]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_mount.c
xfs: checksum log record ext headers based on record size
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
57062787 27#include "xfs_da_format.h"
9a2cc41c 28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
a4fbe6ab 30#include "xfs_dir2.h"
a844f451 31#include "xfs_ialloc.h"
1da177e4
LT
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_bmap.h"
a4fbe6ab
DC
35#include "xfs_trans.h"
36#include "xfs_trans_priv.h"
37#include "xfs_log.h"
1da177e4 38#include "xfs_error.h"
1da177e4
LT
39#include "xfs_quota.h"
40#include "xfs_fsops.h"
0b1b213f 41#include "xfs_trace.h"
6d8b79cf 42#include "xfs_icache.h"
a31b1d3d 43#include "xfs_sysfs.h"
0b1b213f 44
1da177e4 45
27174203
CH
46static DEFINE_MUTEX(xfs_uuid_table_mutex);
47static int xfs_uuid_table_size;
48static uuid_t *xfs_uuid_table;
49
50/*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54STATIC int
55xfs_uuid_mount(
56 struct xfs_mount *mp)
57{
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
60
61 if (mp->m_flags & XFS_MOUNT_NOUUID)
62 return 0;
63
64 if (uuid_is_nil(uuid)) {
0b932ccc 65 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
2451337d 66 return -EINVAL;
27174203
CH
67 }
68
69 mutex_lock(&xfs_uuid_table_mutex);
70 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
71 if (uuid_is_nil(&xfs_uuid_table[i])) {
72 hole = i;
73 continue;
74 }
75 if (uuid_equal(uuid, &xfs_uuid_table[i]))
76 goto out_duplicate;
77 }
78
79 if (hole < 0) {
80 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
81 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
82 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
83 KM_SLEEP);
84 hole = xfs_uuid_table_size++;
85 }
86 xfs_uuid_table[hole] = *uuid;
87 mutex_unlock(&xfs_uuid_table_mutex);
88
89 return 0;
90
91 out_duplicate:
92 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 93 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 94 return -EINVAL;
27174203
CH
95}
96
97STATIC void
98xfs_uuid_unmount(
99 struct xfs_mount *mp)
100{
101 uuid_t *uuid = &mp->m_sb.sb_uuid;
102 int i;
103
104 if (mp->m_flags & XFS_MOUNT_NOUUID)
105 return;
106
107 mutex_lock(&xfs_uuid_table_mutex);
108 for (i = 0; i < xfs_uuid_table_size; i++) {
109 if (uuid_is_nil(&xfs_uuid_table[i]))
110 continue;
111 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
112 continue;
113 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
114 break;
115 }
116 ASSERT(i < xfs_uuid_table_size);
117 mutex_unlock(&xfs_uuid_table_mutex);
118}
119
120
e176579e
DC
121STATIC void
122__xfs_free_perag(
123 struct rcu_head *head)
124{
125 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
126
127 ASSERT(atomic_read(&pag->pag_ref) == 0);
128 kmem_free(pag);
129}
130
1da177e4 131/*
e176579e 132 * Free up the per-ag resources associated with the mount structure.
1da177e4 133 */
c962fb79 134STATIC void
ff4f038c 135xfs_free_perag(
745f6919 136 xfs_mount_t *mp)
1da177e4 137{
1c1c6ebc
DC
138 xfs_agnumber_t agno;
139 struct xfs_perag *pag;
140
141 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
142 spin_lock(&mp->m_perag_lock);
143 pag = radix_tree_delete(&mp->m_perag_tree, agno);
144 spin_unlock(&mp->m_perag_lock);
e176579e 145 ASSERT(pag);
f83282a8 146 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 147 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 148 }
1da177e4
LT
149}
150
4cc929ee
NS
151/*
152 * Check size of device based on the (data/realtime) block count.
153 * Note: this check is used by the growfs code as well as mount.
154 */
155int
156xfs_sb_validate_fsb_count(
157 xfs_sb_t *sbp,
158 __uint64_t nblocks)
159{
160 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
161 ASSERT(sbp->sb_blocklog >= BBSHIFT);
162
d5cf09ba 163 /* Limited by ULONG_MAX of page cache index */
4cc929ee 164 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 165 return -EFBIG;
4cc929ee
NS
166 return 0;
167}
1da177e4 168
1c1c6ebc 169int
c11e2c36 170xfs_initialize_perag(
c11e2c36 171 xfs_mount_t *mp,
1c1c6ebc
DC
172 xfs_agnumber_t agcount,
173 xfs_agnumber_t *maxagi)
1da177e4 174{
2d2194f6 175 xfs_agnumber_t index;
8b26c582 176 xfs_agnumber_t first_initialised = 0;
1da177e4
LT
177 xfs_perag_t *pag;
178 xfs_agino_t agino;
179 xfs_ino_t ino;
180 xfs_sb_t *sbp = &mp->m_sb;
8b26c582 181 int error = -ENOMEM;
1da177e4 182
1c1c6ebc
DC
183 /*
184 * Walk the current per-ag tree so we don't try to initialise AGs
185 * that already exist (growfs case). Allocate and insert all the
186 * AGs we don't find ready for initialisation.
187 */
188 for (index = 0; index < agcount; index++) {
189 pag = xfs_perag_get(mp, index);
190 if (pag) {
191 xfs_perag_put(pag);
192 continue;
193 }
8b26c582
DC
194 if (!first_initialised)
195 first_initialised = index;
fb3b504a 196
1c1c6ebc
DC
197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 if (!pag)
8b26c582 199 goto out_unwind;
fb3b504a
CH
200 pag->pag_agno = index;
201 pag->pag_mount = mp;
1a427ab0 202 spin_lock_init(&pag->pag_ici_lock);
69b491c2 203 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
205 spin_lock_init(&pag->pag_buf_lock);
206 pag->pag_buf_tree = RB_ROOT;
fb3b504a 207
1c1c6ebc 208 if (radix_tree_preload(GFP_NOFS))
8b26c582 209 goto out_unwind;
fb3b504a 210
1c1c6ebc
DC
211 spin_lock(&mp->m_perag_lock);
212 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
213 BUG();
214 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
215 radix_tree_preload_end();
216 error = -EEXIST;
217 goto out_unwind;
1c1c6ebc
DC
218 }
219 spin_unlock(&mp->m_perag_lock);
220 radix_tree_preload_end();
221 }
222
fb3b504a
CH
223 /*
224 * If we mount with the inode64 option, or no inode overflows
225 * the legacy 32-bit address space clear the inode32 option.
1da177e4 226 */
fb3b504a
CH
227 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
228 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
229
230 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
1da177e4 231 mp->m_flags |= XFS_MOUNT_32BITINODES;
fb3b504a 232 else
1da177e4 233 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
1da177e4 234
2d2194f6 235 if (mp->m_flags & XFS_MOUNT_32BITINODES)
9de67c3b 236 index = xfs_set_inode32(mp, agcount);
2d2194f6 237 else
9de67c3b 238 index = xfs_set_inode64(mp, agcount);
fb3b504a 239
1c1c6ebc
DC
240 if (maxagi)
241 *maxagi = index;
242 return 0;
8b26c582
DC
243
244out_unwind:
245 kmem_free(pag);
246 for (; index > first_initialised; index--) {
247 pag = radix_tree_delete(&mp->m_perag_tree, index);
248 kmem_free(pag);
249 }
250 return error;
1da177e4
LT
251}
252
1da177e4
LT
253/*
254 * xfs_readsb
255 *
256 * Does the initial read of the superblock.
257 */
258int
ff55068c
DC
259xfs_readsb(
260 struct xfs_mount *mp,
261 int flags)
1da177e4
LT
262{
263 unsigned int sector_size;
04a1e6c5
DC
264 struct xfs_buf *bp;
265 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 266 int error;
af34e09d 267 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 268 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
269
270 ASSERT(mp->m_sb_bp == NULL);
271 ASSERT(mp->m_ddev_targp != NULL);
272
daba5427
ES
273 /*
274 * For the initial read, we must guess at the sector
275 * size based on the block device. It's enough to
276 * get the sb_sectsize out of the superblock and
277 * then reread with the proper length.
278 * We don't verify it yet, because it may not be complete.
279 */
280 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
281 buf_ops = NULL;
282
1da177e4
LT
283 /*
284 * Allocate a (locked) buffer to hold the superblock.
285 * This will be kept around at all times to optimize
286 * access to the superblock.
287 */
26af6552 288reread:
ba372674
DC
289 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
290 BTOBB(sector_size), 0, &bp, buf_ops);
291 if (error) {
eab4e633 292 if (loud)
e721f504 293 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 294 /* bad CRC means corrupted metadata */
2451337d
DC
295 if (error == -EFSBADCRC)
296 error = -EFSCORRUPTED;
ba372674 297 return error;
eab4e633 298 }
1da177e4
LT
299
300 /*
301 * Initialize the mount structure from the superblock.
1da177e4 302 */
556b8883 303 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
556b8883
DC
304
305 /*
306 * If we haven't validated the superblock, do so now before we try
307 * to check the sector size and reread the superblock appropriately.
308 */
309 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
310 if (loud)
311 xfs_warn(mp, "Invalid superblock magic number");
2451337d 312 error = -EINVAL;
556b8883
DC
313 goto release_buf;
314 }
ff55068c 315
1da177e4
LT
316 /*
317 * We must be able to do sector-sized and sector-aligned IO.
318 */
04a1e6c5 319 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
320 if (loud)
321 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 322 sector_size, sbp->sb_sectsize);
2451337d 323 error = -ENOSYS;
26af6552 324 goto release_buf;
1da177e4
LT
325 }
326
daba5427 327 if (buf_ops == NULL) {
556b8883
DC
328 /*
329 * Re-read the superblock so the buffer is correctly sized,
330 * and properly verified.
331 */
1da177e4 332 xfs_buf_relse(bp);
04a1e6c5 333 sector_size = sbp->sb_sectsize;
daba5427 334 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 335 goto reread;
1da177e4
LT
336 }
337
5681ca40 338 xfs_reinit_percpu_counters(mp);
8d280b98 339
04a1e6c5
DC
340 /* no need to be quiet anymore, so reset the buf ops */
341 bp->b_ops = &xfs_sb_buf_ops;
342
1da177e4 343 mp->m_sb_bp = bp;
26af6552 344 xfs_buf_unlock(bp);
1da177e4
LT
345 return 0;
346
26af6552
DC
347release_buf:
348 xfs_buf_relse(bp);
1da177e4
LT
349 return error;
350}
351
1da177e4 352/*
0771fb45 353 * Update alignment values based on mount options and sb values
1da177e4 354 */
0771fb45 355STATIC int
7884bc86 356xfs_update_alignment(xfs_mount_t *mp)
1da177e4 357{
1da177e4 358 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 359
4249023a 360 if (mp->m_dalign) {
1da177e4
LT
361 /*
362 * If stripe unit and stripe width are not multiples
363 * of the fs blocksize turn off alignment.
364 */
365 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
366 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
367 xfs_warn(mp,
368 "alignment check failed: sunit/swidth vs. blocksize(%d)",
369 sbp->sb_blocksize);
2451337d 370 return -EINVAL;
1da177e4
LT
371 } else {
372 /*
373 * Convert the stripe unit and width to FSBs.
374 */
375 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
376 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 377 xfs_warn(mp,
39a45d84
JL
378 "alignment check failed: sunit/swidth vs. agsize(%d)",
379 sbp->sb_agblocks);
2451337d 380 return -EINVAL;
1da177e4
LT
381 } else if (mp->m_dalign) {
382 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
383 } else {
39a45d84
JL
384 xfs_warn(mp,
385 "alignment check failed: sunit(%d) less than bsize(%d)",
386 mp->m_dalign, sbp->sb_blocksize);
2451337d 387 return -EINVAL;
1da177e4
LT
388 }
389 }
390
391 /*
392 * Update superblock with new values
393 * and log changes
394 */
62118709 395 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
396 if (sbp->sb_unit != mp->m_dalign) {
397 sbp->sb_unit = mp->m_dalign;
61e63ecb 398 mp->m_update_sb = true;
1da177e4
LT
399 }
400 if (sbp->sb_width != mp->m_swidth) {
401 sbp->sb_width = mp->m_swidth;
61e63ecb 402 mp->m_update_sb = true;
1da177e4 403 }
34d7f603
JL
404 } else {
405 xfs_warn(mp,
406 "cannot change alignment: superblock does not support data alignment");
2451337d 407 return -EINVAL;
1da177e4
LT
408 }
409 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 410 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
411 mp->m_dalign = sbp->sb_unit;
412 mp->m_swidth = sbp->sb_width;
413 }
414
0771fb45
ES
415 return 0;
416}
1da177e4 417
0771fb45
ES
418/*
419 * Set the maximum inode count for this filesystem
420 */
421STATIC void
422xfs_set_maxicount(xfs_mount_t *mp)
423{
424 xfs_sb_t *sbp = &(mp->m_sb);
425 __uint64_t icount;
1da177e4 426
0771fb45
ES
427 if (sbp->sb_imax_pct) {
428 /*
429 * Make sure the maximum inode count is a multiple
430 * of the units we allocate inodes in.
1da177e4 431 */
1da177e4
LT
432 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
433 do_div(icount, 100);
434 do_div(icount, mp->m_ialloc_blks);
435 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
436 sbp->sb_inopblog;
0771fb45 437 } else {
1da177e4 438 mp->m_maxicount = 0;
1da177e4 439 }
0771fb45
ES
440}
441
442/*
443 * Set the default minimum read and write sizes unless
444 * already specified in a mount option.
445 * We use smaller I/O sizes when the file system
446 * is being used for NFS service (wsync mount option).
447 */
448STATIC void
449xfs_set_rw_sizes(xfs_mount_t *mp)
450{
451 xfs_sb_t *sbp = &(mp->m_sb);
452 int readio_log, writeio_log;
1da177e4 453
1da177e4
LT
454 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
455 if (mp->m_flags & XFS_MOUNT_WSYNC) {
456 readio_log = XFS_WSYNC_READIO_LOG;
457 writeio_log = XFS_WSYNC_WRITEIO_LOG;
458 } else {
459 readio_log = XFS_READIO_LOG_LARGE;
460 writeio_log = XFS_WRITEIO_LOG_LARGE;
461 }
462 } else {
463 readio_log = mp->m_readio_log;
464 writeio_log = mp->m_writeio_log;
465 }
466
1da177e4
LT
467 if (sbp->sb_blocklog > readio_log) {
468 mp->m_readio_log = sbp->sb_blocklog;
469 } else {
470 mp->m_readio_log = readio_log;
471 }
472 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
473 if (sbp->sb_blocklog > writeio_log) {
474 mp->m_writeio_log = sbp->sb_blocklog;
475 } else {
476 mp->m_writeio_log = writeio_log;
477 }
478 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 479}
1da177e4 480
055388a3
DC
481/*
482 * precalculate the low space thresholds for dynamic speculative preallocation.
483 */
484void
485xfs_set_low_space_thresholds(
486 struct xfs_mount *mp)
487{
488 int i;
489
490 for (i = 0; i < XFS_LOWSP_MAX; i++) {
491 __uint64_t space = mp->m_sb.sb_dblocks;
492
493 do_div(space, 100);
494 mp->m_low_space[i] = space * (i + 1);
495 }
496}
497
498
0771fb45
ES
499/*
500 * Set whether we're using inode alignment.
501 */
502STATIC void
503xfs_set_inoalignment(xfs_mount_t *mp)
504{
62118709 505 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
506 mp->m_sb.sb_inoalignmt >=
507 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
508 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
509 else
510 mp->m_inoalign_mask = 0;
511 /*
512 * If we are using stripe alignment, check whether
513 * the stripe unit is a multiple of the inode alignment
514 */
515 if (mp->m_dalign && mp->m_inoalign_mask &&
516 !(mp->m_dalign & mp->m_inoalign_mask))
517 mp->m_sinoalign = mp->m_dalign;
518 else
519 mp->m_sinoalign = 0;
0771fb45
ES
520}
521
522/*
0471f62e 523 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
524 */
525STATIC int
ba372674
DC
526xfs_check_sizes(
527 struct xfs_mount *mp)
0771fb45 528{
ba372674 529 struct xfs_buf *bp;
0771fb45 530 xfs_daddr_t d;
ba372674 531 int error;
0771fb45 532
1da177e4
LT
533 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
534 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 535 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 536 return -EFBIG;
1da177e4 537 }
ba372674 538 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 539 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
540 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
541 if (error) {
0b932ccc 542 xfs_warn(mp, "last sector read failed");
ba372674 543 return error;
1da177e4 544 }
1922c949 545 xfs_buf_relse(bp);
1da177e4 546
ba372674
DC
547 if (mp->m_logdev_targp == mp->m_ddev_targp)
548 return 0;
549
550 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
551 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
552 xfs_warn(mp, "log size mismatch detected");
553 return -EFBIG;
554 }
555 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 556 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
557 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
558 if (error) {
559 xfs_warn(mp, "log device read failed");
560 return error;
0771fb45 561 }
ba372674 562 xfs_buf_relse(bp);
0771fb45
ES
563 return 0;
564}
565
7d095257
CH
566/*
567 * Clear the quotaflags in memory and in the superblock.
568 */
569int
570xfs_mount_reset_sbqflags(
571 struct xfs_mount *mp)
572{
7d095257
CH
573 mp->m_qflags = 0;
574
61e63ecb 575 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
576 if (mp->m_sb.sb_qflags == 0)
577 return 0;
578 spin_lock(&mp->m_sb_lock);
579 mp->m_sb.sb_qflags = 0;
580 spin_unlock(&mp->m_sb_lock);
581
61e63ecb 582 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
583 return 0;
584
61e63ecb 585 return xfs_sync_sb(mp, false);
7d095257
CH
586}
587
d5db0f97
ES
588__uint64_t
589xfs_default_resblks(xfs_mount_t *mp)
590{
591 __uint64_t resblks;
592
593 /*
8babd8a2
DC
594 * We default to 5% or 8192 fsbs of space reserved, whichever is
595 * smaller. This is intended to cover concurrent allocation
596 * transactions when we initially hit enospc. These each require a 4
597 * block reservation. Hence by default we cover roughly 2000 concurrent
598 * allocation reservations.
d5db0f97
ES
599 */
600 resblks = mp->m_sb.sb_dblocks;
601 do_div(resblks, 20);
8babd8a2 602 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
603 return resblks;
604}
605
0771fb45 606/*
0771fb45
ES
607 * This function does the following on an initial mount of a file system:
608 * - reads the superblock from disk and init the mount struct
609 * - if we're a 32-bit kernel, do a size check on the superblock
610 * so we don't mount terabyte filesystems
611 * - init mount struct realtime fields
612 * - allocate inode hash table for fs
613 * - init directory manager
614 * - perform recovery and init the log manager
615 */
616int
617xfs_mountfs(
f0b2efad 618 struct xfs_mount *mp)
0771fb45 619{
f0b2efad
BF
620 struct xfs_sb *sbp = &(mp->m_sb);
621 struct xfs_inode *rip;
622 __uint64_t resblks;
623 uint quotamount = 0;
624 uint quotaflags = 0;
625 int error = 0;
0771fb45 626
ff55068c 627 xfs_sb_mount_common(mp, sbp);
0771fb45 628
ee1c0908 629 /*
074e427b
DC
630 * Check for a mismatched features2 values. Older kernels read & wrote
631 * into the wrong sb offset for sb_features2 on some platforms due to
632 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
633 * which made older superblock reading/writing routines swap it as a
634 * 64-bit value.
ee1c0908 635 *
e6957ea4
ES
636 * For backwards compatibility, we make both slots equal.
637 *
074e427b
DC
638 * If we detect a mismatched field, we OR the set bits into the existing
639 * features2 field in case it has already been modified; we don't want
640 * to lose any features. We then update the bad location with the ORed
641 * value so that older kernels will see any features2 flags. The
642 * superblock writeback code ensures the new sb_features2 is copied to
643 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 644 */
e6957ea4 645 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 646 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 647 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 648 mp->m_update_sb = true;
e6957ea4
ES
649
650 /*
651 * Re-check for ATTR2 in case it was found in bad_features2
652 * slot.
653 */
7c12f296
TS
654 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
655 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 656 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
657 }
658
659 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
660 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
661 xfs_sb_version_removeattr2(&mp->m_sb);
61e63ecb 662 mp->m_update_sb = true;
e6957ea4 663
7c12f296
TS
664 /* update sb_versionnum for the clearing of the morebits */
665 if (!sbp->sb_features2)
61e63ecb 666 mp->m_update_sb = true;
ee1c0908
DC
667 }
668
263997a6
DC
669 /* always use v2 inodes by default now */
670 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
61e63ecb 672 mp->m_update_sb = true;
263997a6
DC
673 }
674
0771fb45
ES
675 /*
676 * Check if sb_agblocks is aligned at stripe boundary
677 * If sb_agblocks is NOT aligned turn off m_dalign since
678 * allocator alignment is within an ag, therefore ag has
679 * to be aligned at stripe boundary.
680 */
7884bc86 681 error = xfs_update_alignment(mp);
0771fb45 682 if (error)
f9057e3d 683 goto out;
0771fb45
ES
684
685 xfs_alloc_compute_maxlevels(mp);
686 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
687 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
688 xfs_ialloc_compute_maxlevels(mp);
689
690 xfs_set_maxicount(mp);
691
a31b1d3d 692 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
27174203
CH
693 if (error)
694 goto out;
1da177e4 695
a31b1d3d
BF
696 error = xfs_uuid_mount(mp);
697 if (error)
698 goto out_remove_sysfs;
699
0771fb45
ES
700 /*
701 * Set the minimum read and write sizes
702 */
703 xfs_set_rw_sizes(mp);
704
055388a3
DC
705 /* set the low space thresholds for dynamic preallocation */
706 xfs_set_low_space_thresholds(mp);
707
0771fb45
ES
708 /*
709 * Set the inode cluster size.
710 * This may still be overridden by the file system
711 * block size if it is larger than the chosen cluster size.
8f80587b
DC
712 *
713 * For v5 filesystems, scale the cluster size with the inode size to
714 * keep a constant ratio of inode per cluster buffer, but only if mkfs
715 * has set the inode alignment value appropriately for larger cluster
716 * sizes.
0771fb45
ES
717 */
718 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
8f80587b
DC
719 if (xfs_sb_version_hascrc(&mp->m_sb)) {
720 int new_size = mp->m_inode_cluster_size;
721
722 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
723 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
724 mp->m_inode_cluster_size = new_size;
8f80587b 725 }
0771fb45 726
e5376fc1
BF
727 /*
728 * If enabled, sparse inode chunk alignment is expected to match the
729 * cluster size. Full inode chunk alignment must match the chunk size,
730 * but that is checked on sb read verification...
731 */
732 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
733 mp->m_sb.sb_spino_align !=
734 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
735 xfs_warn(mp,
736 "Sparse inode block alignment (%u) must match cluster size (%llu).",
737 mp->m_sb.sb_spino_align,
738 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
739 error = -EINVAL;
740 goto out_remove_uuid;
741 }
742
0771fb45
ES
743 /*
744 * Set inode alignment fields
745 */
746 xfs_set_inoalignment(mp);
747
748 /*
c2bfbc9b 749 * Check that the data (and log if separate) is an ok size.
0771fb45 750 */
4249023a 751 error = xfs_check_sizes(mp);
0771fb45 752 if (error)
f9057e3d 753 goto out_remove_uuid;
0771fb45 754
1da177e4
LT
755 /*
756 * Initialize realtime fields in the mount structure
757 */
0771fb45
ES
758 error = xfs_rtmount_init(mp);
759 if (error) {
0b932ccc 760 xfs_warn(mp, "RT mount failed");
f9057e3d 761 goto out_remove_uuid;
1da177e4
LT
762 }
763
1da177e4
LT
764 /*
765 * Copies the low order bits of the timestamp and the randomly
766 * set "sequence" number out of a UUID.
767 */
768 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
769
1da177e4
LT
770 mp->m_dmevmask = 0; /* not persistent; set after each mount */
771
0650b554
DC
772 error = xfs_da_mount(mp);
773 if (error) {
774 xfs_warn(mp, "Failed dir/attr init: %d", error);
775 goto out_remove_uuid;
776 }
1da177e4
LT
777
778 /*
779 * Initialize the precomputed transaction reservations values.
780 */
781 xfs_trans_init(mp);
782
1da177e4
LT
783 /*
784 * Allocate and initialize the per-ag data.
785 */
1c1c6ebc 786 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 787 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
788 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
789 if (error) {
0b932ccc 790 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 791 goto out_free_dir;
1c1c6ebc 792 }
1da177e4 793
f9057e3d 794 if (!sbp->sb_logblocks) {
0b932ccc 795 xfs_warn(mp, "no log defined");
f9057e3d 796 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
2451337d 797 error = -EFSCORRUPTED;
f9057e3d
CH
798 goto out_free_perag;
799 }
800
1da177e4 801 /*
f0b2efad
BF
802 * Log's mount-time initialization. The first part of recovery can place
803 * some items on the AIL, to be handled when recovery is finished or
804 * cancelled.
1da177e4 805 */
f9057e3d
CH
806 error = xfs_log_mount(mp, mp->m_logdev_targp,
807 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
808 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
809 if (error) {
0b932ccc 810 xfs_warn(mp, "log mount failed");
d4f3512b 811 goto out_fail_wait;
1da177e4
LT
812 }
813
92821e2b
DC
814 /*
815 * Now the log is mounted, we know if it was an unclean shutdown or
816 * not. If it was, with the first phase of recovery has completed, we
817 * have consistent AG blocks on disk. We have not recovered EFIs yet,
818 * but they are recovered transactionally in the second recovery phase
819 * later.
820 *
821 * Hence we can safely re-initialise incore superblock counters from
822 * the per-ag data. These may not be correct if the filesystem was not
823 * cleanly unmounted, so we need to wait for recovery to finish before
824 * doing this.
825 *
826 * If the filesystem was cleanly unmounted, then we can trust the
827 * values in the superblock to be correct and we don't need to do
828 * anything here.
829 *
830 * If we are currently making the filesystem, the initialisation will
831 * fail as the perag data is in an undefined state.
832 */
92821e2b
DC
833 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
834 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
835 !mp->m_sb.sb_inprogress) {
836 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 837 if (error)
6eee8972 838 goto out_log_dealloc;
92821e2b 839 }
f9057e3d 840
1da177e4
LT
841 /*
842 * Get and sanity-check the root inode.
843 * Save the pointer to it in the mount structure.
844 */
7b6259e7 845 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 846 if (error) {
0b932ccc 847 xfs_warn(mp, "failed to read root inode");
f9057e3d 848 goto out_log_dealloc;
1da177e4
LT
849 }
850
851 ASSERT(rip != NULL);
1da177e4 852
abbede1b 853 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
0b932ccc 854 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 855 (unsigned long long)rip->i_ino);
1da177e4
LT
856 xfs_iunlock(rip, XFS_ILOCK_EXCL);
857 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
858 mp);
2451337d 859 error = -EFSCORRUPTED;
f9057e3d 860 goto out_rele_rip;
1da177e4
LT
861 }
862 mp->m_rootip = rip; /* save it */
863
864 xfs_iunlock(rip, XFS_ILOCK_EXCL);
865
866 /*
867 * Initialize realtime inode pointers in the mount structure
868 */
0771fb45
ES
869 error = xfs_rtmount_inodes(mp);
870 if (error) {
1da177e4
LT
871 /*
872 * Free up the root inode.
873 */
0b932ccc 874 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 875 goto out_rele_rip;
1da177e4
LT
876 }
877
878 /*
7884bc86
CH
879 * If this is a read-only mount defer the superblock updates until
880 * the next remount into writeable mode. Otherwise we would never
881 * perform the update e.g. for the root filesystem.
1da177e4 882 */
61e63ecb
DC
883 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
884 error = xfs_sync_sb(mp, false);
e5720eec 885 if (error) {
0b932ccc 886 xfs_warn(mp, "failed to write sb changes");
b93b6e43 887 goto out_rtunmount;
e5720eec
DC
888 }
889 }
1da177e4
LT
890
891 /*
892 * Initialise the XFS quota management subsystem for this mount
893 */
7d095257
CH
894 if (XFS_IS_QUOTA_RUNNING(mp)) {
895 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
896 if (error)
897 goto out_rtunmount;
898 } else {
899 ASSERT(!XFS_IS_QUOTA_ON(mp));
900
901 /*
902 * If a file system had quotas running earlier, but decided to
903 * mount without -o uquota/pquota/gquota options, revoke the
904 * quotachecked license.
905 */
906 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 907 xfs_notice(mp, "resetting quota flags");
7d095257
CH
908 error = xfs_mount_reset_sbqflags(mp);
909 if (error)
a70a4fa5 910 goto out_rtunmount;
7d095257
CH
911 }
912 }
1da177e4
LT
913
914 /*
f0b2efad
BF
915 * Finish recovering the file system. This part needed to be delayed
916 * until after the root and real-time bitmap inodes were consistently
917 * read in.
1da177e4 918 */
4249023a 919 error = xfs_log_mount_finish(mp);
1da177e4 920 if (error) {
0b932ccc 921 xfs_warn(mp, "log mount finish failed");
b93b6e43 922 goto out_rtunmount;
1da177e4
LT
923 }
924
925 /*
926 * Complete the quota initialisation, post-log-replay component.
927 */
7d095257
CH
928 if (quotamount) {
929 ASSERT(mp->m_qflags == 0);
930 mp->m_qflags = quotaflags;
931
932 xfs_qm_mount_quotas(mp);
933 }
934
84e1e99f
DC
935 /*
936 * Now we are mounted, reserve a small amount of unused space for
937 * privileged transactions. This is needed so that transaction
938 * space required for critical operations can dip into this pool
939 * when at ENOSPC. This is needed for operations like create with
940 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
941 * are not allowed to use this reserved space.
8babd8a2
DC
942 *
943 * This may drive us straight to ENOSPC on mount, but that implies
944 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 945 */
d5db0f97
ES
946 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
947 resblks = xfs_default_resblks(mp);
948 error = xfs_reserve_blocks(mp, &resblks, NULL);
949 if (error)
0b932ccc
DC
950 xfs_warn(mp,
951 "Unable to allocate reserve blocks. Continuing without reserve pool.");
d5db0f97 952 }
84e1e99f 953
1da177e4
LT
954 return 0;
955
b93b6e43
CH
956 out_rtunmount:
957 xfs_rtunmount_inodes(mp);
f9057e3d 958 out_rele_rip:
43355099 959 IRELE(rip);
f9057e3d 960 out_log_dealloc:
f0b2efad 961 xfs_log_mount_cancel(mp);
d4f3512b
DC
962 out_fail_wait:
963 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
964 xfs_wait_buftarg(mp->m_logdev_targp);
965 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 966 out_free_perag:
ff4f038c 967 xfs_free_perag(mp);
0650b554
DC
968 out_free_dir:
969 xfs_da_unmount(mp);
f9057e3d 970 out_remove_uuid:
27174203 971 xfs_uuid_unmount(mp);
a31b1d3d
BF
972 out_remove_sysfs:
973 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 974 out:
1da177e4
LT
975 return error;
976}
977
978/*
1da177e4
LT
979 * This flushes out the inodes,dquots and the superblock, unmounts the
980 * log and makes sure that incore structures are freed.
981 */
41b5c2e7
CH
982void
983xfs_unmountfs(
984 struct xfs_mount *mp)
1da177e4 985{
41b5c2e7
CH
986 __uint64_t resblks;
987 int error;
1da177e4 988
579b62fa
BF
989 cancel_delayed_work_sync(&mp->m_eofblocks_work);
990
7d095257 991 xfs_qm_unmount_quotas(mp);
b93b6e43 992 xfs_rtunmount_inodes(mp);
77508ec8
CH
993 IRELE(mp->m_rootip);
994
641c56fb
DC
995 /*
996 * We can potentially deadlock here if we have an inode cluster
9da096fd 997 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
998 * the transaction is still sitting in a iclog. The stale inodes
999 * on that buffer will have their flush locks held until the
1000 * transaction hits the disk and the callbacks run. the inode
1001 * flush takes the flush lock unconditionally and with nothing to
1002 * push out the iclog we will never get that unlocked. hence we
1003 * need to force the log first.
1004 */
a14a348b 1005 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e
DC
1006
1007 /*
211e4d43
CH
1008 * Flush all pending changes from the AIL.
1009 */
1010 xfs_ail_push_all_sync(mp->m_ail);
1011
1012 /*
1013 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1014 * inodes and none should be pinned or locked, but use synchronous
1015 * reclaim just to be sure. We can stop background inode reclaim
1016 * here as well if it is still running.
c854363e 1017 */
7e18530b 1018 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1019 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1020
7d095257 1021 xfs_qm_unmount(mp);
a357a121 1022
84e1e99f
DC
1023 /*
1024 * Unreserve any blocks we have so that when we unmount we don't account
1025 * the reserved free space as used. This is really only necessary for
1026 * lazy superblock counting because it trusts the incore superblock
9da096fd 1027 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1028 *
1029 * We don't bother correcting this elsewhere for lazy superblock
1030 * counting because on mount of an unclean filesystem we reconstruct the
1031 * correct counter value and this is irrelevant.
1032 *
1033 * For non-lazy counter filesystems, this doesn't matter at all because
1034 * we only every apply deltas to the superblock and hence the incore
1035 * value does not matter....
1036 */
1037 resblks = 0;
714082bc
DC
1038 error = xfs_reserve_blocks(mp, &resblks, NULL);
1039 if (error)
0b932ccc 1040 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1041 "Freespace may not be correct on next mount.");
1042
adab0f67 1043 error = xfs_log_sbcount(mp);
e5720eec 1044 if (error)
0b932ccc 1045 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1046 "Freespace may not be correct on next mount.");
87c7bec7 1047
21b699c8 1048 xfs_log_unmount(mp);
0650b554 1049 xfs_da_unmount(mp);
27174203 1050 xfs_uuid_unmount(mp);
1da177e4 1051
1550d0b0 1052#if defined(DEBUG)
0ce4cfd4 1053 xfs_errortag_clearall(mp, 0);
1da177e4 1054#endif
ff4f038c 1055 xfs_free_perag(mp);
a31b1d3d
BF
1056
1057 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1058}
1059
91ee575f
BF
1060/*
1061 * Determine whether modifications can proceed. The caller specifies the minimum
1062 * freeze level for which modifications should not be allowed. This allows
1063 * certain operations to proceed while the freeze sequence is in progress, if
1064 * necessary.
1065 */
1066bool
1067xfs_fs_writable(
1068 struct xfs_mount *mp,
1069 int level)
92821e2b 1070{
91ee575f
BF
1071 ASSERT(level > SB_UNFROZEN);
1072 if ((mp->m_super->s_writers.frozen >= level) ||
1073 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1074 return false;
1075
1076 return true;
92821e2b
DC
1077}
1078
1079/*
b2ce3974
AE
1080 * xfs_log_sbcount
1081 *
adab0f67 1082 * Sync the superblock counters to disk.
b2ce3974 1083 *
91ee575f
BF
1084 * Note this code can be called during the process of freezing, so we use the
1085 * transaction allocator that does not block when the transaction subsystem is
1086 * in its frozen state.
92821e2b
DC
1087 */
1088int
adab0f67 1089xfs_log_sbcount(xfs_mount_t *mp)
92821e2b 1090{
91ee575f
BF
1091 /* allow this to proceed during the freeze sequence... */
1092 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
92821e2b
DC
1093 return 0;
1094
92821e2b
DC
1095 /*
1096 * we don't need to do this if we are updating the superblock
1097 * counters on every modification.
1098 */
1099 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1100 return 0;
1101
61e63ecb 1102 return xfs_sync_sb(mp, true);
92821e2b
DC
1103}
1104
8c1903d3
DC
1105/*
1106 * Deltas for the inode count are +/-64, hence we use a large batch size
1107 * of 128 so we don't need to take the counter lock on every update.
1108 */
1109#define XFS_ICOUNT_BATCH 128
501ab323
DC
1110int
1111xfs_mod_icount(
1112 struct xfs_mount *mp,
1113 int64_t delta)
1114{
8c1903d3
DC
1115 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1116 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
501ab323
DC
1117 ASSERT(0);
1118 percpu_counter_add(&mp->m_icount, -delta);
1119 return -EINVAL;
1120 }
1121 return 0;
1122}
1123
e88b64ea
DC
1124int
1125xfs_mod_ifree(
1126 struct xfs_mount *mp,
1127 int64_t delta)
1128{
1129 percpu_counter_add(&mp->m_ifree, delta);
1130 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1131 ASSERT(0);
1132 percpu_counter_add(&mp->m_ifree, -delta);
1133 return -EINVAL;
1134 }
1135 return 0;
1136}
0d485ada 1137
8c1903d3
DC
1138/*
1139 * Deltas for the block count can vary from 1 to very large, but lock contention
1140 * only occurs on frequent small block count updates such as in the delayed
1141 * allocation path for buffered writes (page a time updates). Hence we set
1142 * a large batch count (1024) to minimise global counter updates except when
1143 * we get near to ENOSPC and we have to be very accurate with our updates.
1144 */
1145#define XFS_FDBLOCKS_BATCH 1024
0d485ada
DC
1146int
1147xfs_mod_fdblocks(
1148 struct xfs_mount *mp,
1149 int64_t delta,
1150 bool rsvd)
1151{
1152 int64_t lcounter;
1153 long long res_used;
1154 s32 batch;
1155
1156 if (delta > 0) {
1157 /*
1158 * If the reserve pool is depleted, put blocks back into it
1159 * first. Most of the time the pool is full.
1160 */
1161 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1162 percpu_counter_add(&mp->m_fdblocks, delta);
1163 return 0;
1164 }
1165
1166 spin_lock(&mp->m_sb_lock);
1167 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1168
1169 if (res_used > delta) {
1170 mp->m_resblks_avail += delta;
1171 } else {
1172 delta -= res_used;
1173 mp->m_resblks_avail = mp->m_resblks;
1174 percpu_counter_add(&mp->m_fdblocks, delta);
1175 }
1176 spin_unlock(&mp->m_sb_lock);
1177 return 0;
1178 }
1179
1180 /*
1181 * Taking blocks away, need to be more accurate the closer we
1182 * are to zero.
1183 *
0d485ada
DC
1184 * If the counter has a value of less than 2 * max batch size,
1185 * then make everything serialise as we are real close to
1186 * ENOSPC.
1187 */
8c1903d3
DC
1188 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1189 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1190 batch = 1;
1191 else
8c1903d3 1192 batch = XFS_FDBLOCKS_BATCH;
0d485ada
DC
1193
1194 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
8c1903d3
DC
1195 if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1196 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1197 /* we had space! */
1198 return 0;
1199 }
1200
1201 /*
1202 * lock up the sb for dipping into reserves before releasing the space
1203 * that took us to ENOSPC.
1204 */
1205 spin_lock(&mp->m_sb_lock);
1206 percpu_counter_add(&mp->m_fdblocks, -delta);
1207 if (!rsvd)
1208 goto fdblocks_enospc;
1209
1210 lcounter = (long long)mp->m_resblks_avail + delta;
1211 if (lcounter >= 0) {
1212 mp->m_resblks_avail = lcounter;
1213 spin_unlock(&mp->m_sb_lock);
1214 return 0;
1215 }
1216 printk_once(KERN_WARNING
1217 "Filesystem \"%s\": reserve blocks depleted! "
1218 "Consider increasing reserve pool size.",
1219 mp->m_fsname);
1220fdblocks_enospc:
1221 spin_unlock(&mp->m_sb_lock);
1222 return -ENOSPC;
1223}
1224
bab98bbe
DC
1225int
1226xfs_mod_frextents(
1227 struct xfs_mount *mp,
1228 int64_t delta)
1229{
1230 int64_t lcounter;
1231 int ret = 0;
1232
1233 spin_lock(&mp->m_sb_lock);
1234 lcounter = mp->m_sb.sb_frextents + delta;
1235 if (lcounter < 0)
1236 ret = -ENOSPC;
1237 else
1238 mp->m_sb.sb_frextents = lcounter;
1239 spin_unlock(&mp->m_sb_lock);
1240 return ret;
1241}
1242
1da177e4
LT
1243/*
1244 * xfs_getsb() is called to obtain the buffer for the superblock.
1245 * The buffer is returned locked and read in from disk.
1246 * The buffer should be released with a call to xfs_brelse().
1247 *
1248 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1249 * the superblock buffer if it can be locked without sleeping.
1250 * If it can't then we'll return NULL.
1251 */
0c842ad4 1252struct xfs_buf *
1da177e4 1253xfs_getsb(
0c842ad4
CH
1254 struct xfs_mount *mp,
1255 int flags)
1da177e4 1256{
0c842ad4 1257 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1258
0c842ad4
CH
1259 if (!xfs_buf_trylock(bp)) {
1260 if (flags & XBF_TRYLOCK)
1da177e4 1261 return NULL;
0c842ad4 1262 xfs_buf_lock(bp);
1da177e4 1263 }
0c842ad4 1264
72790aa1 1265 xfs_buf_hold(bp);
1da177e4 1266 ASSERT(XFS_BUF_ISDONE(bp));
014c2544 1267 return bp;
1da177e4
LT
1268}
1269
1270/*
1271 * Used to free the superblock along various error paths.
1272 */
1273void
1274xfs_freesb(
26af6552 1275 struct xfs_mount *mp)
1da177e4 1276{
26af6552 1277 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1278
26af6552 1279 xfs_buf_lock(bp);
1da177e4 1280 mp->m_sb_bp = NULL;
26af6552 1281 xfs_buf_relse(bp);
1da177e4
LT
1282}
1283
dda35b8f
CH
1284/*
1285 * If the underlying (data/log/rt) device is readonly, there are some
1286 * operations that cannot proceed.
1287 */
1288int
1289xfs_dev_is_read_only(
1290 struct xfs_mount *mp,
1291 char *message)
1292{
1293 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1294 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1295 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1296 xfs_notice(mp, "%s required on read-only device.", message);
1297 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1298 return -EROFS;
dda35b8f
CH
1299 }
1300 return 0;
1301}