]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_mount.c
xfs: convert the quota debug prints to new API
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4
LT
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4 27#include "xfs_dir2.h"
1da177e4 28#include "xfs_mount.h"
1da177e4 29#include "xfs_bmap_btree.h"
a844f451 30#include "xfs_alloc_btree.h"
1da177e4 31#include "xfs_ialloc_btree.h"
1da177e4
LT
32#include "xfs_dinode.h"
33#include "xfs_inode.h"
a844f451
NS
34#include "xfs_btree.h"
35#include "xfs_ialloc.h"
1da177e4
LT
36#include "xfs_alloc.h"
37#include "xfs_rtalloc.h"
38#include "xfs_bmap.h"
39#include "xfs_error.h"
1da177e4
LT
40#include "xfs_rw.h"
41#include "xfs_quota.h"
42#include "xfs_fsops.h"
43355099 43#include "xfs_utils.h"
0b1b213f
CH
44#include "xfs_trace.h"
45
1da177e4 46
ba0f32d4 47STATIC void xfs_unmountfs_wait(xfs_mount_t *);
1da177e4 48
8d280b98
DC
49
50#ifdef HAVE_PERCPU_SB
20f4ebf2 51STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
45af6c6d
CH
52 int);
53STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 int);
36fbe6e6 55STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
8d280b98
DC
56#else
57
45af6c6d
CH
58#define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
59#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
8d280b98
DC
60#endif
61
1df84c93 62static const struct {
8d280b98
DC
63 short offset;
64 short type; /* 0 = integer
65 * 1 = binary / string (no translation)
66 */
1da177e4
LT
67} xfs_sb_info[] = {
68 { offsetof(xfs_sb_t, sb_magicnum), 0 },
69 { offsetof(xfs_sb_t, sb_blocksize), 0 },
70 { offsetof(xfs_sb_t, sb_dblocks), 0 },
71 { offsetof(xfs_sb_t, sb_rblocks), 0 },
72 { offsetof(xfs_sb_t, sb_rextents), 0 },
73 { offsetof(xfs_sb_t, sb_uuid), 1 },
74 { offsetof(xfs_sb_t, sb_logstart), 0 },
75 { offsetof(xfs_sb_t, sb_rootino), 0 },
76 { offsetof(xfs_sb_t, sb_rbmino), 0 },
77 { offsetof(xfs_sb_t, sb_rsumino), 0 },
78 { offsetof(xfs_sb_t, sb_rextsize), 0 },
79 { offsetof(xfs_sb_t, sb_agblocks), 0 },
80 { offsetof(xfs_sb_t, sb_agcount), 0 },
81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
82 { offsetof(xfs_sb_t, sb_logblocks), 0 },
83 { offsetof(xfs_sb_t, sb_versionnum), 0 },
84 { offsetof(xfs_sb_t, sb_sectsize), 0 },
85 { offsetof(xfs_sb_t, sb_inodesize), 0 },
86 { offsetof(xfs_sb_t, sb_inopblock), 0 },
87 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
88 { offsetof(xfs_sb_t, sb_blocklog), 0 },
89 { offsetof(xfs_sb_t, sb_sectlog), 0 },
90 { offsetof(xfs_sb_t, sb_inodelog), 0 },
91 { offsetof(xfs_sb_t, sb_inopblog), 0 },
92 { offsetof(xfs_sb_t, sb_agblklog), 0 },
93 { offsetof(xfs_sb_t, sb_rextslog), 0 },
94 { offsetof(xfs_sb_t, sb_inprogress), 0 },
95 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
96 { offsetof(xfs_sb_t, sb_icount), 0 },
97 { offsetof(xfs_sb_t, sb_ifree), 0 },
98 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
99 { offsetof(xfs_sb_t, sb_frextents), 0 },
100 { offsetof(xfs_sb_t, sb_uquotino), 0 },
101 { offsetof(xfs_sb_t, sb_gquotino), 0 },
102 { offsetof(xfs_sb_t, sb_qflags), 0 },
103 { offsetof(xfs_sb_t, sb_flags), 0 },
104 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106 { offsetof(xfs_sb_t, sb_unit), 0 },
107 { offsetof(xfs_sb_t, sb_width), 0 },
108 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
109 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110 { offsetof(xfs_sb_t, sb_logsectsize),0 },
111 { offsetof(xfs_sb_t, sb_logsunit), 0 },
112 { offsetof(xfs_sb_t, sb_features2), 0 },
ee1c0908 113 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
1da177e4
LT
114 { sizeof(xfs_sb_t), 0 }
115};
116
27174203
CH
117static DEFINE_MUTEX(xfs_uuid_table_mutex);
118static int xfs_uuid_table_size;
119static uuid_t *xfs_uuid_table;
120
121/*
122 * See if the UUID is unique among mounted XFS filesystems.
123 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
124 */
125STATIC int
126xfs_uuid_mount(
127 struct xfs_mount *mp)
128{
129 uuid_t *uuid = &mp->m_sb.sb_uuid;
130 int hole, i;
131
132 if (mp->m_flags & XFS_MOUNT_NOUUID)
133 return 0;
134
135 if (uuid_is_nil(uuid)) {
136 cmn_err(CE_WARN,
137 "XFS: Filesystem %s has nil UUID - can't mount",
138 mp->m_fsname);
139 return XFS_ERROR(EINVAL);
140 }
141
142 mutex_lock(&xfs_uuid_table_mutex);
143 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
144 if (uuid_is_nil(&xfs_uuid_table[i])) {
145 hole = i;
146 continue;
147 }
148 if (uuid_equal(uuid, &xfs_uuid_table[i]))
149 goto out_duplicate;
150 }
151
152 if (hole < 0) {
153 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
154 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
155 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
156 KM_SLEEP);
157 hole = xfs_uuid_table_size++;
158 }
159 xfs_uuid_table[hole] = *uuid;
160 mutex_unlock(&xfs_uuid_table_mutex);
161
162 return 0;
163
164 out_duplicate:
165 mutex_unlock(&xfs_uuid_table_mutex);
166 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
167 mp->m_fsname);
168 return XFS_ERROR(EINVAL);
169}
170
171STATIC void
172xfs_uuid_unmount(
173 struct xfs_mount *mp)
174{
175 uuid_t *uuid = &mp->m_sb.sb_uuid;
176 int i;
177
178 if (mp->m_flags & XFS_MOUNT_NOUUID)
179 return;
180
181 mutex_lock(&xfs_uuid_table_mutex);
182 for (i = 0; i < xfs_uuid_table_size; i++) {
183 if (uuid_is_nil(&xfs_uuid_table[i]))
184 continue;
185 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
186 continue;
187 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
188 break;
189 }
190 ASSERT(i < xfs_uuid_table_size);
191 mutex_unlock(&xfs_uuid_table_mutex);
192}
193
194
0fa800fb
DC
195/*
196 * Reference counting access wrappers to the perag structures.
e176579e
DC
197 * Because we never free per-ag structures, the only thing we
198 * have to protect against changes is the tree structure itself.
0fa800fb
DC
199 */
200struct xfs_perag *
201xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
202{
203 struct xfs_perag *pag;
204 int ref = 0;
205
e176579e 206 rcu_read_lock();
0fa800fb
DC
207 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
208 if (pag) {
209 ASSERT(atomic_read(&pag->pag_ref) >= 0);
0fa800fb
DC
210 ref = atomic_inc_return(&pag->pag_ref);
211 }
e176579e 212 rcu_read_unlock();
0fa800fb
DC
213 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
214 return pag;
215}
216
65d0f205
DC
217/*
218 * search from @first to find the next perag with the given tag set.
219 */
220struct xfs_perag *
221xfs_perag_get_tag(
222 struct xfs_mount *mp,
223 xfs_agnumber_t first,
224 int tag)
225{
226 struct xfs_perag *pag;
227 int found;
228 int ref;
229
230 rcu_read_lock();
231 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
232 (void **)&pag, first, 1, tag);
233 if (found <= 0) {
234 rcu_read_unlock();
235 return NULL;
236 }
237 ref = atomic_inc_return(&pag->pag_ref);
238 rcu_read_unlock();
239 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
240 return pag;
241}
242
0fa800fb
DC
243void
244xfs_perag_put(struct xfs_perag *pag)
245{
246 int ref;
247
248 ASSERT(atomic_read(&pag->pag_ref) > 0);
249 ref = atomic_dec_return(&pag->pag_ref);
250 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
251}
252
e176579e
DC
253STATIC void
254__xfs_free_perag(
255 struct rcu_head *head)
256{
257 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
258
259 ASSERT(atomic_read(&pag->pag_ref) == 0);
260 kmem_free(pag);
261}
262
1da177e4 263/*
e176579e 264 * Free up the per-ag resources associated with the mount structure.
1da177e4 265 */
c962fb79 266STATIC void
ff4f038c 267xfs_free_perag(
745f6919 268 xfs_mount_t *mp)
1da177e4 269{
1c1c6ebc
DC
270 xfs_agnumber_t agno;
271 struct xfs_perag *pag;
272
273 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
274 spin_lock(&mp->m_perag_lock);
275 pag = radix_tree_delete(&mp->m_perag_tree, agno);
276 spin_unlock(&mp->m_perag_lock);
e176579e 277 ASSERT(pag);
f83282a8 278 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 279 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 280 }
1da177e4
LT
281}
282
4cc929ee
NS
283/*
284 * Check size of device based on the (data/realtime) block count.
285 * Note: this check is used by the growfs code as well as mount.
286 */
287int
288xfs_sb_validate_fsb_count(
289 xfs_sb_t *sbp,
290 __uint64_t nblocks)
291{
292 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
293 ASSERT(sbp->sb_blocklog >= BBSHIFT);
294
295#if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
296 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
657a4cff 297 return EFBIG;
4cc929ee
NS
298#else /* Limited by UINT_MAX of sectors */
299 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
657a4cff 300 return EFBIG;
4cc929ee
NS
301#endif
302 return 0;
303}
1da177e4
LT
304
305/*
306 * Check the validity of the SB found.
307 */
308STATIC int
309xfs_mount_validate_sb(
310 xfs_mount_t *mp,
764d1f89
NS
311 xfs_sb_t *sbp,
312 int flags)
1da177e4 313{
af34e09d
DC
314 int loud = !(flags & XFS_MFSI_QUIET);
315
1da177e4
LT
316 /*
317 * If the log device and data device have the
318 * same device number, the log is internal.
319 * Consequently, the sb_logstart should be non-zero. If
320 * we have a zero sb_logstart in this case, we may be trying to mount
321 * a volume filesystem in a non-volume manner.
322 */
323 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
af34e09d
DC
324 if (loud)
325 xfs_warn(mp, "bad magic number");
1da177e4
LT
326 return XFS_ERROR(EWRONGFS);
327 }
328
62118709 329 if (!xfs_sb_good_version(sbp)) {
af34e09d
DC
330 if (loud)
331 xfs_warn(mp, "bad version");
1da177e4
LT
332 return XFS_ERROR(EWRONGFS);
333 }
334
335 if (unlikely(
336 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
af34e09d
DC
337 if (loud)
338 xfs_warn(mp,
339 "filesystem is marked as having an external log; "
340 "specify logdev on the mount command line.");
764d1f89 341 return XFS_ERROR(EINVAL);
1da177e4
LT
342 }
343
344 if (unlikely(
345 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
af34e09d
DC
346 if (loud)
347 xfs_warn(mp,
348 "filesystem is marked as having an internal log; "
349 "do not specify logdev on the mount command line.");
764d1f89 350 return XFS_ERROR(EINVAL);
1da177e4
LT
351 }
352
353 /*
354 * More sanity checking. These were stolen directly from
355 * xfs_repair.
356 */
357 if (unlikely(
358 sbp->sb_agcount <= 0 ||
359 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
360 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
361 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
362 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
2ac00af7 363 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
1da177e4
LT
364 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
365 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
366 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
367 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
2ac00af7 368 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
1da177e4
LT
369 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
370 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
9f989c94
NS
371 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
372 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
2ac00af7 373 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
9f989c94 374 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
1da177e4
LT
375 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
376 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
e50bd16f 377 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
af34e09d
DC
378 if (loud)
379 xfs_warn(mp, "SB sanity check 1 failed");
1da177e4
LT
380 return XFS_ERROR(EFSCORRUPTED);
381 }
382
383 /*
384 * Sanity check AG count, size fields against data size field
385 */
386 if (unlikely(
387 sbp->sb_dblocks == 0 ||
388 sbp->sb_dblocks >
389 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
390 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
391 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
af34e09d
DC
392 if (loud)
393 xfs_warn(mp, "SB sanity check 2 failed");
1da177e4
LT
394 return XFS_ERROR(EFSCORRUPTED);
395 }
396
2edbddd5
LM
397 /*
398 * Until this is fixed only page-sized or smaller data blocks work.
399 */
400 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
af34e09d
DC
401 if (loud) {
402 xfs_warn(mp,
403 "File system with blocksize %d bytes. "
404 "Only pagesize (%ld) or less will currently work.",
405 sbp->sb_blocksize, PAGE_SIZE);
406 }
2edbddd5
LM
407 return XFS_ERROR(ENOSYS);
408 }
409
1a5902c5
CH
410 /*
411 * Currently only very few inode sizes are supported.
412 */
413 switch (sbp->sb_inodesize) {
414 case 256:
415 case 512:
416 case 1024:
417 case 2048:
418 break;
419 default:
af34e09d
DC
420 if (loud)
421 xfs_warn(mp, "inode size of %d bytes not supported",
422 sbp->sb_inodesize);
1a5902c5
CH
423 return XFS_ERROR(ENOSYS);
424 }
425
4cc929ee
NS
426 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
427 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
af34e09d
DC
428 if (loud)
429 xfs_warn(mp,
430 "file system too large to be mounted on this system.");
657a4cff 431 return XFS_ERROR(EFBIG);
1da177e4
LT
432 }
433
434 if (unlikely(sbp->sb_inprogress)) {
af34e09d
DC
435 if (loud)
436 xfs_warn(mp, "file system busy");
1da177e4
LT
437 return XFS_ERROR(EFSCORRUPTED);
438 }
439
de20614b
NS
440 /*
441 * Version 1 directory format has never worked on Linux.
442 */
62118709 443 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
af34e09d
DC
444 if (loud)
445 xfs_warn(mp,
446 "file system using version 1 directory format");
de20614b
NS
447 return XFS_ERROR(ENOSYS);
448 }
449
1da177e4
LT
450 return 0;
451}
452
1c1c6ebc 453int
c11e2c36 454xfs_initialize_perag(
c11e2c36 455 xfs_mount_t *mp,
1c1c6ebc
DC
456 xfs_agnumber_t agcount,
457 xfs_agnumber_t *maxagi)
1da177e4
LT
458{
459 xfs_agnumber_t index, max_metadata;
8b26c582 460 xfs_agnumber_t first_initialised = 0;
1da177e4
LT
461 xfs_perag_t *pag;
462 xfs_agino_t agino;
463 xfs_ino_t ino;
464 xfs_sb_t *sbp = &mp->m_sb;
8b26c582 465 int error = -ENOMEM;
1da177e4 466
1c1c6ebc
DC
467 /*
468 * Walk the current per-ag tree so we don't try to initialise AGs
469 * that already exist (growfs case). Allocate and insert all the
470 * AGs we don't find ready for initialisation.
471 */
472 for (index = 0; index < agcount; index++) {
473 pag = xfs_perag_get(mp, index);
474 if (pag) {
475 xfs_perag_put(pag);
476 continue;
477 }
8b26c582
DC
478 if (!first_initialised)
479 first_initialised = index;
fb3b504a 480
1c1c6ebc
DC
481 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
482 if (!pag)
8b26c582 483 goto out_unwind;
fb3b504a
CH
484 pag->pag_agno = index;
485 pag->pag_mount = mp;
1a427ab0 486 spin_lock_init(&pag->pag_ici_lock);
69b491c2 487 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 488 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
489 spin_lock_init(&pag->pag_buf_lock);
490 pag->pag_buf_tree = RB_ROOT;
fb3b504a 491
1c1c6ebc 492 if (radix_tree_preload(GFP_NOFS))
8b26c582 493 goto out_unwind;
fb3b504a 494
1c1c6ebc
DC
495 spin_lock(&mp->m_perag_lock);
496 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
497 BUG();
498 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
499 radix_tree_preload_end();
500 error = -EEXIST;
501 goto out_unwind;
1c1c6ebc
DC
502 }
503 spin_unlock(&mp->m_perag_lock);
504 radix_tree_preload_end();
505 }
506
fb3b504a
CH
507 /*
508 * If we mount with the inode64 option, or no inode overflows
509 * the legacy 32-bit address space clear the inode32 option.
1da177e4 510 */
fb3b504a
CH
511 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
512 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
513
514 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
1da177e4 515 mp->m_flags |= XFS_MOUNT_32BITINODES;
fb3b504a 516 else
1da177e4 517 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
1da177e4 518
1da177e4 519 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
fb3b504a
CH
520 /*
521 * Calculate how much should be reserved for inodes to meet
522 * the max inode percentage.
1da177e4
LT
523 */
524 if (mp->m_maxicount) {
525 __uint64_t icount;
526
527 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
528 do_div(icount, 100);
529 icount += sbp->sb_agblocks - 1;
a749ee86 530 do_div(icount, sbp->sb_agblocks);
1da177e4
LT
531 max_metadata = icount;
532 } else {
533 max_metadata = agcount;
534 }
fb3b504a 535
1da177e4
LT
536 for (index = 0; index < agcount; index++) {
537 ino = XFS_AGINO_TO_INO(mp, index, agino);
fb3b504a 538 if (ino > XFS_MAXINUMBER_32) {
1da177e4
LT
539 index++;
540 break;
541 }
542
44b56e0a 543 pag = xfs_perag_get(mp, index);
1da177e4
LT
544 pag->pagi_inodeok = 1;
545 if (index < max_metadata)
546 pag->pagf_metadata = 1;
44b56e0a 547 xfs_perag_put(pag);
1da177e4
LT
548 }
549 } else {
1da177e4 550 for (index = 0; index < agcount; index++) {
44b56e0a 551 pag = xfs_perag_get(mp, index);
1da177e4 552 pag->pagi_inodeok = 1;
44b56e0a 553 xfs_perag_put(pag);
1da177e4
LT
554 }
555 }
fb3b504a 556
1c1c6ebc
DC
557 if (maxagi)
558 *maxagi = index;
559 return 0;
8b26c582
DC
560
561out_unwind:
562 kmem_free(pag);
563 for (; index > first_initialised; index--) {
564 pag = radix_tree_delete(&mp->m_perag_tree, index);
565 kmem_free(pag);
566 }
567 return error;
1da177e4
LT
568}
569
2bdf7cd0
CH
570void
571xfs_sb_from_disk(
572 xfs_sb_t *to,
573 xfs_dsb_t *from)
574{
575 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
576 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
577 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
578 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
579 to->sb_rextents = be64_to_cpu(from->sb_rextents);
580 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
581 to->sb_logstart = be64_to_cpu(from->sb_logstart);
582 to->sb_rootino = be64_to_cpu(from->sb_rootino);
583 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
584 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
585 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
586 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
587 to->sb_agcount = be32_to_cpu(from->sb_agcount);
588 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
589 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
590 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
591 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
592 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
593 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
594 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
595 to->sb_blocklog = from->sb_blocklog;
596 to->sb_sectlog = from->sb_sectlog;
597 to->sb_inodelog = from->sb_inodelog;
598 to->sb_inopblog = from->sb_inopblog;
599 to->sb_agblklog = from->sb_agblklog;
600 to->sb_rextslog = from->sb_rextslog;
601 to->sb_inprogress = from->sb_inprogress;
602 to->sb_imax_pct = from->sb_imax_pct;
603 to->sb_icount = be64_to_cpu(from->sb_icount);
604 to->sb_ifree = be64_to_cpu(from->sb_ifree);
605 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
606 to->sb_frextents = be64_to_cpu(from->sb_frextents);
607 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
608 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
609 to->sb_qflags = be16_to_cpu(from->sb_qflags);
610 to->sb_flags = from->sb_flags;
611 to->sb_shared_vn = from->sb_shared_vn;
612 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
613 to->sb_unit = be32_to_cpu(from->sb_unit);
614 to->sb_width = be32_to_cpu(from->sb_width);
615 to->sb_dirblklog = from->sb_dirblklog;
616 to->sb_logsectlog = from->sb_logsectlog;
617 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
618 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
619 to->sb_features2 = be32_to_cpu(from->sb_features2);
ee1c0908 620 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
2bdf7cd0
CH
621}
622
1da177e4 623/*
2bdf7cd0 624 * Copy in core superblock to ondisk one.
1da177e4 625 *
2bdf7cd0 626 * The fields argument is mask of superblock fields to copy.
1da177e4
LT
627 */
628void
2bdf7cd0
CH
629xfs_sb_to_disk(
630 xfs_dsb_t *to,
631 xfs_sb_t *from,
1da177e4
LT
632 __int64_t fields)
633{
2bdf7cd0
CH
634 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
635 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
1da177e4
LT
636 xfs_sb_field_t f;
637 int first;
638 int size;
639
1da177e4 640 ASSERT(fields);
1da177e4
LT
641 if (!fields)
642 return;
643
1da177e4
LT
644 while (fields) {
645 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
646 first = xfs_sb_info[f].offset;
647 size = xfs_sb_info[f + 1].offset - first;
648
649 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
650
651 if (size == 1 || xfs_sb_info[f].type == 1) {
2bdf7cd0 652 memcpy(to_ptr + first, from_ptr + first, size);
1da177e4
LT
653 } else {
654 switch (size) {
655 case 2:
2bdf7cd0
CH
656 *(__be16 *)(to_ptr + first) =
657 cpu_to_be16(*(__u16 *)(from_ptr + first));
1da177e4
LT
658 break;
659 case 4:
2bdf7cd0
CH
660 *(__be32 *)(to_ptr + first) =
661 cpu_to_be32(*(__u32 *)(from_ptr + first));
1da177e4
LT
662 break;
663 case 8:
2bdf7cd0
CH
664 *(__be64 *)(to_ptr + first) =
665 cpu_to_be64(*(__u64 *)(from_ptr + first));
1da177e4
LT
666 break;
667 default:
668 ASSERT(0);
669 }
670 }
671
672 fields &= ~(1LL << f);
673 }
674}
675
676/*
677 * xfs_readsb
678 *
679 * Does the initial read of the superblock.
680 */
681int
764d1f89 682xfs_readsb(xfs_mount_t *mp, int flags)
1da177e4
LT
683{
684 unsigned int sector_size;
1da177e4 685 xfs_buf_t *bp;
1da177e4 686 int error;
af34e09d 687 int loud = !(flags & XFS_MFSI_QUIET);
1da177e4
LT
688
689 ASSERT(mp->m_sb_bp == NULL);
690 ASSERT(mp->m_ddev_targp != NULL);
691
692 /*
693 * Allocate a (locked) buffer to hold the superblock.
694 * This will be kept around at all times to optimize
695 * access to the superblock.
696 */
697 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
26af6552
DC
698
699reread:
700 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
701 XFS_SB_DADDR, sector_size, 0);
702 if (!bp) {
af34e09d
DC
703 if (loud)
704 xfs_warn(mp, "SB buffer read failed");
26af6552 705 return EIO;
1da177e4 706 }
1da177e4
LT
707
708 /*
709 * Initialize the mount structure from the superblock.
710 * But first do some basic consistency checking.
711 */
2bdf7cd0 712 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
764d1f89 713 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
1da177e4 714 if (error) {
af34e09d
DC
715 if (loud)
716 xfs_warn(mp, "SB validate failed");
26af6552 717 goto release_buf;
1da177e4
LT
718 }
719
720 /*
721 * We must be able to do sector-sized and sector-aligned IO.
722 */
723 if (sector_size > mp->m_sb.sb_sectsize) {
af34e09d
DC
724 if (loud)
725 xfs_warn(mp, "device supports %u byte sectors (not %u)",
726 sector_size, mp->m_sb.sb_sectsize);
1da177e4 727 error = ENOSYS;
26af6552 728 goto release_buf;
1da177e4
LT
729 }
730
731 /*
732 * If device sector size is smaller than the superblock size,
733 * re-read the superblock so the buffer is correctly sized.
734 */
735 if (sector_size < mp->m_sb.sb_sectsize) {
1da177e4
LT
736 xfs_buf_relse(bp);
737 sector_size = mp->m_sb.sb_sectsize;
26af6552 738 goto reread;
1da177e4
LT
739 }
740
5478eead
LM
741 /* Initialize per-cpu counters */
742 xfs_icsb_reinit_counters(mp);
8d280b98 743
1da177e4 744 mp->m_sb_bp = bp;
26af6552 745 xfs_buf_unlock(bp);
1da177e4
LT
746 return 0;
747
26af6552
DC
748release_buf:
749 xfs_buf_relse(bp);
1da177e4
LT
750 return error;
751}
752
753
754/*
755 * xfs_mount_common
756 *
757 * Mount initialization code establishing various mount
758 * fields from the superblock associated with the given
759 * mount structure
760 */
ba0f32d4 761STATIC void
1da177e4
LT
762xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
763{
1da177e4 764 mp->m_agfrotor = mp->m_agirotor = 0;
007c61c6 765 spin_lock_init(&mp->m_agirotor_lock);
1da177e4
LT
766 mp->m_maxagi = mp->m_sb.sb_agcount;
767 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
768 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
769 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
770 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
771 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
1da177e4
LT
772 mp->m_blockmask = sbp->sb_blocksize - 1;
773 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
774 mp->m_blockwmask = mp->m_blockwsize - 1;
1da177e4 775
60197e8d
CH
776 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
777 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
778 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
779 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
780
781 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
782 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
783 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
784 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
785
786 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
787 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
788 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
789 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
1da177e4
LT
790
791 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
792 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
793 sbp->sb_inopblock);
794 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
795}
92821e2b
DC
796
797/*
798 * xfs_initialize_perag_data
799 *
800 * Read in each per-ag structure so we can count up the number of
801 * allocated inodes, free inodes and used filesystem blocks as this
802 * information is no longer persistent in the superblock. Once we have
803 * this information, write it into the in-core superblock structure.
804 */
805STATIC int
806xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
807{
808 xfs_agnumber_t index;
809 xfs_perag_t *pag;
810 xfs_sb_t *sbp = &mp->m_sb;
811 uint64_t ifree = 0;
812 uint64_t ialloc = 0;
813 uint64_t bfree = 0;
814 uint64_t bfreelst = 0;
815 uint64_t btree = 0;
816 int error;
92821e2b
DC
817
818 for (index = 0; index < agcount; index++) {
819 /*
820 * read the agf, then the agi. This gets us
9da096fd 821 * all the information we need and populates the
92821e2b
DC
822 * per-ag structures for us.
823 */
824 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
825 if (error)
826 return error;
827
828 error = xfs_ialloc_pagi_init(mp, NULL, index);
829 if (error)
830 return error;
44b56e0a 831 pag = xfs_perag_get(mp, index);
92821e2b
DC
832 ifree += pag->pagi_freecount;
833 ialloc += pag->pagi_count;
834 bfree += pag->pagf_freeblks;
835 bfreelst += pag->pagf_flcount;
836 btree += pag->pagf_btreeblks;
44b56e0a 837 xfs_perag_put(pag);
92821e2b
DC
838 }
839 /*
840 * Overwrite incore superblock counters with just-read data
841 */
3685c2a1 842 spin_lock(&mp->m_sb_lock);
92821e2b
DC
843 sbp->sb_ifree = ifree;
844 sbp->sb_icount = ialloc;
845 sbp->sb_fdblocks = bfree + bfreelst + btree;
3685c2a1 846 spin_unlock(&mp->m_sb_lock);
92821e2b
DC
847
848 /* Fixup the per-cpu counters as well. */
849 xfs_icsb_reinit_counters(mp);
850
851 return 0;
852}
853
1da177e4 854/*
0771fb45 855 * Update alignment values based on mount options and sb values
1da177e4 856 */
0771fb45 857STATIC int
7884bc86 858xfs_update_alignment(xfs_mount_t *mp)
1da177e4 859{
1da177e4 860 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 861
4249023a 862 if (mp->m_dalign) {
1da177e4
LT
863 /*
864 * If stripe unit and stripe width are not multiples
865 * of the fs blocksize turn off alignment.
866 */
867 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
868 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
869 if (mp->m_flags & XFS_MOUNT_RETERR) {
870 cmn_err(CE_WARN,
871 "XFS: alignment check 1 failed");
0771fb45 872 return XFS_ERROR(EINVAL);
1da177e4
LT
873 }
874 mp->m_dalign = mp->m_swidth = 0;
875 } else {
876 /*
877 * Convert the stripe unit and width to FSBs.
878 */
879 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
880 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
881 if (mp->m_flags & XFS_MOUNT_RETERR) {
0771fb45 882 return XFS_ERROR(EINVAL);
1da177e4 883 }
53487786
DC
884 xfs_warn(mp,
885 "stripe alignment turned off: sunit(%d)/swidth(%d) "
886 "incompatible with agsize(%d)",
1da177e4
LT
887 mp->m_dalign, mp->m_swidth,
888 sbp->sb_agblocks);
889
890 mp->m_dalign = 0;
891 mp->m_swidth = 0;
892 } else if (mp->m_dalign) {
893 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
894 } else {
895 if (mp->m_flags & XFS_MOUNT_RETERR) {
53487786
DC
896 xfs_warn(mp,
897 "stripe alignment turned off: sunit(%d) less than bsize(%d)",
898 mp->m_dalign,
1da177e4 899 mp->m_blockmask +1);
0771fb45 900 return XFS_ERROR(EINVAL);
1da177e4
LT
901 }
902 mp->m_swidth = 0;
903 }
904 }
905
906 /*
907 * Update superblock with new values
908 * and log changes
909 */
62118709 910 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
911 if (sbp->sb_unit != mp->m_dalign) {
912 sbp->sb_unit = mp->m_dalign;
7884bc86 913 mp->m_update_flags |= XFS_SB_UNIT;
1da177e4
LT
914 }
915 if (sbp->sb_width != mp->m_swidth) {
916 sbp->sb_width = mp->m_swidth;
7884bc86 917 mp->m_update_flags |= XFS_SB_WIDTH;
1da177e4
LT
918 }
919 }
920 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 921 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
922 mp->m_dalign = sbp->sb_unit;
923 mp->m_swidth = sbp->sb_width;
924 }
925
0771fb45
ES
926 return 0;
927}
1da177e4 928
0771fb45
ES
929/*
930 * Set the maximum inode count for this filesystem
931 */
932STATIC void
933xfs_set_maxicount(xfs_mount_t *mp)
934{
935 xfs_sb_t *sbp = &(mp->m_sb);
936 __uint64_t icount;
1da177e4 937
0771fb45
ES
938 if (sbp->sb_imax_pct) {
939 /*
940 * Make sure the maximum inode count is a multiple
941 * of the units we allocate inodes in.
1da177e4 942 */
1da177e4
LT
943 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
944 do_div(icount, 100);
945 do_div(icount, mp->m_ialloc_blks);
946 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
947 sbp->sb_inopblog;
0771fb45 948 } else {
1da177e4 949 mp->m_maxicount = 0;
1da177e4 950 }
0771fb45
ES
951}
952
953/*
954 * Set the default minimum read and write sizes unless
955 * already specified in a mount option.
956 * We use smaller I/O sizes when the file system
957 * is being used for NFS service (wsync mount option).
958 */
959STATIC void
960xfs_set_rw_sizes(xfs_mount_t *mp)
961{
962 xfs_sb_t *sbp = &(mp->m_sb);
963 int readio_log, writeio_log;
1da177e4 964
1da177e4
LT
965 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
966 if (mp->m_flags & XFS_MOUNT_WSYNC) {
967 readio_log = XFS_WSYNC_READIO_LOG;
968 writeio_log = XFS_WSYNC_WRITEIO_LOG;
969 } else {
970 readio_log = XFS_READIO_LOG_LARGE;
971 writeio_log = XFS_WRITEIO_LOG_LARGE;
972 }
973 } else {
974 readio_log = mp->m_readio_log;
975 writeio_log = mp->m_writeio_log;
976 }
977
1da177e4
LT
978 if (sbp->sb_blocklog > readio_log) {
979 mp->m_readio_log = sbp->sb_blocklog;
980 } else {
981 mp->m_readio_log = readio_log;
982 }
983 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
984 if (sbp->sb_blocklog > writeio_log) {
985 mp->m_writeio_log = sbp->sb_blocklog;
986 } else {
987 mp->m_writeio_log = writeio_log;
988 }
989 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 990}
1da177e4 991
055388a3
DC
992/*
993 * precalculate the low space thresholds for dynamic speculative preallocation.
994 */
995void
996xfs_set_low_space_thresholds(
997 struct xfs_mount *mp)
998{
999 int i;
1000
1001 for (i = 0; i < XFS_LOWSP_MAX; i++) {
1002 __uint64_t space = mp->m_sb.sb_dblocks;
1003
1004 do_div(space, 100);
1005 mp->m_low_space[i] = space * (i + 1);
1006 }
1007}
1008
1009
0771fb45
ES
1010/*
1011 * Set whether we're using inode alignment.
1012 */
1013STATIC void
1014xfs_set_inoalignment(xfs_mount_t *mp)
1015{
62118709 1016 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
1017 mp->m_sb.sb_inoalignmt >=
1018 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1019 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1020 else
1021 mp->m_inoalign_mask = 0;
1022 /*
1023 * If we are using stripe alignment, check whether
1024 * the stripe unit is a multiple of the inode alignment
1025 */
1026 if (mp->m_dalign && mp->m_inoalign_mask &&
1027 !(mp->m_dalign & mp->m_inoalign_mask))
1028 mp->m_sinoalign = mp->m_dalign;
1029 else
1030 mp->m_sinoalign = 0;
0771fb45
ES
1031}
1032
1033/*
1034 * Check that the data (and log if separate) are an ok size.
1035 */
1036STATIC int
4249023a 1037xfs_check_sizes(xfs_mount_t *mp)
0771fb45
ES
1038{
1039 xfs_buf_t *bp;
1040 xfs_daddr_t d;
0771fb45 1041
1da177e4
LT
1042 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1043 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1922c949 1044 cmn_err(CE_WARN, "XFS: filesystem size mismatch detected");
657a4cff 1045 return XFS_ERROR(EFBIG);
1da177e4 1046 }
1922c949
DC
1047 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
1048 d - XFS_FSS_TO_BB(mp, 1),
1049 BBTOB(XFS_FSS_TO_BB(mp, 1)), 0);
1050 if (!bp) {
1051 cmn_err(CE_WARN, "XFS: last sector read failed");
1052 return EIO;
1da177e4 1053 }
1922c949 1054 xfs_buf_relse(bp);
1da177e4 1055
4249023a 1056 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1da177e4
LT
1057 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1058 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1922c949 1059 cmn_err(CE_WARN, "XFS: log size mismatch detected");
657a4cff 1060 return XFS_ERROR(EFBIG);
1da177e4 1061 }
1922c949
DC
1062 bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp,
1063 d - XFS_FSB_TO_BB(mp, 1),
1064 XFS_FSB_TO_B(mp, 1), 0);
1065 if (!bp) {
1066 cmn_err(CE_WARN, "XFS: log device read failed");
1067 return EIO;
0771fb45 1068 }
1922c949 1069 xfs_buf_relse(bp);
0771fb45
ES
1070 }
1071 return 0;
1072}
1073
7d095257
CH
1074/*
1075 * Clear the quotaflags in memory and in the superblock.
1076 */
1077int
1078xfs_mount_reset_sbqflags(
1079 struct xfs_mount *mp)
1080{
1081 int error;
1082 struct xfs_trans *tp;
1083
1084 mp->m_qflags = 0;
1085
1086 /*
1087 * It is OK to look at sb_qflags here in mount path,
1088 * without m_sb_lock.
1089 */
1090 if (mp->m_sb.sb_qflags == 0)
1091 return 0;
1092 spin_lock(&mp->m_sb_lock);
1093 mp->m_sb.sb_qflags = 0;
1094 spin_unlock(&mp->m_sb_lock);
1095
1096 /*
1097 * If the fs is readonly, let the incore superblock run
1098 * with quotas off but don't flush the update out to disk
1099 */
1100 if (mp->m_flags & XFS_MOUNT_RDONLY)
1101 return 0;
1102
1103#ifdef QUOTADEBUG
53487786 1104 xfs_notice(mp, "Writing superblock quota changes");
7d095257
CH
1105#endif
1106
1107 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1108 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1109 XFS_DEFAULT_LOG_COUNT);
1110 if (error) {
1111 xfs_trans_cancel(tp, 0);
53487786 1112 xfs_alert(mp, "%s: Superblock update failed!", __func__);
7d095257
CH
1113 return error;
1114 }
1115
1116 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1117 return xfs_trans_commit(tp, 0);
1118}
1119
d5db0f97
ES
1120__uint64_t
1121xfs_default_resblks(xfs_mount_t *mp)
1122{
1123 __uint64_t resblks;
1124
1125 /*
8babd8a2
DC
1126 * We default to 5% or 8192 fsbs of space reserved, whichever is
1127 * smaller. This is intended to cover concurrent allocation
1128 * transactions when we initially hit enospc. These each require a 4
1129 * block reservation. Hence by default we cover roughly 2000 concurrent
1130 * allocation reservations.
d5db0f97
ES
1131 */
1132 resblks = mp->m_sb.sb_dblocks;
1133 do_div(resblks, 20);
8babd8a2 1134 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
1135 return resblks;
1136}
1137
0771fb45 1138/*
0771fb45
ES
1139 * This function does the following on an initial mount of a file system:
1140 * - reads the superblock from disk and init the mount struct
1141 * - if we're a 32-bit kernel, do a size check on the superblock
1142 * so we don't mount terabyte filesystems
1143 * - init mount struct realtime fields
1144 * - allocate inode hash table for fs
1145 * - init directory manager
1146 * - perform recovery and init the log manager
1147 */
1148int
1149xfs_mountfs(
4249023a 1150 xfs_mount_t *mp)
0771fb45
ES
1151{
1152 xfs_sb_t *sbp = &(mp->m_sb);
1153 xfs_inode_t *rip;
0771fb45 1154 __uint64_t resblks;
7d095257
CH
1155 uint quotamount = 0;
1156 uint quotaflags = 0;
0771fb45
ES
1157 int error = 0;
1158
0771fb45
ES
1159 xfs_mount_common(mp, sbp);
1160
ee1c0908 1161 /*
e6957ea4
ES
1162 * Check for a mismatched features2 values. Older kernels
1163 * read & wrote into the wrong sb offset for sb_features2
1164 * on some platforms due to xfs_sb_t not being 64bit size aligned
1165 * when sb_features2 was added, which made older superblock
1166 * reading/writing routines swap it as a 64-bit value.
ee1c0908 1167 *
e6957ea4
ES
1168 * For backwards compatibility, we make both slots equal.
1169 *
1170 * If we detect a mismatched field, we OR the set bits into the
1171 * existing features2 field in case it has already been modified; we
1172 * don't want to lose any features. We then update the bad location
1173 * with the ORed value so that older kernels will see any features2
1174 * flags, and mark the two fields as needing updates once the
1175 * transaction subsystem is online.
ee1c0908 1176 */
e6957ea4 1177 if (xfs_sb_has_mismatched_features2(sbp)) {
ee1c0908
DC
1178 cmn_err(CE_WARN,
1179 "XFS: correcting sb_features alignment problem");
1180 sbp->sb_features2 |= sbp->sb_bad_features2;
e6957ea4 1181 sbp->sb_bad_features2 = sbp->sb_features2;
7884bc86 1182 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
e6957ea4
ES
1183
1184 /*
1185 * Re-check for ATTR2 in case it was found in bad_features2
1186 * slot.
1187 */
7c12f296
TS
1188 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1189 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 1190 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
1191 }
1192
1193 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1194 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1195 xfs_sb_version_removeattr2(&mp->m_sb);
7884bc86 1196 mp->m_update_flags |= XFS_SB_FEATURES2;
e6957ea4 1197
7c12f296
TS
1198 /* update sb_versionnum for the clearing of the morebits */
1199 if (!sbp->sb_features2)
7884bc86 1200 mp->m_update_flags |= XFS_SB_VERSIONNUM;
ee1c0908
DC
1201 }
1202
0771fb45
ES
1203 /*
1204 * Check if sb_agblocks is aligned at stripe boundary
1205 * If sb_agblocks is NOT aligned turn off m_dalign since
1206 * allocator alignment is within an ag, therefore ag has
1207 * to be aligned at stripe boundary.
1208 */
7884bc86 1209 error = xfs_update_alignment(mp);
0771fb45 1210 if (error)
f9057e3d 1211 goto out;
0771fb45
ES
1212
1213 xfs_alloc_compute_maxlevels(mp);
1214 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1215 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1216 xfs_ialloc_compute_maxlevels(mp);
1217
1218 xfs_set_maxicount(mp);
1219
1220 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1221
27174203
CH
1222 error = xfs_uuid_mount(mp);
1223 if (error)
1224 goto out;
1da177e4 1225
0771fb45
ES
1226 /*
1227 * Set the minimum read and write sizes
1228 */
1229 xfs_set_rw_sizes(mp);
1230
055388a3
DC
1231 /* set the low space thresholds for dynamic preallocation */
1232 xfs_set_low_space_thresholds(mp);
1233
0771fb45
ES
1234 /*
1235 * Set the inode cluster size.
1236 * This may still be overridden by the file system
1237 * block size if it is larger than the chosen cluster size.
1238 */
1239 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1240
1241 /*
1242 * Set inode alignment fields
1243 */
1244 xfs_set_inoalignment(mp);
1245
1246 /*
1247 * Check that the data (and log if separate) are an ok size.
1248 */
4249023a 1249 error = xfs_check_sizes(mp);
0771fb45 1250 if (error)
f9057e3d 1251 goto out_remove_uuid;
0771fb45 1252
1da177e4
LT
1253 /*
1254 * Initialize realtime fields in the mount structure
1255 */
0771fb45
ES
1256 error = xfs_rtmount_init(mp);
1257 if (error) {
1da177e4 1258 cmn_err(CE_WARN, "XFS: RT mount failed");
f9057e3d 1259 goto out_remove_uuid;
1da177e4
LT
1260 }
1261
1da177e4
LT
1262 /*
1263 * Copies the low order bits of the timestamp and the randomly
1264 * set "sequence" number out of a UUID.
1265 */
1266 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1267
1da177e4
LT
1268 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1269
f6c2d1fa 1270 xfs_dir_mount(mp);
1da177e4
LT
1271
1272 /*
1273 * Initialize the attribute manager's entries.
1274 */
1275 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1276
1277 /*
1278 * Initialize the precomputed transaction reservations values.
1279 */
1280 xfs_trans_init(mp);
1281
1da177e4
LT
1282 /*
1283 * Allocate and initialize the per-ag data.
1284 */
1c1c6ebc 1285 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 1286 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
1287 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1288 if (error) {
1289 cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error);
f9057e3d 1290 goto out_remove_uuid;
1c1c6ebc 1291 }
1da177e4 1292
f9057e3d
CH
1293 if (!sbp->sb_logblocks) {
1294 cmn_err(CE_WARN, "XFS: no log defined");
1295 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1296 error = XFS_ERROR(EFSCORRUPTED);
1297 goto out_free_perag;
1298 }
1299
1da177e4
LT
1300 /*
1301 * log's mount-time initialization. Perform 1st part recovery if needed
1302 */
f9057e3d
CH
1303 error = xfs_log_mount(mp, mp->m_logdev_targp,
1304 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1305 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1306 if (error) {
1307 cmn_err(CE_WARN, "XFS: log mount failed");
1308 goto out_free_perag;
1da177e4
LT
1309 }
1310
92821e2b
DC
1311 /*
1312 * Now the log is mounted, we know if it was an unclean shutdown or
1313 * not. If it was, with the first phase of recovery has completed, we
1314 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1315 * but they are recovered transactionally in the second recovery phase
1316 * later.
1317 *
1318 * Hence we can safely re-initialise incore superblock counters from
1319 * the per-ag data. These may not be correct if the filesystem was not
1320 * cleanly unmounted, so we need to wait for recovery to finish before
1321 * doing this.
1322 *
1323 * If the filesystem was cleanly unmounted, then we can trust the
1324 * values in the superblock to be correct and we don't need to do
1325 * anything here.
1326 *
1327 * If we are currently making the filesystem, the initialisation will
1328 * fail as the perag data is in an undefined state.
1329 */
92821e2b
DC
1330 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1331 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1332 !mp->m_sb.sb_inprogress) {
1333 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d
CH
1334 if (error)
1335 goto out_free_perag;
92821e2b 1336 }
f9057e3d 1337
1da177e4
LT
1338 /*
1339 * Get and sanity-check the root inode.
1340 * Save the pointer to it in the mount structure.
1341 */
7b6259e7 1342 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4
LT
1343 if (error) {
1344 cmn_err(CE_WARN, "XFS: failed to read root inode");
f9057e3d 1345 goto out_log_dealloc;
1da177e4
LT
1346 }
1347
1348 ASSERT(rip != NULL);
1da177e4
LT
1349
1350 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1351 cmn_err(CE_WARN, "XFS: corrupted root inode");
b6574520
NS
1352 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1353 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1354 (unsigned long long)rip->i_ino);
1da177e4
LT
1355 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1356 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1357 mp);
1358 error = XFS_ERROR(EFSCORRUPTED);
f9057e3d 1359 goto out_rele_rip;
1da177e4
LT
1360 }
1361 mp->m_rootip = rip; /* save it */
1362
1363 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1364
1365 /*
1366 * Initialize realtime inode pointers in the mount structure
1367 */
0771fb45
ES
1368 error = xfs_rtmount_inodes(mp);
1369 if (error) {
1da177e4
LT
1370 /*
1371 * Free up the root inode.
1372 */
1373 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
f9057e3d 1374 goto out_rele_rip;
1da177e4
LT
1375 }
1376
1377 /*
7884bc86
CH
1378 * If this is a read-only mount defer the superblock updates until
1379 * the next remount into writeable mode. Otherwise we would never
1380 * perform the update e.g. for the root filesystem.
1da177e4 1381 */
7884bc86
CH
1382 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1383 error = xfs_mount_log_sb(mp, mp->m_update_flags);
e5720eec
DC
1384 if (error) {
1385 cmn_err(CE_WARN, "XFS: failed to write sb changes");
b93b6e43 1386 goto out_rtunmount;
e5720eec
DC
1387 }
1388 }
1da177e4
LT
1389
1390 /*
1391 * Initialise the XFS quota management subsystem for this mount
1392 */
7d095257
CH
1393 if (XFS_IS_QUOTA_RUNNING(mp)) {
1394 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1395 if (error)
1396 goto out_rtunmount;
1397 } else {
1398 ASSERT(!XFS_IS_QUOTA_ON(mp));
1399
1400 /*
1401 * If a file system had quotas running earlier, but decided to
1402 * mount without -o uquota/pquota/gquota options, revoke the
1403 * quotachecked license.
1404 */
1405 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1406 cmn_err(CE_NOTE,
1407 "XFS: resetting qflags for filesystem %s",
1408 mp->m_fsname);
1409
1410 error = xfs_mount_reset_sbqflags(mp);
1411 if (error)
1412 return error;
1413 }
1414 }
1da177e4
LT
1415
1416 /*
1417 * Finish recovering the file system. This part needed to be
1418 * delayed until after the root and real-time bitmap inodes
1419 * were consistently read in.
1420 */
4249023a 1421 error = xfs_log_mount_finish(mp);
1da177e4
LT
1422 if (error) {
1423 cmn_err(CE_WARN, "XFS: log mount finish failed");
b93b6e43 1424 goto out_rtunmount;
1da177e4
LT
1425 }
1426
1427 /*
1428 * Complete the quota initialisation, post-log-replay component.
1429 */
7d095257
CH
1430 if (quotamount) {
1431 ASSERT(mp->m_qflags == 0);
1432 mp->m_qflags = quotaflags;
1433
1434 xfs_qm_mount_quotas(mp);
1435 }
1436
84e1e99f
DC
1437 /*
1438 * Now we are mounted, reserve a small amount of unused space for
1439 * privileged transactions. This is needed so that transaction
1440 * space required for critical operations can dip into this pool
1441 * when at ENOSPC. This is needed for operations like create with
1442 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1443 * are not allowed to use this reserved space.
8babd8a2
DC
1444 *
1445 * This may drive us straight to ENOSPC on mount, but that implies
1446 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 1447 */
d5db0f97
ES
1448 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1449 resblks = xfs_default_resblks(mp);
1450 error = xfs_reserve_blocks(mp, &resblks, NULL);
1451 if (error)
1452 cmn_err(CE_WARN, "XFS: Unable to allocate reserve "
1453 "blocks. Continuing without a reserve pool.");
1454 }
84e1e99f 1455
1da177e4
LT
1456 return 0;
1457
b93b6e43
CH
1458 out_rtunmount:
1459 xfs_rtunmount_inodes(mp);
f9057e3d 1460 out_rele_rip:
43355099 1461 IRELE(rip);
f9057e3d 1462 out_log_dealloc:
21b699c8 1463 xfs_log_unmount(mp);
f9057e3d 1464 out_free_perag:
ff4f038c 1465 xfs_free_perag(mp);
f9057e3d 1466 out_remove_uuid:
27174203 1467 xfs_uuid_unmount(mp);
f9057e3d 1468 out:
1da177e4
LT
1469 return error;
1470}
1471
1472/*
1da177e4
LT
1473 * This flushes out the inodes,dquots and the superblock, unmounts the
1474 * log and makes sure that incore structures are freed.
1475 */
41b5c2e7
CH
1476void
1477xfs_unmountfs(
1478 struct xfs_mount *mp)
1da177e4 1479{
41b5c2e7
CH
1480 __uint64_t resblks;
1481 int error;
1da177e4 1482
7d095257 1483 xfs_qm_unmount_quotas(mp);
b93b6e43 1484 xfs_rtunmount_inodes(mp);
77508ec8
CH
1485 IRELE(mp->m_rootip);
1486
641c56fb
DC
1487 /*
1488 * We can potentially deadlock here if we have an inode cluster
9da096fd 1489 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1490 * the transaction is still sitting in a iclog. The stale inodes
1491 * on that buffer will have their flush locks held until the
1492 * transaction hits the disk and the callbacks run. the inode
1493 * flush takes the flush lock unconditionally and with nothing to
1494 * push out the iclog we will never get that unlocked. hence we
1495 * need to force the log first.
1496 */
a14a348b 1497 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e
DC
1498
1499 /*
1500 * Do a delwri reclaim pass first so that as many dirty inodes are
1501 * queued up for IO as possible. Then flush the buffers before making
1502 * a synchronous path to catch all the remaining inodes are reclaimed.
1503 * This makes the reclaim process as quick as possible by avoiding
1504 * synchronous writeout and blocking on inodes already in the delwri
1505 * state as much as possible.
1506 */
1507 xfs_reclaim_inodes(mp, 0);
1508 XFS_bflush(mp->m_ddev_targp);
1509 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1510
7d095257 1511 xfs_qm_unmount(mp);
a357a121 1512
1da177e4
LT
1513 /*
1514 * Flush out the log synchronously so that we know for sure
1515 * that nothing is pinned. This is important because bflush()
1516 * will skip pinned buffers.
1517 */
a14a348b 1518 xfs_log_force(mp, XFS_LOG_SYNC);
1da177e4
LT
1519
1520 xfs_binval(mp->m_ddev_targp);
1521 if (mp->m_rtdev_targp) {
1522 xfs_binval(mp->m_rtdev_targp);
1523 }
1524
84e1e99f
DC
1525 /*
1526 * Unreserve any blocks we have so that when we unmount we don't account
1527 * the reserved free space as used. This is really only necessary for
1528 * lazy superblock counting because it trusts the incore superblock
9da096fd 1529 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1530 *
1531 * We don't bother correcting this elsewhere for lazy superblock
1532 * counting because on mount of an unclean filesystem we reconstruct the
1533 * correct counter value and this is irrelevant.
1534 *
1535 * For non-lazy counter filesystems, this doesn't matter at all because
1536 * we only every apply deltas to the superblock and hence the incore
1537 * value does not matter....
1538 */
1539 resblks = 0;
714082bc
DC
1540 error = xfs_reserve_blocks(mp, &resblks, NULL);
1541 if (error)
1542 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1543 "Freespace may not be correct on next mount.");
1544
e5720eec
DC
1545 error = xfs_log_sbcount(mp, 1);
1546 if (error)
1547 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1548 "Freespace may not be correct on next mount.");
1da177e4 1549 xfs_unmountfs_writesb(mp);
1da177e4 1550 xfs_unmountfs_wait(mp); /* wait for async bufs */
21b699c8
CH
1551 xfs_log_unmount_write(mp);
1552 xfs_log_unmount(mp);
27174203 1553 xfs_uuid_unmount(mp);
1da177e4 1554
1550d0b0 1555#if defined(DEBUG)
0ce4cfd4 1556 xfs_errortag_clearall(mp, 0);
1da177e4 1557#endif
ff4f038c 1558 xfs_free_perag(mp);
1da177e4
LT
1559}
1560
ba0f32d4 1561STATIC void
1da177e4
LT
1562xfs_unmountfs_wait(xfs_mount_t *mp)
1563{
1564 if (mp->m_logdev_targp != mp->m_ddev_targp)
1565 xfs_wait_buftarg(mp->m_logdev_targp);
1566 if (mp->m_rtdev_targp)
1567 xfs_wait_buftarg(mp->m_rtdev_targp);
1568 xfs_wait_buftarg(mp->m_ddev_targp);
1569}
1570
92821e2b
DC
1571int
1572xfs_fs_writable(xfs_mount_t *mp)
1573{
b267ce99 1574 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
bd186aa9 1575 (mp->m_flags & XFS_MOUNT_RDONLY));
92821e2b
DC
1576}
1577
1578/*
1579 * xfs_log_sbcount
1580 *
1581 * Called either periodically to keep the on disk superblock values
1582 * roughly up to date or from unmount to make sure the values are
1583 * correct on a clean unmount.
1584 *
1585 * Note this code can be called during the process of freezing, so
1586 * we may need to use the transaction allocator which does not not
1587 * block when the transaction subsystem is in its frozen state.
1588 */
1589int
1590xfs_log_sbcount(
1591 xfs_mount_t *mp,
1592 uint sync)
1593{
1594 xfs_trans_t *tp;
1595 int error;
1596
1597 if (!xfs_fs_writable(mp))
1598 return 0;
1599
d4d90b57 1600 xfs_icsb_sync_counters(mp, 0);
92821e2b
DC
1601
1602 /*
1603 * we don't need to do this if we are updating the superblock
1604 * counters on every modification.
1605 */
1606 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1607 return 0;
1608
80641dc6 1609 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
92821e2b
DC
1610 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1611 XFS_DEFAULT_LOG_COUNT);
1612 if (error) {
1613 xfs_trans_cancel(tp, 0);
1614 return error;
1615 }
1616
1617 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1618 if (sync)
1619 xfs_trans_set_sync(tp);
e5720eec
DC
1620 error = xfs_trans_commit(tp, 0);
1621 return error;
92821e2b
DC
1622}
1623
1da177e4
LT
1624int
1625xfs_unmountfs_writesb(xfs_mount_t *mp)
1626{
1627 xfs_buf_t *sbp;
1da177e4
LT
1628 int error = 0;
1629
1630 /*
1631 * skip superblock write if fs is read-only, or
1632 * if we are doing a forced umount.
1633 */
bd186aa9 1634 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1da177e4 1635 XFS_FORCED_SHUTDOWN(mp))) {
8d280b98 1636
92821e2b 1637 sbp = xfs_getsb(mp, 0);
8d280b98 1638
1da177e4
LT
1639 XFS_BUF_UNDONE(sbp);
1640 XFS_BUF_UNREAD(sbp);
1641 XFS_BUF_UNDELAYWRITE(sbp);
1642 XFS_BUF_WRITE(sbp);
1643 XFS_BUF_UNASYNC(sbp);
1644 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1645 xfsbdstrat(mp, sbp);
1a1a3e97 1646 error = xfs_buf_iowait(sbp);
1da177e4
LT
1647 if (error)
1648 xfs_ioerror_alert("xfs_unmountfs_writesb",
1649 mp, sbp, XFS_BUF_ADDR(sbp));
92821e2b 1650 xfs_buf_relse(sbp);
1da177e4 1651 }
014c2544 1652 return error;
1da177e4
LT
1653}
1654
1655/*
1656 * xfs_mod_sb() can be used to copy arbitrary changes to the
1657 * in-core superblock into the superblock buffer to be logged.
1658 * It does not provide the higher level of locking that is
1659 * needed to protect the in-core superblock from concurrent
1660 * access.
1661 */
1662void
1663xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1664{
1665 xfs_buf_t *bp;
1666 int first;
1667 int last;
1668 xfs_mount_t *mp;
1da177e4
LT
1669 xfs_sb_field_t f;
1670
1671 ASSERT(fields);
1672 if (!fields)
1673 return;
1674 mp = tp->t_mountp;
1675 bp = xfs_trans_getsb(tp, mp, 0);
1da177e4
LT
1676 first = sizeof(xfs_sb_t);
1677 last = 0;
1678
1679 /* translate/copy */
1680
2bdf7cd0 1681 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1da177e4
LT
1682
1683 /* find modified range */
587aa0fe
DC
1684 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1685 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1686 last = xfs_sb_info[f + 1].offset - 1;
1da177e4
LT
1687
1688 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1689 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1690 first = xfs_sb_info[f].offset;
1691
1da177e4
LT
1692 xfs_trans_log_buf(tp, bp, first, last);
1693}
d210a28c 1694
d210a28c 1695
1da177e4
LT
1696/*
1697 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1698 * a delta to a specified field in the in-core superblock. Simply
1699 * switch on the field indicated and apply the delta to that field.
1700 * Fields are not allowed to dip below zero, so if the delta would
1701 * do this do not apply it and return EINVAL.
1702 *
3685c2a1 1703 * The m_sb_lock must be held when this routine is called.
1da177e4 1704 */
d96f8f89 1705STATIC int
20f4ebf2
DC
1706xfs_mod_incore_sb_unlocked(
1707 xfs_mount_t *mp,
1708 xfs_sb_field_t field,
1709 int64_t delta,
1710 int rsvd)
1da177e4
LT
1711{
1712 int scounter; /* short counter for 32 bit fields */
1713 long long lcounter; /* long counter for 64 bit fields */
1714 long long res_used, rem;
1715
1716 /*
1717 * With the in-core superblock spin lock held, switch
1718 * on the indicated field. Apply the delta to the
1719 * proper field. If the fields value would dip below
1720 * 0, then do not apply the delta and return EINVAL.
1721 */
1722 switch (field) {
1723 case XFS_SBS_ICOUNT:
1724 lcounter = (long long)mp->m_sb.sb_icount;
1725 lcounter += delta;
1726 if (lcounter < 0) {
1727 ASSERT(0);
014c2544 1728 return XFS_ERROR(EINVAL);
1da177e4
LT
1729 }
1730 mp->m_sb.sb_icount = lcounter;
014c2544 1731 return 0;
1da177e4
LT
1732 case XFS_SBS_IFREE:
1733 lcounter = (long long)mp->m_sb.sb_ifree;
1734 lcounter += delta;
1735 if (lcounter < 0) {
1736 ASSERT(0);
014c2544 1737 return XFS_ERROR(EINVAL);
1da177e4
LT
1738 }
1739 mp->m_sb.sb_ifree = lcounter;
014c2544 1740 return 0;
1da177e4 1741 case XFS_SBS_FDBLOCKS:
4be536de
DC
1742 lcounter = (long long)
1743 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1da177e4
LT
1744 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1745
1746 if (delta > 0) { /* Putting blocks back */
1747 if (res_used > delta) {
1748 mp->m_resblks_avail += delta;
1749 } else {
1750 rem = delta - res_used;
1751 mp->m_resblks_avail = mp->m_resblks;
1752 lcounter += rem;
1753 }
1754 } else { /* Taking blocks away */
1da177e4 1755 lcounter += delta;
8babd8a2
DC
1756 if (lcounter >= 0) {
1757 mp->m_sb.sb_fdblocks = lcounter +
1758 XFS_ALLOC_SET_ASIDE(mp);
1759 return 0;
1760 }
1da177e4 1761
8babd8a2
DC
1762 /*
1763 * We are out of blocks, use any available reserved
1764 * blocks if were allowed to.
1765 */
1766 if (!rsvd)
1767 return XFS_ERROR(ENOSPC);
1da177e4 1768
8babd8a2
DC
1769 lcounter = (long long)mp->m_resblks_avail + delta;
1770 if (lcounter >= 0) {
1771 mp->m_resblks_avail = lcounter;
1772 return 0;
1da177e4 1773 }
8babd8a2
DC
1774 printk_once(KERN_WARNING
1775 "Filesystem \"%s\": reserve blocks depleted! "
1776 "Consider increasing reserve pool size.",
1777 mp->m_fsname);
1778 return XFS_ERROR(ENOSPC);
1da177e4
LT
1779 }
1780
4be536de 1781 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
014c2544 1782 return 0;
1da177e4
LT
1783 case XFS_SBS_FREXTENTS:
1784 lcounter = (long long)mp->m_sb.sb_frextents;
1785 lcounter += delta;
1786 if (lcounter < 0) {
014c2544 1787 return XFS_ERROR(ENOSPC);
1da177e4
LT
1788 }
1789 mp->m_sb.sb_frextents = lcounter;
014c2544 1790 return 0;
1da177e4
LT
1791 case XFS_SBS_DBLOCKS:
1792 lcounter = (long long)mp->m_sb.sb_dblocks;
1793 lcounter += delta;
1794 if (lcounter < 0) {
1795 ASSERT(0);
014c2544 1796 return XFS_ERROR(EINVAL);
1da177e4
LT
1797 }
1798 mp->m_sb.sb_dblocks = lcounter;
014c2544 1799 return 0;
1da177e4
LT
1800 case XFS_SBS_AGCOUNT:
1801 scounter = mp->m_sb.sb_agcount;
1802 scounter += delta;
1803 if (scounter < 0) {
1804 ASSERT(0);
014c2544 1805 return XFS_ERROR(EINVAL);
1da177e4
LT
1806 }
1807 mp->m_sb.sb_agcount = scounter;
014c2544 1808 return 0;
1da177e4
LT
1809 case XFS_SBS_IMAX_PCT:
1810 scounter = mp->m_sb.sb_imax_pct;
1811 scounter += delta;
1812 if (scounter < 0) {
1813 ASSERT(0);
014c2544 1814 return XFS_ERROR(EINVAL);
1da177e4
LT
1815 }
1816 mp->m_sb.sb_imax_pct = scounter;
014c2544 1817 return 0;
1da177e4
LT
1818 case XFS_SBS_REXTSIZE:
1819 scounter = mp->m_sb.sb_rextsize;
1820 scounter += delta;
1821 if (scounter < 0) {
1822 ASSERT(0);
014c2544 1823 return XFS_ERROR(EINVAL);
1da177e4
LT
1824 }
1825 mp->m_sb.sb_rextsize = scounter;
014c2544 1826 return 0;
1da177e4
LT
1827 case XFS_SBS_RBMBLOCKS:
1828 scounter = mp->m_sb.sb_rbmblocks;
1829 scounter += delta;
1830 if (scounter < 0) {
1831 ASSERT(0);
014c2544 1832 return XFS_ERROR(EINVAL);
1da177e4
LT
1833 }
1834 mp->m_sb.sb_rbmblocks = scounter;
014c2544 1835 return 0;
1da177e4
LT
1836 case XFS_SBS_RBLOCKS:
1837 lcounter = (long long)mp->m_sb.sb_rblocks;
1838 lcounter += delta;
1839 if (lcounter < 0) {
1840 ASSERT(0);
014c2544 1841 return XFS_ERROR(EINVAL);
1da177e4
LT
1842 }
1843 mp->m_sb.sb_rblocks = lcounter;
014c2544 1844 return 0;
1da177e4
LT
1845 case XFS_SBS_REXTENTS:
1846 lcounter = (long long)mp->m_sb.sb_rextents;
1847 lcounter += delta;
1848 if (lcounter < 0) {
1849 ASSERT(0);
014c2544 1850 return XFS_ERROR(EINVAL);
1da177e4
LT
1851 }
1852 mp->m_sb.sb_rextents = lcounter;
014c2544 1853 return 0;
1da177e4
LT
1854 case XFS_SBS_REXTSLOG:
1855 scounter = mp->m_sb.sb_rextslog;
1856 scounter += delta;
1857 if (scounter < 0) {
1858 ASSERT(0);
014c2544 1859 return XFS_ERROR(EINVAL);
1da177e4
LT
1860 }
1861 mp->m_sb.sb_rextslog = scounter;
014c2544 1862 return 0;
1da177e4
LT
1863 default:
1864 ASSERT(0);
014c2544 1865 return XFS_ERROR(EINVAL);
1da177e4
LT
1866 }
1867}
1868
1869/*
1870 * xfs_mod_incore_sb() is used to change a field in the in-core
1871 * superblock structure by the specified delta. This modification
3685c2a1 1872 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1da177e4
LT
1873 * routine to do the work.
1874 */
1875int
20f4ebf2 1876xfs_mod_incore_sb(
96540c78
CH
1877 struct xfs_mount *mp,
1878 xfs_sb_field_t field,
1879 int64_t delta,
1880 int rsvd)
1da177e4 1881{
96540c78 1882 int status;
1da177e4 1883
8d280b98 1884#ifdef HAVE_PERCPU_SB
96540c78 1885 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
8d280b98 1886#endif
96540c78
CH
1887 spin_lock(&mp->m_sb_lock);
1888 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1889 spin_unlock(&mp->m_sb_lock);
8d280b98 1890
014c2544 1891 return status;
1da177e4
LT
1892}
1893
1894/*
1b040712 1895 * Change more than one field in the in-core superblock structure at a time.
1da177e4 1896 *
1b040712
CH
1897 * The fields and changes to those fields are specified in the array of
1898 * xfs_mod_sb structures passed in. Either all of the specified deltas
1899 * will be applied or none of them will. If any modified field dips below 0,
1900 * then all modifications will be backed out and EINVAL will be returned.
1901 *
1902 * Note that this function may not be used for the superblock values that
1903 * are tracked with the in-memory per-cpu counters - a direct call to
1904 * xfs_icsb_modify_counters is required for these.
1da177e4
LT
1905 */
1906int
1b040712
CH
1907xfs_mod_incore_sb_batch(
1908 struct xfs_mount *mp,
1909 xfs_mod_sb_t *msb,
1910 uint nmsb,
1911 int rsvd)
1da177e4 1912{
1b040712
CH
1913 xfs_mod_sb_t *msbp = &msb[0];
1914 int error = 0;
1da177e4
LT
1915
1916 /*
1b040712
CH
1917 * Loop through the array of mod structures and apply each individually.
1918 * If any fail, then back out all those which have already been applied.
1919 * Do all of this within the scope of the m_sb_lock so that all of the
1920 * changes will be atomic.
1da177e4 1921 */
3685c2a1 1922 spin_lock(&mp->m_sb_lock);
1da177e4 1923 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1b040712
CH
1924 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1925 msbp->msb_field > XFS_SBS_FDBLOCKS);
8d280b98 1926
1b040712
CH
1927 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1928 msbp->msb_delta, rsvd);
1929 if (error)
1930 goto unwind;
1da177e4 1931 }
1b040712
CH
1932 spin_unlock(&mp->m_sb_lock);
1933 return 0;
1da177e4 1934
1b040712
CH
1935unwind:
1936 while (--msbp >= msb) {
1937 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1938 -msbp->msb_delta, rsvd);
1939 ASSERT(error == 0);
1da177e4 1940 }
3685c2a1 1941 spin_unlock(&mp->m_sb_lock);
1b040712 1942 return error;
1da177e4
LT
1943}
1944
1945/*
1946 * xfs_getsb() is called to obtain the buffer for the superblock.
1947 * The buffer is returned locked and read in from disk.
1948 * The buffer should be released with a call to xfs_brelse().
1949 *
1950 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1951 * the superblock buffer if it can be locked without sleeping.
1952 * If it can't then we'll return NULL.
1953 */
1954xfs_buf_t *
1955xfs_getsb(
1956 xfs_mount_t *mp,
1957 int flags)
1958{
1959 xfs_buf_t *bp;
1960
1961 ASSERT(mp->m_sb_bp != NULL);
1962 bp = mp->m_sb_bp;
0cadda1c 1963 if (flags & XBF_TRYLOCK) {
1da177e4
LT
1964 if (!XFS_BUF_CPSEMA(bp)) {
1965 return NULL;
1966 }
1967 } else {
1968 XFS_BUF_PSEMA(bp, PRIBIO);
1969 }
1970 XFS_BUF_HOLD(bp);
1971 ASSERT(XFS_BUF_ISDONE(bp));
014c2544 1972 return bp;
1da177e4
LT
1973}
1974
1975/*
1976 * Used to free the superblock along various error paths.
1977 */
1978void
1979xfs_freesb(
26af6552 1980 struct xfs_mount *mp)
1da177e4 1981{
26af6552 1982 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1983
26af6552 1984 xfs_buf_lock(bp);
1da177e4 1985 mp->m_sb_bp = NULL;
26af6552 1986 xfs_buf_relse(bp);
1da177e4
LT
1987}
1988
1da177e4
LT
1989/*
1990 * Used to log changes to the superblock unit and width fields which could
e6957ea4
ES
1991 * be altered by the mount options, as well as any potential sb_features2
1992 * fixup. Only the first superblock is updated.
1da177e4 1993 */
7884bc86 1994int
ee1c0908 1995xfs_mount_log_sb(
1da177e4
LT
1996 xfs_mount_t *mp,
1997 __int64_t fields)
1998{
1999 xfs_trans_t *tp;
e5720eec 2000 int error;
1da177e4 2001
ee1c0908 2002 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
4b166de0
DC
2003 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
2004 XFS_SB_VERSIONNUM));
1da177e4
LT
2005
2006 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
e5720eec
DC
2007 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
2008 XFS_DEFAULT_LOG_COUNT);
2009 if (error) {
1da177e4 2010 xfs_trans_cancel(tp, 0);
e5720eec 2011 return error;
1da177e4
LT
2012 }
2013 xfs_mod_sb(tp, fields);
e5720eec
DC
2014 error = xfs_trans_commit(tp, 0);
2015 return error;
1da177e4 2016}
8d280b98 2017
dda35b8f
CH
2018/*
2019 * If the underlying (data/log/rt) device is readonly, there are some
2020 * operations that cannot proceed.
2021 */
2022int
2023xfs_dev_is_read_only(
2024 struct xfs_mount *mp,
2025 char *message)
2026{
2027 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2028 xfs_readonly_buftarg(mp->m_logdev_targp) ||
2029 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2030 cmn_err(CE_NOTE,
2031 "XFS: %s required on read-only device.", message);
2032 cmn_err(CE_NOTE,
2033 "XFS: write access unavailable, cannot proceed.");
2034 return EROFS;
2035 }
2036 return 0;
2037}
8d280b98
DC
2038
2039#ifdef HAVE_PERCPU_SB
2040/*
2041 * Per-cpu incore superblock counters
2042 *
2043 * Simple concept, difficult implementation
2044 *
2045 * Basically, replace the incore superblock counters with a distributed per cpu
2046 * counter for contended fields (e.g. free block count).
2047 *
2048 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2049 * hence needs to be accurately read when we are running low on space. Hence
2050 * there is a method to enable and disable the per-cpu counters based on how
2051 * much "stuff" is available in them.
2052 *
2053 * Basically, a counter is enabled if there is enough free resource to justify
2054 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2055 * ENOSPC), then we disable the counters to synchronise all callers and
2056 * re-distribute the available resources.
2057 *
2058 * If, once we redistributed the available resources, we still get a failure,
2059 * we disable the per-cpu counter and go through the slow path.
2060 *
2061 * The slow path is the current xfs_mod_incore_sb() function. This means that
9da096fd 2062 * when we disable a per-cpu counter, we need to drain its resources back to
8d280b98
DC
2063 * the global superblock. We do this after disabling the counter to prevent
2064 * more threads from queueing up on the counter.
2065 *
2066 * Essentially, this means that we still need a lock in the fast path to enable
2067 * synchronisation between the global counters and the per-cpu counters. This
2068 * is not a problem because the lock will be local to a CPU almost all the time
2069 * and have little contention except when we get to ENOSPC conditions.
2070 *
2071 * Basically, this lock becomes a barrier that enables us to lock out the fast
2072 * path while we do things like enabling and disabling counters and
2073 * synchronising the counters.
2074 *
2075 * Locking rules:
2076 *
3685c2a1 2077 * 1. m_sb_lock before picking up per-cpu locks
8d280b98 2078 * 2. per-cpu locks always picked up via for_each_online_cpu() order
3685c2a1 2079 * 3. accurate counter sync requires m_sb_lock + per cpu locks
8d280b98 2080 * 4. modifying per-cpu counters requires holding per-cpu lock
3685c2a1
ES
2081 * 5. modifying global counters requires holding m_sb_lock
2082 * 6. enabling or disabling a counter requires holding the m_sb_lock
8d280b98
DC
2083 * and _none_ of the per-cpu locks.
2084 *
2085 * Disabled counters are only ever re-enabled by a balance operation
2086 * that results in more free resources per CPU than a given threshold.
2087 * To ensure counters don't remain disabled, they are rebalanced when
2088 * the global resource goes above a higher threshold (i.e. some hysteresis
2089 * is present to prevent thrashing).
e8234a68
DC
2090 */
2091
5a67e4c5 2092#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
2093/*
2094 * hot-plug CPU notifier support.
8d280b98 2095 *
5a67e4c5
CS
2096 * We need a notifier per filesystem as we need to be able to identify
2097 * the filesystem to balance the counters out. This is achieved by
2098 * having a notifier block embedded in the xfs_mount_t and doing pointer
2099 * magic to get the mount pointer from the notifier block address.
8d280b98 2100 */
e8234a68
DC
2101STATIC int
2102xfs_icsb_cpu_notify(
2103 struct notifier_block *nfb,
2104 unsigned long action,
2105 void *hcpu)
2106{
2107 xfs_icsb_cnts_t *cntp;
2108 xfs_mount_t *mp;
e8234a68
DC
2109
2110 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2111 cntp = (xfs_icsb_cnts_t *)
2112 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2113 switch (action) {
2114 case CPU_UP_PREPARE:
8bb78442 2115 case CPU_UP_PREPARE_FROZEN:
e8234a68
DC
2116 /* Easy Case - initialize the area and locks, and
2117 * then rebalance when online does everything else for us. */
01e1b69c 2118 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68
DC
2119 break;
2120 case CPU_ONLINE:
8bb78442 2121 case CPU_ONLINE_FROZEN:
03135cf7 2122 xfs_icsb_lock(mp);
45af6c6d
CH
2123 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2124 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2125 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
03135cf7 2126 xfs_icsb_unlock(mp);
e8234a68
DC
2127 break;
2128 case CPU_DEAD:
8bb78442 2129 case CPU_DEAD_FROZEN:
e8234a68
DC
2130 /* Disable all the counters, then fold the dead cpu's
2131 * count into the total on the global superblock and
2132 * re-enable the counters. */
03135cf7 2133 xfs_icsb_lock(mp);
3685c2a1 2134 spin_lock(&mp->m_sb_lock);
e8234a68
DC
2135 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2136 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2137 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2138
2139 mp->m_sb.sb_icount += cntp->icsb_icount;
2140 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2141 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2142
01e1b69c 2143 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68 2144
45af6c6d
CH
2145 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2146 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2147 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
3685c2a1 2148 spin_unlock(&mp->m_sb_lock);
03135cf7 2149 xfs_icsb_unlock(mp);
e8234a68
DC
2150 break;
2151 }
2152
2153 return NOTIFY_OK;
2154}
5a67e4c5 2155#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 2156
8d280b98
DC
2157int
2158xfs_icsb_init_counters(
2159 xfs_mount_t *mp)
2160{
2161 xfs_icsb_cnts_t *cntp;
2162 int i;
2163
2164 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2165 if (mp->m_sb_cnts == NULL)
2166 return -ENOMEM;
2167
5a67e4c5 2168#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
2169 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2170 mp->m_icsb_notifier.priority = 0;
5a67e4c5
CS
2171 register_hotcpu_notifier(&mp->m_icsb_notifier);
2172#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 2173
8d280b98
DC
2174 for_each_online_cpu(i) {
2175 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2176 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
8d280b98 2177 }
20b64285
DC
2178
2179 mutex_init(&mp->m_icsb_mutex);
2180
8d280b98
DC
2181 /*
2182 * start with all counters disabled so that the
2183 * initial balance kicks us off correctly
2184 */
2185 mp->m_icsb_counters = -1;
2186 return 0;
2187}
2188
5478eead
LM
2189void
2190xfs_icsb_reinit_counters(
2191 xfs_mount_t *mp)
2192{
2193 xfs_icsb_lock(mp);
2194 /*
2195 * start with all counters disabled so that the
2196 * initial balance kicks us off correctly
2197 */
2198 mp->m_icsb_counters = -1;
45af6c6d
CH
2199 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2200 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2201 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
5478eead
LM
2202 xfs_icsb_unlock(mp);
2203}
2204
c962fb79 2205void
8d280b98
DC
2206xfs_icsb_destroy_counters(
2207 xfs_mount_t *mp)
2208{
e8234a68 2209 if (mp->m_sb_cnts) {
5a67e4c5 2210 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
8d280b98 2211 free_percpu(mp->m_sb_cnts);
e8234a68 2212 }
03135cf7 2213 mutex_destroy(&mp->m_icsb_mutex);
8d280b98
DC
2214}
2215
b8f82a4a 2216STATIC void
01e1b69c
DC
2217xfs_icsb_lock_cntr(
2218 xfs_icsb_cnts_t *icsbp)
2219{
2220 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2221 ndelay(1000);
2222 }
2223}
2224
b8f82a4a 2225STATIC void
01e1b69c
DC
2226xfs_icsb_unlock_cntr(
2227 xfs_icsb_cnts_t *icsbp)
2228{
2229 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2230}
2231
8d280b98 2232
b8f82a4a 2233STATIC void
8d280b98
DC
2234xfs_icsb_lock_all_counters(
2235 xfs_mount_t *mp)
2236{
2237 xfs_icsb_cnts_t *cntp;
2238 int i;
2239
2240 for_each_online_cpu(i) {
2241 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2242 xfs_icsb_lock_cntr(cntp);
8d280b98
DC
2243 }
2244}
2245
b8f82a4a 2246STATIC void
8d280b98
DC
2247xfs_icsb_unlock_all_counters(
2248 xfs_mount_t *mp)
2249{
2250 xfs_icsb_cnts_t *cntp;
2251 int i;
2252
2253 for_each_online_cpu(i) {
2254 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2255 xfs_icsb_unlock_cntr(cntp);
8d280b98
DC
2256 }
2257}
2258
2259STATIC void
2260xfs_icsb_count(
2261 xfs_mount_t *mp,
2262 xfs_icsb_cnts_t *cnt,
2263 int flags)
2264{
2265 xfs_icsb_cnts_t *cntp;
2266 int i;
2267
2268 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2269
2270 if (!(flags & XFS_ICSB_LAZY_COUNT))
2271 xfs_icsb_lock_all_counters(mp);
2272
2273 for_each_online_cpu(i) {
2274 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2275 cnt->icsb_icount += cntp->icsb_icount;
2276 cnt->icsb_ifree += cntp->icsb_ifree;
2277 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2278 }
2279
2280 if (!(flags & XFS_ICSB_LAZY_COUNT))
2281 xfs_icsb_unlock_all_counters(mp);
2282}
2283
2284STATIC int
2285xfs_icsb_counter_disabled(
2286 xfs_mount_t *mp,
2287 xfs_sb_field_t field)
2288{
2289 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2290 return test_bit(field, &mp->m_icsb_counters);
2291}
2292
36fbe6e6 2293STATIC void
8d280b98
DC
2294xfs_icsb_disable_counter(
2295 xfs_mount_t *mp,
2296 xfs_sb_field_t field)
2297{
2298 xfs_icsb_cnts_t cnt;
2299
2300 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2301
20b64285
DC
2302 /*
2303 * If we are already disabled, then there is nothing to do
2304 * here. We check before locking all the counters to avoid
2305 * the expensive lock operation when being called in the
2306 * slow path and the counter is already disabled. This is
2307 * safe because the only time we set or clear this state is under
2308 * the m_icsb_mutex.
2309 */
2310 if (xfs_icsb_counter_disabled(mp, field))
36fbe6e6 2311 return;
20b64285 2312
8d280b98
DC
2313 xfs_icsb_lock_all_counters(mp);
2314 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2315 /* drain back to superblock */
2316
ce46193b 2317 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
8d280b98
DC
2318 switch(field) {
2319 case XFS_SBS_ICOUNT:
2320 mp->m_sb.sb_icount = cnt.icsb_icount;
2321 break;
2322 case XFS_SBS_IFREE:
2323 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2324 break;
2325 case XFS_SBS_FDBLOCKS:
2326 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2327 break;
2328 default:
2329 BUG();
2330 }
2331 }
2332
2333 xfs_icsb_unlock_all_counters(mp);
8d280b98
DC
2334}
2335
2336STATIC void
2337xfs_icsb_enable_counter(
2338 xfs_mount_t *mp,
2339 xfs_sb_field_t field,
2340 uint64_t count,
2341 uint64_t resid)
2342{
2343 xfs_icsb_cnts_t *cntp;
2344 int i;
2345
2346 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2347
2348 xfs_icsb_lock_all_counters(mp);
2349 for_each_online_cpu(i) {
2350 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2351 switch (field) {
2352 case XFS_SBS_ICOUNT:
2353 cntp->icsb_icount = count + resid;
2354 break;
2355 case XFS_SBS_IFREE:
2356 cntp->icsb_ifree = count + resid;
2357 break;
2358 case XFS_SBS_FDBLOCKS:
2359 cntp->icsb_fdblocks = count + resid;
2360 break;
2361 default:
2362 BUG();
2363 break;
2364 }
2365 resid = 0;
2366 }
2367 clear_bit(field, &mp->m_icsb_counters);
2368 xfs_icsb_unlock_all_counters(mp);
2369}
2370
dbcabad1 2371void
d4d90b57 2372xfs_icsb_sync_counters_locked(
8d280b98
DC
2373 xfs_mount_t *mp,
2374 int flags)
2375{
2376 xfs_icsb_cnts_t cnt;
8d280b98 2377
8d280b98
DC
2378 xfs_icsb_count(mp, &cnt, flags);
2379
8d280b98
DC
2380 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2381 mp->m_sb.sb_icount = cnt.icsb_icount;
2382 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2383 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2384 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2385 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
8d280b98
DC
2386}
2387
2388/*
2389 * Accurate update of per-cpu counters to incore superblock
2390 */
d4d90b57 2391void
8d280b98 2392xfs_icsb_sync_counters(
d4d90b57
CH
2393 xfs_mount_t *mp,
2394 int flags)
8d280b98 2395{
d4d90b57
CH
2396 spin_lock(&mp->m_sb_lock);
2397 xfs_icsb_sync_counters_locked(mp, flags);
2398 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
2399}
2400
2401/*
2402 * Balance and enable/disable counters as necessary.
2403 *
20b64285
DC
2404 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2405 * chosen to be the same number as single on disk allocation chunk per CPU, and
2406 * free blocks is something far enough zero that we aren't going thrash when we
2407 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2408 * prevent looping endlessly when xfs_alloc_space asks for more than will
2409 * be distributed to a single CPU but each CPU has enough blocks to be
2410 * reenabled.
2411 *
2412 * Note that we can be called when counters are already disabled.
2413 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2414 * prevent locking every per-cpu counter needlessly.
8d280b98 2415 */
20b64285
DC
2416
2417#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
4be536de 2418#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
20b64285 2419 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
8d280b98 2420STATIC void
45af6c6d 2421xfs_icsb_balance_counter_locked(
8d280b98
DC
2422 xfs_mount_t *mp,
2423 xfs_sb_field_t field,
20b64285 2424 int min_per_cpu)
8d280b98 2425{
6fdf8ccc 2426 uint64_t count, resid;
8d280b98 2427 int weight = num_online_cpus();
20b64285 2428 uint64_t min = (uint64_t)min_per_cpu;
8d280b98 2429
8d280b98
DC
2430 /* disable counter and sync counter */
2431 xfs_icsb_disable_counter(mp, field);
2432
2433 /* update counters - first CPU gets residual*/
2434 switch (field) {
2435 case XFS_SBS_ICOUNT:
2436 count = mp->m_sb.sb_icount;
2437 resid = do_div(count, weight);
20b64285 2438 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 2439 return;
8d280b98
DC
2440 break;
2441 case XFS_SBS_IFREE:
2442 count = mp->m_sb.sb_ifree;
2443 resid = do_div(count, weight);
20b64285 2444 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 2445 return;
8d280b98
DC
2446 break;
2447 case XFS_SBS_FDBLOCKS:
2448 count = mp->m_sb.sb_fdblocks;
2449 resid = do_div(count, weight);
20b64285 2450 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
45af6c6d 2451 return;
8d280b98
DC
2452 break;
2453 default:
2454 BUG();
6fdf8ccc 2455 count = resid = 0; /* quiet, gcc */
8d280b98
DC
2456 break;
2457 }
2458
2459 xfs_icsb_enable_counter(mp, field, count, resid);
45af6c6d
CH
2460}
2461
2462STATIC void
2463xfs_icsb_balance_counter(
2464 xfs_mount_t *mp,
2465 xfs_sb_field_t fields,
2466 int min_per_cpu)
2467{
2468 spin_lock(&mp->m_sb_lock);
2469 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2470 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
2471}
2472
1b040712 2473int
20b64285 2474xfs_icsb_modify_counters(
8d280b98
DC
2475 xfs_mount_t *mp,
2476 xfs_sb_field_t field,
20f4ebf2 2477 int64_t delta,
20b64285 2478 int rsvd)
8d280b98
DC
2479{
2480 xfs_icsb_cnts_t *icsbp;
2481 long long lcounter; /* long counter for 64 bit fields */
7a9e02d6 2482 int ret = 0;
8d280b98 2483
20b64285 2484 might_sleep();
8d280b98 2485again:
7a9e02d6
CL
2486 preempt_disable();
2487 icsbp = this_cpu_ptr(mp->m_sb_cnts);
20b64285
DC
2488
2489 /*
2490 * if the counter is disabled, go to slow path
2491 */
8d280b98
DC
2492 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2493 goto slow_path;
20b64285
DC
2494 xfs_icsb_lock_cntr(icsbp);
2495 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2496 xfs_icsb_unlock_cntr(icsbp);
2497 goto slow_path;
2498 }
8d280b98
DC
2499
2500 switch (field) {
2501 case XFS_SBS_ICOUNT:
2502 lcounter = icsbp->icsb_icount;
2503 lcounter += delta;
2504 if (unlikely(lcounter < 0))
20b64285 2505 goto balance_counter;
8d280b98
DC
2506 icsbp->icsb_icount = lcounter;
2507 break;
2508
2509 case XFS_SBS_IFREE:
2510 lcounter = icsbp->icsb_ifree;
2511 lcounter += delta;
2512 if (unlikely(lcounter < 0))
20b64285 2513 goto balance_counter;
8d280b98
DC
2514 icsbp->icsb_ifree = lcounter;
2515 break;
2516
2517 case XFS_SBS_FDBLOCKS:
2518 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2519
4be536de 2520 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
2521 lcounter += delta;
2522 if (unlikely(lcounter < 0))
20b64285 2523 goto balance_counter;
4be536de 2524 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
2525 break;
2526 default:
2527 BUG();
2528 break;
2529 }
01e1b69c 2530 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2531 preempt_enable();
8d280b98
DC
2532 return 0;
2533
8d280b98 2534slow_path:
7a9e02d6 2535 preempt_enable();
8d280b98 2536
20b64285
DC
2537 /*
2538 * serialise with a mutex so we don't burn lots of cpu on
2539 * the superblock lock. We still need to hold the superblock
2540 * lock, however, when we modify the global structures.
2541 */
03135cf7 2542 xfs_icsb_lock(mp);
20b64285
DC
2543
2544 /*
2545 * Now running atomically.
2546 *
2547 * If the counter is enabled, someone has beaten us to rebalancing.
2548 * Drop the lock and try again in the fast path....
2549 */
2550 if (!(xfs_icsb_counter_disabled(mp, field))) {
03135cf7 2551 xfs_icsb_unlock(mp);
8d280b98 2552 goto again;
8d280b98
DC
2553 }
2554
20b64285
DC
2555 /*
2556 * The counter is currently disabled. Because we are
2557 * running atomically here, we know a rebalance cannot
2558 * be in progress. Hence we can go straight to operating
2559 * on the global superblock. We do not call xfs_mod_incore_sb()
3685c2a1 2560 * here even though we need to get the m_sb_lock. Doing so
20b64285 2561 * will cause us to re-enter this function and deadlock.
3685c2a1 2562 * Hence we get the m_sb_lock ourselves and then call
20b64285
DC
2563 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2564 * directly on the global counters.
2565 */
3685c2a1 2566 spin_lock(&mp->m_sb_lock);
8d280b98 2567 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
3685c2a1 2568 spin_unlock(&mp->m_sb_lock);
8d280b98 2569
20b64285
DC
2570 /*
2571 * Now that we've modified the global superblock, we
2572 * may be able to re-enable the distributed counters
2573 * (e.g. lots of space just got freed). After that
2574 * we are done.
2575 */
2576 if (ret != ENOSPC)
45af6c6d 2577 xfs_icsb_balance_counter(mp, field, 0);
03135cf7 2578 xfs_icsb_unlock(mp);
8d280b98 2579 return ret;
8d280b98 2580
20b64285
DC
2581balance_counter:
2582 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2583 preempt_enable();
8d280b98 2584
20b64285
DC
2585 /*
2586 * We may have multiple threads here if multiple per-cpu
2587 * counters run dry at the same time. This will mean we can
2588 * do more balances than strictly necessary but it is not
2589 * the common slowpath case.
2590 */
03135cf7 2591 xfs_icsb_lock(mp);
20b64285
DC
2592
2593 /*
2594 * running atomically.
2595 *
2596 * This will leave the counter in the correct state for future
2597 * accesses. After the rebalance, we simply try again and our retry
2598 * will either succeed through the fast path or slow path without
2599 * another balance operation being required.
2600 */
45af6c6d 2601 xfs_icsb_balance_counter(mp, field, delta);
03135cf7 2602 xfs_icsb_unlock(mp);
20b64285 2603 goto again;
8d280b98 2604}
20b64285 2605
8d280b98 2606#endif