]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/xfs/xfs_mount.c
xfs: remove the flags argument to xfs_qm_dquot_walk
[mirror_ubuntu-jammy-kernel.git] / fs / xfs / xfs_mount.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
239880ef
DC
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
1da177e4 13#include "xfs_sb.h"
1da177e4 14#include "xfs_mount.h"
1da177e4 15#include "xfs_inode.h"
a4fbe6ab 16#include "xfs_dir2.h"
a844f451 17#include "xfs_ialloc.h"
1da177e4
LT
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
a4fbe6ab
DC
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
1da177e4 24#include "xfs_error.h"
1da177e4
LT
25#include "xfs_quota.h"
26#include "xfs_fsops.h"
6d8b79cf 27#include "xfs_icache.h"
a31b1d3d 28#include "xfs_sysfs.h"
035e00ac 29#include "xfs_rmap_btree.h"
1946b91c 30#include "xfs_refcount_btree.h"
174edb0e 31#include "xfs_reflink.h"
ebf55872 32#include "xfs_extent_busy.h"
39353ff6 33#include "xfs_health.h"
13eaec4b 34#include "xfs_trace.h"
9bbafc71 35#include "xfs_ag.h"
1da177e4 36
27174203
CH
37static DEFINE_MUTEX(xfs_uuid_table_mutex);
38static int xfs_uuid_table_size;
39static uuid_t *xfs_uuid_table;
40
af3b6382
DW
41void
42xfs_uuid_table_free(void)
43{
44 if (xfs_uuid_table_size == 0)
45 return;
46 kmem_free(xfs_uuid_table);
47 xfs_uuid_table = NULL;
48 xfs_uuid_table_size = 0;
49}
50
27174203
CH
51/*
52 * See if the UUID is unique among mounted XFS filesystems.
53 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
54 */
55STATIC int
56xfs_uuid_mount(
57 struct xfs_mount *mp)
58{
59 uuid_t *uuid = &mp->m_sb.sb_uuid;
60 int hole, i;
61
8f720d9f 62 /* Publish UUID in struct super_block */
85787090 63 uuid_copy(&mp->m_super->s_uuid, uuid);
8f720d9f 64
27174203
CH
65 if (mp->m_flags & XFS_MOUNT_NOUUID)
66 return 0;
67
d905fdaa
AG
68 if (uuid_is_null(uuid)) {
69 xfs_warn(mp, "Filesystem has null UUID - can't mount");
2451337d 70 return -EINVAL;
27174203
CH
71 }
72
73 mutex_lock(&xfs_uuid_table_mutex);
74 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
d905fdaa 75 if (uuid_is_null(&xfs_uuid_table[i])) {
27174203
CH
76 hole = i;
77 continue;
78 }
79 if (uuid_equal(uuid, &xfs_uuid_table[i]))
80 goto out_duplicate;
81 }
82
83 if (hole < 0) {
771915c4 84 xfs_uuid_table = krealloc(xfs_uuid_table,
27174203 85 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
771915c4 86 GFP_KERNEL | __GFP_NOFAIL);
27174203
CH
87 hole = xfs_uuid_table_size++;
88 }
89 xfs_uuid_table[hole] = *uuid;
90 mutex_unlock(&xfs_uuid_table_mutex);
91
92 return 0;
93
94 out_duplicate:
95 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 96 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 97 return -EINVAL;
27174203
CH
98}
99
100STATIC void
101xfs_uuid_unmount(
102 struct xfs_mount *mp)
103{
104 uuid_t *uuid = &mp->m_sb.sb_uuid;
105 int i;
106
107 if (mp->m_flags & XFS_MOUNT_NOUUID)
108 return;
109
110 mutex_lock(&xfs_uuid_table_mutex);
111 for (i = 0; i < xfs_uuid_table_size; i++) {
d905fdaa 112 if (uuid_is_null(&xfs_uuid_table[i]))
27174203
CH
113 continue;
114 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
115 continue;
116 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
117 break;
118 }
119 ASSERT(i < xfs_uuid_table_size);
120 mutex_unlock(&xfs_uuid_table_mutex);
121}
122
4cc929ee
NS
123/*
124 * Check size of device based on the (data/realtime) block count.
125 * Note: this check is used by the growfs code as well as mount.
126 */
127int
128xfs_sb_validate_fsb_count(
129 xfs_sb_t *sbp,
c8ce540d 130 uint64_t nblocks)
4cc929ee
NS
131{
132 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
133 ASSERT(sbp->sb_blocklog >= BBSHIFT);
134
d5cf09ba 135 /* Limited by ULONG_MAX of page cache index */
09cbfeaf 136 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 137 return -EFBIG;
4cc929ee
NS
138 return 0;
139}
1da177e4 140
1da177e4
LT
141/*
142 * xfs_readsb
143 *
144 * Does the initial read of the superblock.
145 */
146int
ff55068c
DC
147xfs_readsb(
148 struct xfs_mount *mp,
149 int flags)
1da177e4
LT
150{
151 unsigned int sector_size;
04a1e6c5
DC
152 struct xfs_buf *bp;
153 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 154 int error;
af34e09d 155 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 156 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
157
158 ASSERT(mp->m_sb_bp == NULL);
159 ASSERT(mp->m_ddev_targp != NULL);
160
daba5427
ES
161 /*
162 * For the initial read, we must guess at the sector
163 * size based on the block device. It's enough to
164 * get the sb_sectsize out of the superblock and
165 * then reread with the proper length.
166 * We don't verify it yet, because it may not be complete.
167 */
168 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
169 buf_ops = NULL;
170
1da177e4 171 /*
c891c30a
BF
172 * Allocate a (locked) buffer to hold the superblock. This will be kept
173 * around at all times to optimize access to the superblock. Therefore,
174 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
175 * elevated.
1da177e4 176 */
26af6552 177reread:
ba372674 178 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
c891c30a
BF
179 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
180 buf_ops);
ba372674 181 if (error) {
eab4e633 182 if (loud)
e721f504 183 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 184 /* bad CRC means corrupted metadata */
2451337d
DC
185 if (error == -EFSBADCRC)
186 error = -EFSCORRUPTED;
ba372674 187 return error;
eab4e633 188 }
1da177e4
LT
189
190 /*
191 * Initialize the mount structure from the superblock.
1da177e4 192 */
3e6e8afd 193 xfs_sb_from_disk(sbp, bp->b_addr);
556b8883
DC
194
195 /*
196 * If we haven't validated the superblock, do so now before we try
197 * to check the sector size and reread the superblock appropriately.
198 */
199 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
200 if (loud)
201 xfs_warn(mp, "Invalid superblock magic number");
2451337d 202 error = -EINVAL;
556b8883
DC
203 goto release_buf;
204 }
ff55068c 205
1da177e4
LT
206 /*
207 * We must be able to do sector-sized and sector-aligned IO.
208 */
04a1e6c5 209 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
210 if (loud)
211 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 212 sector_size, sbp->sb_sectsize);
2451337d 213 error = -ENOSYS;
26af6552 214 goto release_buf;
1da177e4
LT
215 }
216
daba5427 217 if (buf_ops == NULL) {
556b8883
DC
218 /*
219 * Re-read the superblock so the buffer is correctly sized,
220 * and properly verified.
221 */
1da177e4 222 xfs_buf_relse(bp);
04a1e6c5 223 sector_size = sbp->sb_sectsize;
daba5427 224 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 225 goto reread;
1da177e4
LT
226 }
227
5681ca40 228 xfs_reinit_percpu_counters(mp);
8d280b98 229
04a1e6c5
DC
230 /* no need to be quiet anymore, so reset the buf ops */
231 bp->b_ops = &xfs_sb_buf_ops;
232
1da177e4 233 mp->m_sb_bp = bp;
26af6552 234 xfs_buf_unlock(bp);
1da177e4
LT
235 return 0;
236
26af6552
DC
237release_buf:
238 xfs_buf_relse(bp);
1da177e4
LT
239 return error;
240}
241
13eaec4b
DW
242/*
243 * If the sunit/swidth change would move the precomputed root inode value, we
244 * must reject the ondisk change because repair will stumble over that.
245 * However, we allow the mount to proceed because we never rejected this
246 * combination before. Returns true to update the sb, false otherwise.
247 */
248static inline int
249xfs_check_new_dalign(
250 struct xfs_mount *mp,
251 int new_dalign,
252 bool *update_sb)
253{
254 struct xfs_sb *sbp = &mp->m_sb;
255 xfs_ino_t calc_ino;
256
257 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
258 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
259
260 if (sbp->sb_rootino == calc_ino) {
261 *update_sb = true;
262 return 0;
263 }
264
265 xfs_warn(mp,
266"Cannot change stripe alignment; would require moving root inode.");
267
268 /*
269 * XXX: Next time we add a new incompat feature, this should start
270 * returning -EINVAL to fail the mount. Until then, spit out a warning
271 * that we're ignoring the administrator's instructions.
272 */
273 xfs_warn(mp, "Skipping superblock stripe alignment update.");
274 *update_sb = false;
275 return 0;
276}
277
1da177e4 278/*
4f5b1b3a
DW
279 * If we were provided with new sunit/swidth values as mount options, make sure
280 * that they pass basic alignment and superblock feature checks, and convert
281 * them into the same units (FSB) that everything else expects. This step
282 * /must/ be done before computing the inode geometry.
1da177e4 283 */
0771fb45 284STATIC int
4f5b1b3a
DW
285xfs_validate_new_dalign(
286 struct xfs_mount *mp)
1da177e4 287{
4f5b1b3a
DW
288 if (mp->m_dalign == 0)
289 return 0;
1da177e4 290
4f5b1b3a
DW
291 /*
292 * If stripe unit and stripe width are not multiples
293 * of the fs blocksize turn off alignment.
294 */
295 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
296 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
297 xfs_warn(mp,
298 "alignment check failed: sunit/swidth vs. blocksize(%d)",
299 mp->m_sb.sb_blocksize);
300 return -EINVAL;
301 } else {
1da177e4 302 /*
4f5b1b3a 303 * Convert the stripe unit and width to FSBs.
1da177e4 304 */
4f5b1b3a
DW
305 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
306 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
39a45d84 307 xfs_warn(mp,
4f5b1b3a
DW
308 "alignment check failed: sunit/swidth vs. agsize(%d)",
309 mp->m_sb.sb_agblocks);
2451337d 310 return -EINVAL;
4f5b1b3a
DW
311 } else if (mp->m_dalign) {
312 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
34d7f603
JL
313 } else {
314 xfs_warn(mp,
4f5b1b3a
DW
315 "alignment check failed: sunit(%d) less than bsize(%d)",
316 mp->m_dalign, mp->m_sb.sb_blocksize);
2451337d 317 return -EINVAL;
1da177e4 318 }
4f5b1b3a
DW
319 }
320
321 if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
322 xfs_warn(mp,
323"cannot change alignment: superblock does not support data alignment");
324 return -EINVAL;
325 }
326
327 return 0;
328}
329
330/* Update alignment values based on mount options and sb values. */
331STATIC int
332xfs_update_alignment(
333 struct xfs_mount *mp)
334{
335 struct xfs_sb *sbp = &mp->m_sb;
336
337 if (mp->m_dalign) {
13eaec4b
DW
338 bool update_sb;
339 int error;
340
4f5b1b3a
DW
341 if (sbp->sb_unit == mp->m_dalign &&
342 sbp->sb_width == mp->m_swidth)
343 return 0;
344
13eaec4b
DW
345 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
346 if (error || !update_sb)
347 return error;
348
4f5b1b3a
DW
349 sbp->sb_unit = mp->m_dalign;
350 sbp->sb_width = mp->m_swidth;
351 mp->m_update_sb = true;
1da177e4 352 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 353 xfs_sb_version_hasdalign(&mp->m_sb)) {
4f5b1b3a
DW
354 mp->m_dalign = sbp->sb_unit;
355 mp->m_swidth = sbp->sb_width;
1da177e4
LT
356 }
357
0771fb45
ES
358 return 0;
359}
1da177e4 360
055388a3
DC
361/*
362 * precalculate the low space thresholds for dynamic speculative preallocation.
363 */
364void
365xfs_set_low_space_thresholds(
366 struct xfs_mount *mp)
367{
368 int i;
369
370 for (i = 0; i < XFS_LOWSP_MAX; i++) {
c8ce540d 371 uint64_t space = mp->m_sb.sb_dblocks;
055388a3
DC
372
373 do_div(space, 100);
374 mp->m_low_space[i] = space * (i + 1);
375 }
376}
377
0771fb45 378/*
0471f62e 379 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
380 */
381STATIC int
ba372674
DC
382xfs_check_sizes(
383 struct xfs_mount *mp)
0771fb45 384{
ba372674 385 struct xfs_buf *bp;
0771fb45 386 xfs_daddr_t d;
ba372674 387 int error;
0771fb45 388
1da177e4
LT
389 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
390 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 391 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 392 return -EFBIG;
1da177e4 393 }
ba372674 394 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 395 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
396 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
397 if (error) {
0b932ccc 398 xfs_warn(mp, "last sector read failed");
ba372674 399 return error;
1da177e4 400 }
1922c949 401 xfs_buf_relse(bp);
1da177e4 402
ba372674
DC
403 if (mp->m_logdev_targp == mp->m_ddev_targp)
404 return 0;
405
406 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
407 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
408 xfs_warn(mp, "log size mismatch detected");
409 return -EFBIG;
410 }
411 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 412 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
413 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
414 if (error) {
415 xfs_warn(mp, "log device read failed");
416 return error;
0771fb45 417 }
ba372674 418 xfs_buf_relse(bp);
0771fb45
ES
419 return 0;
420}
421
7d095257
CH
422/*
423 * Clear the quotaflags in memory and in the superblock.
424 */
425int
426xfs_mount_reset_sbqflags(
427 struct xfs_mount *mp)
428{
7d095257
CH
429 mp->m_qflags = 0;
430
61e63ecb 431 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
432 if (mp->m_sb.sb_qflags == 0)
433 return 0;
434 spin_lock(&mp->m_sb_lock);
435 mp->m_sb.sb_qflags = 0;
436 spin_unlock(&mp->m_sb_lock);
437
61e63ecb 438 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
439 return 0;
440
61e63ecb 441 return xfs_sync_sb(mp, false);
7d095257
CH
442}
443
c8ce540d 444uint64_t
d5db0f97
ES
445xfs_default_resblks(xfs_mount_t *mp)
446{
c8ce540d 447 uint64_t resblks;
d5db0f97
ES
448
449 /*
8babd8a2
DC
450 * We default to 5% or 8192 fsbs of space reserved, whichever is
451 * smaller. This is intended to cover concurrent allocation
452 * transactions when we initially hit enospc. These each require a 4
453 * block reservation. Hence by default we cover roughly 2000 concurrent
454 * allocation reservations.
d5db0f97
ES
455 */
456 resblks = mp->m_sb.sb_dblocks;
457 do_div(resblks, 20);
c8ce540d 458 resblks = min_t(uint64_t, resblks, 8192);
d5db0f97
ES
459 return resblks;
460}
461
2e9e6481
DW
462/* Ensure the summary counts are correct. */
463STATIC int
464xfs_check_summary_counts(
465 struct xfs_mount *mp)
466{
467 /*
468 * The AG0 superblock verifier rejects in-progress filesystems,
469 * so we should never see the flag set this far into mounting.
470 */
471 if (mp->m_sb.sb_inprogress) {
472 xfs_err(mp, "sb_inprogress set after log recovery??");
473 WARN_ON(1);
474 return -EFSCORRUPTED;
475 }
476
477 /*
478 * Now the log is mounted, we know if it was an unclean shutdown or
479 * not. If it was, with the first phase of recovery has completed, we
480 * have consistent AG blocks on disk. We have not recovered EFIs yet,
481 * but they are recovered transactionally in the second recovery phase
482 * later.
483 *
484 * If the log was clean when we mounted, we can check the summary
485 * counters. If any of them are obviously incorrect, we can recompute
486 * them from the AGF headers in the next step.
487 */
488 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
489 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
00d22a1c 490 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
2e9e6481 491 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
39353ff6 492 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
2e9e6481
DW
493
494 /*
495 * We can safely re-initialise incore superblock counters from the
496 * per-ag data. These may not be correct if the filesystem was not
497 * cleanly unmounted, so we waited for recovery to finish before doing
498 * this.
499 *
500 * If the filesystem was cleanly unmounted or the previous check did
501 * not flag anything weird, then we can trust the values in the
502 * superblock to be correct and we don't need to do anything here.
503 * Otherwise, recalculate the summary counters.
504 */
505 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
506 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
39353ff6 507 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
2e9e6481
DW
508 return 0;
509
510 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
511}
512
d336f7eb
DW
513/*
514 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
515 * internal inode structures can be sitting in the CIL and AIL at this point,
516 * so we need to unpin them, write them back and/or reclaim them before unmount
517 * can proceed.
518 *
519 * An inode cluster that has been freed can have its buffer still pinned in
520 * memory because the transaction is still sitting in a iclog. The stale inodes
521 * on that buffer will be pinned to the buffer until the transaction hits the
522 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
523 * may never see the pinned buffer, so nothing will push out the iclog and
524 * unpin the buffer.
525 *
526 * Hence we need to force the log to unpin everything first. However, log
527 * forces don't wait for the discards they issue to complete, so we have to
528 * explicitly wait for them to complete here as well.
529 *
530 * Then we can tell the world we are unmounting so that error handling knows
531 * that the filesystem is going away and we should error out anything that we
532 * have been retrying in the background. This will prevent never-ending
533 * retries in AIL pushing from hanging the unmount.
534 *
535 * Finally, we can push the AIL to clean all the remaining dirty objects, then
536 * reclaim the remaining inodes that are still in memory at this point in time.
537 */
538static void
539xfs_unmount_flush_inodes(
540 struct xfs_mount *mp)
541{
542 xfs_log_force(mp, XFS_LOG_SYNC);
543 xfs_extent_busy_wait_all(mp);
544 flush_workqueue(xfs_discard_wq);
545
546 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
547
548 xfs_ail_push_all_sync(mp->m_ail);
549 cancel_delayed_work_sync(&mp->m_reclaim_work);
550 xfs_reclaim_inodes(mp);
551 xfs_health_unmount(mp);
552}
553
b2941046
DC
554static void
555xfs_mount_setup_inode_geom(
556 struct xfs_mount *mp)
557{
558 struct xfs_ino_geometry *igeo = M_IGEO(mp);
559
560 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
561 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
562
563 xfs_ialloc_setup_geometry(mp);
564}
565
0771fb45 566/*
0771fb45
ES
567 * This function does the following on an initial mount of a file system:
568 * - reads the superblock from disk and init the mount struct
569 * - if we're a 32-bit kernel, do a size check on the superblock
570 * so we don't mount terabyte filesystems
571 * - init mount struct realtime fields
572 * - allocate inode hash table for fs
573 * - init directory manager
574 * - perform recovery and init the log manager
575 */
576int
577xfs_mountfs(
f0b2efad 578 struct xfs_mount *mp)
0771fb45 579{
f0b2efad
BF
580 struct xfs_sb *sbp = &(mp->m_sb);
581 struct xfs_inode *rip;
ef325959 582 struct xfs_ino_geometry *igeo = M_IGEO(mp);
c8ce540d 583 uint64_t resblks;
f0b2efad
BF
584 uint quotamount = 0;
585 uint quotaflags = 0;
586 int error = 0;
0771fb45 587
ff55068c 588 xfs_sb_mount_common(mp, sbp);
0771fb45 589
ee1c0908 590 /*
074e427b
DC
591 * Check for a mismatched features2 values. Older kernels read & wrote
592 * into the wrong sb offset for sb_features2 on some platforms due to
593 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
594 * which made older superblock reading/writing routines swap it as a
595 * 64-bit value.
ee1c0908 596 *
e6957ea4
ES
597 * For backwards compatibility, we make both slots equal.
598 *
074e427b
DC
599 * If we detect a mismatched field, we OR the set bits into the existing
600 * features2 field in case it has already been modified; we don't want
601 * to lose any features. We then update the bad location with the ORed
602 * value so that older kernels will see any features2 flags. The
603 * superblock writeback code ensures the new sb_features2 is copied to
604 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 605 */
e6957ea4 606 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 607 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 608 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 609 mp->m_update_sb = true;
e6957ea4
ES
610
611 /*
612 * Re-check for ATTR2 in case it was found in bad_features2
613 * slot.
614 */
7c12f296
TS
615 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
616 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 617 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
618 }
619
620 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
621 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
622 xfs_sb_version_removeattr2(&mp->m_sb);
61e63ecb 623 mp->m_update_sb = true;
e6957ea4 624
7c12f296
TS
625 /* update sb_versionnum for the clearing of the morebits */
626 if (!sbp->sb_features2)
61e63ecb 627 mp->m_update_sb = true;
ee1c0908
DC
628 }
629
263997a6
DC
630 /* always use v2 inodes by default now */
631 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
632 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
61e63ecb 633 mp->m_update_sb = true;
263997a6
DC
634 }
635
0771fb45 636 /*
4f5b1b3a
DW
637 * If we were given new sunit/swidth options, do some basic validation
638 * checks and convert the incore dalign and swidth values to the
639 * same units (FSB) that everything else uses. This /must/ happen
640 * before computing the inode geometry.
0771fb45 641 */
4f5b1b3a 642 error = xfs_validate_new_dalign(mp);
0771fb45 643 if (error)
f9057e3d 644 goto out;
0771fb45
ES
645
646 xfs_alloc_compute_maxlevels(mp);
647 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
648 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
b2941046 649 xfs_mount_setup_inode_geom(mp);
035e00ac 650 xfs_rmapbt_compute_maxlevels(mp);
1946b91c 651 xfs_refcountbt_compute_maxlevels(mp);
0771fb45 652
4f5b1b3a
DW
653 /*
654 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
655 * is NOT aligned turn off m_dalign since allocator alignment is within
656 * an ag, therefore ag has to be aligned at stripe boundary. Note that
657 * we must compute the free space and rmap btree geometry before doing
658 * this.
659 */
660 error = xfs_update_alignment(mp);
661 if (error)
662 goto out;
663
e6b3bb78 664 /* enable fail_at_unmount as default */
749f24f3 665 mp->m_fail_unmount = true;
e6b3bb78 666
e1d3d218
IK
667 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
668 NULL, mp->m_super->s_id);
27174203
CH
669 if (error)
670 goto out;
1da177e4 671
225e4635
BD
672 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
673 &mp->m_kobj, "stats");
a31b1d3d
BF
674 if (error)
675 goto out_remove_sysfs;
676
192852be 677 error = xfs_error_sysfs_init(mp);
225e4635
BD
678 if (error)
679 goto out_del_stats;
680
31965ef3
DW
681 error = xfs_errortag_init(mp);
682 if (error)
683 goto out_remove_error_sysfs;
192852be
CM
684
685 error = xfs_uuid_mount(mp);
686 if (error)
31965ef3 687 goto out_remove_errortag;
192852be 688
0771fb45 689 /*
2fcddee8
CH
690 * Update the preferred write size based on the information from the
691 * on-disk superblock.
0771fb45 692 */
2fcddee8
CH
693 mp->m_allocsize_log =
694 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
695 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
0771fb45 696
055388a3
DC
697 /* set the low space thresholds for dynamic preallocation */
698 xfs_set_low_space_thresholds(mp);
699
e5376fc1
BF
700 /*
701 * If enabled, sparse inode chunk alignment is expected to match the
702 * cluster size. Full inode chunk alignment must match the chunk size,
703 * but that is checked on sb read verification...
704 */
705 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
706 mp->m_sb.sb_spino_align !=
490d451f 707 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
e5376fc1
BF
708 xfs_warn(mp,
709 "Sparse inode block alignment (%u) must match cluster size (%llu).",
710 mp->m_sb.sb_spino_align,
490d451f 711 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
e5376fc1
BF
712 error = -EINVAL;
713 goto out_remove_uuid;
714 }
715
0771fb45 716 /*
c2bfbc9b 717 * Check that the data (and log if separate) is an ok size.
0771fb45 718 */
4249023a 719 error = xfs_check_sizes(mp);
0771fb45 720 if (error)
f9057e3d 721 goto out_remove_uuid;
0771fb45 722
1da177e4
LT
723 /*
724 * Initialize realtime fields in the mount structure
725 */
0771fb45
ES
726 error = xfs_rtmount_init(mp);
727 if (error) {
0b932ccc 728 xfs_warn(mp, "RT mount failed");
f9057e3d 729 goto out_remove_uuid;
1da177e4
LT
730 }
731
1da177e4
LT
732 /*
733 * Copies the low order bits of the timestamp and the randomly
734 * set "sequence" number out of a UUID.
735 */
cb0ba6cc
CH
736 mp->m_fixedfsid[0] =
737 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
738 get_unaligned_be16(&sbp->sb_uuid.b[4]);
739 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
1da177e4 740
0650b554
DC
741 error = xfs_da_mount(mp);
742 if (error) {
743 xfs_warn(mp, "Failed dir/attr init: %d", error);
744 goto out_remove_uuid;
745 }
1da177e4
LT
746
747 /*
748 * Initialize the precomputed transaction reservations values.
749 */
750 xfs_trans_init(mp);
751
1da177e4
LT
752 /*
753 * Allocate and initialize the per-ag data.
754 */
1c1c6ebc
DC
755 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
756 if (error) {
0b932ccc 757 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 758 goto out_free_dir;
1c1c6ebc 759 }
1da177e4 760
a71895c5 761 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
0b932ccc 762 xfs_warn(mp, "no log defined");
2451337d 763 error = -EFSCORRUPTED;
f9057e3d
CH
764 goto out_free_perag;
765 }
766
1da177e4 767 /*
f0b2efad
BF
768 * Log's mount-time initialization. The first part of recovery can place
769 * some items on the AIL, to be handled when recovery is finished or
770 * cancelled.
1da177e4 771 */
f9057e3d
CH
772 error = xfs_log_mount(mp, mp->m_logdev_targp,
773 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
774 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
775 if (error) {
0b932ccc 776 xfs_warn(mp, "log mount failed");
d4f3512b 777 goto out_fail_wait;
1da177e4
LT
778 }
779
2e9e6481
DW
780 /* Make sure the summary counts are ok. */
781 error = xfs_check_summary_counts(mp);
782 if (error)
783 goto out_log_dealloc;
f9057e3d 784
1da177e4
LT
785 /*
786 * Get and sanity-check the root inode.
787 * Save the pointer to it in the mount structure.
788 */
541b5acc
DC
789 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
790 XFS_ILOCK_EXCL, &rip);
1da177e4 791 if (error) {
541b5acc
DC
792 xfs_warn(mp,
793 "Failed to read root inode 0x%llx, error %d",
794 sbp->sb_rootino, -error);
f9057e3d 795 goto out_log_dealloc;
1da177e4
LT
796 }
797
798 ASSERT(rip != NULL);
1da177e4 799
a71895c5 800 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 801 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 802 (unsigned long long)rip->i_ino);
1da177e4 803 xfs_iunlock(rip, XFS_ILOCK_EXCL);
2451337d 804 error = -EFSCORRUPTED;
f9057e3d 805 goto out_rele_rip;
1da177e4
LT
806 }
807 mp->m_rootip = rip; /* save it */
808
809 xfs_iunlock(rip, XFS_ILOCK_EXCL);
810
811 /*
812 * Initialize realtime inode pointers in the mount structure
813 */
0771fb45
ES
814 error = xfs_rtmount_inodes(mp);
815 if (error) {
1da177e4
LT
816 /*
817 * Free up the root inode.
818 */
0b932ccc 819 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 820 goto out_rele_rip;
1da177e4
LT
821 }
822
823 /*
7884bc86
CH
824 * If this is a read-only mount defer the superblock updates until
825 * the next remount into writeable mode. Otherwise we would never
826 * perform the update e.g. for the root filesystem.
1da177e4 827 */
61e63ecb
DC
828 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
829 error = xfs_sync_sb(mp, false);
e5720eec 830 if (error) {
0b932ccc 831 xfs_warn(mp, "failed to write sb changes");
b93b6e43 832 goto out_rtunmount;
e5720eec
DC
833 }
834 }
1da177e4
LT
835
836 /*
837 * Initialise the XFS quota management subsystem for this mount
838 */
7d095257
CH
839 if (XFS_IS_QUOTA_RUNNING(mp)) {
840 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
841 if (error)
842 goto out_rtunmount;
843 } else {
844 ASSERT(!XFS_IS_QUOTA_ON(mp));
845
846 /*
847 * If a file system had quotas running earlier, but decided to
848 * mount without -o uquota/pquota/gquota options, revoke the
849 * quotachecked license.
850 */
851 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 852 xfs_notice(mp, "resetting quota flags");
7d095257
CH
853 error = xfs_mount_reset_sbqflags(mp);
854 if (error)
a70a4fa5 855 goto out_rtunmount;
7d095257
CH
856 }
857 }
1da177e4
LT
858
859 /*
f0b2efad
BF
860 * Finish recovering the file system. This part needed to be delayed
861 * until after the root and real-time bitmap inodes were consistently
81ed9475
DW
862 * read in. Temporarily create per-AG space reservations for metadata
863 * btree shape changes because space freeing transactions (for inode
864 * inactivation) require the per-AG reservation in lieu of reserving
865 * blocks.
1da177e4 866 */
81ed9475
DW
867 error = xfs_fs_reserve_ag_blocks(mp);
868 if (error && error == -ENOSPC)
869 xfs_warn(mp,
870 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
4249023a 871 error = xfs_log_mount_finish(mp);
81ed9475 872 xfs_fs_unreserve_ag_blocks(mp);
1da177e4 873 if (error) {
0b932ccc 874 xfs_warn(mp, "log mount finish failed");
b93b6e43 875 goto out_rtunmount;
1da177e4
LT
876 }
877
ddeb14f4
DC
878 /*
879 * Now the log is fully replayed, we can transition to full read-only
880 * mode for read-only mounts. This will sync all the metadata and clean
881 * the log so that the recovery we just performed does not have to be
882 * replayed again on the next mount.
883 *
884 * We use the same quiesce mechanism as the rw->ro remount, as they are
885 * semantically identical operations.
886 */
887 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
888 XFS_MOUNT_RDONLY) {
ea2064da 889 xfs_log_clean(mp);
ddeb14f4
DC
890 }
891
1da177e4
LT
892 /*
893 * Complete the quota initialisation, post-log-replay component.
894 */
7d095257
CH
895 if (quotamount) {
896 ASSERT(mp->m_qflags == 0);
897 mp->m_qflags = quotaflags;
898
899 xfs_qm_mount_quotas(mp);
900 }
901
84e1e99f
DC
902 /*
903 * Now we are mounted, reserve a small amount of unused space for
904 * privileged transactions. This is needed so that transaction
905 * space required for critical operations can dip into this pool
906 * when at ENOSPC. This is needed for operations like create with
907 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
908 * are not allowed to use this reserved space.
8babd8a2
DC
909 *
910 * This may drive us straight to ENOSPC on mount, but that implies
911 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 912 */
d5db0f97
ES
913 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
914 resblks = xfs_default_resblks(mp);
915 error = xfs_reserve_blocks(mp, &resblks, NULL);
916 if (error)
0b932ccc
DC
917 xfs_warn(mp,
918 "Unable to allocate reserve blocks. Continuing without reserve pool.");
174edb0e
DW
919
920 /* Recover any CoW blocks that never got remapped. */
921 error = xfs_reflink_recover_cow(mp);
922 if (error) {
923 xfs_err(mp,
924 "Error %d recovering leftover CoW allocations.", error);
925 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
926 goto out_quota;
927 }
84d69619
DW
928
929 /* Reserve AG blocks for future btree expansion. */
930 error = xfs_fs_reserve_ag_blocks(mp);
931 if (error && error != -ENOSPC)
932 goto out_agresv;
d5db0f97 933 }
84e1e99f 934
1da177e4
LT
935 return 0;
936
84d69619
DW
937 out_agresv:
938 xfs_fs_unreserve_ag_blocks(mp);
174edb0e
DW
939 out_quota:
940 xfs_qm_unmount_quotas(mp);
b93b6e43
CH
941 out_rtunmount:
942 xfs_rtunmount_inodes(mp);
f9057e3d 943 out_rele_rip:
44a8736b 944 xfs_irele(rip);
77aff8c7
DW
945 /* Clean out dquots that might be in memory after quotacheck. */
946 xfs_qm_unmount(mp);
2d1d1da3 947 /*
d336f7eb 948 * Flush all inode reclamation work and flush the log.
2d1d1da3
DW
949 * We have to do this /after/ rtunmount and qm_unmount because those
950 * two will have scheduled delayed reclaim for the rt/quota inodes.
951 *
952 * This is slightly different from the unmountfs call sequence
953 * because we could be tearing down a partially set up mount. In
954 * particular, if log_mount_finish fails we bail out without calling
955 * qm_unmount_quotas and therefore rely on qm_unmount to release the
956 * quota inodes.
957 */
d336f7eb 958 xfs_unmount_flush_inodes(mp);
f9057e3d 959 out_log_dealloc:
f0b2efad 960 xfs_log_mount_cancel(mp);
d4f3512b
DC
961 out_fail_wait:
962 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
10fb9ac1
BF
963 xfs_buftarg_drain(mp->m_logdev_targp);
964 xfs_buftarg_drain(mp->m_ddev_targp);
f9057e3d 965 out_free_perag:
ff4f038c 966 xfs_free_perag(mp);
0650b554
DC
967 out_free_dir:
968 xfs_da_unmount(mp);
f9057e3d 969 out_remove_uuid:
27174203 970 xfs_uuid_unmount(mp);
31965ef3
DW
971 out_remove_errortag:
972 xfs_errortag_del(mp);
192852be
CM
973 out_remove_error_sysfs:
974 xfs_error_sysfs_del(mp);
225e4635
BD
975 out_del_stats:
976 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
977 out_remove_sysfs:
978 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 979 out:
1da177e4
LT
980 return error;
981}
982
983/*
1da177e4
LT
984 * This flushes out the inodes,dquots and the superblock, unmounts the
985 * log and makes sure that incore structures are freed.
986 */
41b5c2e7
CH
987void
988xfs_unmountfs(
989 struct xfs_mount *mp)
1da177e4 990{
c8ce540d 991 uint64_t resblks;
41b5c2e7 992 int error;
1da177e4 993
c9a6526f 994 xfs_blockgc_stop(mp);
84d69619 995 xfs_fs_unreserve_ag_blocks(mp);
7d095257 996 xfs_qm_unmount_quotas(mp);
b93b6e43 997 xfs_rtunmount_inodes(mp);
44a8736b 998 xfs_irele(mp->m_rootip);
77508ec8 999
d336f7eb 1000 xfs_unmount_flush_inodes(mp);
1da177e4 1001
7d095257 1002 xfs_qm_unmount(mp);
a357a121 1003
84e1e99f
DC
1004 /*
1005 * Unreserve any blocks we have so that when we unmount we don't account
1006 * the reserved free space as used. This is really only necessary for
1007 * lazy superblock counting because it trusts the incore superblock
9da096fd 1008 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1009 *
1010 * We don't bother correcting this elsewhere for lazy superblock
1011 * counting because on mount of an unclean filesystem we reconstruct the
1012 * correct counter value and this is irrelevant.
1013 *
1014 * For non-lazy counter filesystems, this doesn't matter at all because
1015 * we only every apply deltas to the superblock and hence the incore
1016 * value does not matter....
1017 */
1018 resblks = 0;
714082bc
DC
1019 error = xfs_reserve_blocks(mp, &resblks, NULL);
1020 if (error)
0b932ccc 1021 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1022 "Freespace may not be correct on next mount.");
1023
21b699c8 1024 xfs_log_unmount(mp);
0650b554 1025 xfs_da_unmount(mp);
27174203 1026 xfs_uuid_unmount(mp);
1da177e4 1027
1550d0b0 1028#if defined(DEBUG)
31965ef3 1029 xfs_errortag_clearall(mp);
1da177e4 1030#endif
ff4f038c 1031 xfs_free_perag(mp);
a31b1d3d 1032
31965ef3 1033 xfs_errortag_del(mp);
192852be 1034 xfs_error_sysfs_del(mp);
225e4635 1035 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1036 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1037}
1038
91ee575f
BF
1039/*
1040 * Determine whether modifications can proceed. The caller specifies the minimum
1041 * freeze level for which modifications should not be allowed. This allows
1042 * certain operations to proceed while the freeze sequence is in progress, if
1043 * necessary.
1044 */
1045bool
1046xfs_fs_writable(
1047 struct xfs_mount *mp,
1048 int level)
92821e2b 1049{
91ee575f
BF
1050 ASSERT(level > SB_UNFROZEN);
1051 if ((mp->m_super->s_writers.frozen >= level) ||
1052 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1053 return false;
1054
1055 return true;
92821e2b
DC
1056}
1057
8c1903d3
DC
1058/*
1059 * Deltas for the block count can vary from 1 to very large, but lock contention
1060 * only occurs on frequent small block count updates such as in the delayed
1061 * allocation path for buffered writes (page a time updates). Hence we set
1062 * a large batch count (1024) to minimise global counter updates except when
1063 * we get near to ENOSPC and we have to be very accurate with our updates.
1064 */
1065#define XFS_FDBLOCKS_BATCH 1024
0d485ada
DC
1066int
1067xfs_mod_fdblocks(
1068 struct xfs_mount *mp,
1069 int64_t delta,
1070 bool rsvd)
1071{
1072 int64_t lcounter;
1073 long long res_used;
1074 s32 batch;
fd43cf60 1075 uint64_t set_aside;
0d485ada
DC
1076
1077 if (delta > 0) {
1078 /*
1079 * If the reserve pool is depleted, put blocks back into it
1080 * first. Most of the time the pool is full.
1081 */
1082 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1083 percpu_counter_add(&mp->m_fdblocks, delta);
1084 return 0;
1085 }
1086
1087 spin_lock(&mp->m_sb_lock);
1088 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1089
1090 if (res_used > delta) {
1091 mp->m_resblks_avail += delta;
1092 } else {
1093 delta -= res_used;
1094 mp->m_resblks_avail = mp->m_resblks;
1095 percpu_counter_add(&mp->m_fdblocks, delta);
1096 }
1097 spin_unlock(&mp->m_sb_lock);
1098 return 0;
1099 }
1100
1101 /*
1102 * Taking blocks away, need to be more accurate the closer we
1103 * are to zero.
1104 *
0d485ada
DC
1105 * If the counter has a value of less than 2 * max batch size,
1106 * then make everything serialise as we are real close to
1107 * ENOSPC.
1108 */
8c1903d3
DC
1109 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1110 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1111 batch = 1;
1112 else
8c1903d3 1113 batch = XFS_FDBLOCKS_BATCH;
0d485ada 1114
fd43cf60
BF
1115 /*
1116 * Set aside allocbt blocks because these blocks are tracked as free
1117 * space but not available for allocation. Technically this means that a
1118 * single reservation cannot consume all remaining free space, but the
1119 * ratio of allocbt blocks to usable free blocks should be rather small.
1120 * The tradeoff without this is that filesystems that maintain high
1121 * perag block reservations can over reserve physical block availability
1122 * and fail physical allocation, which leads to much more serious
1123 * problems (i.e. transaction abort, pagecache discards, etc.) than
1124 * slightly premature -ENOSPC.
1125 */
1126 set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
104b4e51 1127 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
fd43cf60 1128 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
8c1903d3 1129 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1130 /* we had space! */
1131 return 0;
1132 }
1133
1134 /*
1135 * lock up the sb for dipping into reserves before releasing the space
1136 * that took us to ENOSPC.
1137 */
1138 spin_lock(&mp->m_sb_lock);
1139 percpu_counter_add(&mp->m_fdblocks, -delta);
1140 if (!rsvd)
1141 goto fdblocks_enospc;
1142
1143 lcounter = (long long)mp->m_resblks_avail + delta;
1144 if (lcounter >= 0) {
1145 mp->m_resblks_avail = lcounter;
1146 spin_unlock(&mp->m_sb_lock);
1147 return 0;
1148 }
ec43f6da
ES
1149 xfs_warn_once(mp,
1150"Reserve blocks depleted! Consider increasing reserve pool size.");
1151
0d485ada
DC
1152fdblocks_enospc:
1153 spin_unlock(&mp->m_sb_lock);
1154 return -ENOSPC;
1155}
1156
bab98bbe
DC
1157int
1158xfs_mod_frextents(
1159 struct xfs_mount *mp,
1160 int64_t delta)
1161{
1162 int64_t lcounter;
1163 int ret = 0;
1164
1165 spin_lock(&mp->m_sb_lock);
1166 lcounter = mp->m_sb.sb_frextents + delta;
1167 if (lcounter < 0)
1168 ret = -ENOSPC;
1169 else
1170 mp->m_sb.sb_frextents = lcounter;
1171 spin_unlock(&mp->m_sb_lock);
1172 return ret;
1173}
1174
1da177e4
LT
1175/*
1176 * Used to free the superblock along various error paths.
1177 */
1178void
1179xfs_freesb(
26af6552 1180 struct xfs_mount *mp)
1da177e4 1181{
26af6552 1182 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1183
26af6552 1184 xfs_buf_lock(bp);
1da177e4 1185 mp->m_sb_bp = NULL;
26af6552 1186 xfs_buf_relse(bp);
1da177e4
LT
1187}
1188
dda35b8f
CH
1189/*
1190 * If the underlying (data/log/rt) device is readonly, there are some
1191 * operations that cannot proceed.
1192 */
1193int
1194xfs_dev_is_read_only(
1195 struct xfs_mount *mp,
1196 char *message)
1197{
1198 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1199 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1200 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1201 xfs_notice(mp, "%s required on read-only device.", message);
1202 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1203 return -EROFS;
dda35b8f
CH
1204 }
1205 return 0;
1206}
f467cad9
DW
1207
1208/* Force the summary counters to be recalculated at next mount. */
1209void
1210xfs_force_summary_recalc(
1211 struct xfs_mount *mp)
1212{
1213 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1214 return;
1215
39353ff6 1216 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
f467cad9 1217}
9fe82b8c
DW
1218
1219/*
1220 * Update the in-core delayed block counter.
1221 *
1222 * We prefer to update the counter without having to take a spinlock for every
1223 * counter update (i.e. batching). Each change to delayed allocation
1224 * reservations can change can easily exceed the default percpu counter
1225 * batching, so we use a larger batch factor here.
1226 *
1227 * Note that we don't currently have any callers requiring fast summation
1228 * (e.g. percpu_counter_read) so we can use a big batch value here.
1229 */
1230#define XFS_DELALLOC_BATCH (4096)
1231void
1232xfs_mod_delalloc(
1233 struct xfs_mount *mp,
1234 int64_t delta)
1235{
1236 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1237 XFS_DELALLOC_BATCH);
1238}