]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_mount.c
xfs: Code cleanup and removal of some typedef usage
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
211e4d43 25#include "xfs_trans_priv.h"
1da177e4
LT
26#include "xfs_sb.h"
27#include "xfs_ag.h"
1da177e4 28#include "xfs_dir2.h"
1da177e4 29#include "xfs_mount.h"
1da177e4 30#include "xfs_bmap_btree.h"
a844f451 31#include "xfs_alloc_btree.h"
1da177e4 32#include "xfs_ialloc_btree.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_btree.h"
36#include "xfs_ialloc.h"
1da177e4
LT
37#include "xfs_alloc.h"
38#include "xfs_rtalloc.h"
39#include "xfs_bmap.h"
40#include "xfs_error.h"
1da177e4
LT
41#include "xfs_quota.h"
42#include "xfs_fsops.h"
43355099 43#include "xfs_utils.h"
0b1b213f 44#include "xfs_trace.h"
6d8b79cf 45#include "xfs_icache.h"
04a1e6c5
DC
46#include "xfs_cksum.h"
47#include "xfs_buf_item.h"
0b1b213f 48
1da177e4 49
8d280b98 50#ifdef HAVE_PERCPU_SB
20f4ebf2 51STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
45af6c6d
CH
52 int);
53STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 int);
36fbe6e6 55STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
8d280b98
DC
56#else
57
45af6c6d
CH
58#define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
59#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
8d280b98
DC
60#endif
61
1df84c93 62static const struct {
8d280b98
DC
63 short offset;
64 short type; /* 0 = integer
65 * 1 = binary / string (no translation)
66 */
1da177e4
LT
67} xfs_sb_info[] = {
68 { offsetof(xfs_sb_t, sb_magicnum), 0 },
69 { offsetof(xfs_sb_t, sb_blocksize), 0 },
70 { offsetof(xfs_sb_t, sb_dblocks), 0 },
71 { offsetof(xfs_sb_t, sb_rblocks), 0 },
72 { offsetof(xfs_sb_t, sb_rextents), 0 },
73 { offsetof(xfs_sb_t, sb_uuid), 1 },
74 { offsetof(xfs_sb_t, sb_logstart), 0 },
75 { offsetof(xfs_sb_t, sb_rootino), 0 },
76 { offsetof(xfs_sb_t, sb_rbmino), 0 },
77 { offsetof(xfs_sb_t, sb_rsumino), 0 },
78 { offsetof(xfs_sb_t, sb_rextsize), 0 },
79 { offsetof(xfs_sb_t, sb_agblocks), 0 },
80 { offsetof(xfs_sb_t, sb_agcount), 0 },
81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
82 { offsetof(xfs_sb_t, sb_logblocks), 0 },
83 { offsetof(xfs_sb_t, sb_versionnum), 0 },
84 { offsetof(xfs_sb_t, sb_sectsize), 0 },
85 { offsetof(xfs_sb_t, sb_inodesize), 0 },
86 { offsetof(xfs_sb_t, sb_inopblock), 0 },
87 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
88 { offsetof(xfs_sb_t, sb_blocklog), 0 },
89 { offsetof(xfs_sb_t, sb_sectlog), 0 },
90 { offsetof(xfs_sb_t, sb_inodelog), 0 },
91 { offsetof(xfs_sb_t, sb_inopblog), 0 },
92 { offsetof(xfs_sb_t, sb_agblklog), 0 },
93 { offsetof(xfs_sb_t, sb_rextslog), 0 },
94 { offsetof(xfs_sb_t, sb_inprogress), 0 },
95 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
96 { offsetof(xfs_sb_t, sb_icount), 0 },
97 { offsetof(xfs_sb_t, sb_ifree), 0 },
98 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
99 { offsetof(xfs_sb_t, sb_frextents), 0 },
100 { offsetof(xfs_sb_t, sb_uquotino), 0 },
101 { offsetof(xfs_sb_t, sb_gquotino), 0 },
102 { offsetof(xfs_sb_t, sb_qflags), 0 },
103 { offsetof(xfs_sb_t, sb_flags), 0 },
104 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106 { offsetof(xfs_sb_t, sb_unit), 0 },
107 { offsetof(xfs_sb_t, sb_width), 0 },
108 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
109 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110 { offsetof(xfs_sb_t, sb_logsectsize),0 },
111 { offsetof(xfs_sb_t, sb_logsunit), 0 },
112 { offsetof(xfs_sb_t, sb_features2), 0 },
ee1c0908 113 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
04a1e6c5
DC
114 { offsetof(xfs_sb_t, sb_features_compat), 0 },
115 { offsetof(xfs_sb_t, sb_features_ro_compat), 0 },
116 { offsetof(xfs_sb_t, sb_features_incompat), 0 },
e721f504 117 { offsetof(xfs_sb_t, sb_features_log_incompat), 0 },
04a1e6c5 118 { offsetof(xfs_sb_t, sb_crc), 0 },
e721f504 119 { offsetof(xfs_sb_t, sb_pad), 0 },
04a1e6c5
DC
120 { offsetof(xfs_sb_t, sb_pquotino), 0 },
121 { offsetof(xfs_sb_t, sb_lsn), 0 },
1da177e4
LT
122 { sizeof(xfs_sb_t), 0 }
123};
124
27174203
CH
125static DEFINE_MUTEX(xfs_uuid_table_mutex);
126static int xfs_uuid_table_size;
127static uuid_t *xfs_uuid_table;
128
129/*
130 * See if the UUID is unique among mounted XFS filesystems.
131 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
132 */
133STATIC int
134xfs_uuid_mount(
135 struct xfs_mount *mp)
136{
137 uuid_t *uuid = &mp->m_sb.sb_uuid;
138 int hole, i;
139
140 if (mp->m_flags & XFS_MOUNT_NOUUID)
141 return 0;
142
143 if (uuid_is_nil(uuid)) {
0b932ccc 144 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
27174203
CH
145 return XFS_ERROR(EINVAL);
146 }
147
148 mutex_lock(&xfs_uuid_table_mutex);
149 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
150 if (uuid_is_nil(&xfs_uuid_table[i])) {
151 hole = i;
152 continue;
153 }
154 if (uuid_equal(uuid, &xfs_uuid_table[i]))
155 goto out_duplicate;
156 }
157
158 if (hole < 0) {
159 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
160 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
161 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
162 KM_SLEEP);
163 hole = xfs_uuid_table_size++;
164 }
165 xfs_uuid_table[hole] = *uuid;
166 mutex_unlock(&xfs_uuid_table_mutex);
167
168 return 0;
169
170 out_duplicate:
171 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 172 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
27174203
CH
173 return XFS_ERROR(EINVAL);
174}
175
176STATIC void
177xfs_uuid_unmount(
178 struct xfs_mount *mp)
179{
180 uuid_t *uuid = &mp->m_sb.sb_uuid;
181 int i;
182
183 if (mp->m_flags & XFS_MOUNT_NOUUID)
184 return;
185
186 mutex_lock(&xfs_uuid_table_mutex);
187 for (i = 0; i < xfs_uuid_table_size; i++) {
188 if (uuid_is_nil(&xfs_uuid_table[i]))
189 continue;
190 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
191 continue;
192 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
193 break;
194 }
195 ASSERT(i < xfs_uuid_table_size);
196 mutex_unlock(&xfs_uuid_table_mutex);
197}
198
199
0fa800fb
DC
200/*
201 * Reference counting access wrappers to the perag structures.
e176579e
DC
202 * Because we never free per-ag structures, the only thing we
203 * have to protect against changes is the tree structure itself.
0fa800fb
DC
204 */
205struct xfs_perag *
206xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
207{
208 struct xfs_perag *pag;
209 int ref = 0;
210
e176579e 211 rcu_read_lock();
0fa800fb
DC
212 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
213 if (pag) {
214 ASSERT(atomic_read(&pag->pag_ref) >= 0);
0fa800fb
DC
215 ref = atomic_inc_return(&pag->pag_ref);
216 }
e176579e 217 rcu_read_unlock();
0fa800fb
DC
218 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
219 return pag;
220}
221
65d0f205
DC
222/*
223 * search from @first to find the next perag with the given tag set.
224 */
225struct xfs_perag *
226xfs_perag_get_tag(
227 struct xfs_mount *mp,
228 xfs_agnumber_t first,
229 int tag)
230{
231 struct xfs_perag *pag;
232 int found;
233 int ref;
234
235 rcu_read_lock();
236 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
237 (void **)&pag, first, 1, tag);
238 if (found <= 0) {
239 rcu_read_unlock();
240 return NULL;
241 }
242 ref = atomic_inc_return(&pag->pag_ref);
243 rcu_read_unlock();
244 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
245 return pag;
246}
247
0fa800fb
DC
248void
249xfs_perag_put(struct xfs_perag *pag)
250{
251 int ref;
252
253 ASSERT(atomic_read(&pag->pag_ref) > 0);
254 ref = atomic_dec_return(&pag->pag_ref);
255 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
256}
257
e176579e
DC
258STATIC void
259__xfs_free_perag(
260 struct rcu_head *head)
261{
262 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
263
264 ASSERT(atomic_read(&pag->pag_ref) == 0);
265 kmem_free(pag);
266}
267
1da177e4 268/*
e176579e 269 * Free up the per-ag resources associated with the mount structure.
1da177e4 270 */
c962fb79 271STATIC void
ff4f038c 272xfs_free_perag(
745f6919 273 xfs_mount_t *mp)
1da177e4 274{
1c1c6ebc
DC
275 xfs_agnumber_t agno;
276 struct xfs_perag *pag;
277
278 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
279 spin_lock(&mp->m_perag_lock);
280 pag = radix_tree_delete(&mp->m_perag_tree, agno);
281 spin_unlock(&mp->m_perag_lock);
e176579e 282 ASSERT(pag);
f83282a8 283 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 284 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 285 }
1da177e4
LT
286}
287
4cc929ee
NS
288/*
289 * Check size of device based on the (data/realtime) block count.
290 * Note: this check is used by the growfs code as well as mount.
291 */
292int
293xfs_sb_validate_fsb_count(
294 xfs_sb_t *sbp,
295 __uint64_t nblocks)
296{
297 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
298 ASSERT(sbp->sb_blocklog >= BBSHIFT);
299
300#if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
301 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
657a4cff 302 return EFBIG;
4cc929ee
NS
303#else /* Limited by UINT_MAX of sectors */
304 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
657a4cff 305 return EFBIG;
4cc929ee
NS
306#endif
307 return 0;
308}
1da177e4
LT
309
310/*
311 * Check the validity of the SB found.
312 */
313STATIC int
314xfs_mount_validate_sb(
315 xfs_mount_t *mp,
764d1f89 316 xfs_sb_t *sbp,
34510185
DC
317 bool check_inprogress,
318 bool check_version)
1da177e4 319{
af34e09d 320
1da177e4
LT
321 /*
322 * If the log device and data device have the
323 * same device number, the log is internal.
324 * Consequently, the sb_logstart should be non-zero. If
325 * we have a zero sb_logstart in this case, we may be trying to mount
326 * a volume filesystem in a non-volume manner.
327 */
328 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
98021821 329 xfs_warn(mp, "bad magic number");
1da177e4
LT
330 return XFS_ERROR(EWRONGFS);
331 }
332
04a1e6c5 333
62118709 334 if (!xfs_sb_good_version(sbp)) {
98021821 335 xfs_warn(mp, "bad version");
1da177e4
LT
336 return XFS_ERROR(EWRONGFS);
337 }
338
04a1e6c5 339 /*
e721f504 340 * Version 5 superblock feature mask validation. Reject combinations the
34510185
DC
341 * kernel cannot support up front before checking anything else. For
342 * write validation, we don't need to check feature masks.
04a1e6c5 343 */
34510185 344 if (check_version && XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5) {
04a1e6c5 345 xfs_alert(mp,
e721f504
DC
346"Version 5 superblock detected. This kernel has EXPERIMENTAL support enabled!\n"
347"Use of these features in this kernel is at your own risk!");
348
349 if (xfs_sb_has_compat_feature(sbp,
350 XFS_SB_FEAT_COMPAT_UNKNOWN)) {
351 xfs_warn(mp,
352"Superblock has unknown compatible features (0x%x) enabled.\n"
353"Using a more recent kernel is recommended.",
354 (sbp->sb_features_compat &
355 XFS_SB_FEAT_COMPAT_UNKNOWN));
356 }
357
358 if (xfs_sb_has_ro_compat_feature(sbp,
359 XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
360 xfs_alert(mp,
361"Superblock has unknown read-only compatible features (0x%x) enabled.",
362 (sbp->sb_features_ro_compat &
363 XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
364 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
365 xfs_warn(mp,
366"Attempted to mount read-only compatible filesystem read-write.\n"
367"Filesystem can only be safely mounted read only.");
368 return XFS_ERROR(EINVAL);
369 }
370 }
371 if (xfs_sb_has_incompat_feature(sbp,
372 XFS_SB_FEAT_INCOMPAT_UNKNOWN)) {
373 xfs_warn(mp,
374"Superblock has unknown incompatible features (0x%x) enabled.\n"
375"Filesystem can not be safely mounted by this kernel.",
376 (sbp->sb_features_incompat &
377 XFS_SB_FEAT_INCOMPAT_UNKNOWN));
378 return XFS_ERROR(EINVAL);
379 }
04a1e6c5
DC
380 }
381
1da177e4
LT
382 if (unlikely(
383 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
98021821 384 xfs_warn(mp,
af34e09d
DC
385 "filesystem is marked as having an external log; "
386 "specify logdev on the mount command line.");
764d1f89 387 return XFS_ERROR(EINVAL);
1da177e4
LT
388 }
389
390 if (unlikely(
391 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
98021821 392 xfs_warn(mp,
af34e09d
DC
393 "filesystem is marked as having an internal log; "
394 "do not specify logdev on the mount command line.");
764d1f89 395 return XFS_ERROR(EINVAL);
1da177e4
LT
396 }
397
398 /*
c0e090ce 399 * More sanity checking. Most of these were stolen directly from
1da177e4
LT
400 * xfs_repair.
401 */
402 if (unlikely(
403 sbp->sb_agcount <= 0 ||
404 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
405 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
406 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
407 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
2ac00af7 408 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
1da177e4
LT
409 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
410 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
411 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
412 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
2ac00af7 413 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
1da177e4
LT
414 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
415 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
9f989c94
NS
416 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
417 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
2ac00af7 418 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
9f989c94 419 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
1da177e4
LT
420 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
421 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
c0e090ce
ES
422 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
423 sbp->sb_dblocks == 0 ||
424 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
425 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
98021821 426 XFS_CORRUPTION_ERROR("SB sanity check failed",
c0e090ce 427 XFS_ERRLEVEL_LOW, mp, sbp);
1da177e4
LT
428 return XFS_ERROR(EFSCORRUPTED);
429 }
430
2edbddd5
LM
431 /*
432 * Until this is fixed only page-sized or smaller data blocks work.
433 */
434 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
98021821 435 xfs_warn(mp,
af34e09d
DC
436 "File system with blocksize %d bytes. "
437 "Only pagesize (%ld) or less will currently work.",
438 sbp->sb_blocksize, PAGE_SIZE);
2edbddd5
LM
439 return XFS_ERROR(ENOSYS);
440 }
441
1a5902c5
CH
442 /*
443 * Currently only very few inode sizes are supported.
444 */
445 switch (sbp->sb_inodesize) {
446 case 256:
447 case 512:
448 case 1024:
449 case 2048:
450 break;
451 default:
98021821 452 xfs_warn(mp, "inode size of %d bytes not supported",
af34e09d 453 sbp->sb_inodesize);
1a5902c5
CH
454 return XFS_ERROR(ENOSYS);
455 }
456
4cc929ee
NS
457 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
458 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
98021821 459 xfs_warn(mp,
af34e09d 460 "file system too large to be mounted on this system.");
657a4cff 461 return XFS_ERROR(EFBIG);
1da177e4
LT
462 }
463
98021821
DC
464 if (check_inprogress && sbp->sb_inprogress) {
465 xfs_warn(mp, "Offline file system operation in progress!");
1da177e4
LT
466 return XFS_ERROR(EFSCORRUPTED);
467 }
468
de20614b
NS
469 /*
470 * Version 1 directory format has never worked on Linux.
471 */
62118709 472 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
98021821 473 xfs_warn(mp, "file system using version 1 directory format");
de20614b
NS
474 return XFS_ERROR(ENOSYS);
475 }
476
1da177e4
LT
477 return 0;
478}
479
1c1c6ebc 480int
c11e2c36 481xfs_initialize_perag(
c11e2c36 482 xfs_mount_t *mp,
1c1c6ebc
DC
483 xfs_agnumber_t agcount,
484 xfs_agnumber_t *maxagi)
1da177e4 485{
2d2194f6 486 xfs_agnumber_t index;
8b26c582 487 xfs_agnumber_t first_initialised = 0;
1da177e4
LT
488 xfs_perag_t *pag;
489 xfs_agino_t agino;
490 xfs_ino_t ino;
491 xfs_sb_t *sbp = &mp->m_sb;
8b26c582 492 int error = -ENOMEM;
1da177e4 493
1c1c6ebc
DC
494 /*
495 * Walk the current per-ag tree so we don't try to initialise AGs
496 * that already exist (growfs case). Allocate and insert all the
497 * AGs we don't find ready for initialisation.
498 */
499 for (index = 0; index < agcount; index++) {
500 pag = xfs_perag_get(mp, index);
501 if (pag) {
502 xfs_perag_put(pag);
503 continue;
504 }
8b26c582
DC
505 if (!first_initialised)
506 first_initialised = index;
fb3b504a 507
1c1c6ebc
DC
508 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
509 if (!pag)
8b26c582 510 goto out_unwind;
fb3b504a
CH
511 pag->pag_agno = index;
512 pag->pag_mount = mp;
1a427ab0 513 spin_lock_init(&pag->pag_ici_lock);
69b491c2 514 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 515 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
516 spin_lock_init(&pag->pag_buf_lock);
517 pag->pag_buf_tree = RB_ROOT;
fb3b504a 518
1c1c6ebc 519 if (radix_tree_preload(GFP_NOFS))
8b26c582 520 goto out_unwind;
fb3b504a 521
1c1c6ebc
DC
522 spin_lock(&mp->m_perag_lock);
523 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
524 BUG();
525 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
526 radix_tree_preload_end();
527 error = -EEXIST;
528 goto out_unwind;
1c1c6ebc
DC
529 }
530 spin_unlock(&mp->m_perag_lock);
531 radix_tree_preload_end();
532 }
533
fb3b504a
CH
534 /*
535 * If we mount with the inode64 option, or no inode overflows
536 * the legacy 32-bit address space clear the inode32 option.
1da177e4 537 */
fb3b504a
CH
538 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
539 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
540
541 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
1da177e4 542 mp->m_flags |= XFS_MOUNT_32BITINODES;
fb3b504a 543 else
1da177e4 544 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
1da177e4 545
2d2194f6
CM
546 if (mp->m_flags & XFS_MOUNT_32BITINODES)
547 index = xfs_set_inode32(mp);
548 else
549 index = xfs_set_inode64(mp);
fb3b504a 550
1c1c6ebc
DC
551 if (maxagi)
552 *maxagi = index;
553 return 0;
8b26c582
DC
554
555out_unwind:
556 kmem_free(pag);
557 for (; index > first_initialised; index--) {
558 pag = radix_tree_delete(&mp->m_perag_tree, index);
559 kmem_free(pag);
560 }
561 return error;
1da177e4
LT
562}
563
2bdf7cd0
CH
564void
565xfs_sb_from_disk(
98021821 566 struct xfs_sb *to,
2bdf7cd0
CH
567 xfs_dsb_t *from)
568{
569 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
570 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
571 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
572 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
573 to->sb_rextents = be64_to_cpu(from->sb_rextents);
574 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
575 to->sb_logstart = be64_to_cpu(from->sb_logstart);
576 to->sb_rootino = be64_to_cpu(from->sb_rootino);
577 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
578 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
579 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
580 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
581 to->sb_agcount = be32_to_cpu(from->sb_agcount);
582 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
583 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
584 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
585 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
586 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
587 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
588 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
589 to->sb_blocklog = from->sb_blocklog;
590 to->sb_sectlog = from->sb_sectlog;
591 to->sb_inodelog = from->sb_inodelog;
592 to->sb_inopblog = from->sb_inopblog;
593 to->sb_agblklog = from->sb_agblklog;
594 to->sb_rextslog = from->sb_rextslog;
595 to->sb_inprogress = from->sb_inprogress;
596 to->sb_imax_pct = from->sb_imax_pct;
597 to->sb_icount = be64_to_cpu(from->sb_icount);
598 to->sb_ifree = be64_to_cpu(from->sb_ifree);
599 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
600 to->sb_frextents = be64_to_cpu(from->sb_frextents);
601 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
602 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
603 to->sb_qflags = be16_to_cpu(from->sb_qflags);
604 to->sb_flags = from->sb_flags;
605 to->sb_shared_vn = from->sb_shared_vn;
606 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
607 to->sb_unit = be32_to_cpu(from->sb_unit);
608 to->sb_width = be32_to_cpu(from->sb_width);
609 to->sb_dirblklog = from->sb_dirblklog;
610 to->sb_logsectlog = from->sb_logsectlog;
611 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
612 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
613 to->sb_features2 = be32_to_cpu(from->sb_features2);
ee1c0908 614 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
04a1e6c5
DC
615 to->sb_features_compat = be32_to_cpu(from->sb_features_compat);
616 to->sb_features_ro_compat = be32_to_cpu(from->sb_features_ro_compat);
617 to->sb_features_incompat = be32_to_cpu(from->sb_features_incompat);
e721f504
DC
618 to->sb_features_log_incompat =
619 be32_to_cpu(from->sb_features_log_incompat);
620 to->sb_pad = 0;
04a1e6c5
DC
621 to->sb_pquotino = be64_to_cpu(from->sb_pquotino);
622 to->sb_lsn = be64_to_cpu(from->sb_lsn);
2bdf7cd0
CH
623}
624
1da177e4 625/*
2bdf7cd0 626 * Copy in core superblock to ondisk one.
1da177e4 627 *
2bdf7cd0 628 * The fields argument is mask of superblock fields to copy.
1da177e4
LT
629 */
630void
2bdf7cd0
CH
631xfs_sb_to_disk(
632 xfs_dsb_t *to,
633 xfs_sb_t *from,
1da177e4
LT
634 __int64_t fields)
635{
2bdf7cd0
CH
636 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
637 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
1da177e4
LT
638 xfs_sb_field_t f;
639 int first;
640 int size;
641
1da177e4 642 ASSERT(fields);
1da177e4
LT
643 if (!fields)
644 return;
645
1da177e4
LT
646 while (fields) {
647 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
648 first = xfs_sb_info[f].offset;
649 size = xfs_sb_info[f + 1].offset - first;
650
651 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
652
653 if (size == 1 || xfs_sb_info[f].type == 1) {
2bdf7cd0 654 memcpy(to_ptr + first, from_ptr + first, size);
1da177e4
LT
655 } else {
656 switch (size) {
657 case 2:
2bdf7cd0
CH
658 *(__be16 *)(to_ptr + first) =
659 cpu_to_be16(*(__u16 *)(from_ptr + first));
1da177e4
LT
660 break;
661 case 4:
2bdf7cd0
CH
662 *(__be32 *)(to_ptr + first) =
663 cpu_to_be32(*(__u32 *)(from_ptr + first));
1da177e4
LT
664 break;
665 case 8:
2bdf7cd0
CH
666 *(__be64 *)(to_ptr + first) =
667 cpu_to_be64(*(__u64 *)(from_ptr + first));
1da177e4
LT
668 break;
669 default:
670 ASSERT(0);
671 }
672 }
673
674 fields &= ~(1LL << f);
675 }
676}
677
04a1e6c5 678static int
612cfbfe 679xfs_sb_verify(
34510185
DC
680 struct xfs_buf *bp,
681 bool check_version)
98021821
DC
682{
683 struct xfs_mount *mp = bp->b_target->bt_mount;
684 struct xfs_sb sb;
98021821
DC
685
686 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
687
688 /*
689 * Only check the in progress field for the primary superblock as
690 * mkfs.xfs doesn't clear it from secondary superblocks.
691 */
34510185
DC
692 return xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR,
693 check_version);
612cfbfe
DC
694}
695
04a1e6c5
DC
696/*
697 * If the superblock has the CRC feature bit set or the CRC field is non-null,
698 * check that the CRC is valid. We check the CRC field is non-null because a
699 * single bit error could clear the feature bit and unused parts of the
700 * superblock are supposed to be zero. Hence a non-null crc field indicates that
701 * we've potentially lost a feature bit and we should check it anyway.
702 */
1813dd64 703static void
612cfbfe
DC
704xfs_sb_read_verify(
705 struct xfs_buf *bp)
706{
04a1e6c5
DC
707 struct xfs_mount *mp = bp->b_target->bt_mount;
708 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
709 int error;
710
711 /*
712 * open code the version check to avoid needing to convert the entire
713 * superblock from disk order just to check the version number
714 */
715 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC) &&
716 (((be16_to_cpu(dsb->sb_versionnum) & XFS_SB_VERSION_NUMBITS) ==
717 XFS_SB_VERSION_5) ||
718 dsb->sb_crc != 0)) {
719
720 if (!xfs_verify_cksum(bp->b_addr, be16_to_cpu(dsb->sb_sectsize),
721 offsetof(struct xfs_sb, sb_crc))) {
722 error = EFSCORRUPTED;
723 goto out_error;
724 }
725 }
34510185 726 error = xfs_sb_verify(bp, true);
04a1e6c5
DC
727
728out_error:
729 if (error) {
730 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
731 xfs_buf_ioerror(bp, error);
732 }
98021821
DC
733}
734
735/*
736 * We may be probed for a filesystem match, so we may not want to emit
737 * messages when the superblock buffer is not actually an XFS superblock.
738 * If we find an XFS superblock, the run a normal, noisy mount because we are
739 * really going to mount it and want to know about errors.
740 */
1813dd64 741static void
98021821
DC
742xfs_sb_quiet_read_verify(
743 struct xfs_buf *bp)
744{
04a1e6c5 745 struct xfs_dsb *dsb = XFS_BUF_TO_SBP(bp);
98021821 746
98021821 747
04a1e6c5 748 if (dsb->sb_magicnum == cpu_to_be32(XFS_SB_MAGIC)) {
98021821
DC
749 /* XFS filesystem, verify noisily! */
750 xfs_sb_read_verify(bp);
751 return;
752 }
753 /* quietly fail */
aeb4f20a 754 xfs_buf_ioerror(bp, EWRONGFS);
98021821
DC
755}
756
1813dd64
DC
757static void
758xfs_sb_write_verify(
04a1e6c5 759 struct xfs_buf *bp)
1813dd64 760{
04a1e6c5
DC
761 struct xfs_mount *mp = bp->b_target->bt_mount;
762 struct xfs_buf_log_item *bip = bp->b_fspriv;
763 int error;
764
34510185 765 error = xfs_sb_verify(bp, false);
04a1e6c5
DC
766 if (error) {
767 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp, bp->b_addr);
768 xfs_buf_ioerror(bp, error);
769 return;
770 }
771
772 if (!xfs_sb_version_hascrc(&mp->m_sb))
773 return;
774
775 if (bip)
776 XFS_BUF_TO_SBP(bp)->sb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
777
778 xfs_update_cksum(bp->b_addr, BBTOB(bp->b_length),
779 offsetof(struct xfs_sb, sb_crc));
1813dd64
DC
780}
781
782const struct xfs_buf_ops xfs_sb_buf_ops = {
783 .verify_read = xfs_sb_read_verify,
784 .verify_write = xfs_sb_write_verify,
785};
786
787static const struct xfs_buf_ops xfs_sb_quiet_buf_ops = {
788 .verify_read = xfs_sb_quiet_read_verify,
789 .verify_write = xfs_sb_write_verify,
790};
791
1da177e4
LT
792/*
793 * xfs_readsb
794 *
795 * Does the initial read of the superblock.
796 */
797int
764d1f89 798xfs_readsb(xfs_mount_t *mp, int flags)
1da177e4
LT
799{
800 unsigned int sector_size;
04a1e6c5
DC
801 struct xfs_buf *bp;
802 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 803 int error;
af34e09d 804 int loud = !(flags & XFS_MFSI_QUIET);
1da177e4
LT
805
806 ASSERT(mp->m_sb_bp == NULL);
807 ASSERT(mp->m_ddev_targp != NULL);
808
809 /*
810 * Allocate a (locked) buffer to hold the superblock.
811 * This will be kept around at all times to optimize
812 * access to the superblock.
813 */
814 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
26af6552
DC
815
816reread:
e70b73f8 817 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
98021821 818 BTOBB(sector_size), 0,
1813dd64
DC
819 loud ? &xfs_sb_buf_ops
820 : &xfs_sb_quiet_buf_ops);
26af6552 821 if (!bp) {
af34e09d
DC
822 if (loud)
823 xfs_warn(mp, "SB buffer read failed");
26af6552 824 return EIO;
1da177e4 825 }
eab4e633
DC
826 if (bp->b_error) {
827 error = bp->b_error;
828 if (loud)
e721f504 829 xfs_warn(mp, "SB validate failed with error %d.", error);
eab4e633
DC
830 goto release_buf;
831 }
1da177e4
LT
832
833 /*
834 * Initialize the mount structure from the superblock.
1da177e4 835 */
98021821 836 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
1da177e4
LT
837
838 /*
839 * We must be able to do sector-sized and sector-aligned IO.
840 */
04a1e6c5 841 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
842 if (loud)
843 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 844 sector_size, sbp->sb_sectsize);
1da177e4 845 error = ENOSYS;
26af6552 846 goto release_buf;
1da177e4
LT
847 }
848
849 /*
850 * If device sector size is smaller than the superblock size,
851 * re-read the superblock so the buffer is correctly sized.
852 */
04a1e6c5 853 if (sector_size < sbp->sb_sectsize) {
1da177e4 854 xfs_buf_relse(bp);
04a1e6c5 855 sector_size = sbp->sb_sectsize;
26af6552 856 goto reread;
1da177e4
LT
857 }
858
5478eead
LM
859 /* Initialize per-cpu counters */
860 xfs_icsb_reinit_counters(mp);
8d280b98 861
04a1e6c5
DC
862 /* no need to be quiet anymore, so reset the buf ops */
863 bp->b_ops = &xfs_sb_buf_ops;
864
1da177e4 865 mp->m_sb_bp = bp;
26af6552 866 xfs_buf_unlock(bp);
1da177e4
LT
867 return 0;
868
26af6552
DC
869release_buf:
870 xfs_buf_relse(bp);
1da177e4
LT
871 return error;
872}
873
874
875/*
876 * xfs_mount_common
877 *
878 * Mount initialization code establishing various mount
879 * fields from the superblock associated with the given
880 * mount structure
881 */
ba0f32d4 882STATIC void
1da177e4
LT
883xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
884{
1da177e4 885 mp->m_agfrotor = mp->m_agirotor = 0;
007c61c6 886 spin_lock_init(&mp->m_agirotor_lock);
1da177e4
LT
887 mp->m_maxagi = mp->m_sb.sb_agcount;
888 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
889 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
890 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
891 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
892 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
1da177e4
LT
893 mp->m_blockmask = sbp->sb_blocksize - 1;
894 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
895 mp->m_blockwmask = mp->m_blockwsize - 1;
1da177e4 896
60197e8d
CH
897 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
898 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
899 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
900 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
901
902 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
903 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
904 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
905 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
906
907 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
908 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
909 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
910 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
1da177e4
LT
911
912 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
913 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
914 sbp->sb_inopblock);
915 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
916}
92821e2b
DC
917
918/*
919 * xfs_initialize_perag_data
920 *
921 * Read in each per-ag structure so we can count up the number of
922 * allocated inodes, free inodes and used filesystem blocks as this
923 * information is no longer persistent in the superblock. Once we have
924 * this information, write it into the in-core superblock structure.
925 */
926STATIC int
927xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
928{
929 xfs_agnumber_t index;
930 xfs_perag_t *pag;
931 xfs_sb_t *sbp = &mp->m_sb;
932 uint64_t ifree = 0;
933 uint64_t ialloc = 0;
934 uint64_t bfree = 0;
935 uint64_t bfreelst = 0;
936 uint64_t btree = 0;
937 int error;
92821e2b
DC
938
939 for (index = 0; index < agcount; index++) {
940 /*
941 * read the agf, then the agi. This gets us
9da096fd 942 * all the information we need and populates the
92821e2b
DC
943 * per-ag structures for us.
944 */
945 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
946 if (error)
947 return error;
948
949 error = xfs_ialloc_pagi_init(mp, NULL, index);
950 if (error)
951 return error;
44b56e0a 952 pag = xfs_perag_get(mp, index);
92821e2b
DC
953 ifree += pag->pagi_freecount;
954 ialloc += pag->pagi_count;
955 bfree += pag->pagf_freeblks;
956 bfreelst += pag->pagf_flcount;
957 btree += pag->pagf_btreeblks;
44b56e0a 958 xfs_perag_put(pag);
92821e2b
DC
959 }
960 /*
961 * Overwrite incore superblock counters with just-read data
962 */
3685c2a1 963 spin_lock(&mp->m_sb_lock);
92821e2b
DC
964 sbp->sb_ifree = ifree;
965 sbp->sb_icount = ialloc;
966 sbp->sb_fdblocks = bfree + bfreelst + btree;
3685c2a1 967 spin_unlock(&mp->m_sb_lock);
92821e2b
DC
968
969 /* Fixup the per-cpu counters as well. */
970 xfs_icsb_reinit_counters(mp);
971
972 return 0;
973}
974
1da177e4 975/*
0771fb45 976 * Update alignment values based on mount options and sb values
1da177e4 977 */
0771fb45 978STATIC int
7884bc86 979xfs_update_alignment(xfs_mount_t *mp)
1da177e4 980{
1da177e4 981 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 982
4249023a 983 if (mp->m_dalign) {
1da177e4
LT
984 /*
985 * If stripe unit and stripe width are not multiples
986 * of the fs blocksize turn off alignment.
987 */
988 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
989 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
990 xfs_warn(mp,
991 "alignment check failed: sunit/swidth vs. blocksize(%d)",
992 sbp->sb_blocksize);
993 return XFS_ERROR(EINVAL);
1da177e4
LT
994 } else {
995 /*
996 * Convert the stripe unit and width to FSBs.
997 */
998 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
999 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 1000 xfs_warn(mp,
39a45d84
JL
1001 "alignment check failed: sunit/swidth vs. agsize(%d)",
1002 sbp->sb_agblocks);
1003 return XFS_ERROR(EINVAL);
1da177e4
LT
1004 } else if (mp->m_dalign) {
1005 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
1006 } else {
39a45d84
JL
1007 xfs_warn(mp,
1008 "alignment check failed: sunit(%d) less than bsize(%d)",
1009 mp->m_dalign, sbp->sb_blocksize);
1010 return XFS_ERROR(EINVAL);
1da177e4
LT
1011 }
1012 }
1013
1014 /*
1015 * Update superblock with new values
1016 * and log changes
1017 */
62118709 1018 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
1019 if (sbp->sb_unit != mp->m_dalign) {
1020 sbp->sb_unit = mp->m_dalign;
7884bc86 1021 mp->m_update_flags |= XFS_SB_UNIT;
1da177e4
LT
1022 }
1023 if (sbp->sb_width != mp->m_swidth) {
1024 sbp->sb_width = mp->m_swidth;
7884bc86 1025 mp->m_update_flags |= XFS_SB_WIDTH;
1da177e4 1026 }
34d7f603
JL
1027 } else {
1028 xfs_warn(mp,
1029 "cannot change alignment: superblock does not support data alignment");
1030 return XFS_ERROR(EINVAL);
1da177e4
LT
1031 }
1032 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 1033 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
1034 mp->m_dalign = sbp->sb_unit;
1035 mp->m_swidth = sbp->sb_width;
1036 }
1037
0771fb45
ES
1038 return 0;
1039}
1da177e4 1040
0771fb45
ES
1041/*
1042 * Set the maximum inode count for this filesystem
1043 */
1044STATIC void
1045xfs_set_maxicount(xfs_mount_t *mp)
1046{
1047 xfs_sb_t *sbp = &(mp->m_sb);
1048 __uint64_t icount;
1da177e4 1049
0771fb45
ES
1050 if (sbp->sb_imax_pct) {
1051 /*
1052 * Make sure the maximum inode count is a multiple
1053 * of the units we allocate inodes in.
1da177e4 1054 */
1da177e4
LT
1055 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
1056 do_div(icount, 100);
1057 do_div(icount, mp->m_ialloc_blks);
1058 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
1059 sbp->sb_inopblog;
0771fb45 1060 } else {
1da177e4 1061 mp->m_maxicount = 0;
1da177e4 1062 }
0771fb45
ES
1063}
1064
1065/*
1066 * Set the default minimum read and write sizes unless
1067 * already specified in a mount option.
1068 * We use smaller I/O sizes when the file system
1069 * is being used for NFS service (wsync mount option).
1070 */
1071STATIC void
1072xfs_set_rw_sizes(xfs_mount_t *mp)
1073{
1074 xfs_sb_t *sbp = &(mp->m_sb);
1075 int readio_log, writeio_log;
1da177e4 1076
1da177e4
LT
1077 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
1078 if (mp->m_flags & XFS_MOUNT_WSYNC) {
1079 readio_log = XFS_WSYNC_READIO_LOG;
1080 writeio_log = XFS_WSYNC_WRITEIO_LOG;
1081 } else {
1082 readio_log = XFS_READIO_LOG_LARGE;
1083 writeio_log = XFS_WRITEIO_LOG_LARGE;
1084 }
1085 } else {
1086 readio_log = mp->m_readio_log;
1087 writeio_log = mp->m_writeio_log;
1088 }
1089
1da177e4
LT
1090 if (sbp->sb_blocklog > readio_log) {
1091 mp->m_readio_log = sbp->sb_blocklog;
1092 } else {
1093 mp->m_readio_log = readio_log;
1094 }
1095 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
1096 if (sbp->sb_blocklog > writeio_log) {
1097 mp->m_writeio_log = sbp->sb_blocklog;
1098 } else {
1099 mp->m_writeio_log = writeio_log;
1100 }
1101 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 1102}
1da177e4 1103
055388a3
DC
1104/*
1105 * precalculate the low space thresholds for dynamic speculative preallocation.
1106 */
1107void
1108xfs_set_low_space_thresholds(
1109 struct xfs_mount *mp)
1110{
1111 int i;
1112
1113 for (i = 0; i < XFS_LOWSP_MAX; i++) {
1114 __uint64_t space = mp->m_sb.sb_dblocks;
1115
1116 do_div(space, 100);
1117 mp->m_low_space[i] = space * (i + 1);
1118 }
1119}
1120
1121
0771fb45
ES
1122/*
1123 * Set whether we're using inode alignment.
1124 */
1125STATIC void
1126xfs_set_inoalignment(xfs_mount_t *mp)
1127{
62118709 1128 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
1129 mp->m_sb.sb_inoalignmt >=
1130 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1131 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1132 else
1133 mp->m_inoalign_mask = 0;
1134 /*
1135 * If we are using stripe alignment, check whether
1136 * the stripe unit is a multiple of the inode alignment
1137 */
1138 if (mp->m_dalign && mp->m_inoalign_mask &&
1139 !(mp->m_dalign & mp->m_inoalign_mask))
1140 mp->m_sinoalign = mp->m_dalign;
1141 else
1142 mp->m_sinoalign = 0;
0771fb45
ES
1143}
1144
1145/*
1146 * Check that the data (and log if separate) are an ok size.
1147 */
1148STATIC int
4249023a 1149xfs_check_sizes(xfs_mount_t *mp)
0771fb45
ES
1150{
1151 xfs_buf_t *bp;
1152 xfs_daddr_t d;
0771fb45 1153
1da177e4
LT
1154 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1155 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 1156 xfs_warn(mp, "filesystem size mismatch detected");
657a4cff 1157 return XFS_ERROR(EFBIG);
1da177e4 1158 }
e70b73f8 1159 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 1160 d - XFS_FSS_TO_BB(mp, 1),
c3f8fc73 1161 XFS_FSS_TO_BB(mp, 1), 0, NULL);
1922c949 1162 if (!bp) {
0b932ccc 1163 xfs_warn(mp, "last sector read failed");
1922c949 1164 return EIO;
1da177e4 1165 }
1922c949 1166 xfs_buf_relse(bp);
1da177e4 1167
4249023a 1168 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1da177e4
LT
1169 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1170 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
0b932ccc 1171 xfs_warn(mp, "log size mismatch detected");
657a4cff 1172 return XFS_ERROR(EFBIG);
1da177e4 1173 }
e70b73f8 1174 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 1175 d - XFS_FSB_TO_BB(mp, 1),
c3f8fc73 1176 XFS_FSB_TO_BB(mp, 1), 0, NULL);
1922c949 1177 if (!bp) {
0b932ccc 1178 xfs_warn(mp, "log device read failed");
1922c949 1179 return EIO;
0771fb45 1180 }
1922c949 1181 xfs_buf_relse(bp);
0771fb45
ES
1182 }
1183 return 0;
1184}
1185
7d095257
CH
1186/*
1187 * Clear the quotaflags in memory and in the superblock.
1188 */
1189int
1190xfs_mount_reset_sbqflags(
1191 struct xfs_mount *mp)
1192{
1193 int error;
1194 struct xfs_trans *tp;
1195
1196 mp->m_qflags = 0;
1197
1198 /*
1199 * It is OK to look at sb_qflags here in mount path,
1200 * without m_sb_lock.
1201 */
1202 if (mp->m_sb.sb_qflags == 0)
1203 return 0;
1204 spin_lock(&mp->m_sb_lock);
1205 mp->m_sb.sb_qflags = 0;
1206 spin_unlock(&mp->m_sb_lock);
1207
1208 /*
1209 * If the fs is readonly, let the incore superblock run
1210 * with quotas off but don't flush the update out to disk
1211 */
1212 if (mp->m_flags & XFS_MOUNT_RDONLY)
1213 return 0;
1214
7d095257 1215 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
b0c10b98
JL
1216 error = xfs_trans_reserve(tp, 0, XFS_QM_SBCHANGE_LOG_RES(mp),
1217 0, 0, XFS_DEFAULT_LOG_COUNT);
7d095257
CH
1218 if (error) {
1219 xfs_trans_cancel(tp, 0);
53487786 1220 xfs_alert(mp, "%s: Superblock update failed!", __func__);
7d095257
CH
1221 return error;
1222 }
1223
1224 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1225 return xfs_trans_commit(tp, 0);
1226}
1227
d5db0f97
ES
1228__uint64_t
1229xfs_default_resblks(xfs_mount_t *mp)
1230{
1231 __uint64_t resblks;
1232
1233 /*
8babd8a2
DC
1234 * We default to 5% or 8192 fsbs of space reserved, whichever is
1235 * smaller. This is intended to cover concurrent allocation
1236 * transactions when we initially hit enospc. These each require a 4
1237 * block reservation. Hence by default we cover roughly 2000 concurrent
1238 * allocation reservations.
d5db0f97
ES
1239 */
1240 resblks = mp->m_sb.sb_dblocks;
1241 do_div(resblks, 20);
8babd8a2 1242 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
1243 return resblks;
1244}
1245
0771fb45 1246/*
0771fb45
ES
1247 * This function does the following on an initial mount of a file system:
1248 * - reads the superblock from disk and init the mount struct
1249 * - if we're a 32-bit kernel, do a size check on the superblock
1250 * so we don't mount terabyte filesystems
1251 * - init mount struct realtime fields
1252 * - allocate inode hash table for fs
1253 * - init directory manager
1254 * - perform recovery and init the log manager
1255 */
1256int
1257xfs_mountfs(
4249023a 1258 xfs_mount_t *mp)
0771fb45
ES
1259{
1260 xfs_sb_t *sbp = &(mp->m_sb);
1261 xfs_inode_t *rip;
0771fb45 1262 __uint64_t resblks;
7d095257
CH
1263 uint quotamount = 0;
1264 uint quotaflags = 0;
0771fb45
ES
1265 int error = 0;
1266
0771fb45
ES
1267 xfs_mount_common(mp, sbp);
1268
ee1c0908 1269 /*
e6957ea4
ES
1270 * Check for a mismatched features2 values. Older kernels
1271 * read & wrote into the wrong sb offset for sb_features2
1272 * on some platforms due to xfs_sb_t not being 64bit size aligned
1273 * when sb_features2 was added, which made older superblock
1274 * reading/writing routines swap it as a 64-bit value.
ee1c0908 1275 *
e6957ea4
ES
1276 * For backwards compatibility, we make both slots equal.
1277 *
1278 * If we detect a mismatched field, we OR the set bits into the
1279 * existing features2 field in case it has already been modified; we
1280 * don't want to lose any features. We then update the bad location
1281 * with the ORed value so that older kernels will see any features2
1282 * flags, and mark the two fields as needing updates once the
1283 * transaction subsystem is online.
ee1c0908 1284 */
e6957ea4 1285 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 1286 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 1287 sbp->sb_features2 |= sbp->sb_bad_features2;
e6957ea4 1288 sbp->sb_bad_features2 = sbp->sb_features2;
7884bc86 1289 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
e6957ea4
ES
1290
1291 /*
1292 * Re-check for ATTR2 in case it was found in bad_features2
1293 * slot.
1294 */
7c12f296
TS
1295 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1296 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 1297 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
1298 }
1299
1300 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1301 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1302 xfs_sb_version_removeattr2(&mp->m_sb);
7884bc86 1303 mp->m_update_flags |= XFS_SB_FEATURES2;
e6957ea4 1304
7c12f296
TS
1305 /* update sb_versionnum for the clearing of the morebits */
1306 if (!sbp->sb_features2)
7884bc86 1307 mp->m_update_flags |= XFS_SB_VERSIONNUM;
ee1c0908
DC
1308 }
1309
0771fb45
ES
1310 /*
1311 * Check if sb_agblocks is aligned at stripe boundary
1312 * If sb_agblocks is NOT aligned turn off m_dalign since
1313 * allocator alignment is within an ag, therefore ag has
1314 * to be aligned at stripe boundary.
1315 */
7884bc86 1316 error = xfs_update_alignment(mp);
0771fb45 1317 if (error)
f9057e3d 1318 goto out;
0771fb45
ES
1319
1320 xfs_alloc_compute_maxlevels(mp);
1321 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1322 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1323 xfs_ialloc_compute_maxlevels(mp);
1324
1325 xfs_set_maxicount(mp);
1326
27174203
CH
1327 error = xfs_uuid_mount(mp);
1328 if (error)
1329 goto out;
1da177e4 1330
0771fb45
ES
1331 /*
1332 * Set the minimum read and write sizes
1333 */
1334 xfs_set_rw_sizes(mp);
1335
055388a3
DC
1336 /* set the low space thresholds for dynamic preallocation */
1337 xfs_set_low_space_thresholds(mp);
1338
0771fb45
ES
1339 /*
1340 * Set the inode cluster size.
1341 * This may still be overridden by the file system
1342 * block size if it is larger than the chosen cluster size.
1343 */
1344 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1345
1346 /*
1347 * Set inode alignment fields
1348 */
1349 xfs_set_inoalignment(mp);
1350
1351 /*
1352 * Check that the data (and log if separate) are an ok size.
1353 */
4249023a 1354 error = xfs_check_sizes(mp);
0771fb45 1355 if (error)
f9057e3d 1356 goto out_remove_uuid;
0771fb45 1357
1da177e4
LT
1358 /*
1359 * Initialize realtime fields in the mount structure
1360 */
0771fb45
ES
1361 error = xfs_rtmount_init(mp);
1362 if (error) {
0b932ccc 1363 xfs_warn(mp, "RT mount failed");
f9057e3d 1364 goto out_remove_uuid;
1da177e4
LT
1365 }
1366
1da177e4
LT
1367 /*
1368 * Copies the low order bits of the timestamp and the randomly
1369 * set "sequence" number out of a UUID.
1370 */
1371 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1372
1da177e4
LT
1373 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1374
f6c2d1fa 1375 xfs_dir_mount(mp);
1da177e4
LT
1376
1377 /*
1378 * Initialize the attribute manager's entries.
1379 */
1380 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1381
1382 /*
1383 * Initialize the precomputed transaction reservations values.
1384 */
1385 xfs_trans_init(mp);
1386
1da177e4
LT
1387 /*
1388 * Allocate and initialize the per-ag data.
1389 */
1c1c6ebc 1390 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 1391 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
1392 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1393 if (error) {
0b932ccc 1394 xfs_warn(mp, "Failed per-ag init: %d", error);
f9057e3d 1395 goto out_remove_uuid;
1c1c6ebc 1396 }
1da177e4 1397
f9057e3d 1398 if (!sbp->sb_logblocks) {
0b932ccc 1399 xfs_warn(mp, "no log defined");
f9057e3d
CH
1400 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1401 error = XFS_ERROR(EFSCORRUPTED);
1402 goto out_free_perag;
1403 }
1404
1da177e4
LT
1405 /*
1406 * log's mount-time initialization. Perform 1st part recovery if needed
1407 */
f9057e3d
CH
1408 error = xfs_log_mount(mp, mp->m_logdev_targp,
1409 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1410 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1411 if (error) {
0b932ccc 1412 xfs_warn(mp, "log mount failed");
d4f3512b 1413 goto out_fail_wait;
1da177e4
LT
1414 }
1415
92821e2b
DC
1416 /*
1417 * Now the log is mounted, we know if it was an unclean shutdown or
1418 * not. If it was, with the first phase of recovery has completed, we
1419 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1420 * but they are recovered transactionally in the second recovery phase
1421 * later.
1422 *
1423 * Hence we can safely re-initialise incore superblock counters from
1424 * the per-ag data. These may not be correct if the filesystem was not
1425 * cleanly unmounted, so we need to wait for recovery to finish before
1426 * doing this.
1427 *
1428 * If the filesystem was cleanly unmounted, then we can trust the
1429 * values in the superblock to be correct and we don't need to do
1430 * anything here.
1431 *
1432 * If we are currently making the filesystem, the initialisation will
1433 * fail as the perag data is in an undefined state.
1434 */
92821e2b
DC
1435 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1436 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1437 !mp->m_sb.sb_inprogress) {
1438 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 1439 if (error)
d4f3512b 1440 goto out_fail_wait;
92821e2b 1441 }
f9057e3d 1442
1da177e4
LT
1443 /*
1444 * Get and sanity-check the root inode.
1445 * Save the pointer to it in the mount structure.
1446 */
7b6259e7 1447 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 1448 if (error) {
0b932ccc 1449 xfs_warn(mp, "failed to read root inode");
f9057e3d 1450 goto out_log_dealloc;
1da177e4
LT
1451 }
1452
1453 ASSERT(rip != NULL);
1da177e4 1454
abbede1b 1455 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
0b932ccc 1456 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 1457 (unsigned long long)rip->i_ino);
1da177e4
LT
1458 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1459 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1460 mp);
1461 error = XFS_ERROR(EFSCORRUPTED);
f9057e3d 1462 goto out_rele_rip;
1da177e4
LT
1463 }
1464 mp->m_rootip = rip; /* save it */
1465
1466 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1467
1468 /*
1469 * Initialize realtime inode pointers in the mount structure
1470 */
0771fb45
ES
1471 error = xfs_rtmount_inodes(mp);
1472 if (error) {
1da177e4
LT
1473 /*
1474 * Free up the root inode.
1475 */
0b932ccc 1476 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 1477 goto out_rele_rip;
1da177e4
LT
1478 }
1479
1480 /*
7884bc86
CH
1481 * If this is a read-only mount defer the superblock updates until
1482 * the next remount into writeable mode. Otherwise we would never
1483 * perform the update e.g. for the root filesystem.
1da177e4 1484 */
7884bc86
CH
1485 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1486 error = xfs_mount_log_sb(mp, mp->m_update_flags);
e5720eec 1487 if (error) {
0b932ccc 1488 xfs_warn(mp, "failed to write sb changes");
b93b6e43 1489 goto out_rtunmount;
e5720eec
DC
1490 }
1491 }
1da177e4
LT
1492
1493 /*
1494 * Initialise the XFS quota management subsystem for this mount
1495 */
7d095257
CH
1496 if (XFS_IS_QUOTA_RUNNING(mp)) {
1497 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1498 if (error)
1499 goto out_rtunmount;
1500 } else {
1501 ASSERT(!XFS_IS_QUOTA_ON(mp));
1502
1503 /*
1504 * If a file system had quotas running earlier, but decided to
1505 * mount without -o uquota/pquota/gquota options, revoke the
1506 * quotachecked license.
1507 */
1508 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 1509 xfs_notice(mp, "resetting quota flags");
7d095257
CH
1510 error = xfs_mount_reset_sbqflags(mp);
1511 if (error)
1512 return error;
1513 }
1514 }
1da177e4
LT
1515
1516 /*
1517 * Finish recovering the file system. This part needed to be
1518 * delayed until after the root and real-time bitmap inodes
1519 * were consistently read in.
1520 */
4249023a 1521 error = xfs_log_mount_finish(mp);
1da177e4 1522 if (error) {
0b932ccc 1523 xfs_warn(mp, "log mount finish failed");
b93b6e43 1524 goto out_rtunmount;
1da177e4
LT
1525 }
1526
1527 /*
1528 * Complete the quota initialisation, post-log-replay component.
1529 */
7d095257
CH
1530 if (quotamount) {
1531 ASSERT(mp->m_qflags == 0);
1532 mp->m_qflags = quotaflags;
1533
1534 xfs_qm_mount_quotas(mp);
1535 }
1536
84e1e99f
DC
1537 /*
1538 * Now we are mounted, reserve a small amount of unused space for
1539 * privileged transactions. This is needed so that transaction
1540 * space required for critical operations can dip into this pool
1541 * when at ENOSPC. This is needed for operations like create with
1542 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1543 * are not allowed to use this reserved space.
8babd8a2
DC
1544 *
1545 * This may drive us straight to ENOSPC on mount, but that implies
1546 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 1547 */
d5db0f97
ES
1548 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1549 resblks = xfs_default_resblks(mp);
1550 error = xfs_reserve_blocks(mp, &resblks, NULL);
1551 if (error)
0b932ccc
DC
1552 xfs_warn(mp,
1553 "Unable to allocate reserve blocks. Continuing without reserve pool.");
d5db0f97 1554 }
84e1e99f 1555
1da177e4
LT
1556 return 0;
1557
b93b6e43
CH
1558 out_rtunmount:
1559 xfs_rtunmount_inodes(mp);
f9057e3d 1560 out_rele_rip:
43355099 1561 IRELE(rip);
f9057e3d 1562 out_log_dealloc:
21b699c8 1563 xfs_log_unmount(mp);
d4f3512b
DC
1564 out_fail_wait:
1565 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1566 xfs_wait_buftarg(mp->m_logdev_targp);
1567 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 1568 out_free_perag:
ff4f038c 1569 xfs_free_perag(mp);
f9057e3d 1570 out_remove_uuid:
27174203 1571 xfs_uuid_unmount(mp);
f9057e3d 1572 out:
1da177e4
LT
1573 return error;
1574}
1575
1576/*
1da177e4
LT
1577 * This flushes out the inodes,dquots and the superblock, unmounts the
1578 * log and makes sure that incore structures are freed.
1579 */
41b5c2e7
CH
1580void
1581xfs_unmountfs(
1582 struct xfs_mount *mp)
1da177e4 1583{
41b5c2e7
CH
1584 __uint64_t resblks;
1585 int error;
1da177e4 1586
579b62fa
BF
1587 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1588
7d095257 1589 xfs_qm_unmount_quotas(mp);
b93b6e43 1590 xfs_rtunmount_inodes(mp);
77508ec8
CH
1591 IRELE(mp->m_rootip);
1592
641c56fb
DC
1593 /*
1594 * We can potentially deadlock here if we have an inode cluster
9da096fd 1595 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1596 * the transaction is still sitting in a iclog. The stale inodes
1597 * on that buffer will have their flush locks held until the
1598 * transaction hits the disk and the callbacks run. the inode
1599 * flush takes the flush lock unconditionally and with nothing to
1600 * push out the iclog we will never get that unlocked. hence we
1601 * need to force the log first.
1602 */
a14a348b 1603 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e
DC
1604
1605 /*
211e4d43
CH
1606 * Flush all pending changes from the AIL.
1607 */
1608 xfs_ail_push_all_sync(mp->m_ail);
1609
1610 /*
1611 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1612 * inodes and none should be pinned or locked, but use synchronous
1613 * reclaim just to be sure. We can stop background inode reclaim
1614 * here as well if it is still running.
c854363e 1615 */
7e18530b 1616 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1617 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1618
7d095257 1619 xfs_qm_unmount(mp);
a357a121 1620
84e1e99f
DC
1621 /*
1622 * Unreserve any blocks we have so that when we unmount we don't account
1623 * the reserved free space as used. This is really only necessary for
1624 * lazy superblock counting because it trusts the incore superblock
9da096fd 1625 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1626 *
1627 * We don't bother correcting this elsewhere for lazy superblock
1628 * counting because on mount of an unclean filesystem we reconstruct the
1629 * correct counter value and this is irrelevant.
1630 *
1631 * For non-lazy counter filesystems, this doesn't matter at all because
1632 * we only every apply deltas to the superblock and hence the incore
1633 * value does not matter....
1634 */
1635 resblks = 0;
714082bc
DC
1636 error = xfs_reserve_blocks(mp, &resblks, NULL);
1637 if (error)
0b932ccc 1638 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1639 "Freespace may not be correct on next mount.");
1640
adab0f67 1641 error = xfs_log_sbcount(mp);
e5720eec 1642 if (error)
0b932ccc 1643 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1644 "Freespace may not be correct on next mount.");
87c7bec7 1645
21b699c8 1646 xfs_log_unmount(mp);
27174203 1647 xfs_uuid_unmount(mp);
1da177e4 1648
1550d0b0 1649#if defined(DEBUG)
0ce4cfd4 1650 xfs_errortag_clearall(mp, 0);
1da177e4 1651#endif
ff4f038c 1652 xfs_free_perag(mp);
1da177e4
LT
1653}
1654
92821e2b
DC
1655int
1656xfs_fs_writable(xfs_mount_t *mp)
1657{
d9457dc0 1658 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
bd186aa9 1659 (mp->m_flags & XFS_MOUNT_RDONLY));
92821e2b
DC
1660}
1661
1662/*
b2ce3974
AE
1663 * xfs_log_sbcount
1664 *
adab0f67 1665 * Sync the superblock counters to disk.
b2ce3974
AE
1666 *
1667 * Note this code can be called during the process of freezing, so
adab0f67 1668 * we may need to use the transaction allocator which does not
b2ce3974 1669 * block when the transaction subsystem is in its frozen state.
92821e2b
DC
1670 */
1671int
adab0f67 1672xfs_log_sbcount(xfs_mount_t *mp)
92821e2b
DC
1673{
1674 xfs_trans_t *tp;
1675 int error;
1676
1677 if (!xfs_fs_writable(mp))
1678 return 0;
1679
d4d90b57 1680 xfs_icsb_sync_counters(mp, 0);
92821e2b
DC
1681
1682 /*
1683 * we don't need to do this if we are updating the superblock
1684 * counters on every modification.
1685 */
1686 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1687 return 0;
1688
b2ce3974 1689 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
e457274b
JL
1690 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
1691 XFS_DEFAULT_LOG_COUNT);
92821e2b
DC
1692 if (error) {
1693 xfs_trans_cancel(tp, 0);
1694 return error;
1695 }
1696
1697 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
adab0f67 1698 xfs_trans_set_sync(tp);
e5720eec
DC
1699 error = xfs_trans_commit(tp, 0);
1700 return error;
92821e2b
DC
1701}
1702
1da177e4
LT
1703/*
1704 * xfs_mod_sb() can be used to copy arbitrary changes to the
1705 * in-core superblock into the superblock buffer to be logged.
1706 * It does not provide the higher level of locking that is
1707 * needed to protect the in-core superblock from concurrent
1708 * access.
1709 */
1710void
1711xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1712{
1713 xfs_buf_t *bp;
1714 int first;
1715 int last;
1716 xfs_mount_t *mp;
1da177e4
LT
1717 xfs_sb_field_t f;
1718
1719 ASSERT(fields);
1720 if (!fields)
1721 return;
1722 mp = tp->t_mountp;
1723 bp = xfs_trans_getsb(tp, mp, 0);
1da177e4
LT
1724 first = sizeof(xfs_sb_t);
1725 last = 0;
1726
1727 /* translate/copy */
1728
2bdf7cd0 1729 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1da177e4
LT
1730
1731 /* find modified range */
587aa0fe
DC
1732 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1733 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1734 last = xfs_sb_info[f + 1].offset - 1;
1da177e4
LT
1735
1736 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1737 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1738 first = xfs_sb_info[f].offset;
1739
04a1e6c5 1740 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
1da177e4
LT
1741 xfs_trans_log_buf(tp, bp, first, last);
1742}
d210a28c 1743
d210a28c 1744
1da177e4
LT
1745/*
1746 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1747 * a delta to a specified field in the in-core superblock. Simply
1748 * switch on the field indicated and apply the delta to that field.
1749 * Fields are not allowed to dip below zero, so if the delta would
1750 * do this do not apply it and return EINVAL.
1751 *
3685c2a1 1752 * The m_sb_lock must be held when this routine is called.
1da177e4 1753 */
d96f8f89 1754STATIC int
20f4ebf2
DC
1755xfs_mod_incore_sb_unlocked(
1756 xfs_mount_t *mp,
1757 xfs_sb_field_t field,
1758 int64_t delta,
1759 int rsvd)
1da177e4
LT
1760{
1761 int scounter; /* short counter for 32 bit fields */
1762 long long lcounter; /* long counter for 64 bit fields */
1763 long long res_used, rem;
1764
1765 /*
1766 * With the in-core superblock spin lock held, switch
1767 * on the indicated field. Apply the delta to the
1768 * proper field. If the fields value would dip below
1769 * 0, then do not apply the delta and return EINVAL.
1770 */
1771 switch (field) {
1772 case XFS_SBS_ICOUNT:
1773 lcounter = (long long)mp->m_sb.sb_icount;
1774 lcounter += delta;
1775 if (lcounter < 0) {
1776 ASSERT(0);
014c2544 1777 return XFS_ERROR(EINVAL);
1da177e4
LT
1778 }
1779 mp->m_sb.sb_icount = lcounter;
014c2544 1780 return 0;
1da177e4
LT
1781 case XFS_SBS_IFREE:
1782 lcounter = (long long)mp->m_sb.sb_ifree;
1783 lcounter += delta;
1784 if (lcounter < 0) {
1785 ASSERT(0);
014c2544 1786 return XFS_ERROR(EINVAL);
1da177e4
LT
1787 }
1788 mp->m_sb.sb_ifree = lcounter;
014c2544 1789 return 0;
1da177e4 1790 case XFS_SBS_FDBLOCKS:
4be536de
DC
1791 lcounter = (long long)
1792 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1da177e4
LT
1793 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1794
1795 if (delta > 0) { /* Putting blocks back */
1796 if (res_used > delta) {
1797 mp->m_resblks_avail += delta;
1798 } else {
1799 rem = delta - res_used;
1800 mp->m_resblks_avail = mp->m_resblks;
1801 lcounter += rem;
1802 }
1803 } else { /* Taking blocks away */
1da177e4 1804 lcounter += delta;
8babd8a2
DC
1805 if (lcounter >= 0) {
1806 mp->m_sb.sb_fdblocks = lcounter +
1807 XFS_ALLOC_SET_ASIDE(mp);
1808 return 0;
1809 }
1da177e4 1810
8babd8a2
DC
1811 /*
1812 * We are out of blocks, use any available reserved
1813 * blocks if were allowed to.
1814 */
1815 if (!rsvd)
1816 return XFS_ERROR(ENOSPC);
1da177e4 1817
8babd8a2
DC
1818 lcounter = (long long)mp->m_resblks_avail + delta;
1819 if (lcounter >= 0) {
1820 mp->m_resblks_avail = lcounter;
1821 return 0;
1da177e4 1822 }
8babd8a2
DC
1823 printk_once(KERN_WARNING
1824 "Filesystem \"%s\": reserve blocks depleted! "
1825 "Consider increasing reserve pool size.",
1826 mp->m_fsname);
1827 return XFS_ERROR(ENOSPC);
1da177e4
LT
1828 }
1829
4be536de 1830 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
014c2544 1831 return 0;
1da177e4
LT
1832 case XFS_SBS_FREXTENTS:
1833 lcounter = (long long)mp->m_sb.sb_frextents;
1834 lcounter += delta;
1835 if (lcounter < 0) {
014c2544 1836 return XFS_ERROR(ENOSPC);
1da177e4
LT
1837 }
1838 mp->m_sb.sb_frextents = lcounter;
014c2544 1839 return 0;
1da177e4
LT
1840 case XFS_SBS_DBLOCKS:
1841 lcounter = (long long)mp->m_sb.sb_dblocks;
1842 lcounter += delta;
1843 if (lcounter < 0) {
1844 ASSERT(0);
014c2544 1845 return XFS_ERROR(EINVAL);
1da177e4
LT
1846 }
1847 mp->m_sb.sb_dblocks = lcounter;
014c2544 1848 return 0;
1da177e4
LT
1849 case XFS_SBS_AGCOUNT:
1850 scounter = mp->m_sb.sb_agcount;
1851 scounter += delta;
1852 if (scounter < 0) {
1853 ASSERT(0);
014c2544 1854 return XFS_ERROR(EINVAL);
1da177e4
LT
1855 }
1856 mp->m_sb.sb_agcount = scounter;
014c2544 1857 return 0;
1da177e4
LT
1858 case XFS_SBS_IMAX_PCT:
1859 scounter = mp->m_sb.sb_imax_pct;
1860 scounter += delta;
1861 if (scounter < 0) {
1862 ASSERT(0);
014c2544 1863 return XFS_ERROR(EINVAL);
1da177e4
LT
1864 }
1865 mp->m_sb.sb_imax_pct = scounter;
014c2544 1866 return 0;
1da177e4
LT
1867 case XFS_SBS_REXTSIZE:
1868 scounter = mp->m_sb.sb_rextsize;
1869 scounter += delta;
1870 if (scounter < 0) {
1871 ASSERT(0);
014c2544 1872 return XFS_ERROR(EINVAL);
1da177e4
LT
1873 }
1874 mp->m_sb.sb_rextsize = scounter;
014c2544 1875 return 0;
1da177e4
LT
1876 case XFS_SBS_RBMBLOCKS:
1877 scounter = mp->m_sb.sb_rbmblocks;
1878 scounter += delta;
1879 if (scounter < 0) {
1880 ASSERT(0);
014c2544 1881 return XFS_ERROR(EINVAL);
1da177e4
LT
1882 }
1883 mp->m_sb.sb_rbmblocks = scounter;
014c2544 1884 return 0;
1da177e4
LT
1885 case XFS_SBS_RBLOCKS:
1886 lcounter = (long long)mp->m_sb.sb_rblocks;
1887 lcounter += delta;
1888 if (lcounter < 0) {
1889 ASSERT(0);
014c2544 1890 return XFS_ERROR(EINVAL);
1da177e4
LT
1891 }
1892 mp->m_sb.sb_rblocks = lcounter;
014c2544 1893 return 0;
1da177e4
LT
1894 case XFS_SBS_REXTENTS:
1895 lcounter = (long long)mp->m_sb.sb_rextents;
1896 lcounter += delta;
1897 if (lcounter < 0) {
1898 ASSERT(0);
014c2544 1899 return XFS_ERROR(EINVAL);
1da177e4
LT
1900 }
1901 mp->m_sb.sb_rextents = lcounter;
014c2544 1902 return 0;
1da177e4
LT
1903 case XFS_SBS_REXTSLOG:
1904 scounter = mp->m_sb.sb_rextslog;
1905 scounter += delta;
1906 if (scounter < 0) {
1907 ASSERT(0);
014c2544 1908 return XFS_ERROR(EINVAL);
1da177e4
LT
1909 }
1910 mp->m_sb.sb_rextslog = scounter;
014c2544 1911 return 0;
1da177e4
LT
1912 default:
1913 ASSERT(0);
014c2544 1914 return XFS_ERROR(EINVAL);
1da177e4
LT
1915 }
1916}
1917
1918/*
1919 * xfs_mod_incore_sb() is used to change a field in the in-core
1920 * superblock structure by the specified delta. This modification
3685c2a1 1921 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1da177e4
LT
1922 * routine to do the work.
1923 */
1924int
20f4ebf2 1925xfs_mod_incore_sb(
96540c78
CH
1926 struct xfs_mount *mp,
1927 xfs_sb_field_t field,
1928 int64_t delta,
1929 int rsvd)
1da177e4 1930{
96540c78 1931 int status;
1da177e4 1932
8d280b98 1933#ifdef HAVE_PERCPU_SB
96540c78 1934 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
8d280b98 1935#endif
96540c78
CH
1936 spin_lock(&mp->m_sb_lock);
1937 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1938 spin_unlock(&mp->m_sb_lock);
8d280b98 1939
014c2544 1940 return status;
1da177e4
LT
1941}
1942
1943/*
1b040712 1944 * Change more than one field in the in-core superblock structure at a time.
1da177e4 1945 *
1b040712
CH
1946 * The fields and changes to those fields are specified in the array of
1947 * xfs_mod_sb structures passed in. Either all of the specified deltas
1948 * will be applied or none of them will. If any modified field dips below 0,
1949 * then all modifications will be backed out and EINVAL will be returned.
1950 *
1951 * Note that this function may not be used for the superblock values that
1952 * are tracked with the in-memory per-cpu counters - a direct call to
1953 * xfs_icsb_modify_counters is required for these.
1da177e4
LT
1954 */
1955int
1b040712
CH
1956xfs_mod_incore_sb_batch(
1957 struct xfs_mount *mp,
1958 xfs_mod_sb_t *msb,
1959 uint nmsb,
1960 int rsvd)
1da177e4 1961{
45c51b99 1962 xfs_mod_sb_t *msbp;
1b040712 1963 int error = 0;
1da177e4
LT
1964
1965 /*
1b040712
CH
1966 * Loop through the array of mod structures and apply each individually.
1967 * If any fail, then back out all those which have already been applied.
1968 * Do all of this within the scope of the m_sb_lock so that all of the
1969 * changes will be atomic.
1da177e4 1970 */
3685c2a1 1971 spin_lock(&mp->m_sb_lock);
45c51b99 1972 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1b040712
CH
1973 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1974 msbp->msb_field > XFS_SBS_FDBLOCKS);
8d280b98 1975
1b040712
CH
1976 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1977 msbp->msb_delta, rsvd);
1978 if (error)
1979 goto unwind;
1da177e4 1980 }
1b040712
CH
1981 spin_unlock(&mp->m_sb_lock);
1982 return 0;
1da177e4 1983
1b040712
CH
1984unwind:
1985 while (--msbp >= msb) {
1986 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1987 -msbp->msb_delta, rsvd);
1988 ASSERT(error == 0);
1da177e4 1989 }
3685c2a1 1990 spin_unlock(&mp->m_sb_lock);
1b040712 1991 return error;
1da177e4
LT
1992}
1993
1994/*
1995 * xfs_getsb() is called to obtain the buffer for the superblock.
1996 * The buffer is returned locked and read in from disk.
1997 * The buffer should be released with a call to xfs_brelse().
1998 *
1999 * If the flags parameter is BUF_TRYLOCK, then we'll only return
2000 * the superblock buffer if it can be locked without sleeping.
2001 * If it can't then we'll return NULL.
2002 */
0c842ad4 2003struct xfs_buf *
1da177e4 2004xfs_getsb(
0c842ad4
CH
2005 struct xfs_mount *mp,
2006 int flags)
1da177e4 2007{
0c842ad4 2008 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 2009
0c842ad4
CH
2010 if (!xfs_buf_trylock(bp)) {
2011 if (flags & XBF_TRYLOCK)
1da177e4 2012 return NULL;
0c842ad4 2013 xfs_buf_lock(bp);
1da177e4 2014 }
0c842ad4 2015
72790aa1 2016 xfs_buf_hold(bp);
1da177e4 2017 ASSERT(XFS_BUF_ISDONE(bp));
014c2544 2018 return bp;
1da177e4
LT
2019}
2020
2021/*
2022 * Used to free the superblock along various error paths.
2023 */
2024void
2025xfs_freesb(
26af6552 2026 struct xfs_mount *mp)
1da177e4 2027{
26af6552 2028 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 2029
26af6552 2030 xfs_buf_lock(bp);
1da177e4 2031 mp->m_sb_bp = NULL;
26af6552 2032 xfs_buf_relse(bp);
1da177e4
LT
2033}
2034
1da177e4
LT
2035/*
2036 * Used to log changes to the superblock unit and width fields which could
e6957ea4
ES
2037 * be altered by the mount options, as well as any potential sb_features2
2038 * fixup. Only the first superblock is updated.
1da177e4 2039 */
7884bc86 2040int
ee1c0908 2041xfs_mount_log_sb(
1da177e4
LT
2042 xfs_mount_t *mp,
2043 __int64_t fields)
2044{
2045 xfs_trans_t *tp;
e5720eec 2046 int error;
1da177e4 2047
ee1c0908 2048 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
4b166de0
DC
2049 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2050 XFS_SB_VERSIONNUM));
1da177e4
LT
2051
2052 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
5166ab06
JL
2053 error = xfs_trans_reserve(tp, 0, XFS_SB_LOG_RES(mp), 0, 0,
2054 XFS_DEFAULT_LOG_COUNT);
e5720eec 2055 if (error) {
1da177e4 2056 xfs_trans_cancel(tp, 0);
e5720eec 2057 return error;
1da177e4
LT
2058 }
2059 xfs_mod_sb(tp, fields);
e5720eec
DC
2060 error = xfs_trans_commit(tp, 0);
2061 return error;
1da177e4 2062}
8d280b98 2063
dda35b8f
CH
2064/*
2065 * If the underlying (data/log/rt) device is readonly, there are some
2066 * operations that cannot proceed.
2067 */
2068int
2069xfs_dev_is_read_only(
2070 struct xfs_mount *mp,
2071 char *message)
2072{
2073 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2074 xfs_readonly_buftarg(mp->m_logdev_targp) ||
2075 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
2076 xfs_notice(mp, "%s required on read-only device.", message);
2077 xfs_notice(mp, "write access unavailable, cannot proceed.");
dda35b8f
CH
2078 return EROFS;
2079 }
2080 return 0;
2081}
8d280b98
DC
2082
2083#ifdef HAVE_PERCPU_SB
2084/*
2085 * Per-cpu incore superblock counters
2086 *
2087 * Simple concept, difficult implementation
2088 *
2089 * Basically, replace the incore superblock counters with a distributed per cpu
2090 * counter for contended fields (e.g. free block count).
2091 *
2092 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2093 * hence needs to be accurately read when we are running low on space. Hence
2094 * there is a method to enable and disable the per-cpu counters based on how
2095 * much "stuff" is available in them.
2096 *
2097 * Basically, a counter is enabled if there is enough free resource to justify
2098 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2099 * ENOSPC), then we disable the counters to synchronise all callers and
2100 * re-distribute the available resources.
2101 *
2102 * If, once we redistributed the available resources, we still get a failure,
2103 * we disable the per-cpu counter and go through the slow path.
2104 *
2105 * The slow path is the current xfs_mod_incore_sb() function. This means that
9da096fd 2106 * when we disable a per-cpu counter, we need to drain its resources back to
8d280b98
DC
2107 * the global superblock. We do this after disabling the counter to prevent
2108 * more threads from queueing up on the counter.
2109 *
2110 * Essentially, this means that we still need a lock in the fast path to enable
2111 * synchronisation between the global counters and the per-cpu counters. This
2112 * is not a problem because the lock will be local to a CPU almost all the time
2113 * and have little contention except when we get to ENOSPC conditions.
2114 *
2115 * Basically, this lock becomes a barrier that enables us to lock out the fast
2116 * path while we do things like enabling and disabling counters and
2117 * synchronising the counters.
2118 *
2119 * Locking rules:
2120 *
3685c2a1 2121 * 1. m_sb_lock before picking up per-cpu locks
8d280b98 2122 * 2. per-cpu locks always picked up via for_each_online_cpu() order
3685c2a1 2123 * 3. accurate counter sync requires m_sb_lock + per cpu locks
8d280b98 2124 * 4. modifying per-cpu counters requires holding per-cpu lock
3685c2a1
ES
2125 * 5. modifying global counters requires holding m_sb_lock
2126 * 6. enabling or disabling a counter requires holding the m_sb_lock
8d280b98
DC
2127 * and _none_ of the per-cpu locks.
2128 *
2129 * Disabled counters are only ever re-enabled by a balance operation
2130 * that results in more free resources per CPU than a given threshold.
2131 * To ensure counters don't remain disabled, they are rebalanced when
2132 * the global resource goes above a higher threshold (i.e. some hysteresis
2133 * is present to prevent thrashing).
e8234a68
DC
2134 */
2135
5a67e4c5 2136#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
2137/*
2138 * hot-plug CPU notifier support.
8d280b98 2139 *
5a67e4c5
CS
2140 * We need a notifier per filesystem as we need to be able to identify
2141 * the filesystem to balance the counters out. This is achieved by
2142 * having a notifier block embedded in the xfs_mount_t and doing pointer
2143 * magic to get the mount pointer from the notifier block address.
8d280b98 2144 */
e8234a68
DC
2145STATIC int
2146xfs_icsb_cpu_notify(
2147 struct notifier_block *nfb,
2148 unsigned long action,
2149 void *hcpu)
2150{
2151 xfs_icsb_cnts_t *cntp;
2152 xfs_mount_t *mp;
e8234a68
DC
2153
2154 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2155 cntp = (xfs_icsb_cnts_t *)
2156 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2157 switch (action) {
2158 case CPU_UP_PREPARE:
8bb78442 2159 case CPU_UP_PREPARE_FROZEN:
e8234a68
DC
2160 /* Easy Case - initialize the area and locks, and
2161 * then rebalance when online does everything else for us. */
01e1b69c 2162 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68
DC
2163 break;
2164 case CPU_ONLINE:
8bb78442 2165 case CPU_ONLINE_FROZEN:
03135cf7 2166 xfs_icsb_lock(mp);
45af6c6d
CH
2167 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2168 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2169 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
03135cf7 2170 xfs_icsb_unlock(mp);
e8234a68
DC
2171 break;
2172 case CPU_DEAD:
8bb78442 2173 case CPU_DEAD_FROZEN:
e8234a68
DC
2174 /* Disable all the counters, then fold the dead cpu's
2175 * count into the total on the global superblock and
2176 * re-enable the counters. */
03135cf7 2177 xfs_icsb_lock(mp);
3685c2a1 2178 spin_lock(&mp->m_sb_lock);
e8234a68
DC
2179 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2180 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2181 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2182
2183 mp->m_sb.sb_icount += cntp->icsb_icount;
2184 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2185 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2186
01e1b69c 2187 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68 2188
45af6c6d
CH
2189 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2190 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2191 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
3685c2a1 2192 spin_unlock(&mp->m_sb_lock);
03135cf7 2193 xfs_icsb_unlock(mp);
e8234a68
DC
2194 break;
2195 }
2196
2197 return NOTIFY_OK;
2198}
5a67e4c5 2199#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 2200
8d280b98
DC
2201int
2202xfs_icsb_init_counters(
2203 xfs_mount_t *mp)
2204{
2205 xfs_icsb_cnts_t *cntp;
2206 int i;
2207
2208 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2209 if (mp->m_sb_cnts == NULL)
2210 return -ENOMEM;
2211
5a67e4c5 2212#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
2213 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2214 mp->m_icsb_notifier.priority = 0;
5a67e4c5
CS
2215 register_hotcpu_notifier(&mp->m_icsb_notifier);
2216#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 2217
8d280b98
DC
2218 for_each_online_cpu(i) {
2219 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2220 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
8d280b98 2221 }
20b64285
DC
2222
2223 mutex_init(&mp->m_icsb_mutex);
2224
8d280b98
DC
2225 /*
2226 * start with all counters disabled so that the
2227 * initial balance kicks us off correctly
2228 */
2229 mp->m_icsb_counters = -1;
2230 return 0;
2231}
2232
5478eead
LM
2233void
2234xfs_icsb_reinit_counters(
2235 xfs_mount_t *mp)
2236{
2237 xfs_icsb_lock(mp);
2238 /*
2239 * start with all counters disabled so that the
2240 * initial balance kicks us off correctly
2241 */
2242 mp->m_icsb_counters = -1;
45af6c6d
CH
2243 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2244 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2245 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
5478eead
LM
2246 xfs_icsb_unlock(mp);
2247}
2248
c962fb79 2249void
8d280b98
DC
2250xfs_icsb_destroy_counters(
2251 xfs_mount_t *mp)
2252{
e8234a68 2253 if (mp->m_sb_cnts) {
5a67e4c5 2254 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
8d280b98 2255 free_percpu(mp->m_sb_cnts);
e8234a68 2256 }
03135cf7 2257 mutex_destroy(&mp->m_icsb_mutex);
8d280b98
DC
2258}
2259
b8f82a4a 2260STATIC void
01e1b69c
DC
2261xfs_icsb_lock_cntr(
2262 xfs_icsb_cnts_t *icsbp)
2263{
2264 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2265 ndelay(1000);
2266 }
2267}
2268
b8f82a4a 2269STATIC void
01e1b69c
DC
2270xfs_icsb_unlock_cntr(
2271 xfs_icsb_cnts_t *icsbp)
2272{
2273 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2274}
2275
8d280b98 2276
b8f82a4a 2277STATIC void
8d280b98
DC
2278xfs_icsb_lock_all_counters(
2279 xfs_mount_t *mp)
2280{
2281 xfs_icsb_cnts_t *cntp;
2282 int i;
2283
2284 for_each_online_cpu(i) {
2285 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2286 xfs_icsb_lock_cntr(cntp);
8d280b98
DC
2287 }
2288}
2289
b8f82a4a 2290STATIC void
8d280b98
DC
2291xfs_icsb_unlock_all_counters(
2292 xfs_mount_t *mp)
2293{
2294 xfs_icsb_cnts_t *cntp;
2295 int i;
2296
2297 for_each_online_cpu(i) {
2298 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2299 xfs_icsb_unlock_cntr(cntp);
8d280b98
DC
2300 }
2301}
2302
2303STATIC void
2304xfs_icsb_count(
2305 xfs_mount_t *mp,
2306 xfs_icsb_cnts_t *cnt,
2307 int flags)
2308{
2309 xfs_icsb_cnts_t *cntp;
2310 int i;
2311
2312 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2313
2314 if (!(flags & XFS_ICSB_LAZY_COUNT))
2315 xfs_icsb_lock_all_counters(mp);
2316
2317 for_each_online_cpu(i) {
2318 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2319 cnt->icsb_icount += cntp->icsb_icount;
2320 cnt->icsb_ifree += cntp->icsb_ifree;
2321 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2322 }
2323
2324 if (!(flags & XFS_ICSB_LAZY_COUNT))
2325 xfs_icsb_unlock_all_counters(mp);
2326}
2327
2328STATIC int
2329xfs_icsb_counter_disabled(
2330 xfs_mount_t *mp,
2331 xfs_sb_field_t field)
2332{
2333 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2334 return test_bit(field, &mp->m_icsb_counters);
2335}
2336
36fbe6e6 2337STATIC void
8d280b98
DC
2338xfs_icsb_disable_counter(
2339 xfs_mount_t *mp,
2340 xfs_sb_field_t field)
2341{
2342 xfs_icsb_cnts_t cnt;
2343
2344 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2345
20b64285
DC
2346 /*
2347 * If we are already disabled, then there is nothing to do
2348 * here. We check before locking all the counters to avoid
2349 * the expensive lock operation when being called in the
2350 * slow path and the counter is already disabled. This is
2351 * safe because the only time we set or clear this state is under
2352 * the m_icsb_mutex.
2353 */
2354 if (xfs_icsb_counter_disabled(mp, field))
36fbe6e6 2355 return;
20b64285 2356
8d280b98
DC
2357 xfs_icsb_lock_all_counters(mp);
2358 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2359 /* drain back to superblock */
2360
ce46193b 2361 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
8d280b98
DC
2362 switch(field) {
2363 case XFS_SBS_ICOUNT:
2364 mp->m_sb.sb_icount = cnt.icsb_icount;
2365 break;
2366 case XFS_SBS_IFREE:
2367 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2368 break;
2369 case XFS_SBS_FDBLOCKS:
2370 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2371 break;
2372 default:
2373 BUG();
2374 }
2375 }
2376
2377 xfs_icsb_unlock_all_counters(mp);
8d280b98
DC
2378}
2379
2380STATIC void
2381xfs_icsb_enable_counter(
2382 xfs_mount_t *mp,
2383 xfs_sb_field_t field,
2384 uint64_t count,
2385 uint64_t resid)
2386{
2387 xfs_icsb_cnts_t *cntp;
2388 int i;
2389
2390 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2391
2392 xfs_icsb_lock_all_counters(mp);
2393 for_each_online_cpu(i) {
2394 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2395 switch (field) {
2396 case XFS_SBS_ICOUNT:
2397 cntp->icsb_icount = count + resid;
2398 break;
2399 case XFS_SBS_IFREE:
2400 cntp->icsb_ifree = count + resid;
2401 break;
2402 case XFS_SBS_FDBLOCKS:
2403 cntp->icsb_fdblocks = count + resid;
2404 break;
2405 default:
2406 BUG();
2407 break;
2408 }
2409 resid = 0;
2410 }
2411 clear_bit(field, &mp->m_icsb_counters);
2412 xfs_icsb_unlock_all_counters(mp);
2413}
2414
dbcabad1 2415void
d4d90b57 2416xfs_icsb_sync_counters_locked(
8d280b98
DC
2417 xfs_mount_t *mp,
2418 int flags)
2419{
2420 xfs_icsb_cnts_t cnt;
8d280b98 2421
8d280b98
DC
2422 xfs_icsb_count(mp, &cnt, flags);
2423
8d280b98
DC
2424 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2425 mp->m_sb.sb_icount = cnt.icsb_icount;
2426 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2427 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2428 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2429 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
8d280b98
DC
2430}
2431
2432/*
2433 * Accurate update of per-cpu counters to incore superblock
2434 */
d4d90b57 2435void
8d280b98 2436xfs_icsb_sync_counters(
d4d90b57
CH
2437 xfs_mount_t *mp,
2438 int flags)
8d280b98 2439{
d4d90b57
CH
2440 spin_lock(&mp->m_sb_lock);
2441 xfs_icsb_sync_counters_locked(mp, flags);
2442 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
2443}
2444
2445/*
2446 * Balance and enable/disable counters as necessary.
2447 *
20b64285
DC
2448 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2449 * chosen to be the same number as single on disk allocation chunk per CPU, and
2450 * free blocks is something far enough zero that we aren't going thrash when we
2451 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2452 * prevent looping endlessly when xfs_alloc_space asks for more than will
2453 * be distributed to a single CPU but each CPU has enough blocks to be
2454 * reenabled.
2455 *
2456 * Note that we can be called when counters are already disabled.
2457 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2458 * prevent locking every per-cpu counter needlessly.
8d280b98 2459 */
20b64285
DC
2460
2461#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
4be536de 2462#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
20b64285 2463 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
8d280b98 2464STATIC void
45af6c6d 2465xfs_icsb_balance_counter_locked(
8d280b98
DC
2466 xfs_mount_t *mp,
2467 xfs_sb_field_t field,
20b64285 2468 int min_per_cpu)
8d280b98 2469{
6fdf8ccc 2470 uint64_t count, resid;
8d280b98 2471 int weight = num_online_cpus();
20b64285 2472 uint64_t min = (uint64_t)min_per_cpu;
8d280b98 2473
8d280b98
DC
2474 /* disable counter and sync counter */
2475 xfs_icsb_disable_counter(mp, field);
2476
2477 /* update counters - first CPU gets residual*/
2478 switch (field) {
2479 case XFS_SBS_ICOUNT:
2480 count = mp->m_sb.sb_icount;
2481 resid = do_div(count, weight);
20b64285 2482 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 2483 return;
8d280b98
DC
2484 break;
2485 case XFS_SBS_IFREE:
2486 count = mp->m_sb.sb_ifree;
2487 resid = do_div(count, weight);
20b64285 2488 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 2489 return;
8d280b98
DC
2490 break;
2491 case XFS_SBS_FDBLOCKS:
2492 count = mp->m_sb.sb_fdblocks;
2493 resid = do_div(count, weight);
20b64285 2494 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
45af6c6d 2495 return;
8d280b98
DC
2496 break;
2497 default:
2498 BUG();
6fdf8ccc 2499 count = resid = 0; /* quiet, gcc */
8d280b98
DC
2500 break;
2501 }
2502
2503 xfs_icsb_enable_counter(mp, field, count, resid);
45af6c6d
CH
2504}
2505
2506STATIC void
2507xfs_icsb_balance_counter(
2508 xfs_mount_t *mp,
2509 xfs_sb_field_t fields,
2510 int min_per_cpu)
2511{
2512 spin_lock(&mp->m_sb_lock);
2513 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2514 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
2515}
2516
1b040712 2517int
20b64285 2518xfs_icsb_modify_counters(
8d280b98
DC
2519 xfs_mount_t *mp,
2520 xfs_sb_field_t field,
20f4ebf2 2521 int64_t delta,
20b64285 2522 int rsvd)
8d280b98
DC
2523{
2524 xfs_icsb_cnts_t *icsbp;
2525 long long lcounter; /* long counter for 64 bit fields */
7a9e02d6 2526 int ret = 0;
8d280b98 2527
20b64285 2528 might_sleep();
8d280b98 2529again:
7a9e02d6
CL
2530 preempt_disable();
2531 icsbp = this_cpu_ptr(mp->m_sb_cnts);
20b64285
DC
2532
2533 /*
2534 * if the counter is disabled, go to slow path
2535 */
8d280b98
DC
2536 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2537 goto slow_path;
20b64285
DC
2538 xfs_icsb_lock_cntr(icsbp);
2539 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2540 xfs_icsb_unlock_cntr(icsbp);
2541 goto slow_path;
2542 }
8d280b98
DC
2543
2544 switch (field) {
2545 case XFS_SBS_ICOUNT:
2546 lcounter = icsbp->icsb_icount;
2547 lcounter += delta;
2548 if (unlikely(lcounter < 0))
20b64285 2549 goto balance_counter;
8d280b98
DC
2550 icsbp->icsb_icount = lcounter;
2551 break;
2552
2553 case XFS_SBS_IFREE:
2554 lcounter = icsbp->icsb_ifree;
2555 lcounter += delta;
2556 if (unlikely(lcounter < 0))
20b64285 2557 goto balance_counter;
8d280b98
DC
2558 icsbp->icsb_ifree = lcounter;
2559 break;
2560
2561 case XFS_SBS_FDBLOCKS:
2562 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2563
4be536de 2564 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
2565 lcounter += delta;
2566 if (unlikely(lcounter < 0))
20b64285 2567 goto balance_counter;
4be536de 2568 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
2569 break;
2570 default:
2571 BUG();
2572 break;
2573 }
01e1b69c 2574 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2575 preempt_enable();
8d280b98
DC
2576 return 0;
2577
8d280b98 2578slow_path:
7a9e02d6 2579 preempt_enable();
8d280b98 2580
20b64285
DC
2581 /*
2582 * serialise with a mutex so we don't burn lots of cpu on
2583 * the superblock lock. We still need to hold the superblock
2584 * lock, however, when we modify the global structures.
2585 */
03135cf7 2586 xfs_icsb_lock(mp);
20b64285
DC
2587
2588 /*
2589 * Now running atomically.
2590 *
2591 * If the counter is enabled, someone has beaten us to rebalancing.
2592 * Drop the lock and try again in the fast path....
2593 */
2594 if (!(xfs_icsb_counter_disabled(mp, field))) {
03135cf7 2595 xfs_icsb_unlock(mp);
8d280b98 2596 goto again;
8d280b98
DC
2597 }
2598
20b64285
DC
2599 /*
2600 * The counter is currently disabled. Because we are
2601 * running atomically here, we know a rebalance cannot
2602 * be in progress. Hence we can go straight to operating
2603 * on the global superblock. We do not call xfs_mod_incore_sb()
3685c2a1 2604 * here even though we need to get the m_sb_lock. Doing so
20b64285 2605 * will cause us to re-enter this function and deadlock.
3685c2a1 2606 * Hence we get the m_sb_lock ourselves and then call
20b64285
DC
2607 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2608 * directly on the global counters.
2609 */
3685c2a1 2610 spin_lock(&mp->m_sb_lock);
8d280b98 2611 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
3685c2a1 2612 spin_unlock(&mp->m_sb_lock);
8d280b98 2613
20b64285
DC
2614 /*
2615 * Now that we've modified the global superblock, we
2616 * may be able to re-enable the distributed counters
2617 * (e.g. lots of space just got freed). After that
2618 * we are done.
2619 */
2620 if (ret != ENOSPC)
45af6c6d 2621 xfs_icsb_balance_counter(mp, field, 0);
03135cf7 2622 xfs_icsb_unlock(mp);
8d280b98 2623 return ret;
8d280b98 2624
20b64285
DC
2625balance_counter:
2626 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2627 preempt_enable();
8d280b98 2628
20b64285
DC
2629 /*
2630 * We may have multiple threads here if multiple per-cpu
2631 * counters run dry at the same time. This will mean we can
2632 * do more balances than strictly necessary but it is not
2633 * the common slowpath case.
2634 */
03135cf7 2635 xfs_icsb_lock(mp);
20b64285
DC
2636
2637 /*
2638 * running atomically.
2639 *
2640 * This will leave the counter in the correct state for future
2641 * accesses. After the rebalance, we simply try again and our retry
2642 * will either succeed through the fast path or slow path without
2643 * another balance operation being required.
2644 */
45af6c6d 2645 xfs_icsb_balance_counter(mp, field, delta);
03135cf7 2646 xfs_icsb_unlock(mp);
20b64285 2647 goto again;
8d280b98 2648}
20b64285 2649
8d280b98 2650#endif