2942 }
2943 }
2944
2945 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 2946 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
2947 if (error)
2948 goto abort_error;
1da177e4
LT
2949 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2950
2951 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2952 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
2953 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2954 if (error)
2955 goto abort_error;
1da177e4
LT
2956 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2957 extp->ext_len);
2958 }
2959
b199c8a4 2960 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 2961 error = xfs_trans_commit(tp, 0);
3c1e2bbe 2962 return error;
fc6149d8
DC
2963
2964abort_error:
2965 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2966 return error;
1da177e4
LT
2967}
2968
1da177e4
LT
2969/*
2970 * When this is called, all of the EFIs which did not have
2971 * corresponding EFDs should be in the AIL. What we do now
2972 * is free the extents associated with each one.
2973 *
2974 * Since we process the EFIs in normal transactions, they
2975 * will be removed at some point after the commit. This prevents
2976 * us from just walking down the list processing each one.
2977 * We'll use a flag in the EFI to skip those that we've already
2978 * processed and use the AIL iteration mechanism's generation
2979 * count to try to speed this up at least a bit.
2980 *
2981 * When we start, we know that the EFIs are the only things in
2982 * the AIL. As we process them, however, other items are added
2983 * to the AIL. Since everything added to the AIL must come after
2984 * everything already in the AIL, we stop processing as soon as
2985 * we see something other than an EFI in the AIL.
2986 */
3c1e2bbe 2987STATIC int
1da177e4
LT
2988xlog_recover_process_efis(
2989 xlog_t *log)
2990{
2991 xfs_log_item_t *lip;
2992 xfs_efi_log_item_t *efip;
3c1e2bbe 2993 int error = 0;
27d8d5fe 2994 struct xfs_ail_cursor cur;
a9c21c1b 2995 struct xfs_ail *ailp;
1da177e4 2996
a9c21c1b
DC
2997 ailp = log->l_ailp;
2998 spin_lock(&ailp->xa_lock);
2999 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3000 while (lip != NULL) {
3001 /*
3002 * We're done when we see something other than an EFI.
27d8d5fe 3003 * There should be no EFIs left in the AIL now.
1da177e4
LT
3004 */
3005 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3006#ifdef DEBUG
a9c21c1b 3007 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3008 ASSERT(lip->li_type != XFS_LI_EFI);
3009#endif
1da177e4
LT
3010 break;
3011 }
3012
3013 /*
3014 * Skip EFIs that we've already processed.
3015 */
3016 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3017 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3018 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3019 continue;
3020 }
3021
a9c21c1b
DC
3022 spin_unlock(&ailp->xa_lock);
3023 error = xlog_recover_process_efi(log->l_mp, efip);
3024 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3025 if (error)
3026 goto out;
a9c21c1b 3027 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3028 }
27d8d5fe 3029out:
a9c21c1b
DC
3030 xfs_trans_ail_cursor_done(ailp, &cur);
3031 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3032 return error;
1da177e4
LT
3033}
3034
3035/*
3036 * This routine performs a transaction to null out a bad inode pointer
3037 * in an agi unlinked inode hash bucket.
3038 */
3039STATIC void
3040xlog_recover_clear_agi_bucket(
3041 xfs_mount_t *mp,
3042 xfs_agnumber_t agno,
3043 int bucket)
3044{
3045 xfs_trans_t *tp;
3046 xfs_agi_t *agi;
3047 xfs_buf_t *agibp;
3048 int offset;
3049 int error;
3050
3051 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3052 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3053 0, 0, 0);
e5720eec
DC
3054 if (error)
3055 goto out_abort;
1da177e4 3056
5e1be0fb
CH
3057 error = xfs_read_agi(mp, tp, agno, &agibp);
3058 if (error)
e5720eec 3059 goto out_abort;
1da177e4 3060
5e1be0fb 3061 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3062 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3063 offset = offsetof(xfs_agi_t, agi_unlinked) +
3064 (sizeof(xfs_agino_t) * bucket);
3065 xfs_trans_log_buf(tp, agibp, offset,
3066 (offset + sizeof(xfs_agino_t) - 1));
3067
e5720eec
DC
3068 error = xfs_trans_commit(tp, 0);
3069 if (error)
3070 goto out_error;
3071 return;
3072
3073out_abort:
3074 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3075out_error:
a0fa2b67 3076 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3077 return;
1da177e4
LT
3078}
3079
23fac50f
CH
3080STATIC xfs_agino_t
3081xlog_recover_process_one_iunlink(
3082 struct xfs_mount *mp,
3083 xfs_agnumber_t agno,
3084 xfs_agino_t agino,
3085 int bucket)
3086{
3087 struct xfs_buf *ibp;
3088 struct xfs_dinode *dip;
3089 struct xfs_inode *ip;
3090 xfs_ino_t ino;
3091 int error;
3092
3093 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3094 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3095 if (error)
3096 goto fail;
3097
3098 /*
3099 * Get the on disk inode to find the next inode in the bucket.
3100 */
a8acad70 3101 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, 0);
23fac50f 3102 if (error)
0e446673 3103 goto fail_iput;
23fac50f 3104
23fac50f 3105 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3106 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3107
3108 /* setup for the next pass */
3109 agino = be32_to_cpu(dip->di_next_unlinked);
3110 xfs_buf_relse(ibp);
3111
3112 /*
3113 * Prevent any DMAPI event from being sent when the reference on
3114 * the inode is dropped.
3115 */
3116 ip->i_d.di_dmevmask = 0;
3117
0e446673 3118 IRELE(ip);
23fac50f
CH
3119 return agino;
3120
0e446673
CH
3121 fail_iput:
3122 IRELE(ip);
23fac50f
CH
3123 fail:
3124 /*
3125 * We can't read in the inode this bucket points to, or this inode
3126 * is messed up. Just ditch this bucket of inodes. We will lose
3127 * some inodes and space, but at least we won't hang.
3128 *
3129 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3130 * clear the inode pointer in the bucket.
3131 */
3132 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3133 return NULLAGINO;
3134}
3135
1da177e4
LT
3136/*
3137 * xlog_iunlink_recover
3138 *
3139 * This is called during recovery to process any inodes which
3140 * we unlinked but not freed when the system crashed. These
3141 * inodes will be on the lists in the AGI blocks. What we do
3142 * here is scan all the AGIs and fully truncate and free any
3143 * inodes found on the lists. Each inode is removed from the
3144 * lists when it has been fully truncated and is freed. The
3145 * freeing of the inode and its removal from the list must be
3146 * atomic.
3147 */
d96f8f89 3148STATIC void
1da177e4
LT
3149xlog_recover_process_iunlinks(
3150 xlog_t *log)
3151{
3152 xfs_mount_t *mp;
3153 xfs_agnumber_t agno;
3154 xfs_agi_t *agi;
3155 xfs_buf_t *agibp;
1da177e4 3156 xfs_agino_t agino;
1da177e4
LT
3157 int bucket;
3158 int error;
3159 uint mp_dmevmask;
3160
3161 mp = log->l_mp;
3162
3163 /*
3164 * Prevent any DMAPI event from being sent while in this function.
3165 */
3166 mp_dmevmask = mp->m_dmevmask;
3167 mp->m_dmevmask = 0;
3168
3169 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3170 /*
3171 * Find the agi for this ag.
3172 */
5e1be0fb
CH
3173 error = xfs_read_agi(mp, NULL, agno, &agibp);
3174 if (error) {
3175 /*
3176 * AGI is b0rked. Don't process it.
3177 *
3178 * We should probably mark the filesystem as corrupt
3179 * after we've recovered all the ag's we can....
3180 */
3181 continue;
1da177e4 3182 }
d97d32ed
JK
3183 /*
3184 * Unlock the buffer so that it can be acquired in the normal
3185 * course of the transaction to truncate and free each inode.
3186 * Because we are not racing with anyone else here for the AGI
3187 * buffer, we don't even need to hold it locked to read the
3188 * initial unlinked bucket entries out of the buffer. We keep
3189 * buffer reference though, so that it stays pinned in memory
3190 * while we need the buffer.
3191 */
1da177e4 3192 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3193 xfs_buf_unlock(agibp);
1da177e4
LT
3194
3195 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3196 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3197 while (agino != NULLAGINO) {
23fac50f
CH
3198 agino = xlog_recover_process_one_iunlink(mp,
3199 agno, agino, bucket);
1da177e4
LT
3200 }
3201 }
d97d32ed 3202 xfs_buf_rele(agibp);
1da177e4
LT
3203 }
3204
3205 mp->m_dmevmask = mp_dmevmask;
3206}
3207
3208
3209#ifdef DEBUG
3210STATIC void
3211xlog_pack_data_checksum(
3212 xlog_t *log,
3213 xlog_in_core_t *iclog,
3214 int size)
3215{
3216 int i;
b53e675d 3217 __be32 *up;
1da177e4
LT
3218 uint chksum = 0;
3219
b53e675d 3220 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3221 /* divide length by 4 to get # words */
3222 for (i = 0; i < (size >> 2); i++) {
b53e675d 3223 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3224 up++;
3225 }
b53e675d 3226 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3227}
3228#else
3229#define xlog_pack_data_checksum(log, iclog, size)
3230#endif
3231
3232/*
3233 * Stamp cycle number in every block
3234 */
3235void
3236xlog_pack_data(
3237 xlog_t *log,
3238 xlog_in_core_t *iclog,
3239 int roundoff)
3240{
3241 int i, j, k;
3242 int size = iclog->ic_offset + roundoff;
b53e675d 3243 __be32 cycle_lsn;
1da177e4 3244 xfs_caddr_t dp;
1da177e4
LT
3245
3246 xlog_pack_data_checksum(log, iclog, size);
3247
3248 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3249
3250 dp = iclog->ic_datap;
3251 for (i = 0; i < BTOBB(size) &&
3252 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3253 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3254 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3255 dp += BBSIZE;
3256 }
3257
62118709 3258 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6
CH
3259 xlog_in_core_2_t *xhdr = iclog->ic_data;
3260
1da177e4
LT
3261 for ( ; i < BTOBB(size); i++) {
3262 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3263 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3264 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3265 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3266 dp += BBSIZE;
3267 }
3268
3269 for (i = 1; i < log->l_iclog_heads; i++) {
3270 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3271 }
3272 }
3273}
3274
1da177e4
LT
3275STATIC void
3276xlog_unpack_data(
3277 xlog_rec_header_t *rhead,
3278 xfs_caddr_t dp,
3279 xlog_t *log)
3280{
3281 int i, j, k;
1da177e4 3282
b53e675d 3283 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3284 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3285 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3286 dp += BBSIZE;
3287 }
3288
62118709 3289 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3290 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3291 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3292 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3293 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3294 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3295 dp += BBSIZE;
3296 }
3297 }
1da177e4
LT
3298}
3299
3300STATIC int
3301xlog_valid_rec_header(
3302 xlog_t *log,
3303 xlog_rec_header_t *rhead,
3304 xfs_daddr_t blkno)
3305{
3306 int hlen;
3307
69ef921b 3308 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
3309 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3310 XFS_ERRLEVEL_LOW, log->l_mp);
3311 return XFS_ERROR(EFSCORRUPTED);
3312 }
3313 if (unlikely(
3314 (!rhead->h_version ||
b53e675d 3315 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 3316 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 3317 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3318 return XFS_ERROR(EIO);
3319 }
3320
3321 /* LR body must have data or it wouldn't have been written */
b53e675d 3322 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3323 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3324 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3325 XFS_ERRLEVEL_LOW, log->l_mp);
3326 return XFS_ERROR(EFSCORRUPTED);
3327 }
3328 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3329 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3330 XFS_ERRLEVEL_LOW, log->l_mp);
3331 return XFS_ERROR(EFSCORRUPTED);
3332 }
3333 return 0;
3334}
3335
3336/*
3337 * Read the log from tail to head and process the log records found.
3338 * Handle the two cases where the tail and head are in the same cycle
3339 * and where the active portion of the log wraps around the end of
3340 * the physical log separately. The pass parameter is passed through
3341 * to the routines called to process the data and is not looked at
3342 * here.
3343 */
3344STATIC int
3345xlog_do_recovery_pass(
3346 xlog_t *log,
3347 xfs_daddr_t head_blk,
3348 xfs_daddr_t tail_blk,
3349 int pass)
3350{
3351 xlog_rec_header_t *rhead;
3352 xfs_daddr_t blk_no;
fc5bc4c8 3353 xfs_caddr_t offset;
1da177e4
LT
3354 xfs_buf_t *hbp, *dbp;
3355 int error = 0, h_size;
3356 int bblks, split_bblks;
3357 int hblks, split_hblks, wrapped_hblks;
f0a76953 3358 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3359
3360 ASSERT(head_blk != tail_blk);
3361
3362 /*
3363 * Read the header of the tail block and get the iclog buffer size from
3364 * h_size. Use this to tell how many sectors make up the log header.
3365 */
62118709 3366 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3367 /*
3368 * When using variable length iclogs, read first sector of
3369 * iclog header and extract the header size from it. Get a
3370 * new hbp that is the correct size.
3371 */
3372 hbp = xlog_get_bp(log, 1);
3373 if (!hbp)
3374 return ENOMEM;
076e6acb
CH
3375
3376 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3377 if (error)
1da177e4 3378 goto bread_err1;
076e6acb 3379
1da177e4
LT
3380 rhead = (xlog_rec_header_t *)offset;
3381 error = xlog_valid_rec_header(log, rhead, tail_blk);
3382 if (error)
3383 goto bread_err1;
b53e675d
CH
3384 h_size = be32_to_cpu(rhead->h_size);
3385 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3386 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3387 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3388 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3389 hblks++;
3390 xlog_put_bp(hbp);
3391 hbp = xlog_get_bp(log, hblks);
3392 } else {
3393 hblks = 1;
3394 }
3395 } else {
69ce58f0 3396 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
3397 hblks = 1;
3398 hbp = xlog_get_bp(log, 1);
3399 h_size = XLOG_BIG_RECORD_BSIZE;
3400 }
3401
3402 if (!hbp)
3403 return ENOMEM;
3404 dbp = xlog_get_bp(log, BTOBB(h_size));
3405 if (!dbp) {
3406 xlog_put_bp(hbp);
3407 return ENOMEM;
3408 }
3409
3410 memset(rhash, 0, sizeof(rhash));
3411 if (tail_blk <= head_blk) {
3412 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3413 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3414 if (error)
1da177e4 3415 goto bread_err2;
076e6acb 3416
1da177e4
LT
3417 rhead = (xlog_rec_header_t *)offset;
3418 error = xlog_valid_rec_header(log, rhead, blk_no);
3419 if (error)
3420 goto bread_err2;
3421
3422 /* blocks in data section */
b53e675d 3423 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3424 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3425 &offset);
1da177e4
LT
3426 if (error)
3427 goto bread_err2;
076e6acb 3428
1da177e4
LT
3429 xlog_unpack_data(rhead, offset, log);
3430 if ((error = xlog_recover_process_data(log,
3431 rhash, rhead, offset, pass)))
3432 goto bread_err2;
3433 blk_no += bblks + hblks;
3434 }
3435 } else {
3436 /*
3437 * Perform recovery around the end of the physical log.
3438 * When the head is not on the same cycle number as the tail,
3439 * we can't do a sequential recovery as above.
3440 */
3441 blk_no = tail_blk;
3442 while (blk_no < log->l_logBBsize) {
3443 /*
3444 * Check for header wrapping around physical end-of-log
3445 */
62926044 3446 offset = hbp->b_addr;
1da177e4
LT
3447 split_hblks = 0;
3448 wrapped_hblks = 0;
3449 if (blk_no + hblks <= log->l_logBBsize) {
3450 /* Read header in one read */
076e6acb
CH
3451 error = xlog_bread(log, blk_no, hblks, hbp,
3452 &offset);
1da177e4
LT
3453 if (error)
3454 goto bread_err2;
1da177e4
LT
3455 } else {
3456 /* This LR is split across physical log end */
3457 if (blk_no != log->l_logBBsize) {
3458 /* some data before physical log end */
3459 ASSERT(blk_no <= INT_MAX);
3460 split_hblks = log->l_logBBsize - (int)blk_no;
3461 ASSERT(split_hblks > 0);
076e6acb
CH
3462 error = xlog_bread(log, blk_no,
3463 split_hblks, hbp,
3464 &offset);
3465 if (error)
1da177e4 3466 goto bread_err2;
1da177e4 3467 }
076e6acb 3468
1da177e4
LT
3469 /*
3470 * Note: this black magic still works with
3471 * large sector sizes (non-512) only because:
3472 * - we increased the buffer size originally
3473 * by 1 sector giving us enough extra space
3474 * for the second read;
3475 * - the log start is guaranteed to be sector
3476 * aligned;
3477 * - we read the log end (LR header start)
3478 * _first_, then the log start (LR header end)
3479 * - order is important.
3480 */
234f56ac 3481 wrapped_hblks = hblks - split_hblks;
44396476
DC
3482 error = xlog_bread_offset(log, 0,
3483 wrapped_hblks, hbp,
3484 offset + BBTOB(split_hblks));
1da177e4
LT
3485 if (error)
3486 goto bread_err2;
1da177e4
LT
3487 }
3488 rhead = (xlog_rec_header_t *)offset;
3489 error = xlog_valid_rec_header(log, rhead,
3490 split_hblks ? blk_no : 0);
3491 if (error)
3492 goto bread_err2;
3493
b53e675d 3494 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3495 blk_no += hblks;
3496
3497 /* Read in data for log record */
3498 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3499 error = xlog_bread(log, blk_no, bblks, dbp,
3500 &offset);
1da177e4
LT
3501 if (error)
3502 goto bread_err2;
1da177e4
LT
3503 } else {
3504 /* This log record is split across the
3505 * physical end of log */
62926044 3506 offset = dbp->b_addr;
1da177e4
LT
3507 split_bblks = 0;
3508 if (blk_no != log->l_logBBsize) {
3509 /* some data is before the physical
3510 * end of log */
3511 ASSERT(!wrapped_hblks);
3512 ASSERT(blk_no <= INT_MAX);
3513 split_bblks =
3514 log->l_logBBsize - (int)blk_no;
3515 ASSERT(split_bblks > 0);
076e6acb
CH
3516 error = xlog_bread(log, blk_no,
3517 split_bblks, dbp,
3518 &offset);
3519 if (error)
1da177e4 3520 goto bread_err2;
1da177e4 3521 }
076e6acb 3522
1da177e4
LT
3523 /*
3524 * Note: this black magic still works with
3525 * large sector sizes (non-512) only because:
3526 * - we increased the buffer size originally
3527 * by 1 sector giving us enough extra space
3528 * for the second read;
3529 * - the log start is guaranteed to be sector
3530 * aligned;
3531 * - we read the log end (LR header start)
3532 * _first_, then the log start (LR header end)
3533 * - order is important.
3534 */
44396476
DC
3535 error = xlog_bread_offset(log, 0,
3536 bblks - split_bblks, hbp,
3537 offset + BBTOB(split_bblks));
076e6acb
CH
3538 if (error)
3539 goto bread_err2;
1da177e4
LT
3540 }
3541 xlog_unpack_data(rhead, offset, log);
3542 if ((error = xlog_recover_process_data(log, rhash,
3543 rhead, offset, pass)))
3544 goto bread_err2;
3545 blk_no += bblks;
3546 }
3547
3548 ASSERT(blk_no >= log->l_logBBsize);
3549 blk_no -= log->l_logBBsize;
3550
3551 /* read first part of physical log */
3552 while (blk_no < head_blk) {
076e6acb
CH
3553 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3554 if (error)
1da177e4 3555 goto bread_err2;
076e6acb 3556
1da177e4
LT
3557 rhead = (xlog_rec_header_t *)offset;
3558 error = xlog_valid_rec_header(log, rhead, blk_no);
3559 if (error)
3560 goto bread_err2;
076e6acb 3561
b53e675d 3562 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3563 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3564 &offset);
3565 if (error)
1da177e4 3566 goto bread_err2;
076e6acb 3567
1da177e4
LT
3568 xlog_unpack_data(rhead, offset, log);
3569 if ((error = xlog_recover_process_data(log, rhash,
3570 rhead, offset, pass)))
3571 goto bread_err2;
3572 blk_no += bblks + hblks;
3573 }
3574 }
3575
3576 bread_err2:
3577 xlog_put_bp(dbp);
3578 bread_err1:
3579 xlog_put_bp(hbp);
3580 return error;
3581}
3582
3583/*
3584 * Do the recovery of the log. We actually do this in two phases.
3585 * The two passes are necessary in order to implement the function
3586 * of cancelling a record written into the log. The first pass
3587 * determines those things which have been cancelled, and the
3588 * second pass replays log items normally except for those which
3589 * have been cancelled. The handling of the replay and cancellations
3590 * takes place in the log item type specific routines.
3591 *
3592 * The table of items which have cancel records in the log is allocated
3593 * and freed at this level, since only here do we know when all of
3594 * the log recovery has been completed.
3595 */
3596STATIC int
3597xlog_do_log_recovery(
3598 xlog_t *log,
3599 xfs_daddr_t head_blk,
3600 xfs_daddr_t tail_blk)
3601{
d5689eaa 3602 int error, i;
1da177e4
LT
3603
3604 ASSERT(head_blk != tail_blk);
3605
3606 /*
3607 * First do a pass to find all of the cancelled buf log items.
3608 * Store them in the buf_cancel_table for use in the second pass.
3609 */
d5689eaa
CH
3610 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3611 sizeof(struct list_head),
1da177e4 3612 KM_SLEEP);
d5689eaa
CH
3613 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3614 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3615
1da177e4
LT
3616 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3617 XLOG_RECOVER_PASS1);
3618 if (error != 0) {
f0e2d93c 3619 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3620 log->l_buf_cancel_table = NULL;
3621 return error;
3622 }
3623 /*
3624 * Then do a second pass to actually recover the items in the log.
3625 * When it is complete free the table of buf cancel items.
3626 */
3627 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3628 XLOG_RECOVER_PASS2);
3629#ifdef DEBUG
6d192a9b 3630 if (!error) {
1da177e4
LT
3631 int i;
3632
3633 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 3634 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
3635 }
3636#endif /* DEBUG */
3637
f0e2d93c 3638 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3639 log->l_buf_cancel_table = NULL;
3640
3641 return error;
3642}
3643
3644/*
3645 * Do the actual recovery
3646 */
3647STATIC int
3648xlog_do_recover(
3649 xlog_t *log,
3650 xfs_daddr_t head_blk,
3651 xfs_daddr_t tail_blk)
3652{
3653 int error;
3654 xfs_buf_t *bp;
3655 xfs_sb_t *sbp;
3656
3657 /*
3658 * First replay the images in the log.
3659 */
3660 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 3661 if (error)
1da177e4 3662 return error;
1da177e4
LT
3663
3664 /*
3665 * If IO errors happened during recovery, bail out.
3666 */
3667 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3668 return (EIO);
3669 }
3670
3671 /*
3672 * We now update the tail_lsn since much of the recovery has completed
3673 * and there may be space available to use. If there were no extent
3674 * or iunlinks, we can free up the entire log and set the tail_lsn to
3675 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3676 * lsn of the last known good LR on disk. If there are extent frees
3677 * or iunlinks they will have some entries in the AIL; so we look at
3678 * the AIL to determine how to set the tail_lsn.
3679 */
3680 xlog_assign_tail_lsn(log->l_mp);
3681
3682 /*
3683 * Now that we've finished replaying all buffer and inode
3684 * updates, re-read in the superblock.
3685 */
3686 bp = xfs_getsb(log->l_mp, 0);
3687 XFS_BUF_UNDONE(bp);
bebf963f 3688 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 3689 XFS_BUF_READ(bp);
bebf963f 3690 XFS_BUF_UNASYNC(bp);
1da177e4 3691 xfsbdstrat(log->l_mp, bp);
1a1a3e97 3692 error = xfs_buf_iowait(bp);
d64e31a2 3693 if (error) {
901796af 3694 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
3695 ASSERT(0);
3696 xfs_buf_relse(bp);
3697 return error;
3698 }
3699
3700 /* Convert superblock from on-disk format */
3701 sbp = &log->l_mp->m_sb;
6bd92a23 3702 xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
1da177e4 3703 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3704 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3705 xfs_buf_relse(bp);
3706
5478eead
LM
3707 /* We've re-read the superblock so re-initialize per-cpu counters */
3708 xfs_icsb_reinit_counters(log->l_mp);
3709
1da177e4
LT
3710 xlog_recover_check_summary(log);
3711
3712 /* Normal transactions can now occur */
3713 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3714 return 0;
3715}
3716
3717/*
3718 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3719 *
3720 * Return error or zero.
3721 */
3722int
3723xlog_recover(
65be6054 3724 xlog_t *log)
1da177e4
LT
3725{
3726 xfs_daddr_t head_blk, tail_blk;
3727 int error;
3728
3729 /* find the tail of the log */
65be6054 3730 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3731 return error;
3732
3733 if (tail_blk != head_blk) {
3734 /* There used to be a comment here:
3735 *
3736 * disallow recovery on read-only mounts. note -- mount
3737 * checks for ENOSPC and turns it into an intelligent
3738 * error message.
3739 * ...but this is no longer true. Now, unless you specify
3740 * NORECOVERY (in which case this function would never be
3741 * called), we just go ahead and recover. We do this all
3742 * under the vfs layer, so we can get away with it unless
3743 * the device itself is read-only, in which case we fail.
3744 */
3a02ee18 3745 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3746 return error;
3747 }
3748
a0fa2b67
DC
3749 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3750 log->l_mp->m_logname ? log->l_mp->m_logname
3751 : "internal");
1da177e4
LT
3752
3753 error = xlog_do_recover(log, head_blk, tail_blk);
3754 log->l_flags |= XLOG_RECOVERY_NEEDED;
3755 }
3756 return error;
3757}
3758
3759/*
3760 * In the first part of recovery we replay inodes and buffers and build
3761 * up the list of extent free items which need to be processed. Here
3762 * we process the extent free items and clean up the on disk unlinked
3763 * inode lists. This is separated from the first part of recovery so
3764 * that the root and real-time bitmap inodes can be read in from disk in
3765 * between the two stages. This is necessary so that we can free space
3766 * in the real-time portion of the file system.
3767 */
3768int
3769xlog_recover_finish(
4249023a 3770 xlog_t *log)
1da177e4
LT
3771{
3772 /*
3773 * Now we're ready to do the transactions needed for the
3774 * rest of recovery. Start with completing all the extent
3775 * free intent records and then process the unlinked inode
3776 * lists. At this point, we essentially run in normal mode
3777 * except that we're still performing recovery actions
3778 * rather than accepting new requests.
3779 */
3780 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3781 int error;
3782 error = xlog_recover_process_efis(log);
3783 if (error) {
a0fa2b67 3784 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
3785 return error;
3786 }
1da177e4
LT
3787 /*
3788 * Sync the log to get all the EFIs out of the AIL.
3789 * This isn't absolutely necessary, but it helps in
3790 * case the unlink transactions would have problems
3791 * pushing the EFIs out of the way.
3792 */
a14a348b 3793 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 3794
4249023a 3795 xlog_recover_process_iunlinks(log);
1da177e4
LT
3796
3797 xlog_recover_check_summary(log);
3798
a0fa2b67
DC
3799 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3800 log->l_mp->m_logname ? log->l_mp->m_logname
3801 : "internal");
1da177e4
LT
3802 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3803 } else {
a0fa2b67 3804 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
3805 }
3806 return 0;
3807}
3808
3809
3810#if defined(DEBUG)
3811/*
3812 * Read all of the agf and agi counters and check that they
3813 * are consistent with the superblock counters.
3814 */
3815void
3816xlog_recover_check_summary(
3817 xlog_t *log)
3818{
3819 xfs_mount_t *mp;
3820 xfs_agf_t *agfp;
1da177e4
LT
3821 xfs_buf_t *agfbp;
3822 xfs_buf_t *agibp;
1da177e4
LT
3823 xfs_agnumber_t agno;
3824 __uint64_t freeblks;
3825 __uint64_t itotal;
3826 __uint64_t ifree;
5e1be0fb 3827 int error;
1da177e4
LT
3828
3829 mp = log->l_mp;
3830
3831 freeblks = 0LL;
3832 itotal = 0LL;
3833 ifree = 0LL;
3834 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
CH
3835 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3836 if (error) {
a0fa2b67
DC
3837 xfs_alert(mp, "%s agf read failed agno %d error %d",
3838 __func__, agno, error);
4805621a
CH
3839 } else {
3840 agfp = XFS_BUF_TO_AGF(agfbp);
3841 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3842 be32_to_cpu(agfp->agf_flcount);
3843 xfs_buf_relse(agfbp);
1da177e4 3844 }
1da177e4 3845
5e1be0fb 3846 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
3847 if (error) {
3848 xfs_alert(mp, "%s agi read failed agno %d error %d",
3849 __func__, agno, error);
3850 } else {
5e1be0fb 3851 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3852
5e1be0fb
CH
3853 itotal += be32_to_cpu(agi->agi_count);
3854 ifree += be32_to_cpu(agi->agi_freecount);
3855 xfs_buf_relse(agibp);
3856 }
1da177e4 3857 }
1da177e4
LT
3858}
3859#endif /* DEBUG */