]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/xfs/xfs_mount.c
xfs: connect up write verifiers to new buffers
[mirror_ubuntu-bionic-kernel.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
211e4d43 25#include "xfs_trans_priv.h"
1da177e4
LT
26#include "xfs_sb.h"
27#include "xfs_ag.h"
1da177e4 28#include "xfs_dir2.h"
1da177e4 29#include "xfs_mount.h"
1da177e4 30#include "xfs_bmap_btree.h"
a844f451 31#include "xfs_alloc_btree.h"
1da177e4 32#include "xfs_ialloc_btree.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_btree.h"
36#include "xfs_ialloc.h"
1da177e4
LT
37#include "xfs_alloc.h"
38#include "xfs_rtalloc.h"
39#include "xfs_bmap.h"
40#include "xfs_error.h"
1da177e4
LT
41#include "xfs_quota.h"
42#include "xfs_fsops.h"
43355099 43#include "xfs_utils.h"
0b1b213f 44#include "xfs_trace.h"
6d8b79cf 45#include "xfs_icache.h"
0b1b213f 46
1da177e4 47
8d280b98 48#ifdef HAVE_PERCPU_SB
20f4ebf2 49STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
45af6c6d
CH
50 int);
51STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
52 int);
36fbe6e6 53STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
8d280b98
DC
54#else
55
45af6c6d
CH
56#define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
57#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
8d280b98
DC
58#endif
59
1df84c93 60static const struct {
8d280b98
DC
61 short offset;
62 short type; /* 0 = integer
63 * 1 = binary / string (no translation)
64 */
1da177e4
LT
65} xfs_sb_info[] = {
66 { offsetof(xfs_sb_t, sb_magicnum), 0 },
67 { offsetof(xfs_sb_t, sb_blocksize), 0 },
68 { offsetof(xfs_sb_t, sb_dblocks), 0 },
69 { offsetof(xfs_sb_t, sb_rblocks), 0 },
70 { offsetof(xfs_sb_t, sb_rextents), 0 },
71 { offsetof(xfs_sb_t, sb_uuid), 1 },
72 { offsetof(xfs_sb_t, sb_logstart), 0 },
73 { offsetof(xfs_sb_t, sb_rootino), 0 },
74 { offsetof(xfs_sb_t, sb_rbmino), 0 },
75 { offsetof(xfs_sb_t, sb_rsumino), 0 },
76 { offsetof(xfs_sb_t, sb_rextsize), 0 },
77 { offsetof(xfs_sb_t, sb_agblocks), 0 },
78 { offsetof(xfs_sb_t, sb_agcount), 0 },
79 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
80 { offsetof(xfs_sb_t, sb_logblocks), 0 },
81 { offsetof(xfs_sb_t, sb_versionnum), 0 },
82 { offsetof(xfs_sb_t, sb_sectsize), 0 },
83 { offsetof(xfs_sb_t, sb_inodesize), 0 },
84 { offsetof(xfs_sb_t, sb_inopblock), 0 },
85 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
86 { offsetof(xfs_sb_t, sb_blocklog), 0 },
87 { offsetof(xfs_sb_t, sb_sectlog), 0 },
88 { offsetof(xfs_sb_t, sb_inodelog), 0 },
89 { offsetof(xfs_sb_t, sb_inopblog), 0 },
90 { offsetof(xfs_sb_t, sb_agblklog), 0 },
91 { offsetof(xfs_sb_t, sb_rextslog), 0 },
92 { offsetof(xfs_sb_t, sb_inprogress), 0 },
93 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
94 { offsetof(xfs_sb_t, sb_icount), 0 },
95 { offsetof(xfs_sb_t, sb_ifree), 0 },
96 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
97 { offsetof(xfs_sb_t, sb_frextents), 0 },
98 { offsetof(xfs_sb_t, sb_uquotino), 0 },
99 { offsetof(xfs_sb_t, sb_gquotino), 0 },
100 { offsetof(xfs_sb_t, sb_qflags), 0 },
101 { offsetof(xfs_sb_t, sb_flags), 0 },
102 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
103 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
104 { offsetof(xfs_sb_t, sb_unit), 0 },
105 { offsetof(xfs_sb_t, sb_width), 0 },
106 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
107 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
108 { offsetof(xfs_sb_t, sb_logsectsize),0 },
109 { offsetof(xfs_sb_t, sb_logsunit), 0 },
110 { offsetof(xfs_sb_t, sb_features2), 0 },
ee1c0908 111 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
1da177e4
LT
112 { sizeof(xfs_sb_t), 0 }
113};
114
27174203
CH
115static DEFINE_MUTEX(xfs_uuid_table_mutex);
116static int xfs_uuid_table_size;
117static uuid_t *xfs_uuid_table;
118
119/*
120 * See if the UUID is unique among mounted XFS filesystems.
121 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
122 */
123STATIC int
124xfs_uuid_mount(
125 struct xfs_mount *mp)
126{
127 uuid_t *uuid = &mp->m_sb.sb_uuid;
128 int hole, i;
129
130 if (mp->m_flags & XFS_MOUNT_NOUUID)
131 return 0;
132
133 if (uuid_is_nil(uuid)) {
0b932ccc 134 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
27174203
CH
135 return XFS_ERROR(EINVAL);
136 }
137
138 mutex_lock(&xfs_uuid_table_mutex);
139 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
140 if (uuid_is_nil(&xfs_uuid_table[i])) {
141 hole = i;
142 continue;
143 }
144 if (uuid_equal(uuid, &xfs_uuid_table[i]))
145 goto out_duplicate;
146 }
147
148 if (hole < 0) {
149 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
150 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
151 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
152 KM_SLEEP);
153 hole = xfs_uuid_table_size++;
154 }
155 xfs_uuid_table[hole] = *uuid;
156 mutex_unlock(&xfs_uuid_table_mutex);
157
158 return 0;
159
160 out_duplicate:
161 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 162 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
27174203
CH
163 return XFS_ERROR(EINVAL);
164}
165
166STATIC void
167xfs_uuid_unmount(
168 struct xfs_mount *mp)
169{
170 uuid_t *uuid = &mp->m_sb.sb_uuid;
171 int i;
172
173 if (mp->m_flags & XFS_MOUNT_NOUUID)
174 return;
175
176 mutex_lock(&xfs_uuid_table_mutex);
177 for (i = 0; i < xfs_uuid_table_size; i++) {
178 if (uuid_is_nil(&xfs_uuid_table[i]))
179 continue;
180 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
181 continue;
182 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
183 break;
184 }
185 ASSERT(i < xfs_uuid_table_size);
186 mutex_unlock(&xfs_uuid_table_mutex);
187}
188
189
0fa800fb
DC
190/*
191 * Reference counting access wrappers to the perag structures.
e176579e
DC
192 * Because we never free per-ag structures, the only thing we
193 * have to protect against changes is the tree structure itself.
0fa800fb
DC
194 */
195struct xfs_perag *
196xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
197{
198 struct xfs_perag *pag;
199 int ref = 0;
200
e176579e 201 rcu_read_lock();
0fa800fb
DC
202 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
203 if (pag) {
204 ASSERT(atomic_read(&pag->pag_ref) >= 0);
0fa800fb
DC
205 ref = atomic_inc_return(&pag->pag_ref);
206 }
e176579e 207 rcu_read_unlock();
0fa800fb
DC
208 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
209 return pag;
210}
211
65d0f205
DC
212/*
213 * search from @first to find the next perag with the given tag set.
214 */
215struct xfs_perag *
216xfs_perag_get_tag(
217 struct xfs_mount *mp,
218 xfs_agnumber_t first,
219 int tag)
220{
221 struct xfs_perag *pag;
222 int found;
223 int ref;
224
225 rcu_read_lock();
226 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
227 (void **)&pag, first, 1, tag);
228 if (found <= 0) {
229 rcu_read_unlock();
230 return NULL;
231 }
232 ref = atomic_inc_return(&pag->pag_ref);
233 rcu_read_unlock();
234 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
235 return pag;
236}
237
0fa800fb
DC
238void
239xfs_perag_put(struct xfs_perag *pag)
240{
241 int ref;
242
243 ASSERT(atomic_read(&pag->pag_ref) > 0);
244 ref = atomic_dec_return(&pag->pag_ref);
245 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
246}
247
e176579e
DC
248STATIC void
249__xfs_free_perag(
250 struct rcu_head *head)
251{
252 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
253
254 ASSERT(atomic_read(&pag->pag_ref) == 0);
255 kmem_free(pag);
256}
257
1da177e4 258/*
e176579e 259 * Free up the per-ag resources associated with the mount structure.
1da177e4 260 */
c962fb79 261STATIC void
ff4f038c 262xfs_free_perag(
745f6919 263 xfs_mount_t *mp)
1da177e4 264{
1c1c6ebc
DC
265 xfs_agnumber_t agno;
266 struct xfs_perag *pag;
267
268 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
269 spin_lock(&mp->m_perag_lock);
270 pag = radix_tree_delete(&mp->m_perag_tree, agno);
271 spin_unlock(&mp->m_perag_lock);
e176579e 272 ASSERT(pag);
f83282a8 273 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 274 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 275 }
1da177e4
LT
276}
277
4cc929ee
NS
278/*
279 * Check size of device based on the (data/realtime) block count.
280 * Note: this check is used by the growfs code as well as mount.
281 */
282int
283xfs_sb_validate_fsb_count(
284 xfs_sb_t *sbp,
285 __uint64_t nblocks)
286{
287 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
288 ASSERT(sbp->sb_blocklog >= BBSHIFT);
289
290#if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
291 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
657a4cff 292 return EFBIG;
4cc929ee
NS
293#else /* Limited by UINT_MAX of sectors */
294 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
657a4cff 295 return EFBIG;
4cc929ee
NS
296#endif
297 return 0;
298}
1da177e4
LT
299
300/*
301 * Check the validity of the SB found.
302 */
303STATIC int
304xfs_mount_validate_sb(
305 xfs_mount_t *mp,
764d1f89 306 xfs_sb_t *sbp,
98021821 307 bool check_inprogress)
1da177e4 308{
af34e09d 309
1da177e4
LT
310 /*
311 * If the log device and data device have the
312 * same device number, the log is internal.
313 * Consequently, the sb_logstart should be non-zero. If
314 * we have a zero sb_logstart in this case, we may be trying to mount
315 * a volume filesystem in a non-volume manner.
316 */
317 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
98021821 318 xfs_warn(mp, "bad magic number");
1da177e4
LT
319 return XFS_ERROR(EWRONGFS);
320 }
321
62118709 322 if (!xfs_sb_good_version(sbp)) {
98021821 323 xfs_warn(mp, "bad version");
1da177e4
LT
324 return XFS_ERROR(EWRONGFS);
325 }
326
327 if (unlikely(
328 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
98021821 329 xfs_warn(mp,
af34e09d
DC
330 "filesystem is marked as having an external log; "
331 "specify logdev on the mount command line.");
764d1f89 332 return XFS_ERROR(EINVAL);
1da177e4
LT
333 }
334
335 if (unlikely(
336 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
98021821 337 xfs_warn(mp,
af34e09d
DC
338 "filesystem is marked as having an internal log; "
339 "do not specify logdev on the mount command line.");
764d1f89 340 return XFS_ERROR(EINVAL);
1da177e4
LT
341 }
342
343 /*
c0e090ce 344 * More sanity checking. Most of these were stolen directly from
1da177e4
LT
345 * xfs_repair.
346 */
347 if (unlikely(
348 sbp->sb_agcount <= 0 ||
349 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
350 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
351 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
352 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
2ac00af7 353 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
1da177e4
LT
354 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
355 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
356 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
357 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
2ac00af7 358 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
1da177e4
LT
359 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
360 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
9f989c94
NS
361 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
362 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
2ac00af7 363 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
9f989c94 364 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
1da177e4
LT
365 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
366 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
c0e090ce
ES
367 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */) ||
368 sbp->sb_dblocks == 0 ||
369 sbp->sb_dblocks > XFS_MAX_DBLOCKS(sbp) ||
370 sbp->sb_dblocks < XFS_MIN_DBLOCKS(sbp))) {
98021821 371 XFS_CORRUPTION_ERROR("SB sanity check failed",
c0e090ce 372 XFS_ERRLEVEL_LOW, mp, sbp);
1da177e4
LT
373 return XFS_ERROR(EFSCORRUPTED);
374 }
375
2edbddd5
LM
376 /*
377 * Until this is fixed only page-sized or smaller data blocks work.
378 */
379 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
98021821 380 xfs_warn(mp,
af34e09d
DC
381 "File system with blocksize %d bytes. "
382 "Only pagesize (%ld) or less will currently work.",
383 sbp->sb_blocksize, PAGE_SIZE);
2edbddd5
LM
384 return XFS_ERROR(ENOSYS);
385 }
386
1a5902c5
CH
387 /*
388 * Currently only very few inode sizes are supported.
389 */
390 switch (sbp->sb_inodesize) {
391 case 256:
392 case 512:
393 case 1024:
394 case 2048:
395 break;
396 default:
98021821 397 xfs_warn(mp, "inode size of %d bytes not supported",
af34e09d 398 sbp->sb_inodesize);
1a5902c5
CH
399 return XFS_ERROR(ENOSYS);
400 }
401
4cc929ee
NS
402 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
403 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
98021821 404 xfs_warn(mp,
af34e09d 405 "file system too large to be mounted on this system.");
657a4cff 406 return XFS_ERROR(EFBIG);
1da177e4
LT
407 }
408
98021821
DC
409 if (check_inprogress && sbp->sb_inprogress) {
410 xfs_warn(mp, "Offline file system operation in progress!");
1da177e4
LT
411 return XFS_ERROR(EFSCORRUPTED);
412 }
413
de20614b
NS
414 /*
415 * Version 1 directory format has never worked on Linux.
416 */
62118709 417 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
98021821 418 xfs_warn(mp, "file system using version 1 directory format");
de20614b
NS
419 return XFS_ERROR(ENOSYS);
420 }
421
1da177e4
LT
422 return 0;
423}
424
1c1c6ebc 425int
c11e2c36 426xfs_initialize_perag(
c11e2c36 427 xfs_mount_t *mp,
1c1c6ebc
DC
428 xfs_agnumber_t agcount,
429 xfs_agnumber_t *maxagi)
1da177e4 430{
2d2194f6 431 xfs_agnumber_t index;
8b26c582 432 xfs_agnumber_t first_initialised = 0;
1da177e4
LT
433 xfs_perag_t *pag;
434 xfs_agino_t agino;
435 xfs_ino_t ino;
436 xfs_sb_t *sbp = &mp->m_sb;
8b26c582 437 int error = -ENOMEM;
1da177e4 438
1c1c6ebc
DC
439 /*
440 * Walk the current per-ag tree so we don't try to initialise AGs
441 * that already exist (growfs case). Allocate and insert all the
442 * AGs we don't find ready for initialisation.
443 */
444 for (index = 0; index < agcount; index++) {
445 pag = xfs_perag_get(mp, index);
446 if (pag) {
447 xfs_perag_put(pag);
448 continue;
449 }
8b26c582
DC
450 if (!first_initialised)
451 first_initialised = index;
fb3b504a 452
1c1c6ebc
DC
453 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
454 if (!pag)
8b26c582 455 goto out_unwind;
fb3b504a
CH
456 pag->pag_agno = index;
457 pag->pag_mount = mp;
1a427ab0 458 spin_lock_init(&pag->pag_ici_lock);
69b491c2 459 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 460 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
461 spin_lock_init(&pag->pag_buf_lock);
462 pag->pag_buf_tree = RB_ROOT;
fb3b504a 463
1c1c6ebc 464 if (radix_tree_preload(GFP_NOFS))
8b26c582 465 goto out_unwind;
fb3b504a 466
1c1c6ebc
DC
467 spin_lock(&mp->m_perag_lock);
468 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
469 BUG();
470 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
471 radix_tree_preload_end();
472 error = -EEXIST;
473 goto out_unwind;
1c1c6ebc
DC
474 }
475 spin_unlock(&mp->m_perag_lock);
476 radix_tree_preload_end();
477 }
478
fb3b504a
CH
479 /*
480 * If we mount with the inode64 option, or no inode overflows
481 * the legacy 32-bit address space clear the inode32 option.
1da177e4 482 */
fb3b504a
CH
483 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
484 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
485
486 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
1da177e4 487 mp->m_flags |= XFS_MOUNT_32BITINODES;
fb3b504a 488 else
1da177e4 489 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
1da177e4 490
2d2194f6
CM
491 if (mp->m_flags & XFS_MOUNT_32BITINODES)
492 index = xfs_set_inode32(mp);
493 else
494 index = xfs_set_inode64(mp);
fb3b504a 495
1c1c6ebc
DC
496 if (maxagi)
497 *maxagi = index;
498 return 0;
8b26c582
DC
499
500out_unwind:
501 kmem_free(pag);
502 for (; index > first_initialised; index--) {
503 pag = radix_tree_delete(&mp->m_perag_tree, index);
504 kmem_free(pag);
505 }
506 return error;
1da177e4
LT
507}
508
2bdf7cd0
CH
509void
510xfs_sb_from_disk(
98021821 511 struct xfs_sb *to,
2bdf7cd0
CH
512 xfs_dsb_t *from)
513{
514 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
515 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
516 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
517 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
518 to->sb_rextents = be64_to_cpu(from->sb_rextents);
519 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
520 to->sb_logstart = be64_to_cpu(from->sb_logstart);
521 to->sb_rootino = be64_to_cpu(from->sb_rootino);
522 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
523 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
524 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
525 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
526 to->sb_agcount = be32_to_cpu(from->sb_agcount);
527 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
528 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
529 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
530 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
531 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
532 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
533 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
534 to->sb_blocklog = from->sb_blocklog;
535 to->sb_sectlog = from->sb_sectlog;
536 to->sb_inodelog = from->sb_inodelog;
537 to->sb_inopblog = from->sb_inopblog;
538 to->sb_agblklog = from->sb_agblklog;
539 to->sb_rextslog = from->sb_rextslog;
540 to->sb_inprogress = from->sb_inprogress;
541 to->sb_imax_pct = from->sb_imax_pct;
542 to->sb_icount = be64_to_cpu(from->sb_icount);
543 to->sb_ifree = be64_to_cpu(from->sb_ifree);
544 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
545 to->sb_frextents = be64_to_cpu(from->sb_frextents);
546 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
547 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
548 to->sb_qflags = be16_to_cpu(from->sb_qflags);
549 to->sb_flags = from->sb_flags;
550 to->sb_shared_vn = from->sb_shared_vn;
551 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
552 to->sb_unit = be32_to_cpu(from->sb_unit);
553 to->sb_width = be32_to_cpu(from->sb_width);
554 to->sb_dirblklog = from->sb_dirblklog;
555 to->sb_logsectlog = from->sb_logsectlog;
556 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
557 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
558 to->sb_features2 = be32_to_cpu(from->sb_features2);
ee1c0908 559 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
2bdf7cd0
CH
560}
561
1da177e4 562/*
2bdf7cd0 563 * Copy in core superblock to ondisk one.
1da177e4 564 *
2bdf7cd0 565 * The fields argument is mask of superblock fields to copy.
1da177e4
LT
566 */
567void
2bdf7cd0
CH
568xfs_sb_to_disk(
569 xfs_dsb_t *to,
570 xfs_sb_t *from,
1da177e4
LT
571 __int64_t fields)
572{
2bdf7cd0
CH
573 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
574 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
1da177e4
LT
575 xfs_sb_field_t f;
576 int first;
577 int size;
578
1da177e4 579 ASSERT(fields);
1da177e4
LT
580 if (!fields)
581 return;
582
1da177e4
LT
583 while (fields) {
584 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
585 first = xfs_sb_info[f].offset;
586 size = xfs_sb_info[f + 1].offset - first;
587
588 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
589
590 if (size == 1 || xfs_sb_info[f].type == 1) {
2bdf7cd0 591 memcpy(to_ptr + first, from_ptr + first, size);
1da177e4
LT
592 } else {
593 switch (size) {
594 case 2:
2bdf7cd0
CH
595 *(__be16 *)(to_ptr + first) =
596 cpu_to_be16(*(__u16 *)(from_ptr + first));
1da177e4
LT
597 break;
598 case 4:
2bdf7cd0
CH
599 *(__be32 *)(to_ptr + first) =
600 cpu_to_be32(*(__u32 *)(from_ptr + first));
1da177e4
LT
601 break;
602 case 8:
2bdf7cd0
CH
603 *(__be64 *)(to_ptr + first) =
604 cpu_to_be64(*(__u64 *)(from_ptr + first));
1da177e4
LT
605 break;
606 default:
607 ASSERT(0);
608 }
609 }
610
611 fields &= ~(1LL << f);
612 }
613}
614
612cfbfe
DC
615static void
616xfs_sb_verify(
98021821
DC
617 struct xfs_buf *bp)
618{
619 struct xfs_mount *mp = bp->b_target->bt_mount;
620 struct xfs_sb sb;
621 int error;
622
623 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
624
625 /*
626 * Only check the in progress field for the primary superblock as
627 * mkfs.xfs doesn't clear it from secondary superblocks.
628 */
629 error = xfs_mount_validate_sb(mp, &sb, bp->b_bn == XFS_SB_DADDR);
630 if (error)
631 xfs_buf_ioerror(bp, error);
612cfbfe
DC
632}
633
b0f539de 634void
612cfbfe
DC
635xfs_sb_write_verify(
636 struct xfs_buf *bp)
637{
638 xfs_sb_verify(bp);
639}
640
641void
642xfs_sb_read_verify(
643 struct xfs_buf *bp)
644{
645 xfs_sb_verify(bp);
646 bp->b_pre_io = xfs_sb_write_verify;
98021821
DC
647 bp->b_iodone = NULL;
648 xfs_buf_ioend(bp, 0);
649}
650
651/*
652 * We may be probed for a filesystem match, so we may not want to emit
653 * messages when the superblock buffer is not actually an XFS superblock.
654 * If we find an XFS superblock, the run a normal, noisy mount because we are
655 * really going to mount it and want to know about errors.
656 */
657void
658xfs_sb_quiet_read_verify(
659 struct xfs_buf *bp)
660{
661 struct xfs_sb sb;
662
663 xfs_sb_from_disk(&sb, XFS_BUF_TO_SBP(bp));
664
665 if (sb.sb_magicnum == XFS_SB_MAGIC) {
666 /* XFS filesystem, verify noisily! */
667 xfs_sb_read_verify(bp);
668 return;
669 }
670 /* quietly fail */
671 xfs_buf_ioerror(bp, EFSCORRUPTED);
672}
673
1da177e4
LT
674/*
675 * xfs_readsb
676 *
677 * Does the initial read of the superblock.
678 */
679int
764d1f89 680xfs_readsb(xfs_mount_t *mp, int flags)
1da177e4
LT
681{
682 unsigned int sector_size;
1da177e4 683 xfs_buf_t *bp;
1da177e4 684 int error;
af34e09d 685 int loud = !(flags & XFS_MFSI_QUIET);
1da177e4
LT
686
687 ASSERT(mp->m_sb_bp == NULL);
688 ASSERT(mp->m_ddev_targp != NULL);
689
690 /*
691 * Allocate a (locked) buffer to hold the superblock.
692 * This will be kept around at all times to optimize
693 * access to the superblock.
694 */
695 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
26af6552
DC
696
697reread:
e70b73f8 698 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
98021821
DC
699 BTOBB(sector_size), 0,
700 loud ? xfs_sb_read_verify
701 : xfs_sb_quiet_read_verify);
26af6552 702 if (!bp) {
af34e09d
DC
703 if (loud)
704 xfs_warn(mp, "SB buffer read failed");
26af6552 705 return EIO;
1da177e4 706 }
eab4e633
DC
707 if (bp->b_error) {
708 error = bp->b_error;
709 if (loud)
710 xfs_warn(mp, "SB validate failed");
711 goto release_buf;
712 }
1da177e4
LT
713
714 /*
715 * Initialize the mount structure from the superblock.
1da177e4 716 */
98021821 717 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
1da177e4
LT
718
719 /*
720 * We must be able to do sector-sized and sector-aligned IO.
721 */
722 if (sector_size > mp->m_sb.sb_sectsize) {
af34e09d
DC
723 if (loud)
724 xfs_warn(mp, "device supports %u byte sectors (not %u)",
725 sector_size, mp->m_sb.sb_sectsize);
1da177e4 726 error = ENOSYS;
26af6552 727 goto release_buf;
1da177e4
LT
728 }
729
730 /*
731 * If device sector size is smaller than the superblock size,
732 * re-read the superblock so the buffer is correctly sized.
733 */
734 if (sector_size < mp->m_sb.sb_sectsize) {
1da177e4
LT
735 xfs_buf_relse(bp);
736 sector_size = mp->m_sb.sb_sectsize;
26af6552 737 goto reread;
1da177e4
LT
738 }
739
5478eead
LM
740 /* Initialize per-cpu counters */
741 xfs_icsb_reinit_counters(mp);
8d280b98 742
1da177e4 743 mp->m_sb_bp = bp;
26af6552 744 xfs_buf_unlock(bp);
1da177e4
LT
745 return 0;
746
26af6552
DC
747release_buf:
748 xfs_buf_relse(bp);
1da177e4
LT
749 return error;
750}
751
752
753/*
754 * xfs_mount_common
755 *
756 * Mount initialization code establishing various mount
757 * fields from the superblock associated with the given
758 * mount structure
759 */
ba0f32d4 760STATIC void
1da177e4
LT
761xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
762{
1da177e4 763 mp->m_agfrotor = mp->m_agirotor = 0;
007c61c6 764 spin_lock_init(&mp->m_agirotor_lock);
1da177e4
LT
765 mp->m_maxagi = mp->m_sb.sb_agcount;
766 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
767 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
768 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
769 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
770 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
1da177e4
LT
771 mp->m_blockmask = sbp->sb_blocksize - 1;
772 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
773 mp->m_blockwmask = mp->m_blockwsize - 1;
1da177e4 774
60197e8d
CH
775 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
776 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
777 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
778 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
779
780 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
781 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
782 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
783 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
784
785 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
786 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
787 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
788 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
1da177e4
LT
789
790 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
791 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
792 sbp->sb_inopblock);
793 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
794}
92821e2b
DC
795
796/*
797 * xfs_initialize_perag_data
798 *
799 * Read in each per-ag structure so we can count up the number of
800 * allocated inodes, free inodes and used filesystem blocks as this
801 * information is no longer persistent in the superblock. Once we have
802 * this information, write it into the in-core superblock structure.
803 */
804STATIC int
805xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
806{
807 xfs_agnumber_t index;
808 xfs_perag_t *pag;
809 xfs_sb_t *sbp = &mp->m_sb;
810 uint64_t ifree = 0;
811 uint64_t ialloc = 0;
812 uint64_t bfree = 0;
813 uint64_t bfreelst = 0;
814 uint64_t btree = 0;
815 int error;
92821e2b
DC
816
817 for (index = 0; index < agcount; index++) {
818 /*
819 * read the agf, then the agi. This gets us
9da096fd 820 * all the information we need and populates the
92821e2b
DC
821 * per-ag structures for us.
822 */
823 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
824 if (error)
825 return error;
826
827 error = xfs_ialloc_pagi_init(mp, NULL, index);
828 if (error)
829 return error;
44b56e0a 830 pag = xfs_perag_get(mp, index);
92821e2b
DC
831 ifree += pag->pagi_freecount;
832 ialloc += pag->pagi_count;
833 bfree += pag->pagf_freeblks;
834 bfreelst += pag->pagf_flcount;
835 btree += pag->pagf_btreeblks;
44b56e0a 836 xfs_perag_put(pag);
92821e2b
DC
837 }
838 /*
839 * Overwrite incore superblock counters with just-read data
840 */
3685c2a1 841 spin_lock(&mp->m_sb_lock);
92821e2b
DC
842 sbp->sb_ifree = ifree;
843 sbp->sb_icount = ialloc;
844 sbp->sb_fdblocks = bfree + bfreelst + btree;
3685c2a1 845 spin_unlock(&mp->m_sb_lock);
92821e2b
DC
846
847 /* Fixup the per-cpu counters as well. */
848 xfs_icsb_reinit_counters(mp);
849
850 return 0;
851}
852
1da177e4 853/*
0771fb45 854 * Update alignment values based on mount options and sb values
1da177e4 855 */
0771fb45 856STATIC int
7884bc86 857xfs_update_alignment(xfs_mount_t *mp)
1da177e4 858{
1da177e4 859 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 860
4249023a 861 if (mp->m_dalign) {
1da177e4
LT
862 /*
863 * If stripe unit and stripe width are not multiples
864 * of the fs blocksize turn off alignment.
865 */
866 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
867 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
868 if (mp->m_flags & XFS_MOUNT_RETERR) {
c0e090ce
ES
869 xfs_warn(mp, "alignment check failed: "
870 "(sunit/swidth vs. blocksize)");
0771fb45 871 return XFS_ERROR(EINVAL);
1da177e4
LT
872 }
873 mp->m_dalign = mp->m_swidth = 0;
874 } else {
875 /*
876 * Convert the stripe unit and width to FSBs.
877 */
878 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
879 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
880 if (mp->m_flags & XFS_MOUNT_RETERR) {
c0e090ce
ES
881 xfs_warn(mp, "alignment check failed: "
882 "(sunit/swidth vs. ag size)");
0771fb45 883 return XFS_ERROR(EINVAL);
1da177e4 884 }
53487786
DC
885 xfs_warn(mp,
886 "stripe alignment turned off: sunit(%d)/swidth(%d) "
887 "incompatible with agsize(%d)",
1da177e4
LT
888 mp->m_dalign, mp->m_swidth,
889 sbp->sb_agblocks);
890
891 mp->m_dalign = 0;
892 mp->m_swidth = 0;
893 } else if (mp->m_dalign) {
894 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
895 } else {
896 if (mp->m_flags & XFS_MOUNT_RETERR) {
c0e090ce
ES
897 xfs_warn(mp, "alignment check failed: "
898 "sunit(%d) less than bsize(%d)",
53487786 899 mp->m_dalign,
1da177e4 900 mp->m_blockmask +1);
0771fb45 901 return XFS_ERROR(EINVAL);
1da177e4
LT
902 }
903 mp->m_swidth = 0;
904 }
905 }
906
907 /*
908 * Update superblock with new values
909 * and log changes
910 */
62118709 911 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
912 if (sbp->sb_unit != mp->m_dalign) {
913 sbp->sb_unit = mp->m_dalign;
7884bc86 914 mp->m_update_flags |= XFS_SB_UNIT;
1da177e4
LT
915 }
916 if (sbp->sb_width != mp->m_swidth) {
917 sbp->sb_width = mp->m_swidth;
7884bc86 918 mp->m_update_flags |= XFS_SB_WIDTH;
1da177e4
LT
919 }
920 }
921 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 922 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
923 mp->m_dalign = sbp->sb_unit;
924 mp->m_swidth = sbp->sb_width;
925 }
926
0771fb45
ES
927 return 0;
928}
1da177e4 929
0771fb45
ES
930/*
931 * Set the maximum inode count for this filesystem
932 */
933STATIC void
934xfs_set_maxicount(xfs_mount_t *mp)
935{
936 xfs_sb_t *sbp = &(mp->m_sb);
937 __uint64_t icount;
1da177e4 938
0771fb45
ES
939 if (sbp->sb_imax_pct) {
940 /*
941 * Make sure the maximum inode count is a multiple
942 * of the units we allocate inodes in.
1da177e4 943 */
1da177e4
LT
944 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
945 do_div(icount, 100);
946 do_div(icount, mp->m_ialloc_blks);
947 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
948 sbp->sb_inopblog;
0771fb45 949 } else {
1da177e4 950 mp->m_maxicount = 0;
1da177e4 951 }
0771fb45
ES
952}
953
954/*
955 * Set the default minimum read and write sizes unless
956 * already specified in a mount option.
957 * We use smaller I/O sizes when the file system
958 * is being used for NFS service (wsync mount option).
959 */
960STATIC void
961xfs_set_rw_sizes(xfs_mount_t *mp)
962{
963 xfs_sb_t *sbp = &(mp->m_sb);
964 int readio_log, writeio_log;
1da177e4 965
1da177e4
LT
966 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
967 if (mp->m_flags & XFS_MOUNT_WSYNC) {
968 readio_log = XFS_WSYNC_READIO_LOG;
969 writeio_log = XFS_WSYNC_WRITEIO_LOG;
970 } else {
971 readio_log = XFS_READIO_LOG_LARGE;
972 writeio_log = XFS_WRITEIO_LOG_LARGE;
973 }
974 } else {
975 readio_log = mp->m_readio_log;
976 writeio_log = mp->m_writeio_log;
977 }
978
1da177e4
LT
979 if (sbp->sb_blocklog > readio_log) {
980 mp->m_readio_log = sbp->sb_blocklog;
981 } else {
982 mp->m_readio_log = readio_log;
983 }
984 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
985 if (sbp->sb_blocklog > writeio_log) {
986 mp->m_writeio_log = sbp->sb_blocklog;
987 } else {
988 mp->m_writeio_log = writeio_log;
989 }
990 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 991}
1da177e4 992
055388a3
DC
993/*
994 * precalculate the low space thresholds for dynamic speculative preallocation.
995 */
996void
997xfs_set_low_space_thresholds(
998 struct xfs_mount *mp)
999{
1000 int i;
1001
1002 for (i = 0; i < XFS_LOWSP_MAX; i++) {
1003 __uint64_t space = mp->m_sb.sb_dblocks;
1004
1005 do_div(space, 100);
1006 mp->m_low_space[i] = space * (i + 1);
1007 }
1008}
1009
1010
0771fb45
ES
1011/*
1012 * Set whether we're using inode alignment.
1013 */
1014STATIC void
1015xfs_set_inoalignment(xfs_mount_t *mp)
1016{
62118709 1017 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
1018 mp->m_sb.sb_inoalignmt >=
1019 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1020 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1021 else
1022 mp->m_inoalign_mask = 0;
1023 /*
1024 * If we are using stripe alignment, check whether
1025 * the stripe unit is a multiple of the inode alignment
1026 */
1027 if (mp->m_dalign && mp->m_inoalign_mask &&
1028 !(mp->m_dalign & mp->m_inoalign_mask))
1029 mp->m_sinoalign = mp->m_dalign;
1030 else
1031 mp->m_sinoalign = 0;
0771fb45
ES
1032}
1033
1034/*
1035 * Check that the data (and log if separate) are an ok size.
1036 */
1037STATIC int
4249023a 1038xfs_check_sizes(xfs_mount_t *mp)
0771fb45
ES
1039{
1040 xfs_buf_t *bp;
1041 xfs_daddr_t d;
0771fb45 1042
1da177e4
LT
1043 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1044 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 1045 xfs_warn(mp, "filesystem size mismatch detected");
657a4cff 1046 return XFS_ERROR(EFBIG);
1da177e4 1047 }
e70b73f8 1048 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 1049 d - XFS_FSS_TO_BB(mp, 1),
c3f8fc73 1050 XFS_FSS_TO_BB(mp, 1), 0, NULL);
1922c949 1051 if (!bp) {
0b932ccc 1052 xfs_warn(mp, "last sector read failed");
1922c949 1053 return EIO;
1da177e4 1054 }
1922c949 1055 xfs_buf_relse(bp);
1da177e4 1056
4249023a 1057 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1da177e4
LT
1058 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1059 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
0b932ccc 1060 xfs_warn(mp, "log size mismatch detected");
657a4cff 1061 return XFS_ERROR(EFBIG);
1da177e4 1062 }
e70b73f8 1063 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 1064 d - XFS_FSB_TO_BB(mp, 1),
c3f8fc73 1065 XFS_FSB_TO_BB(mp, 1), 0, NULL);
1922c949 1066 if (!bp) {
0b932ccc 1067 xfs_warn(mp, "log device read failed");
1922c949 1068 return EIO;
0771fb45 1069 }
1922c949 1070 xfs_buf_relse(bp);
0771fb45
ES
1071 }
1072 return 0;
1073}
1074
7d095257
CH
1075/*
1076 * Clear the quotaflags in memory and in the superblock.
1077 */
1078int
1079xfs_mount_reset_sbqflags(
1080 struct xfs_mount *mp)
1081{
1082 int error;
1083 struct xfs_trans *tp;
1084
1085 mp->m_qflags = 0;
1086
1087 /*
1088 * It is OK to look at sb_qflags here in mount path,
1089 * without m_sb_lock.
1090 */
1091 if (mp->m_sb.sb_qflags == 0)
1092 return 0;
1093 spin_lock(&mp->m_sb_lock);
1094 mp->m_sb.sb_qflags = 0;
1095 spin_unlock(&mp->m_sb_lock);
1096
1097 /*
1098 * If the fs is readonly, let the incore superblock run
1099 * with quotas off but don't flush the update out to disk
1100 */
1101 if (mp->m_flags & XFS_MOUNT_RDONLY)
1102 return 0;
1103
7d095257
CH
1104 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1105 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1106 XFS_DEFAULT_LOG_COUNT);
1107 if (error) {
1108 xfs_trans_cancel(tp, 0);
53487786 1109 xfs_alert(mp, "%s: Superblock update failed!", __func__);
7d095257
CH
1110 return error;
1111 }
1112
1113 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1114 return xfs_trans_commit(tp, 0);
1115}
1116
d5db0f97
ES
1117__uint64_t
1118xfs_default_resblks(xfs_mount_t *mp)
1119{
1120 __uint64_t resblks;
1121
1122 /*
8babd8a2
DC
1123 * We default to 5% or 8192 fsbs of space reserved, whichever is
1124 * smaller. This is intended to cover concurrent allocation
1125 * transactions when we initially hit enospc. These each require a 4
1126 * block reservation. Hence by default we cover roughly 2000 concurrent
1127 * allocation reservations.
d5db0f97
ES
1128 */
1129 resblks = mp->m_sb.sb_dblocks;
1130 do_div(resblks, 20);
8babd8a2 1131 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
1132 return resblks;
1133}
1134
0771fb45 1135/*
0771fb45
ES
1136 * This function does the following on an initial mount of a file system:
1137 * - reads the superblock from disk and init the mount struct
1138 * - if we're a 32-bit kernel, do a size check on the superblock
1139 * so we don't mount terabyte filesystems
1140 * - init mount struct realtime fields
1141 * - allocate inode hash table for fs
1142 * - init directory manager
1143 * - perform recovery and init the log manager
1144 */
1145int
1146xfs_mountfs(
4249023a 1147 xfs_mount_t *mp)
0771fb45
ES
1148{
1149 xfs_sb_t *sbp = &(mp->m_sb);
1150 xfs_inode_t *rip;
0771fb45 1151 __uint64_t resblks;
7d095257
CH
1152 uint quotamount = 0;
1153 uint quotaflags = 0;
0771fb45
ES
1154 int error = 0;
1155
0771fb45
ES
1156 xfs_mount_common(mp, sbp);
1157
ee1c0908 1158 /*
e6957ea4
ES
1159 * Check for a mismatched features2 values. Older kernels
1160 * read & wrote into the wrong sb offset for sb_features2
1161 * on some platforms due to xfs_sb_t not being 64bit size aligned
1162 * when sb_features2 was added, which made older superblock
1163 * reading/writing routines swap it as a 64-bit value.
ee1c0908 1164 *
e6957ea4
ES
1165 * For backwards compatibility, we make both slots equal.
1166 *
1167 * If we detect a mismatched field, we OR the set bits into the
1168 * existing features2 field in case it has already been modified; we
1169 * don't want to lose any features. We then update the bad location
1170 * with the ORed value so that older kernels will see any features2
1171 * flags, and mark the two fields as needing updates once the
1172 * transaction subsystem is online.
ee1c0908 1173 */
e6957ea4 1174 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 1175 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 1176 sbp->sb_features2 |= sbp->sb_bad_features2;
e6957ea4 1177 sbp->sb_bad_features2 = sbp->sb_features2;
7884bc86 1178 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
e6957ea4
ES
1179
1180 /*
1181 * Re-check for ATTR2 in case it was found in bad_features2
1182 * slot.
1183 */
7c12f296
TS
1184 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1185 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 1186 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
1187 }
1188
1189 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1190 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1191 xfs_sb_version_removeattr2(&mp->m_sb);
7884bc86 1192 mp->m_update_flags |= XFS_SB_FEATURES2;
e6957ea4 1193
7c12f296
TS
1194 /* update sb_versionnum for the clearing of the morebits */
1195 if (!sbp->sb_features2)
7884bc86 1196 mp->m_update_flags |= XFS_SB_VERSIONNUM;
ee1c0908
DC
1197 }
1198
0771fb45
ES
1199 /*
1200 * Check if sb_agblocks is aligned at stripe boundary
1201 * If sb_agblocks is NOT aligned turn off m_dalign since
1202 * allocator alignment is within an ag, therefore ag has
1203 * to be aligned at stripe boundary.
1204 */
7884bc86 1205 error = xfs_update_alignment(mp);
0771fb45 1206 if (error)
f9057e3d 1207 goto out;
0771fb45
ES
1208
1209 xfs_alloc_compute_maxlevels(mp);
1210 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1211 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1212 xfs_ialloc_compute_maxlevels(mp);
1213
1214 xfs_set_maxicount(mp);
1215
27174203
CH
1216 error = xfs_uuid_mount(mp);
1217 if (error)
1218 goto out;
1da177e4 1219
0771fb45
ES
1220 /*
1221 * Set the minimum read and write sizes
1222 */
1223 xfs_set_rw_sizes(mp);
1224
055388a3
DC
1225 /* set the low space thresholds for dynamic preallocation */
1226 xfs_set_low_space_thresholds(mp);
1227
0771fb45
ES
1228 /*
1229 * Set the inode cluster size.
1230 * This may still be overridden by the file system
1231 * block size if it is larger than the chosen cluster size.
1232 */
1233 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1234
1235 /*
1236 * Set inode alignment fields
1237 */
1238 xfs_set_inoalignment(mp);
1239
1240 /*
1241 * Check that the data (and log if separate) are an ok size.
1242 */
4249023a 1243 error = xfs_check_sizes(mp);
0771fb45 1244 if (error)
f9057e3d 1245 goto out_remove_uuid;
0771fb45 1246
1da177e4
LT
1247 /*
1248 * Initialize realtime fields in the mount structure
1249 */
0771fb45
ES
1250 error = xfs_rtmount_init(mp);
1251 if (error) {
0b932ccc 1252 xfs_warn(mp, "RT mount failed");
f9057e3d 1253 goto out_remove_uuid;
1da177e4
LT
1254 }
1255
1da177e4
LT
1256 /*
1257 * Copies the low order bits of the timestamp and the randomly
1258 * set "sequence" number out of a UUID.
1259 */
1260 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1261
1da177e4
LT
1262 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1263
f6c2d1fa 1264 xfs_dir_mount(mp);
1da177e4
LT
1265
1266 /*
1267 * Initialize the attribute manager's entries.
1268 */
1269 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1270
1271 /*
1272 * Initialize the precomputed transaction reservations values.
1273 */
1274 xfs_trans_init(mp);
1275
1da177e4
LT
1276 /*
1277 * Allocate and initialize the per-ag data.
1278 */
1c1c6ebc 1279 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 1280 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
1281 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1282 if (error) {
0b932ccc 1283 xfs_warn(mp, "Failed per-ag init: %d", error);
f9057e3d 1284 goto out_remove_uuid;
1c1c6ebc 1285 }
1da177e4 1286
f9057e3d 1287 if (!sbp->sb_logblocks) {
0b932ccc 1288 xfs_warn(mp, "no log defined");
f9057e3d
CH
1289 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1290 error = XFS_ERROR(EFSCORRUPTED);
1291 goto out_free_perag;
1292 }
1293
1da177e4
LT
1294 /*
1295 * log's mount-time initialization. Perform 1st part recovery if needed
1296 */
f9057e3d
CH
1297 error = xfs_log_mount(mp, mp->m_logdev_targp,
1298 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1299 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1300 if (error) {
0b932ccc 1301 xfs_warn(mp, "log mount failed");
d4f3512b 1302 goto out_fail_wait;
1da177e4
LT
1303 }
1304
92821e2b
DC
1305 /*
1306 * Now the log is mounted, we know if it was an unclean shutdown or
1307 * not. If it was, with the first phase of recovery has completed, we
1308 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1309 * but they are recovered transactionally in the second recovery phase
1310 * later.
1311 *
1312 * Hence we can safely re-initialise incore superblock counters from
1313 * the per-ag data. These may not be correct if the filesystem was not
1314 * cleanly unmounted, so we need to wait for recovery to finish before
1315 * doing this.
1316 *
1317 * If the filesystem was cleanly unmounted, then we can trust the
1318 * values in the superblock to be correct and we don't need to do
1319 * anything here.
1320 *
1321 * If we are currently making the filesystem, the initialisation will
1322 * fail as the perag data is in an undefined state.
1323 */
92821e2b
DC
1324 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1325 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1326 !mp->m_sb.sb_inprogress) {
1327 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 1328 if (error)
d4f3512b 1329 goto out_fail_wait;
92821e2b 1330 }
f9057e3d 1331
1da177e4
LT
1332 /*
1333 * Get and sanity-check the root inode.
1334 * Save the pointer to it in the mount structure.
1335 */
7b6259e7 1336 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 1337 if (error) {
0b932ccc 1338 xfs_warn(mp, "failed to read root inode");
f9057e3d 1339 goto out_log_dealloc;
1da177e4
LT
1340 }
1341
1342 ASSERT(rip != NULL);
1da177e4 1343
abbede1b 1344 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
0b932ccc 1345 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 1346 (unsigned long long)rip->i_ino);
1da177e4
LT
1347 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1348 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1349 mp);
1350 error = XFS_ERROR(EFSCORRUPTED);
f9057e3d 1351 goto out_rele_rip;
1da177e4
LT
1352 }
1353 mp->m_rootip = rip; /* save it */
1354
1355 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1356
1357 /*
1358 * Initialize realtime inode pointers in the mount structure
1359 */
0771fb45
ES
1360 error = xfs_rtmount_inodes(mp);
1361 if (error) {
1da177e4
LT
1362 /*
1363 * Free up the root inode.
1364 */
0b932ccc 1365 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 1366 goto out_rele_rip;
1da177e4
LT
1367 }
1368
1369 /*
7884bc86
CH
1370 * If this is a read-only mount defer the superblock updates until
1371 * the next remount into writeable mode. Otherwise we would never
1372 * perform the update e.g. for the root filesystem.
1da177e4 1373 */
7884bc86
CH
1374 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1375 error = xfs_mount_log_sb(mp, mp->m_update_flags);
e5720eec 1376 if (error) {
0b932ccc 1377 xfs_warn(mp, "failed to write sb changes");
b93b6e43 1378 goto out_rtunmount;
e5720eec
DC
1379 }
1380 }
1da177e4
LT
1381
1382 /*
1383 * Initialise the XFS quota management subsystem for this mount
1384 */
7d095257
CH
1385 if (XFS_IS_QUOTA_RUNNING(mp)) {
1386 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1387 if (error)
1388 goto out_rtunmount;
1389 } else {
1390 ASSERT(!XFS_IS_QUOTA_ON(mp));
1391
1392 /*
1393 * If a file system had quotas running earlier, but decided to
1394 * mount without -o uquota/pquota/gquota options, revoke the
1395 * quotachecked license.
1396 */
1397 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 1398 xfs_notice(mp, "resetting quota flags");
7d095257
CH
1399 error = xfs_mount_reset_sbqflags(mp);
1400 if (error)
1401 return error;
1402 }
1403 }
1da177e4
LT
1404
1405 /*
1406 * Finish recovering the file system. This part needed to be
1407 * delayed until after the root and real-time bitmap inodes
1408 * were consistently read in.
1409 */
4249023a 1410 error = xfs_log_mount_finish(mp);
1da177e4 1411 if (error) {
0b932ccc 1412 xfs_warn(mp, "log mount finish failed");
b93b6e43 1413 goto out_rtunmount;
1da177e4
LT
1414 }
1415
1416 /*
1417 * Complete the quota initialisation, post-log-replay component.
1418 */
7d095257
CH
1419 if (quotamount) {
1420 ASSERT(mp->m_qflags == 0);
1421 mp->m_qflags = quotaflags;
1422
1423 xfs_qm_mount_quotas(mp);
1424 }
1425
84e1e99f
DC
1426 /*
1427 * Now we are mounted, reserve a small amount of unused space for
1428 * privileged transactions. This is needed so that transaction
1429 * space required for critical operations can dip into this pool
1430 * when at ENOSPC. This is needed for operations like create with
1431 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1432 * are not allowed to use this reserved space.
8babd8a2
DC
1433 *
1434 * This may drive us straight to ENOSPC on mount, but that implies
1435 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 1436 */
d5db0f97
ES
1437 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1438 resblks = xfs_default_resblks(mp);
1439 error = xfs_reserve_blocks(mp, &resblks, NULL);
1440 if (error)
0b932ccc
DC
1441 xfs_warn(mp,
1442 "Unable to allocate reserve blocks. Continuing without reserve pool.");
d5db0f97 1443 }
84e1e99f 1444
1da177e4
LT
1445 return 0;
1446
b93b6e43
CH
1447 out_rtunmount:
1448 xfs_rtunmount_inodes(mp);
f9057e3d 1449 out_rele_rip:
43355099 1450 IRELE(rip);
f9057e3d 1451 out_log_dealloc:
21b699c8 1452 xfs_log_unmount(mp);
d4f3512b
DC
1453 out_fail_wait:
1454 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1455 xfs_wait_buftarg(mp->m_logdev_targp);
1456 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 1457 out_free_perag:
ff4f038c 1458 xfs_free_perag(mp);
f9057e3d 1459 out_remove_uuid:
27174203 1460 xfs_uuid_unmount(mp);
f9057e3d 1461 out:
1da177e4
LT
1462 return error;
1463}
1464
1465/*
1da177e4
LT
1466 * This flushes out the inodes,dquots and the superblock, unmounts the
1467 * log and makes sure that incore structures are freed.
1468 */
41b5c2e7
CH
1469void
1470xfs_unmountfs(
1471 struct xfs_mount *mp)
1da177e4 1472{
41b5c2e7
CH
1473 __uint64_t resblks;
1474 int error;
1da177e4 1475
579b62fa
BF
1476 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1477
7d095257 1478 xfs_qm_unmount_quotas(mp);
b93b6e43 1479 xfs_rtunmount_inodes(mp);
77508ec8
CH
1480 IRELE(mp->m_rootip);
1481
641c56fb
DC
1482 /*
1483 * We can potentially deadlock here if we have an inode cluster
9da096fd 1484 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1485 * the transaction is still sitting in a iclog. The stale inodes
1486 * on that buffer will have their flush locks held until the
1487 * transaction hits the disk and the callbacks run. the inode
1488 * flush takes the flush lock unconditionally and with nothing to
1489 * push out the iclog we will never get that unlocked. hence we
1490 * need to force the log first.
1491 */
a14a348b 1492 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e
DC
1493
1494 /*
211e4d43
CH
1495 * Flush all pending changes from the AIL.
1496 */
1497 xfs_ail_push_all_sync(mp->m_ail);
1498
1499 /*
1500 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1501 * inodes and none should be pinned or locked, but use synchronous
1502 * reclaim just to be sure. We can stop background inode reclaim
1503 * here as well if it is still running.
c854363e 1504 */
7e18530b 1505 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1506 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1507
7d095257 1508 xfs_qm_unmount(mp);
a357a121 1509
84e1e99f
DC
1510 /*
1511 * Unreserve any blocks we have so that when we unmount we don't account
1512 * the reserved free space as used. This is really only necessary for
1513 * lazy superblock counting because it trusts the incore superblock
9da096fd 1514 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1515 *
1516 * We don't bother correcting this elsewhere for lazy superblock
1517 * counting because on mount of an unclean filesystem we reconstruct the
1518 * correct counter value and this is irrelevant.
1519 *
1520 * For non-lazy counter filesystems, this doesn't matter at all because
1521 * we only every apply deltas to the superblock and hence the incore
1522 * value does not matter....
1523 */
1524 resblks = 0;
714082bc
DC
1525 error = xfs_reserve_blocks(mp, &resblks, NULL);
1526 if (error)
0b932ccc 1527 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1528 "Freespace may not be correct on next mount.");
1529
adab0f67 1530 error = xfs_log_sbcount(mp);
e5720eec 1531 if (error)
0b932ccc 1532 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1533 "Freespace may not be correct on next mount.");
87c7bec7 1534
21b699c8 1535 xfs_log_unmount(mp);
27174203 1536 xfs_uuid_unmount(mp);
1da177e4 1537
1550d0b0 1538#if defined(DEBUG)
0ce4cfd4 1539 xfs_errortag_clearall(mp, 0);
1da177e4 1540#endif
ff4f038c 1541 xfs_free_perag(mp);
1da177e4
LT
1542}
1543
92821e2b
DC
1544int
1545xfs_fs_writable(xfs_mount_t *mp)
1546{
d9457dc0 1547 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
bd186aa9 1548 (mp->m_flags & XFS_MOUNT_RDONLY));
92821e2b
DC
1549}
1550
1551/*
b2ce3974
AE
1552 * xfs_log_sbcount
1553 *
adab0f67 1554 * Sync the superblock counters to disk.
b2ce3974
AE
1555 *
1556 * Note this code can be called during the process of freezing, so
adab0f67 1557 * we may need to use the transaction allocator which does not
b2ce3974 1558 * block when the transaction subsystem is in its frozen state.
92821e2b
DC
1559 */
1560int
adab0f67 1561xfs_log_sbcount(xfs_mount_t *mp)
92821e2b
DC
1562{
1563 xfs_trans_t *tp;
1564 int error;
1565
1566 if (!xfs_fs_writable(mp))
1567 return 0;
1568
d4d90b57 1569 xfs_icsb_sync_counters(mp, 0);
92821e2b
DC
1570
1571 /*
1572 * we don't need to do this if we are updating the superblock
1573 * counters on every modification.
1574 */
1575 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1576 return 0;
1577
b2ce3974 1578 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
92821e2b
DC
1579 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1580 XFS_DEFAULT_LOG_COUNT);
1581 if (error) {
1582 xfs_trans_cancel(tp, 0);
1583 return error;
1584 }
1585
1586 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
adab0f67 1587 xfs_trans_set_sync(tp);
e5720eec
DC
1588 error = xfs_trans_commit(tp, 0);
1589 return error;
92821e2b
DC
1590}
1591
1da177e4
LT
1592/*
1593 * xfs_mod_sb() can be used to copy arbitrary changes to the
1594 * in-core superblock into the superblock buffer to be logged.
1595 * It does not provide the higher level of locking that is
1596 * needed to protect the in-core superblock from concurrent
1597 * access.
1598 */
1599void
1600xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1601{
1602 xfs_buf_t *bp;
1603 int first;
1604 int last;
1605 xfs_mount_t *mp;
1da177e4
LT
1606 xfs_sb_field_t f;
1607
1608 ASSERT(fields);
1609 if (!fields)
1610 return;
1611 mp = tp->t_mountp;
1612 bp = xfs_trans_getsb(tp, mp, 0);
1da177e4
LT
1613 first = sizeof(xfs_sb_t);
1614 last = 0;
1615
1616 /* translate/copy */
1617
2bdf7cd0 1618 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1da177e4
LT
1619
1620 /* find modified range */
587aa0fe
DC
1621 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1622 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1623 last = xfs_sb_info[f + 1].offset - 1;
1da177e4
LT
1624
1625 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1626 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1627 first = xfs_sb_info[f].offset;
1628
1da177e4
LT
1629 xfs_trans_log_buf(tp, bp, first, last);
1630}
d210a28c 1631
d210a28c 1632
1da177e4
LT
1633/*
1634 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1635 * a delta to a specified field in the in-core superblock. Simply
1636 * switch on the field indicated and apply the delta to that field.
1637 * Fields are not allowed to dip below zero, so if the delta would
1638 * do this do not apply it and return EINVAL.
1639 *
3685c2a1 1640 * The m_sb_lock must be held when this routine is called.
1da177e4 1641 */
d96f8f89 1642STATIC int
20f4ebf2
DC
1643xfs_mod_incore_sb_unlocked(
1644 xfs_mount_t *mp,
1645 xfs_sb_field_t field,
1646 int64_t delta,
1647 int rsvd)
1da177e4
LT
1648{
1649 int scounter; /* short counter for 32 bit fields */
1650 long long lcounter; /* long counter for 64 bit fields */
1651 long long res_used, rem;
1652
1653 /*
1654 * With the in-core superblock spin lock held, switch
1655 * on the indicated field. Apply the delta to the
1656 * proper field. If the fields value would dip below
1657 * 0, then do not apply the delta and return EINVAL.
1658 */
1659 switch (field) {
1660 case XFS_SBS_ICOUNT:
1661 lcounter = (long long)mp->m_sb.sb_icount;
1662 lcounter += delta;
1663 if (lcounter < 0) {
1664 ASSERT(0);
014c2544 1665 return XFS_ERROR(EINVAL);
1da177e4
LT
1666 }
1667 mp->m_sb.sb_icount = lcounter;
014c2544 1668 return 0;
1da177e4
LT
1669 case XFS_SBS_IFREE:
1670 lcounter = (long long)mp->m_sb.sb_ifree;
1671 lcounter += delta;
1672 if (lcounter < 0) {
1673 ASSERT(0);
014c2544 1674 return XFS_ERROR(EINVAL);
1da177e4
LT
1675 }
1676 mp->m_sb.sb_ifree = lcounter;
014c2544 1677 return 0;
1da177e4 1678 case XFS_SBS_FDBLOCKS:
4be536de
DC
1679 lcounter = (long long)
1680 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1da177e4
LT
1681 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1682
1683 if (delta > 0) { /* Putting blocks back */
1684 if (res_used > delta) {
1685 mp->m_resblks_avail += delta;
1686 } else {
1687 rem = delta - res_used;
1688 mp->m_resblks_avail = mp->m_resblks;
1689 lcounter += rem;
1690 }
1691 } else { /* Taking blocks away */
1da177e4 1692 lcounter += delta;
8babd8a2
DC
1693 if (lcounter >= 0) {
1694 mp->m_sb.sb_fdblocks = lcounter +
1695 XFS_ALLOC_SET_ASIDE(mp);
1696 return 0;
1697 }
1da177e4 1698
8babd8a2
DC
1699 /*
1700 * We are out of blocks, use any available reserved
1701 * blocks if were allowed to.
1702 */
1703 if (!rsvd)
1704 return XFS_ERROR(ENOSPC);
1da177e4 1705
8babd8a2
DC
1706 lcounter = (long long)mp->m_resblks_avail + delta;
1707 if (lcounter >= 0) {
1708 mp->m_resblks_avail = lcounter;
1709 return 0;
1da177e4 1710 }
8babd8a2
DC
1711 printk_once(KERN_WARNING
1712 "Filesystem \"%s\": reserve blocks depleted! "
1713 "Consider increasing reserve pool size.",
1714 mp->m_fsname);
1715 return XFS_ERROR(ENOSPC);
1da177e4
LT
1716 }
1717
4be536de 1718 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
014c2544 1719 return 0;
1da177e4
LT
1720 case XFS_SBS_FREXTENTS:
1721 lcounter = (long long)mp->m_sb.sb_frextents;
1722 lcounter += delta;
1723 if (lcounter < 0) {
014c2544 1724 return XFS_ERROR(ENOSPC);
1da177e4
LT
1725 }
1726 mp->m_sb.sb_frextents = lcounter;
014c2544 1727 return 0;
1da177e4
LT
1728 case XFS_SBS_DBLOCKS:
1729 lcounter = (long long)mp->m_sb.sb_dblocks;
1730 lcounter += delta;
1731 if (lcounter < 0) {
1732 ASSERT(0);
014c2544 1733 return XFS_ERROR(EINVAL);
1da177e4
LT
1734 }
1735 mp->m_sb.sb_dblocks = lcounter;
014c2544 1736 return 0;
1da177e4
LT
1737 case XFS_SBS_AGCOUNT:
1738 scounter = mp->m_sb.sb_agcount;
1739 scounter += delta;
1740 if (scounter < 0) {
1741 ASSERT(0);
014c2544 1742 return XFS_ERROR(EINVAL);
1da177e4
LT
1743 }
1744 mp->m_sb.sb_agcount = scounter;
014c2544 1745 return 0;
1da177e4
LT
1746 case XFS_SBS_IMAX_PCT:
1747 scounter = mp->m_sb.sb_imax_pct;
1748 scounter += delta;
1749 if (scounter < 0) {
1750 ASSERT(0);
014c2544 1751 return XFS_ERROR(EINVAL);
1da177e4
LT
1752 }
1753 mp->m_sb.sb_imax_pct = scounter;
014c2544 1754 return 0;
1da177e4
LT
1755 case XFS_SBS_REXTSIZE:
1756 scounter = mp->m_sb.sb_rextsize;
1757 scounter += delta;
1758 if (scounter < 0) {
1759 ASSERT(0);
014c2544 1760 return XFS_ERROR(EINVAL);
1da177e4
LT
1761 }
1762 mp->m_sb.sb_rextsize = scounter;
014c2544 1763 return 0;
1da177e4
LT
1764 case XFS_SBS_RBMBLOCKS:
1765 scounter = mp->m_sb.sb_rbmblocks;
1766 scounter += delta;
1767 if (scounter < 0) {
1768 ASSERT(0);
014c2544 1769 return XFS_ERROR(EINVAL);
1da177e4
LT
1770 }
1771 mp->m_sb.sb_rbmblocks = scounter;
014c2544 1772 return 0;
1da177e4
LT
1773 case XFS_SBS_RBLOCKS:
1774 lcounter = (long long)mp->m_sb.sb_rblocks;
1775 lcounter += delta;
1776 if (lcounter < 0) {
1777 ASSERT(0);
014c2544 1778 return XFS_ERROR(EINVAL);
1da177e4
LT
1779 }
1780 mp->m_sb.sb_rblocks = lcounter;
014c2544 1781 return 0;
1da177e4
LT
1782 case XFS_SBS_REXTENTS:
1783 lcounter = (long long)mp->m_sb.sb_rextents;
1784 lcounter += delta;
1785 if (lcounter < 0) {
1786 ASSERT(0);
014c2544 1787 return XFS_ERROR(EINVAL);
1da177e4
LT
1788 }
1789 mp->m_sb.sb_rextents = lcounter;
014c2544 1790 return 0;
1da177e4
LT
1791 case XFS_SBS_REXTSLOG:
1792 scounter = mp->m_sb.sb_rextslog;
1793 scounter += delta;
1794 if (scounter < 0) {
1795 ASSERT(0);
014c2544 1796 return XFS_ERROR(EINVAL);
1da177e4
LT
1797 }
1798 mp->m_sb.sb_rextslog = scounter;
014c2544 1799 return 0;
1da177e4
LT
1800 default:
1801 ASSERT(0);
014c2544 1802 return XFS_ERROR(EINVAL);
1da177e4
LT
1803 }
1804}
1805
1806/*
1807 * xfs_mod_incore_sb() is used to change a field in the in-core
1808 * superblock structure by the specified delta. This modification
3685c2a1 1809 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1da177e4
LT
1810 * routine to do the work.
1811 */
1812int
20f4ebf2 1813xfs_mod_incore_sb(
96540c78
CH
1814 struct xfs_mount *mp,
1815 xfs_sb_field_t field,
1816 int64_t delta,
1817 int rsvd)
1da177e4 1818{
96540c78 1819 int status;
1da177e4 1820
8d280b98 1821#ifdef HAVE_PERCPU_SB
96540c78 1822 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
8d280b98 1823#endif
96540c78
CH
1824 spin_lock(&mp->m_sb_lock);
1825 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1826 spin_unlock(&mp->m_sb_lock);
8d280b98 1827
014c2544 1828 return status;
1da177e4
LT
1829}
1830
1831/*
1b040712 1832 * Change more than one field in the in-core superblock structure at a time.
1da177e4 1833 *
1b040712
CH
1834 * The fields and changes to those fields are specified in the array of
1835 * xfs_mod_sb structures passed in. Either all of the specified deltas
1836 * will be applied or none of them will. If any modified field dips below 0,
1837 * then all modifications will be backed out and EINVAL will be returned.
1838 *
1839 * Note that this function may not be used for the superblock values that
1840 * are tracked with the in-memory per-cpu counters - a direct call to
1841 * xfs_icsb_modify_counters is required for these.
1da177e4
LT
1842 */
1843int
1b040712
CH
1844xfs_mod_incore_sb_batch(
1845 struct xfs_mount *mp,
1846 xfs_mod_sb_t *msb,
1847 uint nmsb,
1848 int rsvd)
1da177e4 1849{
45c51b99 1850 xfs_mod_sb_t *msbp;
1b040712 1851 int error = 0;
1da177e4
LT
1852
1853 /*
1b040712
CH
1854 * Loop through the array of mod structures and apply each individually.
1855 * If any fail, then back out all those which have already been applied.
1856 * Do all of this within the scope of the m_sb_lock so that all of the
1857 * changes will be atomic.
1da177e4 1858 */
3685c2a1 1859 spin_lock(&mp->m_sb_lock);
45c51b99 1860 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1b040712
CH
1861 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1862 msbp->msb_field > XFS_SBS_FDBLOCKS);
8d280b98 1863
1b040712
CH
1864 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1865 msbp->msb_delta, rsvd);
1866 if (error)
1867 goto unwind;
1da177e4 1868 }
1b040712
CH
1869 spin_unlock(&mp->m_sb_lock);
1870 return 0;
1da177e4 1871
1b040712
CH
1872unwind:
1873 while (--msbp >= msb) {
1874 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1875 -msbp->msb_delta, rsvd);
1876 ASSERT(error == 0);
1da177e4 1877 }
3685c2a1 1878 spin_unlock(&mp->m_sb_lock);
1b040712 1879 return error;
1da177e4
LT
1880}
1881
1882/*
1883 * xfs_getsb() is called to obtain the buffer for the superblock.
1884 * The buffer is returned locked and read in from disk.
1885 * The buffer should be released with a call to xfs_brelse().
1886 *
1887 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1888 * the superblock buffer if it can be locked without sleeping.
1889 * If it can't then we'll return NULL.
1890 */
0c842ad4 1891struct xfs_buf *
1da177e4 1892xfs_getsb(
0c842ad4
CH
1893 struct xfs_mount *mp,
1894 int flags)
1da177e4 1895{
0c842ad4 1896 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1897
0c842ad4
CH
1898 if (!xfs_buf_trylock(bp)) {
1899 if (flags & XBF_TRYLOCK)
1da177e4 1900 return NULL;
0c842ad4 1901 xfs_buf_lock(bp);
1da177e4 1902 }
0c842ad4 1903
72790aa1 1904 xfs_buf_hold(bp);
1da177e4 1905 ASSERT(XFS_BUF_ISDONE(bp));
014c2544 1906 return bp;
1da177e4
LT
1907}
1908
1909/*
1910 * Used to free the superblock along various error paths.
1911 */
1912void
1913xfs_freesb(
26af6552 1914 struct xfs_mount *mp)
1da177e4 1915{
26af6552 1916 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1917
26af6552 1918 xfs_buf_lock(bp);
1da177e4 1919 mp->m_sb_bp = NULL;
26af6552 1920 xfs_buf_relse(bp);
1da177e4
LT
1921}
1922
1da177e4
LT
1923/*
1924 * Used to log changes to the superblock unit and width fields which could
e6957ea4
ES
1925 * be altered by the mount options, as well as any potential sb_features2
1926 * fixup. Only the first superblock is updated.
1da177e4 1927 */
7884bc86 1928int
ee1c0908 1929xfs_mount_log_sb(
1da177e4
LT
1930 xfs_mount_t *mp,
1931 __int64_t fields)
1932{
1933 xfs_trans_t *tp;
e5720eec 1934 int error;
1da177e4 1935
ee1c0908 1936 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
4b166de0
DC
1937 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1938 XFS_SB_VERSIONNUM));
1da177e4
LT
1939
1940 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
e5720eec
DC
1941 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1942 XFS_DEFAULT_LOG_COUNT);
1943 if (error) {
1da177e4 1944 xfs_trans_cancel(tp, 0);
e5720eec 1945 return error;
1da177e4
LT
1946 }
1947 xfs_mod_sb(tp, fields);
e5720eec
DC
1948 error = xfs_trans_commit(tp, 0);
1949 return error;
1da177e4 1950}
8d280b98 1951
dda35b8f
CH
1952/*
1953 * If the underlying (data/log/rt) device is readonly, there are some
1954 * operations that cannot proceed.
1955 */
1956int
1957xfs_dev_is_read_only(
1958 struct xfs_mount *mp,
1959 char *message)
1960{
1961 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1962 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1963 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1964 xfs_notice(mp, "%s required on read-only device.", message);
1965 xfs_notice(mp, "write access unavailable, cannot proceed.");
dda35b8f
CH
1966 return EROFS;
1967 }
1968 return 0;
1969}
8d280b98
DC
1970
1971#ifdef HAVE_PERCPU_SB
1972/*
1973 * Per-cpu incore superblock counters
1974 *
1975 * Simple concept, difficult implementation
1976 *
1977 * Basically, replace the incore superblock counters with a distributed per cpu
1978 * counter for contended fields (e.g. free block count).
1979 *
1980 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1981 * hence needs to be accurately read when we are running low on space. Hence
1982 * there is a method to enable and disable the per-cpu counters based on how
1983 * much "stuff" is available in them.
1984 *
1985 * Basically, a counter is enabled if there is enough free resource to justify
1986 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1987 * ENOSPC), then we disable the counters to synchronise all callers and
1988 * re-distribute the available resources.
1989 *
1990 * If, once we redistributed the available resources, we still get a failure,
1991 * we disable the per-cpu counter and go through the slow path.
1992 *
1993 * The slow path is the current xfs_mod_incore_sb() function. This means that
9da096fd 1994 * when we disable a per-cpu counter, we need to drain its resources back to
8d280b98
DC
1995 * the global superblock. We do this after disabling the counter to prevent
1996 * more threads from queueing up on the counter.
1997 *
1998 * Essentially, this means that we still need a lock in the fast path to enable
1999 * synchronisation between the global counters and the per-cpu counters. This
2000 * is not a problem because the lock will be local to a CPU almost all the time
2001 * and have little contention except when we get to ENOSPC conditions.
2002 *
2003 * Basically, this lock becomes a barrier that enables us to lock out the fast
2004 * path while we do things like enabling and disabling counters and
2005 * synchronising the counters.
2006 *
2007 * Locking rules:
2008 *
3685c2a1 2009 * 1. m_sb_lock before picking up per-cpu locks
8d280b98 2010 * 2. per-cpu locks always picked up via for_each_online_cpu() order
3685c2a1 2011 * 3. accurate counter sync requires m_sb_lock + per cpu locks
8d280b98 2012 * 4. modifying per-cpu counters requires holding per-cpu lock
3685c2a1
ES
2013 * 5. modifying global counters requires holding m_sb_lock
2014 * 6. enabling or disabling a counter requires holding the m_sb_lock
8d280b98
DC
2015 * and _none_ of the per-cpu locks.
2016 *
2017 * Disabled counters are only ever re-enabled by a balance operation
2018 * that results in more free resources per CPU than a given threshold.
2019 * To ensure counters don't remain disabled, they are rebalanced when
2020 * the global resource goes above a higher threshold (i.e. some hysteresis
2021 * is present to prevent thrashing).
e8234a68
DC
2022 */
2023
5a67e4c5 2024#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
2025/*
2026 * hot-plug CPU notifier support.
8d280b98 2027 *
5a67e4c5
CS
2028 * We need a notifier per filesystem as we need to be able to identify
2029 * the filesystem to balance the counters out. This is achieved by
2030 * having a notifier block embedded in the xfs_mount_t and doing pointer
2031 * magic to get the mount pointer from the notifier block address.
8d280b98 2032 */
e8234a68
DC
2033STATIC int
2034xfs_icsb_cpu_notify(
2035 struct notifier_block *nfb,
2036 unsigned long action,
2037 void *hcpu)
2038{
2039 xfs_icsb_cnts_t *cntp;
2040 xfs_mount_t *mp;
e8234a68
DC
2041
2042 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2043 cntp = (xfs_icsb_cnts_t *)
2044 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2045 switch (action) {
2046 case CPU_UP_PREPARE:
8bb78442 2047 case CPU_UP_PREPARE_FROZEN:
e8234a68
DC
2048 /* Easy Case - initialize the area and locks, and
2049 * then rebalance when online does everything else for us. */
01e1b69c 2050 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68
DC
2051 break;
2052 case CPU_ONLINE:
8bb78442 2053 case CPU_ONLINE_FROZEN:
03135cf7 2054 xfs_icsb_lock(mp);
45af6c6d
CH
2055 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2056 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2057 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
03135cf7 2058 xfs_icsb_unlock(mp);
e8234a68
DC
2059 break;
2060 case CPU_DEAD:
8bb78442 2061 case CPU_DEAD_FROZEN:
e8234a68
DC
2062 /* Disable all the counters, then fold the dead cpu's
2063 * count into the total on the global superblock and
2064 * re-enable the counters. */
03135cf7 2065 xfs_icsb_lock(mp);
3685c2a1 2066 spin_lock(&mp->m_sb_lock);
e8234a68
DC
2067 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2068 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2069 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2070
2071 mp->m_sb.sb_icount += cntp->icsb_icount;
2072 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2073 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2074
01e1b69c 2075 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68 2076
45af6c6d
CH
2077 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2078 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2079 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
3685c2a1 2080 spin_unlock(&mp->m_sb_lock);
03135cf7 2081 xfs_icsb_unlock(mp);
e8234a68
DC
2082 break;
2083 }
2084
2085 return NOTIFY_OK;
2086}
5a67e4c5 2087#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 2088
8d280b98
DC
2089int
2090xfs_icsb_init_counters(
2091 xfs_mount_t *mp)
2092{
2093 xfs_icsb_cnts_t *cntp;
2094 int i;
2095
2096 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2097 if (mp->m_sb_cnts == NULL)
2098 return -ENOMEM;
2099
5a67e4c5 2100#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
2101 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2102 mp->m_icsb_notifier.priority = 0;
5a67e4c5
CS
2103 register_hotcpu_notifier(&mp->m_icsb_notifier);
2104#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 2105
8d280b98
DC
2106 for_each_online_cpu(i) {
2107 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2108 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
8d280b98 2109 }
20b64285
DC
2110
2111 mutex_init(&mp->m_icsb_mutex);
2112
8d280b98
DC
2113 /*
2114 * start with all counters disabled so that the
2115 * initial balance kicks us off correctly
2116 */
2117 mp->m_icsb_counters = -1;
2118 return 0;
2119}
2120
5478eead
LM
2121void
2122xfs_icsb_reinit_counters(
2123 xfs_mount_t *mp)
2124{
2125 xfs_icsb_lock(mp);
2126 /*
2127 * start with all counters disabled so that the
2128 * initial balance kicks us off correctly
2129 */
2130 mp->m_icsb_counters = -1;
45af6c6d
CH
2131 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2132 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2133 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
5478eead
LM
2134 xfs_icsb_unlock(mp);
2135}
2136
c962fb79 2137void
8d280b98
DC
2138xfs_icsb_destroy_counters(
2139 xfs_mount_t *mp)
2140{
e8234a68 2141 if (mp->m_sb_cnts) {
5a67e4c5 2142 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
8d280b98 2143 free_percpu(mp->m_sb_cnts);
e8234a68 2144 }
03135cf7 2145 mutex_destroy(&mp->m_icsb_mutex);
8d280b98
DC
2146}
2147
b8f82a4a 2148STATIC void
01e1b69c
DC
2149xfs_icsb_lock_cntr(
2150 xfs_icsb_cnts_t *icsbp)
2151{
2152 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2153 ndelay(1000);
2154 }
2155}
2156
b8f82a4a 2157STATIC void
01e1b69c
DC
2158xfs_icsb_unlock_cntr(
2159 xfs_icsb_cnts_t *icsbp)
2160{
2161 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2162}
2163
8d280b98 2164
b8f82a4a 2165STATIC void
8d280b98
DC
2166xfs_icsb_lock_all_counters(
2167 xfs_mount_t *mp)
2168{
2169 xfs_icsb_cnts_t *cntp;
2170 int i;
2171
2172 for_each_online_cpu(i) {
2173 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2174 xfs_icsb_lock_cntr(cntp);
8d280b98
DC
2175 }
2176}
2177
b8f82a4a 2178STATIC void
8d280b98
DC
2179xfs_icsb_unlock_all_counters(
2180 xfs_mount_t *mp)
2181{
2182 xfs_icsb_cnts_t *cntp;
2183 int i;
2184
2185 for_each_online_cpu(i) {
2186 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2187 xfs_icsb_unlock_cntr(cntp);
8d280b98
DC
2188 }
2189}
2190
2191STATIC void
2192xfs_icsb_count(
2193 xfs_mount_t *mp,
2194 xfs_icsb_cnts_t *cnt,
2195 int flags)
2196{
2197 xfs_icsb_cnts_t *cntp;
2198 int i;
2199
2200 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2201
2202 if (!(flags & XFS_ICSB_LAZY_COUNT))
2203 xfs_icsb_lock_all_counters(mp);
2204
2205 for_each_online_cpu(i) {
2206 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2207 cnt->icsb_icount += cntp->icsb_icount;
2208 cnt->icsb_ifree += cntp->icsb_ifree;
2209 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2210 }
2211
2212 if (!(flags & XFS_ICSB_LAZY_COUNT))
2213 xfs_icsb_unlock_all_counters(mp);
2214}
2215
2216STATIC int
2217xfs_icsb_counter_disabled(
2218 xfs_mount_t *mp,
2219 xfs_sb_field_t field)
2220{
2221 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2222 return test_bit(field, &mp->m_icsb_counters);
2223}
2224
36fbe6e6 2225STATIC void
8d280b98
DC
2226xfs_icsb_disable_counter(
2227 xfs_mount_t *mp,
2228 xfs_sb_field_t field)
2229{
2230 xfs_icsb_cnts_t cnt;
2231
2232 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2233
20b64285
DC
2234 /*
2235 * If we are already disabled, then there is nothing to do
2236 * here. We check before locking all the counters to avoid
2237 * the expensive lock operation when being called in the
2238 * slow path and the counter is already disabled. This is
2239 * safe because the only time we set or clear this state is under
2240 * the m_icsb_mutex.
2241 */
2242 if (xfs_icsb_counter_disabled(mp, field))
36fbe6e6 2243 return;
20b64285 2244
8d280b98
DC
2245 xfs_icsb_lock_all_counters(mp);
2246 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2247 /* drain back to superblock */
2248
ce46193b 2249 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
8d280b98
DC
2250 switch(field) {
2251 case XFS_SBS_ICOUNT:
2252 mp->m_sb.sb_icount = cnt.icsb_icount;
2253 break;
2254 case XFS_SBS_IFREE:
2255 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2256 break;
2257 case XFS_SBS_FDBLOCKS:
2258 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2259 break;
2260 default:
2261 BUG();
2262 }
2263 }
2264
2265 xfs_icsb_unlock_all_counters(mp);
8d280b98
DC
2266}
2267
2268STATIC void
2269xfs_icsb_enable_counter(
2270 xfs_mount_t *mp,
2271 xfs_sb_field_t field,
2272 uint64_t count,
2273 uint64_t resid)
2274{
2275 xfs_icsb_cnts_t *cntp;
2276 int i;
2277
2278 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2279
2280 xfs_icsb_lock_all_counters(mp);
2281 for_each_online_cpu(i) {
2282 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2283 switch (field) {
2284 case XFS_SBS_ICOUNT:
2285 cntp->icsb_icount = count + resid;
2286 break;
2287 case XFS_SBS_IFREE:
2288 cntp->icsb_ifree = count + resid;
2289 break;
2290 case XFS_SBS_FDBLOCKS:
2291 cntp->icsb_fdblocks = count + resid;
2292 break;
2293 default:
2294 BUG();
2295 break;
2296 }
2297 resid = 0;
2298 }
2299 clear_bit(field, &mp->m_icsb_counters);
2300 xfs_icsb_unlock_all_counters(mp);
2301}
2302
dbcabad1 2303void
d4d90b57 2304xfs_icsb_sync_counters_locked(
8d280b98
DC
2305 xfs_mount_t *mp,
2306 int flags)
2307{
2308 xfs_icsb_cnts_t cnt;
8d280b98 2309
8d280b98
DC
2310 xfs_icsb_count(mp, &cnt, flags);
2311
8d280b98
DC
2312 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2313 mp->m_sb.sb_icount = cnt.icsb_icount;
2314 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2315 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2316 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2317 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
8d280b98
DC
2318}
2319
2320/*
2321 * Accurate update of per-cpu counters to incore superblock
2322 */
d4d90b57 2323void
8d280b98 2324xfs_icsb_sync_counters(
d4d90b57
CH
2325 xfs_mount_t *mp,
2326 int flags)
8d280b98 2327{
d4d90b57
CH
2328 spin_lock(&mp->m_sb_lock);
2329 xfs_icsb_sync_counters_locked(mp, flags);
2330 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
2331}
2332
2333/*
2334 * Balance and enable/disable counters as necessary.
2335 *
20b64285
DC
2336 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2337 * chosen to be the same number as single on disk allocation chunk per CPU, and
2338 * free blocks is something far enough zero that we aren't going thrash when we
2339 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2340 * prevent looping endlessly when xfs_alloc_space asks for more than will
2341 * be distributed to a single CPU but each CPU has enough blocks to be
2342 * reenabled.
2343 *
2344 * Note that we can be called when counters are already disabled.
2345 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2346 * prevent locking every per-cpu counter needlessly.
8d280b98 2347 */
20b64285
DC
2348
2349#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
4be536de 2350#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
20b64285 2351 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
8d280b98 2352STATIC void
45af6c6d 2353xfs_icsb_balance_counter_locked(
8d280b98
DC
2354 xfs_mount_t *mp,
2355 xfs_sb_field_t field,
20b64285 2356 int min_per_cpu)
8d280b98 2357{
6fdf8ccc 2358 uint64_t count, resid;
8d280b98 2359 int weight = num_online_cpus();
20b64285 2360 uint64_t min = (uint64_t)min_per_cpu;
8d280b98 2361
8d280b98
DC
2362 /* disable counter and sync counter */
2363 xfs_icsb_disable_counter(mp, field);
2364
2365 /* update counters - first CPU gets residual*/
2366 switch (field) {
2367 case XFS_SBS_ICOUNT:
2368 count = mp->m_sb.sb_icount;
2369 resid = do_div(count, weight);
20b64285 2370 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 2371 return;
8d280b98
DC
2372 break;
2373 case XFS_SBS_IFREE:
2374 count = mp->m_sb.sb_ifree;
2375 resid = do_div(count, weight);
20b64285 2376 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 2377 return;
8d280b98
DC
2378 break;
2379 case XFS_SBS_FDBLOCKS:
2380 count = mp->m_sb.sb_fdblocks;
2381 resid = do_div(count, weight);
20b64285 2382 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
45af6c6d 2383 return;
8d280b98
DC
2384 break;
2385 default:
2386 BUG();
6fdf8ccc 2387 count = resid = 0; /* quiet, gcc */
8d280b98
DC
2388 break;
2389 }
2390
2391 xfs_icsb_enable_counter(mp, field, count, resid);
45af6c6d
CH
2392}
2393
2394STATIC void
2395xfs_icsb_balance_counter(
2396 xfs_mount_t *mp,
2397 xfs_sb_field_t fields,
2398 int min_per_cpu)
2399{
2400 spin_lock(&mp->m_sb_lock);
2401 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2402 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
2403}
2404
1b040712 2405int
20b64285 2406xfs_icsb_modify_counters(
8d280b98
DC
2407 xfs_mount_t *mp,
2408 xfs_sb_field_t field,
20f4ebf2 2409 int64_t delta,
20b64285 2410 int rsvd)
8d280b98
DC
2411{
2412 xfs_icsb_cnts_t *icsbp;
2413 long long lcounter; /* long counter for 64 bit fields */
7a9e02d6 2414 int ret = 0;
8d280b98 2415
20b64285 2416 might_sleep();
8d280b98 2417again:
7a9e02d6
CL
2418 preempt_disable();
2419 icsbp = this_cpu_ptr(mp->m_sb_cnts);
20b64285
DC
2420
2421 /*
2422 * if the counter is disabled, go to slow path
2423 */
8d280b98
DC
2424 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2425 goto slow_path;
20b64285
DC
2426 xfs_icsb_lock_cntr(icsbp);
2427 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2428 xfs_icsb_unlock_cntr(icsbp);
2429 goto slow_path;
2430 }
8d280b98
DC
2431
2432 switch (field) {
2433 case XFS_SBS_ICOUNT:
2434 lcounter = icsbp->icsb_icount;
2435 lcounter += delta;
2436 if (unlikely(lcounter < 0))
20b64285 2437 goto balance_counter;
8d280b98
DC
2438 icsbp->icsb_icount = lcounter;
2439 break;
2440
2441 case XFS_SBS_IFREE:
2442 lcounter = icsbp->icsb_ifree;
2443 lcounter += delta;
2444 if (unlikely(lcounter < 0))
20b64285 2445 goto balance_counter;
8d280b98
DC
2446 icsbp->icsb_ifree = lcounter;
2447 break;
2448
2449 case XFS_SBS_FDBLOCKS:
2450 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2451
4be536de 2452 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
2453 lcounter += delta;
2454 if (unlikely(lcounter < 0))
20b64285 2455 goto balance_counter;
4be536de 2456 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
2457 break;
2458 default:
2459 BUG();
2460 break;
2461 }
01e1b69c 2462 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2463 preempt_enable();
8d280b98
DC
2464 return 0;
2465
8d280b98 2466slow_path:
7a9e02d6 2467 preempt_enable();
8d280b98 2468
20b64285
DC
2469 /*
2470 * serialise with a mutex so we don't burn lots of cpu on
2471 * the superblock lock. We still need to hold the superblock
2472 * lock, however, when we modify the global structures.
2473 */
03135cf7 2474 xfs_icsb_lock(mp);
20b64285
DC
2475
2476 /*
2477 * Now running atomically.
2478 *
2479 * If the counter is enabled, someone has beaten us to rebalancing.
2480 * Drop the lock and try again in the fast path....
2481 */
2482 if (!(xfs_icsb_counter_disabled(mp, field))) {
03135cf7 2483 xfs_icsb_unlock(mp);
8d280b98 2484 goto again;
8d280b98
DC
2485 }
2486
20b64285
DC
2487 /*
2488 * The counter is currently disabled. Because we are
2489 * running atomically here, we know a rebalance cannot
2490 * be in progress. Hence we can go straight to operating
2491 * on the global superblock. We do not call xfs_mod_incore_sb()
3685c2a1 2492 * here even though we need to get the m_sb_lock. Doing so
20b64285 2493 * will cause us to re-enter this function and deadlock.
3685c2a1 2494 * Hence we get the m_sb_lock ourselves and then call
20b64285
DC
2495 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2496 * directly on the global counters.
2497 */
3685c2a1 2498 spin_lock(&mp->m_sb_lock);
8d280b98 2499 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
3685c2a1 2500 spin_unlock(&mp->m_sb_lock);
8d280b98 2501
20b64285
DC
2502 /*
2503 * Now that we've modified the global superblock, we
2504 * may be able to re-enable the distributed counters
2505 * (e.g. lots of space just got freed). After that
2506 * we are done.
2507 */
2508 if (ret != ENOSPC)
45af6c6d 2509 xfs_icsb_balance_counter(mp, field, 0);
03135cf7 2510 xfs_icsb_unlock(mp);
8d280b98 2511 return ret;
8d280b98 2512
20b64285
DC
2513balance_counter:
2514 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2515 preempt_enable();
8d280b98 2516
20b64285
DC
2517 /*
2518 * We may have multiple threads here if multiple per-cpu
2519 * counters run dry at the same time. This will mean we can
2520 * do more balances than strictly necessary but it is not
2521 * the common slowpath case.
2522 */
03135cf7 2523 xfs_icsb_lock(mp);
20b64285
DC
2524
2525 /*
2526 * running atomically.
2527 *
2528 * This will leave the counter in the correct state for future
2529 * accesses. After the rebalance, we simply try again and our retry
2530 * will either succeed through the fast path or slow path without
2531 * another balance operation being required.
2532 */
45af6c6d 2533 xfs_icsb_balance_counter(mp, field, delta);
03135cf7 2534 xfs_icsb_unlock(mp);
20b64285 2535 goto again;
8d280b98 2536}
20b64285 2537
8d280b98 2538#endif