]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_mount.c
xfs: add configuration handlers for specific errors
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
57062787 27#include "xfs_da_format.h"
9a2cc41c 28#include "xfs_da_btree.h"
1da177e4 29#include "xfs_inode.h"
a4fbe6ab 30#include "xfs_dir2.h"
a844f451 31#include "xfs_ialloc.h"
1da177e4
LT
32#include "xfs_alloc.h"
33#include "xfs_rtalloc.h"
34#include "xfs_bmap.h"
a4fbe6ab
DC
35#include "xfs_trans.h"
36#include "xfs_trans_priv.h"
37#include "xfs_log.h"
1da177e4 38#include "xfs_error.h"
1da177e4
LT
39#include "xfs_quota.h"
40#include "xfs_fsops.h"
0b1b213f 41#include "xfs_trace.h"
6d8b79cf 42#include "xfs_icache.h"
a31b1d3d 43#include "xfs_sysfs.h"
0b1b213f 44
1da177e4 45
27174203
CH
46static DEFINE_MUTEX(xfs_uuid_table_mutex);
47static int xfs_uuid_table_size;
48static uuid_t *xfs_uuid_table;
49
af3b6382
DW
50void
51xfs_uuid_table_free(void)
52{
53 if (xfs_uuid_table_size == 0)
54 return;
55 kmem_free(xfs_uuid_table);
56 xfs_uuid_table = NULL;
57 xfs_uuid_table_size = 0;
58}
59
27174203
CH
60/*
61 * See if the UUID is unique among mounted XFS filesystems.
62 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
63 */
64STATIC int
65xfs_uuid_mount(
66 struct xfs_mount *mp)
67{
68 uuid_t *uuid = &mp->m_sb.sb_uuid;
69 int hole, i;
70
71 if (mp->m_flags & XFS_MOUNT_NOUUID)
72 return 0;
73
74 if (uuid_is_nil(uuid)) {
0b932ccc 75 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
2451337d 76 return -EINVAL;
27174203
CH
77 }
78
79 mutex_lock(&xfs_uuid_table_mutex);
80 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
81 if (uuid_is_nil(&xfs_uuid_table[i])) {
82 hole = i;
83 continue;
84 }
85 if (uuid_equal(uuid, &xfs_uuid_table[i]))
86 goto out_duplicate;
87 }
88
89 if (hole < 0) {
90 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
91 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
92 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
93 KM_SLEEP);
94 hole = xfs_uuid_table_size++;
95 }
96 xfs_uuid_table[hole] = *uuid;
97 mutex_unlock(&xfs_uuid_table_mutex);
98
99 return 0;
100
101 out_duplicate:
102 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 103 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 104 return -EINVAL;
27174203
CH
105}
106
107STATIC void
108xfs_uuid_unmount(
109 struct xfs_mount *mp)
110{
111 uuid_t *uuid = &mp->m_sb.sb_uuid;
112 int i;
113
114 if (mp->m_flags & XFS_MOUNT_NOUUID)
115 return;
116
117 mutex_lock(&xfs_uuid_table_mutex);
118 for (i = 0; i < xfs_uuid_table_size; i++) {
119 if (uuid_is_nil(&xfs_uuid_table[i]))
120 continue;
121 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
122 continue;
123 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
124 break;
125 }
126 ASSERT(i < xfs_uuid_table_size);
127 mutex_unlock(&xfs_uuid_table_mutex);
128}
129
130
e176579e
DC
131STATIC void
132__xfs_free_perag(
133 struct rcu_head *head)
134{
135 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
136
137 ASSERT(atomic_read(&pag->pag_ref) == 0);
138 kmem_free(pag);
139}
140
1da177e4 141/*
e176579e 142 * Free up the per-ag resources associated with the mount structure.
1da177e4 143 */
c962fb79 144STATIC void
ff4f038c 145xfs_free_perag(
745f6919 146 xfs_mount_t *mp)
1da177e4 147{
1c1c6ebc
DC
148 xfs_agnumber_t agno;
149 struct xfs_perag *pag;
150
151 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
152 spin_lock(&mp->m_perag_lock);
153 pag = radix_tree_delete(&mp->m_perag_tree, agno);
154 spin_unlock(&mp->m_perag_lock);
e176579e 155 ASSERT(pag);
f83282a8 156 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 157 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 158 }
1da177e4
LT
159}
160
4cc929ee
NS
161/*
162 * Check size of device based on the (data/realtime) block count.
163 * Note: this check is used by the growfs code as well as mount.
164 */
165int
166xfs_sb_validate_fsb_count(
167 xfs_sb_t *sbp,
168 __uint64_t nblocks)
169{
170 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
171 ASSERT(sbp->sb_blocklog >= BBSHIFT);
172
d5cf09ba 173 /* Limited by ULONG_MAX of page cache index */
4cc929ee 174 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 175 return -EFBIG;
4cc929ee
NS
176 return 0;
177}
1da177e4 178
1c1c6ebc 179int
c11e2c36 180xfs_initialize_perag(
c11e2c36 181 xfs_mount_t *mp,
1c1c6ebc
DC
182 xfs_agnumber_t agcount,
183 xfs_agnumber_t *maxagi)
1da177e4 184{
2d2194f6 185 xfs_agnumber_t index;
8b26c582 186 xfs_agnumber_t first_initialised = 0;
1da177e4 187 xfs_perag_t *pag;
8b26c582 188 int error = -ENOMEM;
1da177e4 189
1c1c6ebc
DC
190 /*
191 * Walk the current per-ag tree so we don't try to initialise AGs
192 * that already exist (growfs case). Allocate and insert all the
193 * AGs we don't find ready for initialisation.
194 */
195 for (index = 0; index < agcount; index++) {
196 pag = xfs_perag_get(mp, index);
197 if (pag) {
198 xfs_perag_put(pag);
199 continue;
200 }
8b26c582
DC
201 if (!first_initialised)
202 first_initialised = index;
fb3b504a 203
1c1c6ebc
DC
204 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
205 if (!pag)
8b26c582 206 goto out_unwind;
fb3b504a
CH
207 pag->pag_agno = index;
208 pag->pag_mount = mp;
1a427ab0 209 spin_lock_init(&pag->pag_ici_lock);
69b491c2 210 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 211 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
212 spin_lock_init(&pag->pag_buf_lock);
213 pag->pag_buf_tree = RB_ROOT;
fb3b504a 214
1c1c6ebc 215 if (radix_tree_preload(GFP_NOFS))
8b26c582 216 goto out_unwind;
fb3b504a 217
1c1c6ebc
DC
218 spin_lock(&mp->m_perag_lock);
219 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
220 BUG();
221 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
222 radix_tree_preload_end();
223 error = -EEXIST;
224 goto out_unwind;
1c1c6ebc
DC
225 }
226 spin_unlock(&mp->m_perag_lock);
227 radix_tree_preload_end();
228 }
229
12c3f05c 230 index = xfs_set_inode_alloc(mp, agcount);
fb3b504a 231
1c1c6ebc
DC
232 if (maxagi)
233 *maxagi = index;
234 return 0;
8b26c582
DC
235
236out_unwind:
237 kmem_free(pag);
238 for (; index > first_initialised; index--) {
239 pag = radix_tree_delete(&mp->m_perag_tree, index);
240 kmem_free(pag);
241 }
242 return error;
1da177e4
LT
243}
244
1da177e4
LT
245/*
246 * xfs_readsb
247 *
248 * Does the initial read of the superblock.
249 */
250int
ff55068c
DC
251xfs_readsb(
252 struct xfs_mount *mp,
253 int flags)
1da177e4
LT
254{
255 unsigned int sector_size;
04a1e6c5
DC
256 struct xfs_buf *bp;
257 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 258 int error;
af34e09d 259 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 260 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
261
262 ASSERT(mp->m_sb_bp == NULL);
263 ASSERT(mp->m_ddev_targp != NULL);
264
daba5427
ES
265 /*
266 * For the initial read, we must guess at the sector
267 * size based on the block device. It's enough to
268 * get the sb_sectsize out of the superblock and
269 * then reread with the proper length.
270 * We don't verify it yet, because it may not be complete.
271 */
272 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
273 buf_ops = NULL;
274
1da177e4
LT
275 /*
276 * Allocate a (locked) buffer to hold the superblock.
277 * This will be kept around at all times to optimize
278 * access to the superblock.
279 */
26af6552 280reread:
ba372674
DC
281 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
282 BTOBB(sector_size), 0, &bp, buf_ops);
283 if (error) {
eab4e633 284 if (loud)
e721f504 285 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 286 /* bad CRC means corrupted metadata */
2451337d
DC
287 if (error == -EFSBADCRC)
288 error = -EFSCORRUPTED;
ba372674 289 return error;
eab4e633 290 }
1da177e4
LT
291
292 /*
293 * Initialize the mount structure from the superblock.
1da177e4 294 */
556b8883 295 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
556b8883
DC
296
297 /*
298 * If we haven't validated the superblock, do so now before we try
299 * to check the sector size and reread the superblock appropriately.
300 */
301 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
302 if (loud)
303 xfs_warn(mp, "Invalid superblock magic number");
2451337d 304 error = -EINVAL;
556b8883
DC
305 goto release_buf;
306 }
ff55068c 307
1da177e4
LT
308 /*
309 * We must be able to do sector-sized and sector-aligned IO.
310 */
04a1e6c5 311 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
312 if (loud)
313 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 314 sector_size, sbp->sb_sectsize);
2451337d 315 error = -ENOSYS;
26af6552 316 goto release_buf;
1da177e4
LT
317 }
318
daba5427 319 if (buf_ops == NULL) {
556b8883
DC
320 /*
321 * Re-read the superblock so the buffer is correctly sized,
322 * and properly verified.
323 */
1da177e4 324 xfs_buf_relse(bp);
04a1e6c5 325 sector_size = sbp->sb_sectsize;
daba5427 326 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 327 goto reread;
1da177e4
LT
328 }
329
5681ca40 330 xfs_reinit_percpu_counters(mp);
8d280b98 331
04a1e6c5
DC
332 /* no need to be quiet anymore, so reset the buf ops */
333 bp->b_ops = &xfs_sb_buf_ops;
334
1da177e4 335 mp->m_sb_bp = bp;
26af6552 336 xfs_buf_unlock(bp);
1da177e4
LT
337 return 0;
338
26af6552
DC
339release_buf:
340 xfs_buf_relse(bp);
1da177e4
LT
341 return error;
342}
343
1da177e4 344/*
0771fb45 345 * Update alignment values based on mount options and sb values
1da177e4 346 */
0771fb45 347STATIC int
7884bc86 348xfs_update_alignment(xfs_mount_t *mp)
1da177e4 349{
1da177e4 350 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 351
4249023a 352 if (mp->m_dalign) {
1da177e4
LT
353 /*
354 * If stripe unit and stripe width are not multiples
355 * of the fs blocksize turn off alignment.
356 */
357 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
358 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
359 xfs_warn(mp,
360 "alignment check failed: sunit/swidth vs. blocksize(%d)",
361 sbp->sb_blocksize);
2451337d 362 return -EINVAL;
1da177e4
LT
363 } else {
364 /*
365 * Convert the stripe unit and width to FSBs.
366 */
367 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
368 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 369 xfs_warn(mp,
39a45d84
JL
370 "alignment check failed: sunit/swidth vs. agsize(%d)",
371 sbp->sb_agblocks);
2451337d 372 return -EINVAL;
1da177e4
LT
373 } else if (mp->m_dalign) {
374 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
375 } else {
39a45d84
JL
376 xfs_warn(mp,
377 "alignment check failed: sunit(%d) less than bsize(%d)",
378 mp->m_dalign, sbp->sb_blocksize);
2451337d 379 return -EINVAL;
1da177e4
LT
380 }
381 }
382
383 /*
384 * Update superblock with new values
385 * and log changes
386 */
62118709 387 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
388 if (sbp->sb_unit != mp->m_dalign) {
389 sbp->sb_unit = mp->m_dalign;
61e63ecb 390 mp->m_update_sb = true;
1da177e4
LT
391 }
392 if (sbp->sb_width != mp->m_swidth) {
393 sbp->sb_width = mp->m_swidth;
61e63ecb 394 mp->m_update_sb = true;
1da177e4 395 }
34d7f603
JL
396 } else {
397 xfs_warn(mp,
398 "cannot change alignment: superblock does not support data alignment");
2451337d 399 return -EINVAL;
1da177e4
LT
400 }
401 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 402 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
403 mp->m_dalign = sbp->sb_unit;
404 mp->m_swidth = sbp->sb_width;
405 }
406
0771fb45
ES
407 return 0;
408}
1da177e4 409
0771fb45
ES
410/*
411 * Set the maximum inode count for this filesystem
412 */
413STATIC void
414xfs_set_maxicount(xfs_mount_t *mp)
415{
416 xfs_sb_t *sbp = &(mp->m_sb);
417 __uint64_t icount;
1da177e4 418
0771fb45
ES
419 if (sbp->sb_imax_pct) {
420 /*
421 * Make sure the maximum inode count is a multiple
422 * of the units we allocate inodes in.
1da177e4 423 */
1da177e4
LT
424 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
425 do_div(icount, 100);
426 do_div(icount, mp->m_ialloc_blks);
427 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
428 sbp->sb_inopblog;
0771fb45 429 } else {
1da177e4 430 mp->m_maxicount = 0;
1da177e4 431 }
0771fb45
ES
432}
433
434/*
435 * Set the default minimum read and write sizes unless
436 * already specified in a mount option.
437 * We use smaller I/O sizes when the file system
438 * is being used for NFS service (wsync mount option).
439 */
440STATIC void
441xfs_set_rw_sizes(xfs_mount_t *mp)
442{
443 xfs_sb_t *sbp = &(mp->m_sb);
444 int readio_log, writeio_log;
1da177e4 445
1da177e4
LT
446 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
447 if (mp->m_flags & XFS_MOUNT_WSYNC) {
448 readio_log = XFS_WSYNC_READIO_LOG;
449 writeio_log = XFS_WSYNC_WRITEIO_LOG;
450 } else {
451 readio_log = XFS_READIO_LOG_LARGE;
452 writeio_log = XFS_WRITEIO_LOG_LARGE;
453 }
454 } else {
455 readio_log = mp->m_readio_log;
456 writeio_log = mp->m_writeio_log;
457 }
458
1da177e4
LT
459 if (sbp->sb_blocklog > readio_log) {
460 mp->m_readio_log = sbp->sb_blocklog;
461 } else {
462 mp->m_readio_log = readio_log;
463 }
464 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
465 if (sbp->sb_blocklog > writeio_log) {
466 mp->m_writeio_log = sbp->sb_blocklog;
467 } else {
468 mp->m_writeio_log = writeio_log;
469 }
470 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 471}
1da177e4 472
055388a3
DC
473/*
474 * precalculate the low space thresholds for dynamic speculative preallocation.
475 */
476void
477xfs_set_low_space_thresholds(
478 struct xfs_mount *mp)
479{
480 int i;
481
482 for (i = 0; i < XFS_LOWSP_MAX; i++) {
483 __uint64_t space = mp->m_sb.sb_dblocks;
484
485 do_div(space, 100);
486 mp->m_low_space[i] = space * (i + 1);
487 }
488}
489
490
0771fb45
ES
491/*
492 * Set whether we're using inode alignment.
493 */
494STATIC void
495xfs_set_inoalignment(xfs_mount_t *mp)
496{
62118709 497 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
498 mp->m_sb.sb_inoalignmt >=
499 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
500 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
501 else
502 mp->m_inoalign_mask = 0;
503 /*
504 * If we are using stripe alignment, check whether
505 * the stripe unit is a multiple of the inode alignment
506 */
507 if (mp->m_dalign && mp->m_inoalign_mask &&
508 !(mp->m_dalign & mp->m_inoalign_mask))
509 mp->m_sinoalign = mp->m_dalign;
510 else
511 mp->m_sinoalign = 0;
0771fb45
ES
512}
513
514/*
0471f62e 515 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
516 */
517STATIC int
ba372674
DC
518xfs_check_sizes(
519 struct xfs_mount *mp)
0771fb45 520{
ba372674 521 struct xfs_buf *bp;
0771fb45 522 xfs_daddr_t d;
ba372674 523 int error;
0771fb45 524
1da177e4
LT
525 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
526 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 527 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 528 return -EFBIG;
1da177e4 529 }
ba372674 530 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 531 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
532 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
533 if (error) {
0b932ccc 534 xfs_warn(mp, "last sector read failed");
ba372674 535 return error;
1da177e4 536 }
1922c949 537 xfs_buf_relse(bp);
1da177e4 538
ba372674
DC
539 if (mp->m_logdev_targp == mp->m_ddev_targp)
540 return 0;
541
542 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
543 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
544 xfs_warn(mp, "log size mismatch detected");
545 return -EFBIG;
546 }
547 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 548 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
549 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
550 if (error) {
551 xfs_warn(mp, "log device read failed");
552 return error;
0771fb45 553 }
ba372674 554 xfs_buf_relse(bp);
0771fb45
ES
555 return 0;
556}
557
7d095257
CH
558/*
559 * Clear the quotaflags in memory and in the superblock.
560 */
561int
562xfs_mount_reset_sbqflags(
563 struct xfs_mount *mp)
564{
7d095257
CH
565 mp->m_qflags = 0;
566
61e63ecb 567 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
568 if (mp->m_sb.sb_qflags == 0)
569 return 0;
570 spin_lock(&mp->m_sb_lock);
571 mp->m_sb.sb_qflags = 0;
572 spin_unlock(&mp->m_sb_lock);
573
61e63ecb 574 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
575 return 0;
576
61e63ecb 577 return xfs_sync_sb(mp, false);
7d095257
CH
578}
579
d5db0f97
ES
580__uint64_t
581xfs_default_resblks(xfs_mount_t *mp)
582{
583 __uint64_t resblks;
584
585 /*
8babd8a2
DC
586 * We default to 5% or 8192 fsbs of space reserved, whichever is
587 * smaller. This is intended to cover concurrent allocation
588 * transactions when we initially hit enospc. These each require a 4
589 * block reservation. Hence by default we cover roughly 2000 concurrent
590 * allocation reservations.
d5db0f97
ES
591 */
592 resblks = mp->m_sb.sb_dblocks;
593 do_div(resblks, 20);
8babd8a2 594 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
595 return resblks;
596}
597
0771fb45 598/*
0771fb45
ES
599 * This function does the following on an initial mount of a file system:
600 * - reads the superblock from disk and init the mount struct
601 * - if we're a 32-bit kernel, do a size check on the superblock
602 * so we don't mount terabyte filesystems
603 * - init mount struct realtime fields
604 * - allocate inode hash table for fs
605 * - init directory manager
606 * - perform recovery and init the log manager
607 */
608int
609xfs_mountfs(
f0b2efad 610 struct xfs_mount *mp)
0771fb45 611{
f0b2efad
BF
612 struct xfs_sb *sbp = &(mp->m_sb);
613 struct xfs_inode *rip;
614 __uint64_t resblks;
615 uint quotamount = 0;
616 uint quotaflags = 0;
617 int error = 0;
0771fb45 618
ff55068c 619 xfs_sb_mount_common(mp, sbp);
0771fb45 620
ee1c0908 621 /*
074e427b
DC
622 * Check for a mismatched features2 values. Older kernels read & wrote
623 * into the wrong sb offset for sb_features2 on some platforms due to
624 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
625 * which made older superblock reading/writing routines swap it as a
626 * 64-bit value.
ee1c0908 627 *
e6957ea4
ES
628 * For backwards compatibility, we make both slots equal.
629 *
074e427b
DC
630 * If we detect a mismatched field, we OR the set bits into the existing
631 * features2 field in case it has already been modified; we don't want
632 * to lose any features. We then update the bad location with the ORed
633 * value so that older kernels will see any features2 flags. The
634 * superblock writeback code ensures the new sb_features2 is copied to
635 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 636 */
e6957ea4 637 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 638 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 639 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 640 mp->m_update_sb = true;
e6957ea4
ES
641
642 /*
643 * Re-check for ATTR2 in case it was found in bad_features2
644 * slot.
645 */
7c12f296
TS
646 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
647 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 648 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
649 }
650
651 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
652 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
653 xfs_sb_version_removeattr2(&mp->m_sb);
61e63ecb 654 mp->m_update_sb = true;
e6957ea4 655
7c12f296
TS
656 /* update sb_versionnum for the clearing of the morebits */
657 if (!sbp->sb_features2)
61e63ecb 658 mp->m_update_sb = true;
ee1c0908
DC
659 }
660
263997a6
DC
661 /* always use v2 inodes by default now */
662 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
663 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
61e63ecb 664 mp->m_update_sb = true;
263997a6
DC
665 }
666
0771fb45
ES
667 /*
668 * Check if sb_agblocks is aligned at stripe boundary
669 * If sb_agblocks is NOT aligned turn off m_dalign since
670 * allocator alignment is within an ag, therefore ag has
671 * to be aligned at stripe boundary.
672 */
7884bc86 673 error = xfs_update_alignment(mp);
0771fb45 674 if (error)
f9057e3d 675 goto out;
0771fb45
ES
676
677 xfs_alloc_compute_maxlevels(mp);
678 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
679 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
680 xfs_ialloc_compute_maxlevels(mp);
681
682 xfs_set_maxicount(mp);
683
a31b1d3d 684 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
27174203
CH
685 if (error)
686 goto out;
1da177e4 687
225e4635
BD
688 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
689 &mp->m_kobj, "stats");
a31b1d3d
BF
690 if (error)
691 goto out_remove_sysfs;
692
192852be 693 error = xfs_error_sysfs_init(mp);
225e4635
BD
694 if (error)
695 goto out_del_stats;
696
192852be
CM
697
698 error = xfs_uuid_mount(mp);
699 if (error)
700 goto out_remove_error_sysfs;
701
0771fb45
ES
702 /*
703 * Set the minimum read and write sizes
704 */
705 xfs_set_rw_sizes(mp);
706
055388a3
DC
707 /* set the low space thresholds for dynamic preallocation */
708 xfs_set_low_space_thresholds(mp);
709
0771fb45
ES
710 /*
711 * Set the inode cluster size.
712 * This may still be overridden by the file system
713 * block size if it is larger than the chosen cluster size.
8f80587b
DC
714 *
715 * For v5 filesystems, scale the cluster size with the inode size to
716 * keep a constant ratio of inode per cluster buffer, but only if mkfs
717 * has set the inode alignment value appropriately for larger cluster
718 * sizes.
0771fb45
ES
719 */
720 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
8f80587b
DC
721 if (xfs_sb_version_hascrc(&mp->m_sb)) {
722 int new_size = mp->m_inode_cluster_size;
723
724 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
725 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
726 mp->m_inode_cluster_size = new_size;
8f80587b 727 }
0771fb45 728
e5376fc1
BF
729 /*
730 * If enabled, sparse inode chunk alignment is expected to match the
731 * cluster size. Full inode chunk alignment must match the chunk size,
732 * but that is checked on sb read verification...
733 */
734 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
735 mp->m_sb.sb_spino_align !=
736 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
737 xfs_warn(mp,
738 "Sparse inode block alignment (%u) must match cluster size (%llu).",
739 mp->m_sb.sb_spino_align,
740 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
741 error = -EINVAL;
742 goto out_remove_uuid;
743 }
744
0771fb45
ES
745 /*
746 * Set inode alignment fields
747 */
748 xfs_set_inoalignment(mp);
749
750 /*
c2bfbc9b 751 * Check that the data (and log if separate) is an ok size.
0771fb45 752 */
4249023a 753 error = xfs_check_sizes(mp);
0771fb45 754 if (error)
f9057e3d 755 goto out_remove_uuid;
0771fb45 756
1da177e4
LT
757 /*
758 * Initialize realtime fields in the mount structure
759 */
0771fb45
ES
760 error = xfs_rtmount_init(mp);
761 if (error) {
0b932ccc 762 xfs_warn(mp, "RT mount failed");
f9057e3d 763 goto out_remove_uuid;
1da177e4
LT
764 }
765
1da177e4
LT
766 /*
767 * Copies the low order bits of the timestamp and the randomly
768 * set "sequence" number out of a UUID.
769 */
770 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
771
1da177e4
LT
772 mp->m_dmevmask = 0; /* not persistent; set after each mount */
773
0650b554
DC
774 error = xfs_da_mount(mp);
775 if (error) {
776 xfs_warn(mp, "Failed dir/attr init: %d", error);
777 goto out_remove_uuid;
778 }
1da177e4
LT
779
780 /*
781 * Initialize the precomputed transaction reservations values.
782 */
783 xfs_trans_init(mp);
784
1da177e4
LT
785 /*
786 * Allocate and initialize the per-ag data.
787 */
1c1c6ebc 788 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 789 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
790 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
791 if (error) {
0b932ccc 792 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 793 goto out_free_dir;
1c1c6ebc 794 }
1da177e4 795
f9057e3d 796 if (!sbp->sb_logblocks) {
0b932ccc 797 xfs_warn(mp, "no log defined");
f9057e3d 798 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
2451337d 799 error = -EFSCORRUPTED;
f9057e3d
CH
800 goto out_free_perag;
801 }
802
1da177e4 803 /*
f0b2efad
BF
804 * Log's mount-time initialization. The first part of recovery can place
805 * some items on the AIL, to be handled when recovery is finished or
806 * cancelled.
1da177e4 807 */
f9057e3d
CH
808 error = xfs_log_mount(mp, mp->m_logdev_targp,
809 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
810 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
811 if (error) {
0b932ccc 812 xfs_warn(mp, "log mount failed");
d4f3512b 813 goto out_fail_wait;
1da177e4
LT
814 }
815
92821e2b
DC
816 /*
817 * Now the log is mounted, we know if it was an unclean shutdown or
818 * not. If it was, with the first phase of recovery has completed, we
819 * have consistent AG blocks on disk. We have not recovered EFIs yet,
820 * but they are recovered transactionally in the second recovery phase
821 * later.
822 *
823 * Hence we can safely re-initialise incore superblock counters from
824 * the per-ag data. These may not be correct if the filesystem was not
825 * cleanly unmounted, so we need to wait for recovery to finish before
826 * doing this.
827 *
828 * If the filesystem was cleanly unmounted, then we can trust the
829 * values in the superblock to be correct and we don't need to do
830 * anything here.
831 *
832 * If we are currently making the filesystem, the initialisation will
833 * fail as the perag data is in an undefined state.
834 */
92821e2b
DC
835 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
836 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
837 !mp->m_sb.sb_inprogress) {
838 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 839 if (error)
6eee8972 840 goto out_log_dealloc;
92821e2b 841 }
f9057e3d 842
1da177e4
LT
843 /*
844 * Get and sanity-check the root inode.
845 * Save the pointer to it in the mount structure.
846 */
7b6259e7 847 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 848 if (error) {
0b932ccc 849 xfs_warn(mp, "failed to read root inode");
f9057e3d 850 goto out_log_dealloc;
1da177e4
LT
851 }
852
853 ASSERT(rip != NULL);
1da177e4 854
c19b3b05 855 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 856 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 857 (unsigned long long)rip->i_ino);
1da177e4
LT
858 xfs_iunlock(rip, XFS_ILOCK_EXCL);
859 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
860 mp);
2451337d 861 error = -EFSCORRUPTED;
f9057e3d 862 goto out_rele_rip;
1da177e4
LT
863 }
864 mp->m_rootip = rip; /* save it */
865
866 xfs_iunlock(rip, XFS_ILOCK_EXCL);
867
868 /*
869 * Initialize realtime inode pointers in the mount structure
870 */
0771fb45
ES
871 error = xfs_rtmount_inodes(mp);
872 if (error) {
1da177e4
LT
873 /*
874 * Free up the root inode.
875 */
0b932ccc 876 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 877 goto out_rele_rip;
1da177e4
LT
878 }
879
880 /*
7884bc86
CH
881 * If this is a read-only mount defer the superblock updates until
882 * the next remount into writeable mode. Otherwise we would never
883 * perform the update e.g. for the root filesystem.
1da177e4 884 */
61e63ecb
DC
885 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
886 error = xfs_sync_sb(mp, false);
e5720eec 887 if (error) {
0b932ccc 888 xfs_warn(mp, "failed to write sb changes");
b93b6e43 889 goto out_rtunmount;
e5720eec
DC
890 }
891 }
1da177e4
LT
892
893 /*
894 * Initialise the XFS quota management subsystem for this mount
895 */
7d095257
CH
896 if (XFS_IS_QUOTA_RUNNING(mp)) {
897 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
898 if (error)
899 goto out_rtunmount;
900 } else {
901 ASSERT(!XFS_IS_QUOTA_ON(mp));
902
903 /*
904 * If a file system had quotas running earlier, but decided to
905 * mount without -o uquota/pquota/gquota options, revoke the
906 * quotachecked license.
907 */
908 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 909 xfs_notice(mp, "resetting quota flags");
7d095257
CH
910 error = xfs_mount_reset_sbqflags(mp);
911 if (error)
a70a4fa5 912 goto out_rtunmount;
7d095257
CH
913 }
914 }
1da177e4
LT
915
916 /*
f0b2efad
BF
917 * Finish recovering the file system. This part needed to be delayed
918 * until after the root and real-time bitmap inodes were consistently
919 * read in.
1da177e4 920 */
4249023a 921 error = xfs_log_mount_finish(mp);
1da177e4 922 if (error) {
0b932ccc 923 xfs_warn(mp, "log mount finish failed");
b93b6e43 924 goto out_rtunmount;
1da177e4
LT
925 }
926
927 /*
928 * Complete the quota initialisation, post-log-replay component.
929 */
7d095257
CH
930 if (quotamount) {
931 ASSERT(mp->m_qflags == 0);
932 mp->m_qflags = quotaflags;
933
934 xfs_qm_mount_quotas(mp);
935 }
936
84e1e99f
DC
937 /*
938 * Now we are mounted, reserve a small amount of unused space for
939 * privileged transactions. This is needed so that transaction
940 * space required for critical operations can dip into this pool
941 * when at ENOSPC. This is needed for operations like create with
942 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
943 * are not allowed to use this reserved space.
8babd8a2
DC
944 *
945 * This may drive us straight to ENOSPC on mount, but that implies
946 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 947 */
d5db0f97
ES
948 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
949 resblks = xfs_default_resblks(mp);
950 error = xfs_reserve_blocks(mp, &resblks, NULL);
951 if (error)
0b932ccc
DC
952 xfs_warn(mp,
953 "Unable to allocate reserve blocks. Continuing without reserve pool.");
d5db0f97 954 }
84e1e99f 955
1da177e4
LT
956 return 0;
957
b93b6e43
CH
958 out_rtunmount:
959 xfs_rtunmount_inodes(mp);
f9057e3d 960 out_rele_rip:
43355099 961 IRELE(rip);
0ae120f8
BF
962 cancel_delayed_work_sync(&mp->m_reclaim_work);
963 xfs_reclaim_inodes(mp, SYNC_WAIT);
f9057e3d 964 out_log_dealloc:
f0b2efad 965 xfs_log_mount_cancel(mp);
d4f3512b
DC
966 out_fail_wait:
967 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
968 xfs_wait_buftarg(mp->m_logdev_targp);
969 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 970 out_free_perag:
ff4f038c 971 xfs_free_perag(mp);
0650b554
DC
972 out_free_dir:
973 xfs_da_unmount(mp);
f9057e3d 974 out_remove_uuid:
27174203 975 xfs_uuid_unmount(mp);
192852be
CM
976 out_remove_error_sysfs:
977 xfs_error_sysfs_del(mp);
225e4635
BD
978 out_del_stats:
979 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
980 out_remove_sysfs:
981 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 982 out:
1da177e4
LT
983 return error;
984}
985
986/*
1da177e4
LT
987 * This flushes out the inodes,dquots and the superblock, unmounts the
988 * log and makes sure that incore structures are freed.
989 */
41b5c2e7
CH
990void
991xfs_unmountfs(
992 struct xfs_mount *mp)
1da177e4 993{
41b5c2e7
CH
994 __uint64_t resblks;
995 int error;
1da177e4 996
579b62fa
BF
997 cancel_delayed_work_sync(&mp->m_eofblocks_work);
998
7d095257 999 xfs_qm_unmount_quotas(mp);
b93b6e43 1000 xfs_rtunmount_inodes(mp);
77508ec8
CH
1001 IRELE(mp->m_rootip);
1002
641c56fb
DC
1003 /*
1004 * We can potentially deadlock here if we have an inode cluster
9da096fd 1005 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1006 * the transaction is still sitting in a iclog. The stale inodes
1007 * on that buffer will have their flush locks held until the
1008 * transaction hits the disk and the callbacks run. the inode
1009 * flush takes the flush lock unconditionally and with nothing to
1010 * push out the iclog we will never get that unlocked. hence we
1011 * need to force the log first.
1012 */
a14a348b 1013 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e
DC
1014
1015 /*
211e4d43
CH
1016 * Flush all pending changes from the AIL.
1017 */
1018 xfs_ail_push_all_sync(mp->m_ail);
1019
1020 /*
1021 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1022 * inodes and none should be pinned or locked, but use synchronous
1023 * reclaim just to be sure. We can stop background inode reclaim
1024 * here as well if it is still running.
c854363e 1025 */
7e18530b 1026 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1027 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1028
7d095257 1029 xfs_qm_unmount(mp);
a357a121 1030
84e1e99f
DC
1031 /*
1032 * Unreserve any blocks we have so that when we unmount we don't account
1033 * the reserved free space as used. This is really only necessary for
1034 * lazy superblock counting because it trusts the incore superblock
9da096fd 1035 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1036 *
1037 * We don't bother correcting this elsewhere for lazy superblock
1038 * counting because on mount of an unclean filesystem we reconstruct the
1039 * correct counter value and this is irrelevant.
1040 *
1041 * For non-lazy counter filesystems, this doesn't matter at all because
1042 * we only every apply deltas to the superblock and hence the incore
1043 * value does not matter....
1044 */
1045 resblks = 0;
714082bc
DC
1046 error = xfs_reserve_blocks(mp, &resblks, NULL);
1047 if (error)
0b932ccc 1048 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1049 "Freespace may not be correct on next mount.");
1050
adab0f67 1051 error = xfs_log_sbcount(mp);
e5720eec 1052 if (error)
0b932ccc 1053 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1054 "Freespace may not be correct on next mount.");
87c7bec7 1055
225e4635 1056
21b699c8 1057 xfs_log_unmount(mp);
0650b554 1058 xfs_da_unmount(mp);
27174203 1059 xfs_uuid_unmount(mp);
1da177e4 1060
1550d0b0 1061#if defined(DEBUG)
0ce4cfd4 1062 xfs_errortag_clearall(mp, 0);
1da177e4 1063#endif
ff4f038c 1064 xfs_free_perag(mp);
a31b1d3d 1065
192852be 1066 xfs_error_sysfs_del(mp);
225e4635 1067 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1068 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1069}
1070
91ee575f
BF
1071/*
1072 * Determine whether modifications can proceed. The caller specifies the minimum
1073 * freeze level for which modifications should not be allowed. This allows
1074 * certain operations to proceed while the freeze sequence is in progress, if
1075 * necessary.
1076 */
1077bool
1078xfs_fs_writable(
1079 struct xfs_mount *mp,
1080 int level)
92821e2b 1081{
91ee575f
BF
1082 ASSERT(level > SB_UNFROZEN);
1083 if ((mp->m_super->s_writers.frozen >= level) ||
1084 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1085 return false;
1086
1087 return true;
92821e2b
DC
1088}
1089
1090/*
b2ce3974
AE
1091 * xfs_log_sbcount
1092 *
adab0f67 1093 * Sync the superblock counters to disk.
b2ce3974 1094 *
91ee575f
BF
1095 * Note this code can be called during the process of freezing, so we use the
1096 * transaction allocator that does not block when the transaction subsystem is
1097 * in its frozen state.
92821e2b
DC
1098 */
1099int
adab0f67 1100xfs_log_sbcount(xfs_mount_t *mp)
92821e2b 1101{
91ee575f
BF
1102 /* allow this to proceed during the freeze sequence... */
1103 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
92821e2b
DC
1104 return 0;
1105
92821e2b
DC
1106 /*
1107 * we don't need to do this if we are updating the superblock
1108 * counters on every modification.
1109 */
1110 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1111 return 0;
1112
61e63ecb 1113 return xfs_sync_sb(mp, true);
92821e2b
DC
1114}
1115
8c1903d3
DC
1116/*
1117 * Deltas for the inode count are +/-64, hence we use a large batch size
1118 * of 128 so we don't need to take the counter lock on every update.
1119 */
1120#define XFS_ICOUNT_BATCH 128
501ab323
DC
1121int
1122xfs_mod_icount(
1123 struct xfs_mount *mp,
1124 int64_t delta)
1125{
8c1903d3
DC
1126 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1127 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
501ab323
DC
1128 ASSERT(0);
1129 percpu_counter_add(&mp->m_icount, -delta);
1130 return -EINVAL;
1131 }
1132 return 0;
1133}
1134
e88b64ea
DC
1135int
1136xfs_mod_ifree(
1137 struct xfs_mount *mp,
1138 int64_t delta)
1139{
1140 percpu_counter_add(&mp->m_ifree, delta);
1141 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1142 ASSERT(0);
1143 percpu_counter_add(&mp->m_ifree, -delta);
1144 return -EINVAL;
1145 }
1146 return 0;
1147}
0d485ada 1148
8c1903d3
DC
1149/*
1150 * Deltas for the block count can vary from 1 to very large, but lock contention
1151 * only occurs on frequent small block count updates such as in the delayed
1152 * allocation path for buffered writes (page a time updates). Hence we set
1153 * a large batch count (1024) to minimise global counter updates except when
1154 * we get near to ENOSPC and we have to be very accurate with our updates.
1155 */
1156#define XFS_FDBLOCKS_BATCH 1024
0d485ada
DC
1157int
1158xfs_mod_fdblocks(
1159 struct xfs_mount *mp,
1160 int64_t delta,
1161 bool rsvd)
1162{
1163 int64_t lcounter;
1164 long long res_used;
1165 s32 batch;
1166
1167 if (delta > 0) {
1168 /*
1169 * If the reserve pool is depleted, put blocks back into it
1170 * first. Most of the time the pool is full.
1171 */
1172 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1173 percpu_counter_add(&mp->m_fdblocks, delta);
1174 return 0;
1175 }
1176
1177 spin_lock(&mp->m_sb_lock);
1178 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1179
1180 if (res_used > delta) {
1181 mp->m_resblks_avail += delta;
1182 } else {
1183 delta -= res_used;
1184 mp->m_resblks_avail = mp->m_resblks;
1185 percpu_counter_add(&mp->m_fdblocks, delta);
1186 }
1187 spin_unlock(&mp->m_sb_lock);
1188 return 0;
1189 }
1190
1191 /*
1192 * Taking blocks away, need to be more accurate the closer we
1193 * are to zero.
1194 *
0d485ada
DC
1195 * If the counter has a value of less than 2 * max batch size,
1196 * then make everything serialise as we are real close to
1197 * ENOSPC.
1198 */
8c1903d3
DC
1199 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1200 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1201 batch = 1;
1202 else
8c1903d3 1203 batch = XFS_FDBLOCKS_BATCH;
0d485ada
DC
1204
1205 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
8c1903d3
DC
1206 if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1207 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1208 /* we had space! */
1209 return 0;
1210 }
1211
1212 /*
1213 * lock up the sb for dipping into reserves before releasing the space
1214 * that took us to ENOSPC.
1215 */
1216 spin_lock(&mp->m_sb_lock);
1217 percpu_counter_add(&mp->m_fdblocks, -delta);
1218 if (!rsvd)
1219 goto fdblocks_enospc;
1220
1221 lcounter = (long long)mp->m_resblks_avail + delta;
1222 if (lcounter >= 0) {
1223 mp->m_resblks_avail = lcounter;
1224 spin_unlock(&mp->m_sb_lock);
1225 return 0;
1226 }
1227 printk_once(KERN_WARNING
1228 "Filesystem \"%s\": reserve blocks depleted! "
1229 "Consider increasing reserve pool size.",
1230 mp->m_fsname);
1231fdblocks_enospc:
1232 spin_unlock(&mp->m_sb_lock);
1233 return -ENOSPC;
1234}
1235
bab98bbe
DC
1236int
1237xfs_mod_frextents(
1238 struct xfs_mount *mp,
1239 int64_t delta)
1240{
1241 int64_t lcounter;
1242 int ret = 0;
1243
1244 spin_lock(&mp->m_sb_lock);
1245 lcounter = mp->m_sb.sb_frextents + delta;
1246 if (lcounter < 0)
1247 ret = -ENOSPC;
1248 else
1249 mp->m_sb.sb_frextents = lcounter;
1250 spin_unlock(&mp->m_sb_lock);
1251 return ret;
1252}
1253
1da177e4
LT
1254/*
1255 * xfs_getsb() is called to obtain the buffer for the superblock.
1256 * The buffer is returned locked and read in from disk.
1257 * The buffer should be released with a call to xfs_brelse().
1258 *
1259 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1260 * the superblock buffer if it can be locked without sleeping.
1261 * If it can't then we'll return NULL.
1262 */
0c842ad4 1263struct xfs_buf *
1da177e4 1264xfs_getsb(
0c842ad4
CH
1265 struct xfs_mount *mp,
1266 int flags)
1da177e4 1267{
0c842ad4 1268 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1269
0c842ad4
CH
1270 if (!xfs_buf_trylock(bp)) {
1271 if (flags & XBF_TRYLOCK)
1da177e4 1272 return NULL;
0c842ad4 1273 xfs_buf_lock(bp);
1da177e4 1274 }
0c842ad4 1275
72790aa1 1276 xfs_buf_hold(bp);
b0388bf1 1277 ASSERT(bp->b_flags & XBF_DONE);
014c2544 1278 return bp;
1da177e4
LT
1279}
1280
1281/*
1282 * Used to free the superblock along various error paths.
1283 */
1284void
1285xfs_freesb(
26af6552 1286 struct xfs_mount *mp)
1da177e4 1287{
26af6552 1288 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1289
26af6552 1290 xfs_buf_lock(bp);
1da177e4 1291 mp->m_sb_bp = NULL;
26af6552 1292 xfs_buf_relse(bp);
1da177e4
LT
1293}
1294
dda35b8f
CH
1295/*
1296 * If the underlying (data/log/rt) device is readonly, there are some
1297 * operations that cannot proceed.
1298 */
1299int
1300xfs_dev_is_read_only(
1301 struct xfs_mount *mp,
1302 char *message)
1303{
1304 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1305 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1306 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1307 xfs_notice(mp, "%s required on read-only device.", message);
1308 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1309 return -EROFS;
dda35b8f
CH
1310 }
1311 return 0;
1312}