]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_mount.c
Merge remote-tracking branches 'asoc/topic/adsp', 'asoc/topic/ak4613', 'asoc/topic...
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
3ab78df2 27#include "xfs_defer.h"
57062787 28#include "xfs_da_format.h"
9a2cc41c 29#include "xfs_da_btree.h"
1da177e4 30#include "xfs_inode.h"
a4fbe6ab 31#include "xfs_dir2.h"
a844f451 32#include "xfs_ialloc.h"
1da177e4
LT
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
a4fbe6ab
DC
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
1da177e4 39#include "xfs_error.h"
1da177e4
LT
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
0b1b213f 42#include "xfs_trace.h"
6d8b79cf 43#include "xfs_icache.h"
a31b1d3d 44#include "xfs_sysfs.h"
035e00ac 45#include "xfs_rmap_btree.h"
1946b91c 46#include "xfs_refcount_btree.h"
174edb0e 47#include "xfs_reflink.h"
ebf55872 48#include "xfs_extent_busy.h"
0b1b213f 49
1da177e4 50
27174203
CH
51static DEFINE_MUTEX(xfs_uuid_table_mutex);
52static int xfs_uuid_table_size;
53static uuid_t *xfs_uuid_table;
54
af3b6382
DW
55void
56xfs_uuid_table_free(void)
57{
58 if (xfs_uuid_table_size == 0)
59 return;
60 kmem_free(xfs_uuid_table);
61 xfs_uuid_table = NULL;
62 xfs_uuid_table_size = 0;
63}
64
27174203
CH
65/*
66 * See if the UUID is unique among mounted XFS filesystems.
67 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
68 */
69STATIC int
70xfs_uuid_mount(
71 struct xfs_mount *mp)
72{
73 uuid_t *uuid = &mp->m_sb.sb_uuid;
74 int hole, i;
75
76 if (mp->m_flags & XFS_MOUNT_NOUUID)
77 return 0;
78
79 if (uuid_is_nil(uuid)) {
0b932ccc 80 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
2451337d 81 return -EINVAL;
27174203
CH
82 }
83
84 mutex_lock(&xfs_uuid_table_mutex);
85 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
86 if (uuid_is_nil(&xfs_uuid_table[i])) {
87 hole = i;
88 continue;
89 }
90 if (uuid_equal(uuid, &xfs_uuid_table[i]))
91 goto out_duplicate;
92 }
93
94 if (hole < 0) {
95 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
96 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
27174203
CH
97 KM_SLEEP);
98 hole = xfs_uuid_table_size++;
99 }
100 xfs_uuid_table[hole] = *uuid;
101 mutex_unlock(&xfs_uuid_table_mutex);
102
103 return 0;
104
105 out_duplicate:
106 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 107 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 108 return -EINVAL;
27174203
CH
109}
110
111STATIC void
112xfs_uuid_unmount(
113 struct xfs_mount *mp)
114{
115 uuid_t *uuid = &mp->m_sb.sb_uuid;
116 int i;
117
118 if (mp->m_flags & XFS_MOUNT_NOUUID)
119 return;
120
121 mutex_lock(&xfs_uuid_table_mutex);
122 for (i = 0; i < xfs_uuid_table_size; i++) {
123 if (uuid_is_nil(&xfs_uuid_table[i]))
124 continue;
125 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
126 continue;
127 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
128 break;
129 }
130 ASSERT(i < xfs_uuid_table_size);
131 mutex_unlock(&xfs_uuid_table_mutex);
132}
133
134
e176579e
DC
135STATIC void
136__xfs_free_perag(
137 struct rcu_head *head)
138{
139 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
140
141 ASSERT(atomic_read(&pag->pag_ref) == 0);
142 kmem_free(pag);
143}
144
1da177e4 145/*
e176579e 146 * Free up the per-ag resources associated with the mount structure.
1da177e4 147 */
c962fb79 148STATIC void
ff4f038c 149xfs_free_perag(
745f6919 150 xfs_mount_t *mp)
1da177e4 151{
1c1c6ebc
DC
152 xfs_agnumber_t agno;
153 struct xfs_perag *pag;
154
155 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
156 spin_lock(&mp->m_perag_lock);
157 pag = radix_tree_delete(&mp->m_perag_tree, agno);
158 spin_unlock(&mp->m_perag_lock);
e176579e 159 ASSERT(pag);
f83282a8 160 ASSERT(atomic_read(&pag->pag_ref) == 0);
6031e73a 161 xfs_buf_hash_destroy(pag);
e176579e 162 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 163 }
1da177e4
LT
164}
165
4cc929ee
NS
166/*
167 * Check size of device based on the (data/realtime) block count.
168 * Note: this check is used by the growfs code as well as mount.
169 */
170int
171xfs_sb_validate_fsb_count(
172 xfs_sb_t *sbp,
173 __uint64_t nblocks)
174{
175 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
176 ASSERT(sbp->sb_blocklog >= BBSHIFT);
177
d5cf09ba 178 /* Limited by ULONG_MAX of page cache index */
09cbfeaf 179 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 180 return -EFBIG;
4cc929ee
NS
181 return 0;
182}
1da177e4 183
1c1c6ebc 184int
c11e2c36 185xfs_initialize_perag(
c11e2c36 186 xfs_mount_t *mp,
1c1c6ebc
DC
187 xfs_agnumber_t agcount,
188 xfs_agnumber_t *maxagi)
1da177e4 189{
2d2194f6 190 xfs_agnumber_t index;
b20fe473 191 xfs_agnumber_t first_initialised = NULLAGNUMBER;
1da177e4 192 xfs_perag_t *pag;
8b26c582 193 int error = -ENOMEM;
1da177e4 194
1c1c6ebc
DC
195 /*
196 * Walk the current per-ag tree so we don't try to initialise AGs
197 * that already exist (growfs case). Allocate and insert all the
198 * AGs we don't find ready for initialisation.
199 */
200 for (index = 0; index < agcount; index++) {
201 pag = xfs_perag_get(mp, index);
202 if (pag) {
203 xfs_perag_put(pag);
204 continue;
205 }
fb3b504a 206
1c1c6ebc
DC
207 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
208 if (!pag)
b20fe473 209 goto out_unwind_new_pags;
fb3b504a
CH
210 pag->pag_agno = index;
211 pag->pag_mount = mp;
1a427ab0 212 spin_lock_init(&pag->pag_ici_lock);
69b491c2 213 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 214 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
6031e73a 215 if (xfs_buf_hash_init(pag))
b20fe473 216 goto out_free_pag;
ebf55872 217 init_waitqueue_head(&pag->pagb_wait);
fb3b504a 218
1c1c6ebc 219 if (radix_tree_preload(GFP_NOFS))
b20fe473 220 goto out_hash_destroy;
fb3b504a 221
1c1c6ebc
DC
222 spin_lock(&mp->m_perag_lock);
223 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
224 BUG();
225 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
226 radix_tree_preload_end();
227 error = -EEXIST;
b20fe473 228 goto out_hash_destroy;
1c1c6ebc
DC
229 }
230 spin_unlock(&mp->m_perag_lock);
231 radix_tree_preload_end();
b20fe473
BD
232 /* first new pag is fully initialized */
233 if (first_initialised == NULLAGNUMBER)
234 first_initialised = index;
1c1c6ebc
DC
235 }
236
12c3f05c 237 index = xfs_set_inode_alloc(mp, agcount);
fb3b504a 238
1c1c6ebc
DC
239 if (maxagi)
240 *maxagi = index;
8018026e
DW
241
242 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
1c1c6ebc 243 return 0;
8b26c582 244
b20fe473 245out_hash_destroy:
6031e73a 246 xfs_buf_hash_destroy(pag);
b20fe473 247out_free_pag:
8b26c582 248 kmem_free(pag);
b20fe473
BD
249out_unwind_new_pags:
250 /* unwind any prior newly initialized pags */
251 for (index = first_initialised; index < agcount; index++) {
8b26c582 252 pag = radix_tree_delete(&mp->m_perag_tree, index);
b20fe473
BD
253 if (!pag)
254 break;
6031e73a 255 xfs_buf_hash_destroy(pag);
8b26c582
DC
256 kmem_free(pag);
257 }
258 return error;
1da177e4
LT
259}
260
1da177e4
LT
261/*
262 * xfs_readsb
263 *
264 * Does the initial read of the superblock.
265 */
266int
ff55068c
DC
267xfs_readsb(
268 struct xfs_mount *mp,
269 int flags)
1da177e4
LT
270{
271 unsigned int sector_size;
04a1e6c5
DC
272 struct xfs_buf *bp;
273 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 274 int error;
af34e09d 275 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 276 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
277
278 ASSERT(mp->m_sb_bp == NULL);
279 ASSERT(mp->m_ddev_targp != NULL);
280
daba5427
ES
281 /*
282 * For the initial read, we must guess at the sector
283 * size based on the block device. It's enough to
284 * get the sb_sectsize out of the superblock and
285 * then reread with the proper length.
286 * We don't verify it yet, because it may not be complete.
287 */
288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 buf_ops = NULL;
290
1da177e4 291 /*
c891c30a
BF
292 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 * around at all times to optimize access to the superblock. Therefore,
294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 * elevated.
1da177e4 296 */
26af6552 297reread:
ba372674 298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
c891c30a
BF
299 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 buf_ops);
ba372674 301 if (error) {
eab4e633 302 if (loud)
e721f504 303 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 304 /* bad CRC means corrupted metadata */
2451337d
DC
305 if (error == -EFSBADCRC)
306 error = -EFSCORRUPTED;
ba372674 307 return error;
eab4e633 308 }
1da177e4
LT
309
310 /*
311 * Initialize the mount structure from the superblock.
1da177e4 312 */
556b8883 313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
556b8883
DC
314
315 /*
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
318 */
319 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 if (loud)
321 xfs_warn(mp, "Invalid superblock magic number");
2451337d 322 error = -EINVAL;
556b8883
DC
323 goto release_buf;
324 }
ff55068c 325
1da177e4
LT
326 /*
327 * We must be able to do sector-sized and sector-aligned IO.
328 */
04a1e6c5 329 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
330 if (loud)
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 332 sector_size, sbp->sb_sectsize);
2451337d 333 error = -ENOSYS;
26af6552 334 goto release_buf;
1da177e4
LT
335 }
336
daba5427 337 if (buf_ops == NULL) {
556b8883
DC
338 /*
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
341 */
1da177e4 342 xfs_buf_relse(bp);
04a1e6c5 343 sector_size = sbp->sb_sectsize;
daba5427 344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 345 goto reread;
1da177e4
LT
346 }
347
5681ca40 348 xfs_reinit_percpu_counters(mp);
8d280b98 349
04a1e6c5
DC
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp->b_ops = &xfs_sb_buf_ops;
352
1da177e4 353 mp->m_sb_bp = bp;
26af6552 354 xfs_buf_unlock(bp);
1da177e4
LT
355 return 0;
356
26af6552
DC
357release_buf:
358 xfs_buf_relse(bp);
1da177e4
LT
359 return error;
360}
361
1da177e4 362/*
0771fb45 363 * Update alignment values based on mount options and sb values
1da177e4 364 */
0771fb45 365STATIC int
7884bc86 366xfs_update_alignment(xfs_mount_t *mp)
1da177e4 367{
1da177e4 368 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 369
4249023a 370 if (mp->m_dalign) {
1da177e4
LT
371 /*
372 * If stripe unit and stripe width are not multiples
373 * of the fs blocksize turn off alignment.
374 */
375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
377 xfs_warn(mp,
378 "alignment check failed: sunit/swidth vs. blocksize(%d)",
379 sbp->sb_blocksize);
2451337d 380 return -EINVAL;
1da177e4
LT
381 } else {
382 /*
383 * Convert the stripe unit and width to FSBs.
384 */
385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 387 xfs_warn(mp,
39a45d84
JL
388 "alignment check failed: sunit/swidth vs. agsize(%d)",
389 sbp->sb_agblocks);
2451337d 390 return -EINVAL;
1da177e4
LT
391 } else if (mp->m_dalign) {
392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 } else {
39a45d84
JL
394 xfs_warn(mp,
395 "alignment check failed: sunit(%d) less than bsize(%d)",
396 mp->m_dalign, sbp->sb_blocksize);
2451337d 397 return -EINVAL;
1da177e4
LT
398 }
399 }
400
401 /*
402 * Update superblock with new values
403 * and log changes
404 */
62118709 405 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
406 if (sbp->sb_unit != mp->m_dalign) {
407 sbp->sb_unit = mp->m_dalign;
61e63ecb 408 mp->m_update_sb = true;
1da177e4
LT
409 }
410 if (sbp->sb_width != mp->m_swidth) {
411 sbp->sb_width = mp->m_swidth;
61e63ecb 412 mp->m_update_sb = true;
1da177e4 413 }
34d7f603
JL
414 } else {
415 xfs_warn(mp,
416 "cannot change alignment: superblock does not support data alignment");
2451337d 417 return -EINVAL;
1da177e4
LT
418 }
419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 420 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
421 mp->m_dalign = sbp->sb_unit;
422 mp->m_swidth = sbp->sb_width;
423 }
424
0771fb45
ES
425 return 0;
426}
1da177e4 427
0771fb45
ES
428/*
429 * Set the maximum inode count for this filesystem
430 */
431STATIC void
432xfs_set_maxicount(xfs_mount_t *mp)
433{
434 xfs_sb_t *sbp = &(mp->m_sb);
435 __uint64_t icount;
1da177e4 436
0771fb45
ES
437 if (sbp->sb_imax_pct) {
438 /*
439 * Make sure the maximum inode count is a multiple
440 * of the units we allocate inodes in.
1da177e4 441 */
1da177e4
LT
442 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
443 do_div(icount, 100);
444 do_div(icount, mp->m_ialloc_blks);
445 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
446 sbp->sb_inopblog;
0771fb45 447 } else {
1da177e4 448 mp->m_maxicount = 0;
1da177e4 449 }
0771fb45
ES
450}
451
452/*
453 * Set the default minimum read and write sizes unless
454 * already specified in a mount option.
455 * We use smaller I/O sizes when the file system
456 * is being used for NFS service (wsync mount option).
457 */
458STATIC void
459xfs_set_rw_sizes(xfs_mount_t *mp)
460{
461 xfs_sb_t *sbp = &(mp->m_sb);
462 int readio_log, writeio_log;
1da177e4 463
1da177e4
LT
464 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
465 if (mp->m_flags & XFS_MOUNT_WSYNC) {
466 readio_log = XFS_WSYNC_READIO_LOG;
467 writeio_log = XFS_WSYNC_WRITEIO_LOG;
468 } else {
469 readio_log = XFS_READIO_LOG_LARGE;
470 writeio_log = XFS_WRITEIO_LOG_LARGE;
471 }
472 } else {
473 readio_log = mp->m_readio_log;
474 writeio_log = mp->m_writeio_log;
475 }
476
1da177e4
LT
477 if (sbp->sb_blocklog > readio_log) {
478 mp->m_readio_log = sbp->sb_blocklog;
479 } else {
480 mp->m_readio_log = readio_log;
481 }
482 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
483 if (sbp->sb_blocklog > writeio_log) {
484 mp->m_writeio_log = sbp->sb_blocklog;
485 } else {
486 mp->m_writeio_log = writeio_log;
487 }
488 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 489}
1da177e4 490
055388a3
DC
491/*
492 * precalculate the low space thresholds for dynamic speculative preallocation.
493 */
494void
495xfs_set_low_space_thresholds(
496 struct xfs_mount *mp)
497{
498 int i;
499
500 for (i = 0; i < XFS_LOWSP_MAX; i++) {
501 __uint64_t space = mp->m_sb.sb_dblocks;
502
503 do_div(space, 100);
504 mp->m_low_space[i] = space * (i + 1);
505 }
506}
507
508
0771fb45
ES
509/*
510 * Set whether we're using inode alignment.
511 */
512STATIC void
513xfs_set_inoalignment(xfs_mount_t *mp)
514{
62118709 515 if (xfs_sb_version_hasalign(&mp->m_sb) &&
d5825712 516 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
1da177e4
LT
517 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
518 else
519 mp->m_inoalign_mask = 0;
520 /*
521 * If we are using stripe alignment, check whether
522 * the stripe unit is a multiple of the inode alignment
523 */
524 if (mp->m_dalign && mp->m_inoalign_mask &&
525 !(mp->m_dalign & mp->m_inoalign_mask))
526 mp->m_sinoalign = mp->m_dalign;
527 else
528 mp->m_sinoalign = 0;
0771fb45
ES
529}
530
531/*
0471f62e 532 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
533 */
534STATIC int
ba372674
DC
535xfs_check_sizes(
536 struct xfs_mount *mp)
0771fb45 537{
ba372674 538 struct xfs_buf *bp;
0771fb45 539 xfs_daddr_t d;
ba372674 540 int error;
0771fb45 541
1da177e4
LT
542 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
543 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 544 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 545 return -EFBIG;
1da177e4 546 }
ba372674 547 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 548 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
549 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
550 if (error) {
0b932ccc 551 xfs_warn(mp, "last sector read failed");
ba372674 552 return error;
1da177e4 553 }
1922c949 554 xfs_buf_relse(bp);
1da177e4 555
ba372674
DC
556 if (mp->m_logdev_targp == mp->m_ddev_targp)
557 return 0;
558
559 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
560 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
561 xfs_warn(mp, "log size mismatch detected");
562 return -EFBIG;
563 }
564 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 565 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
566 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
567 if (error) {
568 xfs_warn(mp, "log device read failed");
569 return error;
0771fb45 570 }
ba372674 571 xfs_buf_relse(bp);
0771fb45
ES
572 return 0;
573}
574
7d095257
CH
575/*
576 * Clear the quotaflags in memory and in the superblock.
577 */
578int
579xfs_mount_reset_sbqflags(
580 struct xfs_mount *mp)
581{
7d095257
CH
582 mp->m_qflags = 0;
583
61e63ecb 584 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
585 if (mp->m_sb.sb_qflags == 0)
586 return 0;
587 spin_lock(&mp->m_sb_lock);
588 mp->m_sb.sb_qflags = 0;
589 spin_unlock(&mp->m_sb_lock);
590
61e63ecb 591 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
592 return 0;
593
61e63ecb 594 return xfs_sync_sb(mp, false);
7d095257
CH
595}
596
d5db0f97
ES
597__uint64_t
598xfs_default_resblks(xfs_mount_t *mp)
599{
600 __uint64_t resblks;
601
602 /*
8babd8a2
DC
603 * We default to 5% or 8192 fsbs of space reserved, whichever is
604 * smaller. This is intended to cover concurrent allocation
605 * transactions when we initially hit enospc. These each require a 4
606 * block reservation. Hence by default we cover roughly 2000 concurrent
607 * allocation reservations.
d5db0f97
ES
608 */
609 resblks = mp->m_sb.sb_dblocks;
610 do_div(resblks, 20);
8babd8a2 611 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
612 return resblks;
613}
614
0771fb45 615/*
0771fb45
ES
616 * This function does the following on an initial mount of a file system:
617 * - reads the superblock from disk and init the mount struct
618 * - if we're a 32-bit kernel, do a size check on the superblock
619 * so we don't mount terabyte filesystems
620 * - init mount struct realtime fields
621 * - allocate inode hash table for fs
622 * - init directory manager
623 * - perform recovery and init the log manager
624 */
625int
626xfs_mountfs(
f0b2efad 627 struct xfs_mount *mp)
0771fb45 628{
f0b2efad
BF
629 struct xfs_sb *sbp = &(mp->m_sb);
630 struct xfs_inode *rip;
631 __uint64_t resblks;
632 uint quotamount = 0;
633 uint quotaflags = 0;
634 int error = 0;
0771fb45 635
ff55068c 636 xfs_sb_mount_common(mp, sbp);
0771fb45 637
ee1c0908 638 /*
074e427b
DC
639 * Check for a mismatched features2 values. Older kernels read & wrote
640 * into the wrong sb offset for sb_features2 on some platforms due to
641 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
642 * which made older superblock reading/writing routines swap it as a
643 * 64-bit value.
ee1c0908 644 *
e6957ea4
ES
645 * For backwards compatibility, we make both slots equal.
646 *
074e427b
DC
647 * If we detect a mismatched field, we OR the set bits into the existing
648 * features2 field in case it has already been modified; we don't want
649 * to lose any features. We then update the bad location with the ORed
650 * value so that older kernels will see any features2 flags. The
651 * superblock writeback code ensures the new sb_features2 is copied to
652 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 653 */
e6957ea4 654 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 655 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 656 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 657 mp->m_update_sb = true;
e6957ea4
ES
658
659 /*
660 * Re-check for ATTR2 in case it was found in bad_features2
661 * slot.
662 */
7c12f296
TS
663 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
664 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 665 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
666 }
667
668 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
669 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
670 xfs_sb_version_removeattr2(&mp->m_sb);
61e63ecb 671 mp->m_update_sb = true;
e6957ea4 672
7c12f296
TS
673 /* update sb_versionnum for the clearing of the morebits */
674 if (!sbp->sb_features2)
61e63ecb 675 mp->m_update_sb = true;
ee1c0908
DC
676 }
677
263997a6
DC
678 /* always use v2 inodes by default now */
679 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
680 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
61e63ecb 681 mp->m_update_sb = true;
263997a6
DC
682 }
683
0771fb45
ES
684 /*
685 * Check if sb_agblocks is aligned at stripe boundary
686 * If sb_agblocks is NOT aligned turn off m_dalign since
687 * allocator alignment is within an ag, therefore ag has
688 * to be aligned at stripe boundary.
689 */
7884bc86 690 error = xfs_update_alignment(mp);
0771fb45 691 if (error)
f9057e3d 692 goto out;
0771fb45
ES
693
694 xfs_alloc_compute_maxlevels(mp);
695 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
696 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
697 xfs_ialloc_compute_maxlevels(mp);
035e00ac 698 xfs_rmapbt_compute_maxlevels(mp);
1946b91c 699 xfs_refcountbt_compute_maxlevels(mp);
0771fb45
ES
700
701 xfs_set_maxicount(mp);
702
e6b3bb78
CM
703 /* enable fail_at_unmount as default */
704 mp->m_fail_unmount = 1;
705
a31b1d3d 706 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
27174203
CH
707 if (error)
708 goto out;
1da177e4 709
225e4635
BD
710 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
711 &mp->m_kobj, "stats");
a31b1d3d
BF
712 if (error)
713 goto out_remove_sysfs;
714
192852be 715 error = xfs_error_sysfs_init(mp);
225e4635
BD
716 if (error)
717 goto out_del_stats;
718
192852be
CM
719
720 error = xfs_uuid_mount(mp);
721 if (error)
722 goto out_remove_error_sysfs;
723
0771fb45
ES
724 /*
725 * Set the minimum read and write sizes
726 */
727 xfs_set_rw_sizes(mp);
728
055388a3
DC
729 /* set the low space thresholds for dynamic preallocation */
730 xfs_set_low_space_thresholds(mp);
731
0771fb45
ES
732 /*
733 * Set the inode cluster size.
734 * This may still be overridden by the file system
735 * block size if it is larger than the chosen cluster size.
8f80587b
DC
736 *
737 * For v5 filesystems, scale the cluster size with the inode size to
738 * keep a constant ratio of inode per cluster buffer, but only if mkfs
739 * has set the inode alignment value appropriately for larger cluster
740 * sizes.
0771fb45
ES
741 */
742 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
8f80587b
DC
743 if (xfs_sb_version_hascrc(&mp->m_sb)) {
744 int new_size = mp->m_inode_cluster_size;
745
746 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
747 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
748 mp->m_inode_cluster_size = new_size;
8f80587b 749 }
0771fb45 750
e5376fc1
BF
751 /*
752 * If enabled, sparse inode chunk alignment is expected to match the
753 * cluster size. Full inode chunk alignment must match the chunk size,
754 * but that is checked on sb read verification...
755 */
756 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
757 mp->m_sb.sb_spino_align !=
758 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
759 xfs_warn(mp,
760 "Sparse inode block alignment (%u) must match cluster size (%llu).",
761 mp->m_sb.sb_spino_align,
762 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
763 error = -EINVAL;
764 goto out_remove_uuid;
765 }
766
0771fb45
ES
767 /*
768 * Set inode alignment fields
769 */
770 xfs_set_inoalignment(mp);
771
772 /*
c2bfbc9b 773 * Check that the data (and log if separate) is an ok size.
0771fb45 774 */
4249023a 775 error = xfs_check_sizes(mp);
0771fb45 776 if (error)
f9057e3d 777 goto out_remove_uuid;
0771fb45 778
1da177e4
LT
779 /*
780 * Initialize realtime fields in the mount structure
781 */
0771fb45
ES
782 error = xfs_rtmount_init(mp);
783 if (error) {
0b932ccc 784 xfs_warn(mp, "RT mount failed");
f9057e3d 785 goto out_remove_uuid;
1da177e4
LT
786 }
787
1da177e4
LT
788 /*
789 * Copies the low order bits of the timestamp and the randomly
790 * set "sequence" number out of a UUID.
791 */
792 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
793
1da177e4
LT
794 mp->m_dmevmask = 0; /* not persistent; set after each mount */
795
0650b554
DC
796 error = xfs_da_mount(mp);
797 if (error) {
798 xfs_warn(mp, "Failed dir/attr init: %d", error);
799 goto out_remove_uuid;
800 }
1da177e4
LT
801
802 /*
803 * Initialize the precomputed transaction reservations values.
804 */
805 xfs_trans_init(mp);
806
1da177e4
LT
807 /*
808 * Allocate and initialize the per-ag data.
809 */
1c1c6ebc 810 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 811 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
812 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
813 if (error) {
0b932ccc 814 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 815 goto out_free_dir;
1c1c6ebc 816 }
1da177e4 817
f9057e3d 818 if (!sbp->sb_logblocks) {
0b932ccc 819 xfs_warn(mp, "no log defined");
f9057e3d 820 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
2451337d 821 error = -EFSCORRUPTED;
f9057e3d
CH
822 goto out_free_perag;
823 }
824
1da177e4 825 /*
f0b2efad
BF
826 * Log's mount-time initialization. The first part of recovery can place
827 * some items on the AIL, to be handled when recovery is finished or
828 * cancelled.
1da177e4 829 */
f9057e3d
CH
830 error = xfs_log_mount(mp, mp->m_logdev_targp,
831 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
832 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
833 if (error) {
0b932ccc 834 xfs_warn(mp, "log mount failed");
d4f3512b 835 goto out_fail_wait;
1da177e4
LT
836 }
837
92821e2b
DC
838 /*
839 * Now the log is mounted, we know if it was an unclean shutdown or
840 * not. If it was, with the first phase of recovery has completed, we
841 * have consistent AG blocks on disk. We have not recovered EFIs yet,
842 * but they are recovered transactionally in the second recovery phase
843 * later.
844 *
845 * Hence we can safely re-initialise incore superblock counters from
846 * the per-ag data. These may not be correct if the filesystem was not
847 * cleanly unmounted, so we need to wait for recovery to finish before
848 * doing this.
849 *
850 * If the filesystem was cleanly unmounted, then we can trust the
851 * values in the superblock to be correct and we don't need to do
852 * anything here.
853 *
854 * If we are currently making the filesystem, the initialisation will
855 * fail as the perag data is in an undefined state.
856 */
92821e2b
DC
857 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
858 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
859 !mp->m_sb.sb_inprogress) {
860 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 861 if (error)
6eee8972 862 goto out_log_dealloc;
92821e2b 863 }
f9057e3d 864
1da177e4
LT
865 /*
866 * Get and sanity-check the root inode.
867 * Save the pointer to it in the mount structure.
868 */
7b6259e7 869 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 870 if (error) {
0b932ccc 871 xfs_warn(mp, "failed to read root inode");
f9057e3d 872 goto out_log_dealloc;
1da177e4
LT
873 }
874
875 ASSERT(rip != NULL);
1da177e4 876
c19b3b05 877 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 878 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 879 (unsigned long long)rip->i_ino);
1da177e4
LT
880 xfs_iunlock(rip, XFS_ILOCK_EXCL);
881 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
882 mp);
2451337d 883 error = -EFSCORRUPTED;
f9057e3d 884 goto out_rele_rip;
1da177e4
LT
885 }
886 mp->m_rootip = rip; /* save it */
887
888 xfs_iunlock(rip, XFS_ILOCK_EXCL);
889
890 /*
891 * Initialize realtime inode pointers in the mount structure
892 */
0771fb45
ES
893 error = xfs_rtmount_inodes(mp);
894 if (error) {
1da177e4
LT
895 /*
896 * Free up the root inode.
897 */
0b932ccc 898 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 899 goto out_rele_rip;
1da177e4
LT
900 }
901
902 /*
7884bc86
CH
903 * If this is a read-only mount defer the superblock updates until
904 * the next remount into writeable mode. Otherwise we would never
905 * perform the update e.g. for the root filesystem.
1da177e4 906 */
61e63ecb
DC
907 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
908 error = xfs_sync_sb(mp, false);
e5720eec 909 if (error) {
0b932ccc 910 xfs_warn(mp, "failed to write sb changes");
b93b6e43 911 goto out_rtunmount;
e5720eec
DC
912 }
913 }
1da177e4
LT
914
915 /*
916 * Initialise the XFS quota management subsystem for this mount
917 */
7d095257
CH
918 if (XFS_IS_QUOTA_RUNNING(mp)) {
919 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
920 if (error)
921 goto out_rtunmount;
922 } else {
923 ASSERT(!XFS_IS_QUOTA_ON(mp));
924
925 /*
926 * If a file system had quotas running earlier, but decided to
927 * mount without -o uquota/pquota/gquota options, revoke the
928 * quotachecked license.
929 */
930 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 931 xfs_notice(mp, "resetting quota flags");
7d095257
CH
932 error = xfs_mount_reset_sbqflags(mp);
933 if (error)
a70a4fa5 934 goto out_rtunmount;
7d095257
CH
935 }
936 }
1da177e4 937
17c12bcd
DW
938 /*
939 * During the second phase of log recovery, we need iget and
940 * iput to behave like they do for an active filesystem.
941 * xfs_fs_drop_inode needs to be able to prevent the deletion
942 * of inodes before we're done replaying log items on those
943 * inodes.
944 */
945 mp->m_super->s_flags |= MS_ACTIVE;
946
1da177e4 947 /*
f0b2efad
BF
948 * Finish recovering the file system. This part needed to be delayed
949 * until after the root and real-time bitmap inodes were consistently
950 * read in.
1da177e4 951 */
4249023a 952 error = xfs_log_mount_finish(mp);
1da177e4 953 if (error) {
0b932ccc 954 xfs_warn(mp, "log mount finish failed");
b93b6e43 955 goto out_rtunmount;
1da177e4
LT
956 }
957
ddeb14f4
DC
958 /*
959 * Now the log is fully replayed, we can transition to full read-only
960 * mode for read-only mounts. This will sync all the metadata and clean
961 * the log so that the recovery we just performed does not have to be
962 * replayed again on the next mount.
963 *
964 * We use the same quiesce mechanism as the rw->ro remount, as they are
965 * semantically identical operations.
966 */
967 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
968 XFS_MOUNT_RDONLY) {
969 xfs_quiesce_attr(mp);
970 }
971
1da177e4
LT
972 /*
973 * Complete the quota initialisation, post-log-replay component.
974 */
7d095257
CH
975 if (quotamount) {
976 ASSERT(mp->m_qflags == 0);
977 mp->m_qflags = quotaflags;
978
979 xfs_qm_mount_quotas(mp);
980 }
981
84e1e99f
DC
982 /*
983 * Now we are mounted, reserve a small amount of unused space for
984 * privileged transactions. This is needed so that transaction
985 * space required for critical operations can dip into this pool
986 * when at ENOSPC. This is needed for operations like create with
987 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
988 * are not allowed to use this reserved space.
8babd8a2
DC
989 *
990 * This may drive us straight to ENOSPC on mount, but that implies
991 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 992 */
d5db0f97
ES
993 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
994 resblks = xfs_default_resblks(mp);
995 error = xfs_reserve_blocks(mp, &resblks, NULL);
996 if (error)
0b932ccc
DC
997 xfs_warn(mp,
998 "Unable to allocate reserve blocks. Continuing without reserve pool.");
174edb0e
DW
999
1000 /* Recover any CoW blocks that never got remapped. */
1001 error = xfs_reflink_recover_cow(mp);
1002 if (error) {
1003 xfs_err(mp,
1004 "Error %d recovering leftover CoW allocations.", error);
1005 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1006 goto out_quota;
1007 }
84d69619
DW
1008
1009 /* Reserve AG blocks for future btree expansion. */
1010 error = xfs_fs_reserve_ag_blocks(mp);
1011 if (error && error != -ENOSPC)
1012 goto out_agresv;
d5db0f97 1013 }
84e1e99f 1014
1da177e4
LT
1015 return 0;
1016
84d69619
DW
1017 out_agresv:
1018 xfs_fs_unreserve_ag_blocks(mp);
174edb0e
DW
1019 out_quota:
1020 xfs_qm_unmount_quotas(mp);
b93b6e43 1021 out_rtunmount:
d0992452 1022 mp->m_super->s_flags &= ~MS_ACTIVE;
b93b6e43 1023 xfs_rtunmount_inodes(mp);
f9057e3d 1024 out_rele_rip:
43355099 1025 IRELE(rip);
0ae120f8
BF
1026 cancel_delayed_work_sync(&mp->m_reclaim_work);
1027 xfs_reclaim_inodes(mp, SYNC_WAIT);
f9057e3d 1028 out_log_dealloc:
e6b3bb78 1029 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
f0b2efad 1030 xfs_log_mount_cancel(mp);
d4f3512b
DC
1031 out_fail_wait:
1032 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1033 xfs_wait_buftarg(mp->m_logdev_targp);
1034 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 1035 out_free_perag:
ff4f038c 1036 xfs_free_perag(mp);
0650b554
DC
1037 out_free_dir:
1038 xfs_da_unmount(mp);
f9057e3d 1039 out_remove_uuid:
27174203 1040 xfs_uuid_unmount(mp);
192852be
CM
1041 out_remove_error_sysfs:
1042 xfs_error_sysfs_del(mp);
225e4635
BD
1043 out_del_stats:
1044 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
1045 out_remove_sysfs:
1046 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 1047 out:
1da177e4
LT
1048 return error;
1049}
1050
1051/*
1da177e4
LT
1052 * This flushes out the inodes,dquots and the superblock, unmounts the
1053 * log and makes sure that incore structures are freed.
1054 */
41b5c2e7
CH
1055void
1056xfs_unmountfs(
1057 struct xfs_mount *mp)
1da177e4 1058{
41b5c2e7
CH
1059 __uint64_t resblks;
1060 int error;
1da177e4 1061
579b62fa 1062 cancel_delayed_work_sync(&mp->m_eofblocks_work);
83104d44 1063 cancel_delayed_work_sync(&mp->m_cowblocks_work);
579b62fa 1064
84d69619 1065 xfs_fs_unreserve_ag_blocks(mp);
7d095257 1066 xfs_qm_unmount_quotas(mp);
b93b6e43 1067 xfs_rtunmount_inodes(mp);
77508ec8
CH
1068 IRELE(mp->m_rootip);
1069
641c56fb
DC
1070 /*
1071 * We can potentially deadlock here if we have an inode cluster
9da096fd 1072 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1073 * the transaction is still sitting in a iclog. The stale inodes
1074 * on that buffer will have their flush locks held until the
1075 * transaction hits the disk and the callbacks run. the inode
1076 * flush takes the flush lock unconditionally and with nothing to
1077 * push out the iclog we will never get that unlocked. hence we
1078 * need to force the log first.
1079 */
a14a348b 1080 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e 1081
ebf55872
CH
1082 /*
1083 * Wait for all busy extents to be freed, including completion of
1084 * any discard operation.
1085 */
1086 xfs_extent_busy_wait_all(mp);
4560e78f 1087 flush_workqueue(xfs_discard_wq);
ebf55872 1088
e6b3bb78
CM
1089 /*
1090 * We now need to tell the world we are unmounting. This will allow
1091 * us to detect that the filesystem is going away and we should error
1092 * out anything that we have been retrying in the background. This will
1093 * prevent neverending retries in AIL pushing from hanging the unmount.
1094 */
1095 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1096
c854363e 1097 /*
211e4d43
CH
1098 * Flush all pending changes from the AIL.
1099 */
1100 xfs_ail_push_all_sync(mp->m_ail);
1101
1102 /*
1103 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1104 * inodes and none should be pinned or locked, but use synchronous
1105 * reclaim just to be sure. We can stop background inode reclaim
1106 * here as well if it is still running.
c854363e 1107 */
7e18530b 1108 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1109 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1110
7d095257 1111 xfs_qm_unmount(mp);
a357a121 1112
84e1e99f
DC
1113 /*
1114 * Unreserve any blocks we have so that when we unmount we don't account
1115 * the reserved free space as used. This is really only necessary for
1116 * lazy superblock counting because it trusts the incore superblock
9da096fd 1117 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1118 *
1119 * We don't bother correcting this elsewhere for lazy superblock
1120 * counting because on mount of an unclean filesystem we reconstruct the
1121 * correct counter value and this is irrelevant.
1122 *
1123 * For non-lazy counter filesystems, this doesn't matter at all because
1124 * we only every apply deltas to the superblock and hence the incore
1125 * value does not matter....
1126 */
1127 resblks = 0;
714082bc
DC
1128 error = xfs_reserve_blocks(mp, &resblks, NULL);
1129 if (error)
0b932ccc 1130 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1131 "Freespace may not be correct on next mount.");
1132
adab0f67 1133 error = xfs_log_sbcount(mp);
e5720eec 1134 if (error)
0b932ccc 1135 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1136 "Freespace may not be correct on next mount.");
87c7bec7 1137
225e4635 1138
21b699c8 1139 xfs_log_unmount(mp);
0650b554 1140 xfs_da_unmount(mp);
27174203 1141 xfs_uuid_unmount(mp);
1da177e4 1142
1550d0b0 1143#if defined(DEBUG)
0ce4cfd4 1144 xfs_errortag_clearall(mp, 0);
1da177e4 1145#endif
ff4f038c 1146 xfs_free_perag(mp);
a31b1d3d 1147
192852be 1148 xfs_error_sysfs_del(mp);
225e4635 1149 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1150 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1151}
1152
91ee575f
BF
1153/*
1154 * Determine whether modifications can proceed. The caller specifies the minimum
1155 * freeze level for which modifications should not be allowed. This allows
1156 * certain operations to proceed while the freeze sequence is in progress, if
1157 * necessary.
1158 */
1159bool
1160xfs_fs_writable(
1161 struct xfs_mount *mp,
1162 int level)
92821e2b 1163{
91ee575f
BF
1164 ASSERT(level > SB_UNFROZEN);
1165 if ((mp->m_super->s_writers.frozen >= level) ||
1166 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1167 return false;
1168
1169 return true;
92821e2b
DC
1170}
1171
1172/*
b2ce3974
AE
1173 * xfs_log_sbcount
1174 *
adab0f67 1175 * Sync the superblock counters to disk.
b2ce3974 1176 *
91ee575f
BF
1177 * Note this code can be called during the process of freezing, so we use the
1178 * transaction allocator that does not block when the transaction subsystem is
1179 * in its frozen state.
92821e2b
DC
1180 */
1181int
adab0f67 1182xfs_log_sbcount(xfs_mount_t *mp)
92821e2b 1183{
91ee575f
BF
1184 /* allow this to proceed during the freeze sequence... */
1185 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
92821e2b
DC
1186 return 0;
1187
92821e2b
DC
1188 /*
1189 * we don't need to do this if we are updating the superblock
1190 * counters on every modification.
1191 */
1192 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1193 return 0;
1194
61e63ecb 1195 return xfs_sync_sb(mp, true);
92821e2b
DC
1196}
1197
8c1903d3
DC
1198/*
1199 * Deltas for the inode count are +/-64, hence we use a large batch size
1200 * of 128 so we don't need to take the counter lock on every update.
1201 */
1202#define XFS_ICOUNT_BATCH 128
501ab323
DC
1203int
1204xfs_mod_icount(
1205 struct xfs_mount *mp,
1206 int64_t delta)
1207{
8c1903d3
DC
1208 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1209 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
501ab323
DC
1210 ASSERT(0);
1211 percpu_counter_add(&mp->m_icount, -delta);
1212 return -EINVAL;
1213 }
1214 return 0;
1215}
1216
e88b64ea
DC
1217int
1218xfs_mod_ifree(
1219 struct xfs_mount *mp,
1220 int64_t delta)
1221{
1222 percpu_counter_add(&mp->m_ifree, delta);
1223 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1224 ASSERT(0);
1225 percpu_counter_add(&mp->m_ifree, -delta);
1226 return -EINVAL;
1227 }
1228 return 0;
1229}
0d485ada 1230
8c1903d3
DC
1231/*
1232 * Deltas for the block count can vary from 1 to very large, but lock contention
1233 * only occurs on frequent small block count updates such as in the delayed
1234 * allocation path for buffered writes (page a time updates). Hence we set
1235 * a large batch count (1024) to minimise global counter updates except when
1236 * we get near to ENOSPC and we have to be very accurate with our updates.
1237 */
1238#define XFS_FDBLOCKS_BATCH 1024
0d485ada
DC
1239int
1240xfs_mod_fdblocks(
1241 struct xfs_mount *mp,
1242 int64_t delta,
1243 bool rsvd)
1244{
1245 int64_t lcounter;
1246 long long res_used;
1247 s32 batch;
1248
1249 if (delta > 0) {
1250 /*
1251 * If the reserve pool is depleted, put blocks back into it
1252 * first. Most of the time the pool is full.
1253 */
1254 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1255 percpu_counter_add(&mp->m_fdblocks, delta);
1256 return 0;
1257 }
1258
1259 spin_lock(&mp->m_sb_lock);
1260 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1261
1262 if (res_used > delta) {
1263 mp->m_resblks_avail += delta;
1264 } else {
1265 delta -= res_used;
1266 mp->m_resblks_avail = mp->m_resblks;
1267 percpu_counter_add(&mp->m_fdblocks, delta);
1268 }
1269 spin_unlock(&mp->m_sb_lock);
1270 return 0;
1271 }
1272
1273 /*
1274 * Taking blocks away, need to be more accurate the closer we
1275 * are to zero.
1276 *
0d485ada
DC
1277 * If the counter has a value of less than 2 * max batch size,
1278 * then make everything serialise as we are real close to
1279 * ENOSPC.
1280 */
8c1903d3
DC
1281 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1282 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1283 batch = 1;
1284 else
8c1903d3 1285 batch = XFS_FDBLOCKS_BATCH;
0d485ada
DC
1286
1287 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
52548852 1288 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
8c1903d3 1289 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1290 /* we had space! */
1291 return 0;
1292 }
1293
1294 /*
1295 * lock up the sb for dipping into reserves before releasing the space
1296 * that took us to ENOSPC.
1297 */
1298 spin_lock(&mp->m_sb_lock);
1299 percpu_counter_add(&mp->m_fdblocks, -delta);
1300 if (!rsvd)
1301 goto fdblocks_enospc;
1302
1303 lcounter = (long long)mp->m_resblks_avail + delta;
1304 if (lcounter >= 0) {
1305 mp->m_resblks_avail = lcounter;
1306 spin_unlock(&mp->m_sb_lock);
1307 return 0;
1308 }
1309 printk_once(KERN_WARNING
1310 "Filesystem \"%s\": reserve blocks depleted! "
1311 "Consider increasing reserve pool size.",
1312 mp->m_fsname);
1313fdblocks_enospc:
1314 spin_unlock(&mp->m_sb_lock);
1315 return -ENOSPC;
1316}
1317
bab98bbe
DC
1318int
1319xfs_mod_frextents(
1320 struct xfs_mount *mp,
1321 int64_t delta)
1322{
1323 int64_t lcounter;
1324 int ret = 0;
1325
1326 spin_lock(&mp->m_sb_lock);
1327 lcounter = mp->m_sb.sb_frextents + delta;
1328 if (lcounter < 0)
1329 ret = -ENOSPC;
1330 else
1331 mp->m_sb.sb_frextents = lcounter;
1332 spin_unlock(&mp->m_sb_lock);
1333 return ret;
1334}
1335
1da177e4
LT
1336/*
1337 * xfs_getsb() is called to obtain the buffer for the superblock.
1338 * The buffer is returned locked and read in from disk.
1339 * The buffer should be released with a call to xfs_brelse().
1340 *
1341 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1342 * the superblock buffer if it can be locked without sleeping.
1343 * If it can't then we'll return NULL.
1344 */
0c842ad4 1345struct xfs_buf *
1da177e4 1346xfs_getsb(
0c842ad4
CH
1347 struct xfs_mount *mp,
1348 int flags)
1da177e4 1349{
0c842ad4 1350 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1351
0c842ad4
CH
1352 if (!xfs_buf_trylock(bp)) {
1353 if (flags & XBF_TRYLOCK)
1da177e4 1354 return NULL;
0c842ad4 1355 xfs_buf_lock(bp);
1da177e4 1356 }
0c842ad4 1357
72790aa1 1358 xfs_buf_hold(bp);
b0388bf1 1359 ASSERT(bp->b_flags & XBF_DONE);
014c2544 1360 return bp;
1da177e4
LT
1361}
1362
1363/*
1364 * Used to free the superblock along various error paths.
1365 */
1366void
1367xfs_freesb(
26af6552 1368 struct xfs_mount *mp)
1da177e4 1369{
26af6552 1370 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1371
26af6552 1372 xfs_buf_lock(bp);
1da177e4 1373 mp->m_sb_bp = NULL;
26af6552 1374 xfs_buf_relse(bp);
1da177e4
LT
1375}
1376
dda35b8f
CH
1377/*
1378 * If the underlying (data/log/rt) device is readonly, there are some
1379 * operations that cannot proceed.
1380 */
1381int
1382xfs_dev_is_read_only(
1383 struct xfs_mount *mp,
1384 char *message)
1385{
1386 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1387 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1388 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1389 xfs_notice(mp, "%s required on read-only device.", message);
1390 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1391 return -EROFS;
dda35b8f
CH
1392 }
1393 return 0;
1394}